KR101859818B1 - Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle - Google Patents

Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle Download PDF

Info

Publication number
KR101859818B1
KR101859818B1 KR1020160061103A KR20160061103A KR101859818B1 KR 101859818 B1 KR101859818 B1 KR 101859818B1 KR 1020160061103 A KR1020160061103 A KR 1020160061103A KR 20160061103 A KR20160061103 A KR 20160061103A KR 101859818 B1 KR101859818 B1 KR 101859818B1
Authority
KR
South Korea
Prior art keywords
sic
powder
sintering
mixed
sintered body
Prior art date
Application number
KR1020160061103A
Other languages
Korean (ko)
Other versions
KR20170130686A (en
Inventor
유연태
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020160061103A priority Critical patent/KR101859818B1/en
Publication of KR20170130686A publication Critical patent/KR20170130686A/en
Application granted granted Critical
Publication of KR101859818B1 publication Critical patent/KR101859818B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Abstract

본 발명은 플라즈마처리된 Si/SiC 나노복합분말를 이용한 SiC 소결체의 제조방법에 관한 것으로서, 마이크론 사이즈의 SiC 미립분말과, 플라즈마처리된 Si/SiC 나노복합분말 소결조제를 혼합하여 혼합분말을 얻는 단계와; 상기 혼합분말을 소결시켜 SiC 소결체를 얻는 단계;를 포함하는 것을 특징으로 한다.The present invention relates to a method for producing a SiC sintered body using plasma-treated Si / SiC nanocomposite powder, comprising the steps of mixing a micron-sized SiC fine powder and a plasma-treated Si / SiC nanocomposite powder sintering aid to obtain a mixed powder, ; And sintering the mixed powder to obtain a SiC sintered body.

Description

플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법{Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle}[0001] The present invention relates to a method for producing a SiC sintered body using a plasma-treated Si-SiC nanocomposite powder,

본 발명은 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체의 제조방법에 관한 것이다.The present invention relates to a method for producing a SiC sintered body using a plasma-treated Si-SiC nanocomposite powder.

SiC(탄화규소)는 일반적으로 물리/화학적으로 안정하고 내열성과 열전도성이 좋아 고온 안정성과 고온 강도가 매우 우수하며 내마모성이 높은 특성을 가지고 있어 고온 재료로서, 가스터빈용 구조재, 핵융합로 대면재료, 반도체용 치구, 내마모성 재료, 자동차 부품, 화학공장의 내식성 또는 내약품성 부품 및 전자부품 등을 제조하는데 주로 사용될 수 있다.  SiC (silicon carbide) is generally physically / chemically stable and has high heat stability and high temperature strength because it has high heat resistance and thermal conductivity. It has high abrasion resistance and is used as a high temperature material for gas turbine structural materials, It can be used mainly for manufacturing semiconductor fixtures, wear resistant materials, automobile parts, corrosion resistance or chemical resistance parts and electronic parts of chemical plants.

SiC를 기반으로 하는 제품들은 SiC의 높은 용융점(2400℃ 이상) 때문에 소결법에 의해서 제조되고, 소결온도를 낮추기 위하여 소결조제를 사용하는데, 소결조제가 첨가되면 소결온도는 2000℃ 부근까지 낮아질 수 있다. SiC 분말의 소결조제로는 B(보론), Al2O3(알루미나), C(카본) 등이 사용되고 있다. 한편 SiC 소결제품을 반도체 웨이퍼 제조 공정 및 핵융합로의 대면재료 등에 사용하기 위해서는 고순도화가 필수적이다. 그러나 SiC 분말의 소결 시 사용되는 소결조제가 불순물로 작용할 수 있다. SiC based products are manufactured by the sintering method because of the high melting point of SiC (over 2400 ℃) and sintering additives are used to lower the sintering temperature. When the sintering additive is added, the sintering temperature can be lowered to around 2000 ℃. As the sintering aid for the SiC powder, B (boron), Al 2 O 3 (alumina), C (carbon) and the like are used. On the other hand, in order to use the SiC sintered product for the semiconductor wafer manufacturing process and the facing material of the fusion reactor, high purity is essential. However, sintering aids used in the sintering of SiC powders may act as impurities.

이러한 문제점을 개선하기 위하여 나노사이즈의 SiC를 소결조제로 사용할 수 있다. 나노 사이즈 SiC 분말이 마이크론 사이즈 SiC 분말의 소결에 미치는 효과는 입경이 작아지면서 표면 에너지가 높아지고 이 에너지 때문에 나노 사이즈 SiC 분말의 용융점이 낮아지고 이로 인하여 소결 현상이 발생하게 되는 것으로 입경이 작을수록 그 효과가 크다. 즉 나노분말을 이용하는 소결방법은 고상소결 또는 부분적인 액상 소결법이라고 할 수 있다. 이 경우 소결조제로서 동질의 물질이 사용되기 때문에 이종 산화물을 소결조제로 사용할 때 발생하는 SiC 소결체의 순도 저하에 대한 우려를 최소화 할 수 있는 장점이 있다. 그러나 나노 사이즈의 SiC 분말을 소결조제로 사용하더라도 2000℃ 이상의 높은 소결온도가 필요하다. 따라서 SiC 소결체의 소결온도 및 불순물 농도를 동시에 낮추기 위해서는 새로운 소결조제의 개발이 요구된다. In order to solve this problem, nano-sized SiC can be used as a sintering auxiliary agent. The effect of nano-sized SiC powder on the sintering of micron-sized SiC powder is as follows. As the particle size becomes smaller, the surface energy is increased. As a result, the melting point of the nano-sized SiC powder is lowered and the sintering phenomenon occurs. . That is, the sintering method using nano powder can be called solid phase sintering or partial liquid sintering method. In this case, since a homogeneous material is used as the sintering aid, there is an advantage that the concern about a decrease in the purity of the sintered body of SiC, which occurs when the hetero-oxide is used as a sintering aid, can be minimized. However, even if a nano-sized SiC powder is used as a sintering aid, a high sintering temperature of 2000 ° C or more is required. Therefore, in order to lower the sintering temperature and the impurity concentration of the SiC sintered body simultaneously, it is required to develop a new sintering auxiliary agent.

한편, 비교적 낮은 소결온도에서 SiC 소결체를 제조하는 방법으로 액상반응소결법이 있는데, 이 방법에서는 SiC 분말, C(탄소) 분말과 유기바인더(10-20 wt%)를 혼합하여 성형하고 유기바인더를 탄화시킨 후 1500-1700℃의 고온 진공 중에서 Si를 SiC 성형체 내부로 증발 또는 침윤시켜 SiC 성형체 내부의 탄소와 반응시켜 소결체를 얻을 수 있다. 그러나 이 방법에서는 실리콘 금속이 SiC 성형체 내부로 용융 후 침윤하거나 증발 후 침투 과정이 필요하므로 SiC 소결체 내부에는 미반응 Si가 잔존한다는 문제가 있다. On the other hand, there is a liquid reaction sintering method for producing a SiC sintered body at a relatively low sintering temperature. In this method, SiC powder and C (carbon) powder are mixed with an organic binder (10-20 wt% The Si is evaporated or infiltrated into the SiC compact in a high-temperature vacuum of 1500-1700 ° C to react with carbon in the SiC compact to obtain a sintered compact. However, in this method, there is a problem that unreacted Si remains in the SiC sintered body because the silicon metal infiltrates into the SiC molded body after melting or requires infiltration after evaporation.

따라서 고순도의 SiC 소결체의 제조에 있어서 이종 소결조제에 의한 불순물의 혼입을 줄이고 동시에 소결 온도를 낮추기 위해서는 소결조제의 나노화 효과와 액상반응소결 효과를 동시에 발현시킬 수 있는 소결조제의 개발이 필요하다. Si-SiC 나노복합분말은 이러한 요구에 적합한 소결조제용 소재라고 할 수 있다.Therefore, it is necessary to develop a sintering additive capable of simultaneously exhibiting the effect of sintering assistant nanoparticles and the sintering of liquid phase reaction in order to reduce the mixing of impurities by the sintering aid in the production of high-purity SiC sintered body and at the same time lower the sintering temperature. The Si-SiC nanocomposite powder is a sintering aid material suitable for this demand.

(0001) KR2010-0128437A (2010.12.08)(0001) KR2010-0128437A (2010.12.08)

본 발명은 2000℃ 이하의 비교적 저온에서 고밀도의 SiC 소결체를 제조할 수 있는 SiC 소결체의 제조방법을 제공함에 그 목적이 있다.An object of the present invention is to provide a method of manufacturing a SiC sintered body capable of producing a high-density SiC sintered body at a relatively low temperature of 2000 ° C or less.

상기와 같은 목적을 달성하기 위한 본 발명은,According to an aspect of the present invention,

마이크론 사이즈의 SiC 미립분말과, 플라즈마처리된 Si/SiC 나노복합분말 소결조제를 혼합하여 혼합분말을 얻는 단계와;Mixing a micron sized SiC fine powder and a plasma treated Si / SiC nanocomposite powder sintering aid to obtain a mixed powder;

상기 혼합분말을 소결시켜 SiC 소결체를 얻는 단계;를 포함하는 것을 특징으로 하는 SiC 소결체의 제조방법을 제공한다.And sintering the mixed powder to obtain a SiC sintered body. The present invention also provides a method of manufacturing a SiC sintered body.

특히, 상기 SiC 미립분말과 상기 소결조제를 9:1의 중량비로 혼합하는 것이 바람직하고, 더욱 바람직하게는 상기 혼합분말에는 활성탄이 더 혼합되는 것이 좋다.Particularly, it is preferable to mix the SiC fine powder and the sintering auxiliary at a weight ratio of 9: 1, and more preferably, the mixed powder is further mixed with activated carbon.

그리고 상기 활성탄은 상기 소결조제 100중량부에 1 내지 3중량부를 혼합하는 것이 좋다.It is preferable that 1 to 3 parts by weight of the activated carbon is mixed with 100 parts by weight of the sintering auxiliary.

또한, 상기 혼합분말을 1700~1800℃에서 방전플라즈마소결법에 의해 소결시키고, 특히, 상기 혼합분말을 1700~1800℃에서 1~2분동안 유지한 상태로 방전플라즈마소결법에 의해 소결시키는 것이 좋다.It is also preferable that the mixed powder is sintered by a discharge plasma sintering method at 1700 to 1800 ° C, and particularly, the sintered powder is sintered by a discharge plasma sintering method while being maintained at 1700 to 1800 ° C for 1 to 2 minutes.

그리고 플라즈마처리된 Si/SiC 나노복합분말 소결조제는 실리콘과 탄소의 고체상 원료를 혼합한 후 소성하여 SiC 미립분말을 합성하고, 합성된 상기 SiC 미립분말을 열플라즈마 처리하여 열분해반응을 통해 제조된 것을 사용하는 것이 좋다.The plasma-treated Si / SiC nanocomposite powder sintering assistant is prepared by mixing a solid raw material of silicon and carbon and then firing to synthesize SiC fine powder and thermally decomposing the synthesized SiC fine powder by thermal plasma treatment It is good to use.

특히 상기 실리콘과 탄소는 입경이 100㎛ 이하이고, 상기 실리콘과 탄소의 혼합몰비는 1:1.1~2.0로 혼합하는 것이 좋다.Particularly, it is preferable that the silicon and carbon have a particle diameter of 100 mu m or less and the mixing ratio of silicon to carbon is 1: 1.1 to 2.0.

그리고 상기 실리콘과 탄소의 혼합분말을 1200~1400℃에서 2~10시간 동안 소성하여 SiC 미립분말을 합성하는 것이 바람직하다.It is preferable to synthesize the SiC fine powder by firing the mixed powder of silicon and carbon at 1200 to 1400 ° C for 2 to 10 hours.

본 발명에 따른 플라즈마처리된 Si/SiC 나노복합분말 소결조제를 이용하여 제조된 SiC 소결체는 Si-SiC 복합분말의 나노화 효과 및 활성탄과의 부분적 액상반응 소결 효과에 의해 마이크론 사이즈 SiC 분말의 소결온도를 2000℃ 이하로 낮출 수 있으며, 상대밀도 99 % 이상, 비커스 경도 30 GPa 이상의 특성을 갖는 고밀도 SiC 소결체를 제조할 수 있는 효과가 있다.The SiC sintered body produced by using the plasma-treated Si / SiC nanocomposite powder sintering aid according to the present invention exhibited a sintering temperature of micron-sized SiC powder due to the effect of nanoization of Si-SiC composite powder and partial sintering reaction with activated carbon Density SiC sintered body having a relative density of 99% or more and a Vickers hardness of 30 GPa or more can be produced.

도 1은 본 발명의 플라즈마처리된 Si/SiC 나노복합분말 소결조제를 제조하는 방법을 개략적으로 나타내는 순서도이다.
도 2는 SiC 소결체의 제조방법을 개략적으로 나타내는 순서도이다.
도 3 및 도 4는 합성된 마이크론 사이즈의 SiC분말의 FESEM 사진 및 X선 회절선이다.
도 5 및 도 6은 Si-SiC 나노복합분말의 TEM 사진과 X선 회절선이다.
1 is a flowchart schematically showing a method for producing a plasma-treated Si / SiC nanocomposite powder sintering aid of the present invention.
2 is a flow chart schematically showing a method for producing a SiC sintered body.
Figs. 3 and 4 are FESEM photographs and X-ray diffraction lines of synthesized micron-sized SiC powder.
5 and 6 are TEM photographs and X-ray diffraction lines of the Si-SiC nanocomposite powder.

이하, 본 발명의 플라즈마처리된 Si/SiC 나노복합분말을 이용한 SiC 소결체의 제조방법에 대해 상세히 설명하면 다음과 같다.Hereinafter, a method for manufacturing a SiC sintered body using the plasma-treated Si / SiC nanocomposite powder of the present invention will be described in detail.

도 1은 플라즈마처리된 Si/SiC 나노복합분말 소결조제를 제조하는 방법을 개략적으로 나타내는 순서도이다.1 is a flowchart schematically showing a method for producing a plasma-treated Si / SiC nanocomposite powder sintering auxiliary agent.

본 발명의 플라즈마처리된 Si/SiC 나노복합분말 소결조제는 크게 SiC 미립분말 합성단계 및 Si/SiC 나노복합분말 제조단계를 포함한다.The plasma-treated Si / SiC nanocomposite powder sintering aids of the present invention largely include a SiC fine powder synthesis step and a Si / SiC nanocomposite powder manufacturing step.

먼저, 상기 SiC 미립분말 합성단계는 실리콘과 탄소의 고체상 원료를 혼합한 후 소성하여 SiC 미립분말을 합성하는 단계이다.First, in the step of synthesizing the SiC fine powder, a solid phase raw material of silicon and carbon is mixed and then fired to synthesize SiC fine powder.

상기 실리콘과 상기 탄소의 종류 및 입경은 크게 한정되는 것은 아니나, 고상반응의 활성화를 위하여 100㎛ 이하의 분말로 분쇄하여 사용하는 것이 좋다. 상기 탄소로서는 활성탄, 카본블랙 및 흑연 등을 사용할 수 있다.The kind and the particle diameter of the silicon and the carbon are not limited, but it is preferable to use the powder with a particle size of 100 탆 or less for the activation of the solid-phase reaction. As the carbon, activated carbon, carbon black, graphite and the like can be used.

상기 실리콘 분말과 상기 탄소 분말을 혼합할 때 균일하게 혼합하기 위하여 볼밀을 이용하여 수용되는 것이 바람직하다. It is preferable that the silicon powder and the carbon powder are accommodated using a ball mill to uniformly mix the silicon powder and the carbon powder.

그리고 상기 실린콘 분말과 상기 탄소 분말을 혼합한 혼합분말을 탄화규소가 생성되기 충분한 온도 및 시간에서 소성한다. The mixed powder obtained by mixing the silcone powder and the carbon powder is fired at a temperature and for a time sufficient to produce silicon carbide.

특히 마이크론 사이즈의 SiC분말의 합성을 위하여 Si:C 혼합몰비를 1:1.1~2.0로 하여 1200~1300℃에서 2~10시간 동안 소성하는 것이 좋다.In particular, for the synthesis of micron-sized SiC powder, it is preferable to sinter at 1200 to 1300 ° C for 2 to 10 hours at a Si: C mixing molar ratio of 1: 1.1 to 2.0.

그리고 소성과정에서 실리콘의 산화를 방지하기 위하여 아르곤 가스 등을 소정량 유입하면서 소성을 수행한다.In order to prevent the oxidation of silicon during the firing process, firing is performed while introducing a predetermined amount of argon gas or the like.

그리고 상기 Si/SiC 나노복합분말 제조단계는 상기 SiC 미립분말을 열플라즈마 처리하여 열분해반응을 통해 Si/SiC 나노복합분말을 제조하는 단계이다.In the step of manufacturing the Si / SiC nanocomposite powder, the SiC fine powder is subjected to a thermal plasma treatment to produce a Si / SiC nanocomposite powder through a thermal decomposition reaction.

상기 열플라즈마처리는 비이송식 플라즈마를 적용하여 마이크론 사이즈의 상기 SiC 미립 분말을 Si-SiC 나노복합분말로 전환시키게 된다.The thermal plasma treatment converts the micron-sized SiC fine powder into a Si-SiC nanocomposite powder by applying a non-transferred plasma.

상기 SiC 미립 분말을 정량공급기를 통해 비이송식 아크 열플라즈마의 불꽃 속에 투입하게 되면 마이크론 사이즈 SiC 분말은 플라즈마 공간 내에서 일시적으로 용융 상태에 이르게 되고, 이때 고속으로 분출하는 아르곤 및 수소 가스에 의해 용융 SiC 분말은 나노 사이즈로 흩어짐과 동시에 부분적으로 열분해 반응이 일어나 SiC 나노분말은 Si 및 C 로 분리되고, Si는 다른 SiC 나노분말 상에 부착되어 Si/SiC 나노복합분말을 형성하게 된다. When the SiC fine powder is injected into the flame of the non-transferring arc thermal plasma through the quantitative feeder, the micron size SiC powder is temporarily melted in the plasma space. At this time, the argon and hydrogen gas ejected at high speed melt SiC powders are dispersed into nano-size and partially pyrolyzed. SiC nano powder is separated into Si and C, and Si is adhered to other SiC nano powder to form Si / SiC nanocomposite powder.

도 2는 SiC 소결체의 제조방법을 개략적으로 나타내는 순서도이다.2 is a flow chart schematically showing a method for producing a SiC sintered body.

다음으로, 이와 같이 제조된 Si/SiC 나노복합분말을 소결조제로 사용하여 SiC 소결체를 제조하였다.Next, a SiC sintered body was manufactured using the thus prepared Si / SiC nanocomposite powder as a sintering auxiliary agent.

상기 SiC 소결체의 제조방법은 Si/SiC 나노복합분말 소결조제와 마이크론 사이즈의 SiC 미립분말을 혼합하여 혼합분말을 얻는 단계와; 상기 혼합분말을 방전플라즈마소결(SPS)법으로 소결시켜 SiC 소결체를 얻는 단계;를 포함한다.The SiC sintered body is produced by mixing Si / SiC nanocomposite powder sintering aids and micron sized SiC fine powder to obtain a mixed powder; And sintering the mixed powder by a discharge plasma sintering (SPS) method to obtain a SiC sintered body.

특히, 상기 혼합분말은 상기 SiC 미립분말과 상기 소결조제를 9:1의 중량비로 혼합하여 이루어지는 것이 좋다. 상기 소결조제가 적게 혼합될 경우 충분한 결합력을 발휘하지 못하여 상대밀도 및 경도 값이 낮아지는 문제가 있고, 많게 혼합될 경우 소결조제의 응집으로 인하여 상대밀도 및 경도 값이 낮아지는 문제가 있다.Particularly, the mixed powder is preferably formed by mixing the SiC fine powder and the sintering auxiliary at a weight ratio of 9: 1. When the sintering aids are mixed in a small amount, sufficient binding force can not be exhibited and the relative density and hardness value are lowered. When the sintering aids are mixed in a large amount, there is a problem that the relative density and hardness value are lowered due to agglomeration of the sintering assistant.

그리고 상기 혼합분말에는 활성탄이 더 혼합되는 것이 좋다. 상기 활성탄이 더 혼합됨으로서, 활성탄과의 부분적 액상반응 소결효과에 의해 마이크론 사이즈 SiC분말의 소결온도를 2,000℃ 이하로 낮출 수 있는 이점이 있다.The mixed powder may be further mixed with activated carbon. As the activated carbon is further mixed, the sintering temperature of the micron-sized SiC powder can be lowered to 2,000 DEG C or lower owing to the partial liquid reaction sintering effect with the activated carbon.

상기 활성탄은 상기 소결조제 100중량부에 1 내지 3중량부를 혼합하는 것이 좋다. 활성탄이 1 중량부 미만으로 혼합될 경우 액상반응소결이 충분히 일어나지 못하여 상대밀도가 저하하는 문제점이 있고, 3중량부 초과로 혼합될 경우 잉여의 카본 때문에 상대밀도 및 경도 값이 동시에 저하하는 문제점이 있다.The activated carbon is preferably mixed with 1 to 3 parts by weight per 100 parts by weight of the sintering auxiliary. When the activated carbon is mixed in an amount of less than 1 part by weight, the liquid reaction sintering does not sufficiently take place and the relative density is lowered. When the activated carbon is mixed in an amount of more than 3 parts by weight, the relative density and the hardness value are simultaneously lowered due to excess carbon .

다음으로, 상기 혼합분말을 1700~1800℃에서 방전플라즈마소결법에 의해 소결시킨다. 특히, SiC 소결체의 상대밀도 및 비커스 경도를 향상시키기 위해 상기 혼합분말을 1700~1800℃에서 1~2분동안 유지한 상태로 방전플라즈마소결법에 의해 소결시키는 것이 좋다.Next, the mixed powder is sintered by a discharge plasma sintering method at 1700 to 1800 ° C. In particular, in order to improve the relative density and Vickers hardness of the SiC sintered body, the mixed powder is preferably sintered by a discharge plasma sintering method while being maintained at 1700 to 1800 ° C for 1 to 2 minutes.

이하, 본 발명의 Si/SiC 나노복합분말 소결조제의 제조방법 및 이를 이용한 SiC 소결체의 제조방법에 대해 실시예를 들어 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a Si / SiC nanocomposite powder sintering assistant of the present invention and a method of manufacturing a SiC sintered body using the same will be described in detail with reference to the following examples.

[실시예 1] Si/SiC 나노복합분말 소결조제의 제조방법[Example 1] Manufacturing method of Si / SiC nanocomposite powder sintering aids

입경이 10~50㎛인 실리콘 분말과, 입경이 5~50㎛인 활성탄 분말을 1:1.5의 혼합몰비로 혼합하였다. 그리고 혼합한 혼합분말을 1,300℃에서 2시간 동안 소성시켜 마이크론 사이즈의 SiC분말을 합성하였다. 소성시 실리콘의 산화를 방지하기 위해 아르콘 가스를 흘려보냈다.Silicon powder having a particle diameter of 10 to 50 탆 and activated carbon powder having a particle diameter of 5 to 50 탆 were mixed at a mixing ratio of 1: 1.5. The mixed powders were sintered at 1,300 ℃ for 2 hours to synthesize micron sized SiC powders. Argan gas was flown to prevent oxidation of silicon during firing.

이와 같이 합성된 마이크론 사이즈의 SiC분말의 FESEM 사진 및 X선 회절선은 도 3 및 도 4와 같다. 마이크론 사이즈 SiC 분말의 입경은 2~5 ㎛이고, 결정구조는 대부분 β상 SiC를 나타내었고, 매우 소량의 α상 SiC가 존재하였다. The FESEM photograph and the X-ray diffraction line of the synthesized micron-sized SiC powder are shown in FIGS. 3 and 4. FIG. The size of the micron - size SiC powder was 2 ~ 5 ㎛, and the crystal structure mostly showed β - phase SiC and very small amount of α - phase SiC was present.

다음으로 합성된 마이크론 사이즈의 SiC분말을 정량공급기를 통해 비이송식 아크 열플라즈마에 투입하여 열플라즈마 처리하여 Si-SiC 나노복합분말을 제조하였다. 이와 같이 제조된 Si-SiC 나노복합분말의 TEM 사진과 X선 회절선은 도 5 및 도 6로 나타냈다.Next, the synthesized SiC powder of micron size was put into a non-transferring arc thermal plasma through a quantitative feeder and subjected to thermal plasma treatment to produce Si-SiC nanocomposite powder. TEM photographs and X-ray diffraction lines of the Si-SiC nanocomposite powder thus produced are shown in FIG. 5 and FIG.

제조된 Si-SiC 나노복합분말의 입경범위는 20~40㎚를 나타냈고, X선 회절분석 결과로부터 결정구조는 대부분 β상 SiC를 나타내었고, 매우 소량의 α상 SiC과 free Si 상이 존재하였다. 나노 사이즈 Si-SiC 복합분말 중 Si의 함량은 4~5 wt% 인 것으로 분석되었다. From the results of X-ray diffraction analysis, most of the crystal structures showed β-phase SiC, and very small amount of α-phase SiC and free Si phase were present in the prepared Si-SiC nanocomposite powder. The Si content in the nano-sized Si-SiC composite powder was analyzed to be 4 to 5 wt%.

[실시예 2~4] 소결온도별 SiC소결체의 제조[Examples 2 to 4] Preparation of SiC sintered bodies by sintering temperature

마이크론 사이즈 SiC 미립분말과 실시예 1에서 제조된 나노사이즈 Si-SiC 복합분말의 중량비를 90:10으로 한 혼합시료를 제조하기 위하여, 계량된 두 물질은 1/3 부피가 되도록 지르코니아 볼을 채운 200 mL의 플라스틱 용기에 담아 12 시간동안 혼합을 실시하였다. 이 혼합시료의 약 3g을 직경 20 mm인 흑연 몰드에 채우고, SPS 소결장치에 장입하였다. SiC 소결은 진공 상태에서 진행되고, 승온율은 600℃/min, 인가 압력은 80 MPa을 적용하였다. 소결온도는 1600℃, 1700℃, 1800℃로 하였고, 소결온도에 도달하면, 유지시간 없이 소결 과정은 중단하는 것으로 설정하였다. 소결 후에 SiC 시편을 흑연 몰드로부터 제거하여 다이아몬드 페이스트로 연마한 후 아르키메데스 방법으로 상대밀도를 측정하였고, 또한 비이커스 경도를 조사하였다. 표 1에 소결온도에 따른 상대밀도 및 경도 변화를 나타내었다. 소결온도가 1800℃에서 가장 높은 상대밀도(87.4 %)와 비커스 경도(18.6 GPa)를 나타내었다. In order to prepare a mixed sample in which the weight ratio of the micron-size SiC fine powder to the nano-sized Si-SiC composite powder prepared in Example 1 was 90:10, mL plastic container and mixed for 12 hours. About 3 g of the mixed sample was filled in a graphite mold having a diameter of 20 mm and charged into an SPS sintering apparatus. SiC sintering was carried out under vacuum, the rate of temperature increase was 600 ° C / min and the applied pressure was 80 MPa. The sintering temperature was set to 1600 ℃, 1700 ℃ and 1800 ℃. When the sintering temperature was reached, the sintering process was stopped without holding time. After the sintering, the SiC specimen was removed from the graphite mold and polished with a diamond paste. Relative density was measured by the Archimedes method and the beaker hardness was also examined. Table 1 shows the relative density and hardness changes with sintering temperature. The highest relative density (87.4%) and Vickers hardness (18.6 GPa) were obtained at 1800 ℃.

소결온도
(℃)
Sintering temperature
(° C)
상대밀도
(%)
Relative density
(%)
비커스 경도
(GPa)
Vickers hardness
(GPa)
실시예 2Example 2 16001600 78.778.7 9.89.8 실시예 3Example 3 17001700 86.186.1 14.814.8 실시예 4Example 4 18001800 87.487.4 18.618.6

[실시예 5~6] 소결온도 유지시간별 SiC소결체 제조[Examples 5 to 6] Production of SiC sintered body by sintering temperature holding time

실시예 4에서는 소결온도에 도달하면 유지시간 없이 소결을 완료하였다. 본 실시예에서는 다른 실험 조건은 실시예 4와 동일하고 소결온도를 1800℃에서의 유지시간을 1분, 2분까지 연장하여 소결을 수행하였고, 그 결과를 표 2에 나타내었다. 표 2에서 알 수 있듯이 소결온도 1800℃에서의 유지시간을 1분으로 했을 때 상대밀도 및 경도값은 각각 88.2 %, 21.2 GPa를 나타내었는데, 경도값은 가장 높은 값이다. 유지시간을 2분으로 할 경우 상대 밀도는 증가하지만 경도 값은 감소하는 경향을 보였고, 이것은 SiC 소결체의 가열시간이 길어져 SiC 시편이 용융 상태에 이르고 이 때문에 상대밀도는 증가하지만 SiC 소결조직의 조대화로 경도 값은 감소하는 것으로 판단된다.In Example 4, the sintering was completed without a holding time when the sintering temperature was reached. In this example, the other experimental conditions were the same as in Example 4, and the sintering temperature was maintained at 1800 ° C. for 1 minute and 2 minutes, and sintering was performed. The results are shown in Table 2. As shown in Table 2, relative density and hardness values were 88.2% and 21.2 GPa, respectively, when the retention time at 1800 ° C. was 1 minute, and the hardness values were the highest values. When the holding time is 2 minutes, the relative density increases but the hardness value tends to decrease. This is because the heating time of the SiC sintered body becomes long and the SiC specimen is in a molten state, thereby increasing the relative density. However, The hardness value is judged to decrease.

소결온도 유지시간
(at 1800℃) (min)
Sintering temperature holding time
(at 1800 DEG C) (min)
상대밀도
(%)
Relative density
(%)
비커스 경도
(GPa)
Vickers hardness
(GPa)
실시예 4Example 4 00 87.487.4 18.618.6 실시예 5Example 5 1One 88.288.2 21.221.2 실시예 6Example 6 22 89.589.5 17.617.6

[실시예 7,8] 나노 사이즈 Si-SiC 복합분말 소결조제 첨가별 SiC 소결체 제조[Examples 7 and 8] Production of SiC sintered body with addition of nano-sized Si-SiC composite powder sintering additive

다른 실험 조건은 실시예 5와 동일하고 소결조제로 사용하는 나노사이즈 Si-SiC 복합분말의 첨가량을 5 wt%, 10 wt%, 15 wt%로 조절하였다. 이때 소결온도 1800℃, 유지시간은 1분의 조건에서 소결을 수행하였다. 나노 사이즈 SiC 복합분말의 첨가량별 SiC 소결체의 상대밀도 및 경도 값을 표3에 나타내었다. 나노 사이즈 Si-SiC 복합분말의 첨가량이 10 wt%일 때 가장 높은 상대밀도 및 비커스 경도 값을 보였다. 나노 사이즈 Si-SiC 복합분말의 첨가량이 15 wt%일 때 경도 값이 급격히 저하하는 것은 나노 사이즈 Si-SiC 복합분말의 과잉 첨가로 SiC 소결체 내에 기공이 증가했기 때문이라고 사료된다. The other experimental conditions were the same as in Example 5, and the addition amounts of the nano-sized Si-SiC composite powder used as the sintering aid were adjusted to 5 wt%, 10 wt% and 15 wt%. At this time, sintering was carried out at a sintering temperature of 1800 ° C and a holding time of 1 minute. Table 3 shows the relative density and hardness values of the SiC sintered bodies by the addition amounts of the nano-sized SiC composite powder. The highest relative density and Vickers hardness were obtained when the addition amount of nano-sized Si-SiC composite powder was 10 wt%. It is considered that the hardness value decreases sharply when the addition amount of the nano-sized Si-SiC composite powder is 15 wt% because the pore increases in the SiC sintered body due to the excessive addition of the nano-sized Si-SiC composite powder.

마이크론사이즈 SiC (wt%)Micron size SiC (wt%) 나노사이즈
Si-SiC (wt%)
Nano size
Si-SiC (wt%)
상대밀도 (%)Relative density (%) 비커스 경도 (GPa)Vickers hardness (GPa)
실시예 5Example 5 9090 1010 88.288.2 21.221.2 실시예 7Example 7 9595 55 85.985.9 20.120.1 실시예 8Example 8 8585 1515 85.685.6 16.616.6

[실시예 9~12] 활성탄 첨가량별 SiC 소결체 제조[Examples 9 to 12] Production of SiC sintered bodies by the amount of activated carbon added

다른 실험 조건은 실시예 5와 동일한데, 소결조제로서 나노 사이즈 Si-SiC 복합분말이외에 활성탄을 추가하였다. 이때 나노 사이즈 Si-SiC 복합분말의 첨가량은 10 wt%로 고정하였고, 마이크론 사이즈 SiC 분말의 첨가량을 조절하여 활성탄의 첨가량을 0.1 wt, 0.2 wt%, 0.25 wt%, 0.3 wt%로 변화시켰다. 표 4에 활성탄의 첨가량에 따른 SiC 소결체의 상대밀도 및 경도 값 변화를 나타내었다. 활성탄의 첨가량이 증가할수록 상대밀도 및 비커스 경도 값이 증가하는 경향을 보였고, 0.25g 일 때 상대밀도 99.2%, 경도 32.5 GPa로 최대값을 나타내었다. 첨가량이 0.3g 에서는 상대밀도와 경도가 모두 약간 감소하였지만, 여전히 98% 이상의 높은 상대밀도를 유지하였다. The other experimental conditions were the same as in Example 5 except that activated carbon was added in addition to nano-sized Si-SiC composite powder as a sintering aid. The addition amount of nano-sized Si-SiC composite powder was fixed to 10 wt%, and the addition amount of activated carbon was changed to 0.1 wt%, 0.2 wt%, 0.25 wt% and 0.3 wt% by controlling the addition amount of micron size SiC powder. Table 4 shows changes in relative density and hardness of SiC sintered body depending on the amount of activated carbon added. Relative density and Vickers hardness value tended to increase with increasing amount of activated carbon. At 0.25g, maximum density was 99.2% and hardness was 32.5 GPa. When the addition amount was 0.3 g, both the relative density and the hardness were slightly reduced, but still maintained a relative density of 98% or more.

마이크론사이즈 SiC (wt%)Micron size SiC (wt%) 나노사이즈
Si-SiC (wt%)
Nano size
Si-SiC (wt%)
활성탄(wt%)Activated carbon (wt%) 상대밀도 (%)Relative density (%) 비커스 경도 (GPa)Vickers hardness (GPa)
실시예 9Example 9 89.989.9 1010 0.10.1 93.193.1 25.225.2 실시예 10Example 10 89.889.8 1010 0.20.2 97.197.1 31.431.4 실시예 11Example 11 89.7589.75 1010 0.250.25 99.299.2 32.532.5 실시예 12Example 12 89.789.7 1010 0.30.3 98.198.1 30.430.4

Claims (10)

마이크론 사이즈의 SiC 미립분말과, 플라즈마처리된 Si-SiC 나노복합분말 소결조제를 혼합하여 혼합분말을 얻는 단계와;
상기 혼합분말을 소결시켜 SiC 소결체를 얻는 단계;를 포함하는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
Mixing a micron-sized SiC fine powder and a plasma-treated Si-SiC nanocomposite powder sintering aid to obtain a mixed powder;
And sintering the mixed powder to obtain a SiC sintered body. The method of producing a SiC sintered body using the plasma-treated Si-SiC nanocomposite powder.
제1항에 있어서,
상기 SiC 미립분말과 상기 Si-SiC 나노복합분말 소결조제를 9:1의 중량비로 혼합하는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
The method according to claim 1,
Wherein the SiC fine powder and the Si-SiC nanocomposite powder sintering aid are mixed at a weight ratio of 9: 1.
제2항에 있어서,
상기 혼합분말에는 활성탄이 더 혼합되는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
3. The method of claim 2,
Wherein the mixed powder is further mixed with activated carbon. The method for producing a SiC sintered body using the plasma-treated Si-SiC nanocomposite powder.
제3항에 있어서,
상기 활성탄은 상기 소결조제 100중량부에 1 내지 3중량부를 혼합하는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
The method of claim 3,
Wherein the activated carbon is mixed with 1 to 3 parts by weight per 100 parts by weight of the sintering auxiliary.
제1항에 있어서,
상기 혼합분말을 1700~1800℃에서 방전플라즈마소결법에 의해 소결시키는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
The method according to claim 1,
Wherein the mixed powder is sintered at 1700 to 1800 ° C by a discharge plasma sintering method.
제5항에 있어서,
상기 혼합분말을 1700~1800℃에서 1~2분동안 유지한 상태로 방전플라즈마소결법에 의해 소결시키는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
6. The method of claim 5,
Wherein the mixed powder is sintered by a discharge plasma sintering method while being maintained at 1700 to 1800 캜 for 1 to 2 minutes. The method for producing a SiC sintered body using the plasma-treated Si-SiC nanocomposite powder according to claim 1,
제1항에 있어서,
상기 Si-SiC 나노복합분말 소결조제는 실리콘과 탄소의 고체상 원료를 혼합한 후 소성하여 SiC 미립분말을 합성하고, 합성된 상기 SiC 미립분말을 열플라즈마 처리하여 열분해반응을 통해 제조되는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
The method according to claim 1,
The Si-SiC nanocomposite powder sintering aids are prepared by mixing a solid raw material of silicon and carbon and then firing to synthesize SiC fine powder, and thermally decomposing the synthesized SiC fine powder by thermal plasma treatment Method of manufacturing SiC sintered body using plasma-treated Si-SiC nanocomposite powder.
제7항에 있어서,
상기 실리콘과 탄소의 입경은 100㎛ 이하이고, 혼합몰비는 1:1.1~2.0인 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
8. The method of claim 7,
Wherein the silicon-carbon nanocomposite powder has a particle diameter of 100 mu m or less and a mixing molar ratio of 1: 1.1 to 2.0.
제8항에 있어서,
상기 실리콘과 탄소의 혼합분말을 1200~1400℃에서 2~10시간 동안 소성하여 SiC 미립분말을 합성하는 것을 특징으로 하는 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법.
9. The method of claim 8,
Wherein the mixed powder of silicon and carbon is fired at 1200 to 1400 ° C for 2 to 10 hours to synthesize a SiC fine powder. 2. The method for producing a SiC sintered body according to claim 1,
삭제delete
KR1020160061103A 2016-05-18 2016-05-18 Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle KR101859818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160061103A KR101859818B1 (en) 2016-05-18 2016-05-18 Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160061103A KR101859818B1 (en) 2016-05-18 2016-05-18 Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle

Publications (2)

Publication Number Publication Date
KR20170130686A KR20170130686A (en) 2017-11-29
KR101859818B1 true KR101859818B1 (en) 2018-06-29

Family

ID=60812160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160061103A KR101859818B1 (en) 2016-05-18 2016-05-18 Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle

Country Status (1)

Country Link
KR (1) KR101859818B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093293B1 (en) * 2017-12-07 2020-03-26 한국생산기술연구원 Nanoparticle structure containing vacuum-pore
KR102093319B1 (en) * 2017-12-07 2020-03-26 한국생산기술연구원 Method of manufacturing nanoparticle structure containing vacuum-pore
KR102281102B1 (en) * 2019-06-13 2021-07-23 주식회사 카보넥스 Fabrication method of sintered SiC and sintered SiC using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040059A1 (en) * 2001-11-08 2003-05-15 Bridgestone Corporation Process for producing silicon carbide sinter jig for use in semiconductor production and silicon carbide sinter jig obtained by the process
JP2012013863A (en) * 2010-06-30 2012-01-19 Canon Inc Image heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040059A1 (en) * 2001-11-08 2003-05-15 Bridgestone Corporation Process for producing silicon carbide sinter jig for use in semiconductor production and silicon carbide sinter jig obtained by the process
JP2012013863A (en) * 2010-06-30 2012-01-19 Canon Inc Image heating device

Also Published As

Publication number Publication date
KR20170130686A (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US20190010053A1 (en) Method for synthesizing aluminum nitride and aluminum nitride-based composite material
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
JPH0769731A (en) High-strength, high-density conductive ceramic
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
US20090048087A1 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
KR101859818B1 (en) Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle
WO2011011606A2 (en) Methods of forming sintered boron carbide
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
CN109665848B (en) Ultrahigh-temperature SiC-HfB2Composite ceramic and preparation method and application thereof
KR102042668B1 (en) SiC sintered body and heater and manufacturing method of SiC sintered body
KR20120007115A (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compound(s) for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
KR101659823B1 (en) A HfC Composites and A Manufacturing method of the same
JP2014055074A (en) Ti3SiC2 PRESSURELESS-SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
Mei et al. Synthesis of high-purity Ti 2 AlC by spark plasma sintering (SPS) of the elemental powders
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
KR101641839B1 (en) Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition
Manoj Kumar et al. Influence of submicron SiC particle addition on porosity and flexural strength of porous self-bonded silicon carbide
KR101483016B1 (en) Electrically Conductive Bulk Silicon Carbide Ceramics and Compositions thereof
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
Dyatkin et al. Synthesis, structure, and properties of polymer‐derived, metal‐reinforced boron carbide cermet composites
Asgharzadeh et al. Densification and microstructural evolutions during reaction sintering of SiC-Si-C powder compacts
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP2008297188A (en) Method of manufacturing tungsten-addition zirconium boride
JP7337304B1 (en) silicon nitride powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant