WO2012153645A1 - METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC - Google Patents

METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC Download PDF

Info

Publication number
WO2012153645A1
WO2012153645A1 PCT/JP2012/061196 JP2012061196W WO2012153645A1 WO 2012153645 A1 WO2012153645 A1 WO 2012153645A1 JP 2012061196 W JP2012061196 W JP 2012061196W WO 2012153645 A1 WO2012153645 A1 WO 2012153645A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid solution
zro
sintering
mol
temperature
Prior art date
Application number
PCT/JP2012/061196
Other languages
French (fr)
Japanese (ja)
Inventor
健 廣田
英行 佐藤
健伍 柴谷
Original Assignee
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社 filed Critical 学校法人同志社
Priority to JP2013513978A priority Critical patent/JP5930317B2/en
Publication of WO2012153645A1 publication Critical patent/WO2012153645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a method for making high strength toughness ZrO 2 -Al 2 O 3 based solid solution ceramics.
  • Non-Patent Document 1 ZrO 2 -25 mol% Al 2 O 3 solid solution powder was prepared, solid solution ceramics of this system were prepared by HIP sintering, and the ceramic with a fracture toughness value K IC of 23 MPa ⁇ m 1/2 is an astonishing value. reported.
  • the bending strength ( ⁇ b ) remains at about 570 MPa, and it does not reach practical use where ⁇ b is 1 GPa or more, and simultaneously satisfies high strength ( ⁇ 1 GPa) and toughness ( ⁇ 15 MPa ⁇ m 1/2 ).
  • ⁇ b the bending strength
  • the present invention solves the above-mentioned problems in the prior art, and a high-strength toughness ZrO 2 -Al 2 O 3 system that simultaneously satisfies high strength ( ⁇ 1 GPa) and toughness ( ⁇ 15 MPa ⁇ m 1/2 ). It is an object of the present invention to provide a method capable of producing solid solution ceramics. As a result of various studies, the present inventors have found that ZrO 2 (98.5 mol% ZrO 2 -1.5 mol% Y) in which 1.5 mol% Y 2 O 3 is added to ZrO 2 using a sol-gel method.
  • ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder was prepared, and this solid solution was prepared.
  • a high strength toughness ZrO that satisfies the above-mentioned strength (bending strength) and fracture toughness values when the powder is calcined at a temperature higher than the crystallization temperature and then sintered under a certain condition.
  • the present inventors have found that 2- Al 2 O 3 based solid solution ceramics can be produced and studied the optimum range of the amount of Y 2 O 3 added, thereby completing the present invention.
  • the method for producing the high-strength toughness ZrO 2 -Al 2 O 3 solid solution ceramics of the present invention capable of solving the above-mentioned problems is the following steps A and B: Step A: Sol - to ZrO 2 using a gel method 0.3 ⁇ 1.7mol% Y 2 O 3 ZrO 2 was added (99.7 ⁇ 98.3mol% ZrO 2 -0.3 ⁇ 1.7mol % Y 2 O 3 ) -20-30 mol% Al 2 O 3 amorphous solid solution powder, and the resulting solid solution powder is calcined at a temperature equal to or higher than the crystallization temperature to obtain crystalline ZrO 2 solid solution powder.
  • step B forming the crystalline ZrO 2 solid solution powder obtained in the step A, and then heating in an inert gas atmosphere at a heating rate of 50 ° C./min or more and a pressure of 30 to 100 MPa. And a sintering step at a sintering temperature of 1250 to 1350 ° C. for 3 to 30 minutes.
  • the present invention performs the molding in the step B by cold isostatic pressing (CIP), and the sintering in the step B is performed by pulsed electric pressure sintering. It is also characterized by carrying out by a sintering method (Pulsed Electric-Current Pressure Sintering: PECPS) or a discharge plasma sintering method (Spark Plasma Sintering: SPS). Furthermore, the present invention is characterized in that, in the manufacturing method having the above characteristics, the sintering in the step B is mainly performed in an argon gas atmosphere or a nitrogen gas atmosphere.
  • Toughness is achieved by uniformly precipitating fine aluminum oxide Al 2 O 3 fine particles from the solid solution powder during sintering.
  • High strength toughness ZrO 2 -Al 2 O 3 system with bending strength ⁇ b ⁇ 1 GPa and fracture toughness value K IC ⁇ 15 MPa ⁇ m 1/2 by using the production method of the present invention.
  • Solid solution ceramics can be produced.
  • A is an XRD pattern of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1100 ° C.
  • B is a ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C.
  • (A) in (C) is an XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder calcined at 820 ° C.
  • (b), (c) ), (D), (e), and (f) are ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics sintered at 1100 ° C., 1200 ° C., 1250 ° C., 1300 ° C., and 1350 ° C., respectively. This is an XRD pattern.
  • (A) -1 is an SEM photograph of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 800 ° C.
  • (A) -2 is ZrO 2 -25 mol% Al sintered at 1200 ° C. It is a SEM photograph of a fracture surface of 2 O 3 solid solution ceramics.
  • (B) -1 is an SEM photograph of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 820 ° C.
  • (B) -2 is sintered at 1200 ° C.
  • FIG. 3 is a SEM photograph of the fracture surface of the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics, and the average particle diameter of each is shown on the right side of the photograph.
  • A SEM photograph of fracture surface of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C.,
  • B 1250 ° C.,
  • C 1300 ° C. The diameter is also listed.
  • sintering temperature is a graph showing ZrO 2 (1.5Y) -25mol% Al 2 O 3 solid solution ceramics bending strength sigma b, fracture toughness K IC, the relationship between the Vickers hardness H v.
  • ZrO 2 was using a solid solution powder prepared at various sintering temperatures (1.5Y) -25mol% Al 2 O 3 solid solution ceramics and, ZrO 2 that by using the mixed powder was made in a variety of sintering temperatures (3.0Y) -25mol% Al 2 O 3 composite mechanical properties (flexural strength, Vickers hardness, fracture toughness value) of ceramics is a graph showing a. It is a graph which shows the change of the fracture toughness value and the Vickers hardness of the ceramic sintered at 1300 ° C. in which the amount of Y 2 O 3 added to ZrO 2 is changed in ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics.
  • Mechanical properties of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics prepared from raw materials obtained using the sol-gel method, and those obtained using water-soluble raw materials It is the table which compared.
  • Step A and Step B in the method of the present invention capable of producing a high-strength toughness ZrO 2 -Al 2 O 3 solid solution ceramic will be described.
  • step in the present invention A step Preparation of ZrO 2 solid solution powder
  • a solid solution powder prepared by adding 30 to 20 mol% of Al 2 O 3 is prepared.
  • such a solid solution powder is prepared by a process described in the flowchart shown in FIG. Done. However, it is not limited to the raw material and conditions used in the process shown in FIG.
  • the amount of Y 2 O 3 added to ZrO 2 is limited to 0.3 to 1.7 mol%, even if the amount added is less than 0.3 mol%, or conversely exceeds 1.7 mol%, This is because the bending strength ⁇ b at room temperature is smaller than 1000 Ma and the fracture toughness value K IC is smaller than 15 MPa ⁇ m 1/2 , and the addition amount of Al 2 O 3 is limited to 20 to 30 mol%. This is because even if the addition amount is less than 20 mol%, or conversely, the addition strength exceeds 30 mol%, the bending strength ⁇ b becomes less than 1000 MPa.
  • the temperature at which the solid solution powder is calcined to prepare a tetragonal ZrO 2 solid solution powder may be higher than the crystallization temperature, and preferably 700 ° C. to 900 ° C.
  • the crystalline ZrO 2 solid solution powder obtained in the step A is molded, and then the heating rate is 50 ° C./min or more in an inert gas atmosphere.
  • High strength toughness ZrO 2 -Al 2 O 3 based solid solution ceramics are produced by sintering at a pressure of 30 to 100 MPa and a sintering temperature of 1250 to 1350 ° C. for 3 to 30 minutes.
  • a cold isostatic press is suitable for forming a ZrO 2 solid solution powder, and a pulsed current pressure sintering method in an argon gas or nitrogen gas atmosphere is used to sinter the obtained molded body.
  • a discharge plasma sintering method is suitable.
  • the pulsed current pressure sintering method in which a pulsed direct current is applied at a low voltage under uniaxial pressure and high energy is instantaneously generated by the spark discharge phenomenon, is suitable for the rapid joule. This is because melting and high-speed diffusion occur by heating, and high-speed sintering can be achieved in a short time, so that a dense sintered body (relative density of 90% or more) with relatively suppressed grain growth can be obtained. The law is suitable for the same reason.
  • Particularly preferred conditions for pulsed current pressure sintering in the present invention are the conditions of a heating rate of 50 to 100 ° C./min, an applied pressure of 60 MPa, a sintering temperature of 1270 to 1330 ° C., and a holding time of 10 minutes in an argon gas atmosphere. .
  • a heating rate of 50 to 100 ° C./min
  • an applied pressure of 60 MPa
  • a sintering temperature of 1270 to 1330 ° C.
  • a holding time 10 minutes in an argon gas atmosphere.
  • the applied pressure is less than 30 MPa
  • the sintering density is low, and conversely if it exceeds 100 MPa, the upper limit is imposed on the strength of the mold used for the electric current pressure sintering.
  • the rate of temperature increase if it is less than 50 ° C./minute, the heat treatment takes a long time and the manufacturing cost becomes high.
  • it exceeds 100 ° C./minute the microstructure inside the sintered body becomes uneven, resulting in a homogeneous and large Since preparation of a sample becomes difficult, it is not preferable.
  • the bending strength ⁇ b is a three-point bending strength value measured under the conditions of a span length of 8 mm and a crosshead feed of 0.5 mm / min
  • the fracture toughness value K IC is a load of 10 kg. (98N) Indentation (IF) method (K. Niihara et al., J. Master), in which a diamond indenter with a square pyramid is pushed into the ceramic surface for 5 seconds and evaluated from the length of cracks generated at the four corners Sci. Lett., 1, 13-16 (1982)).
  • the crystalline solid solution powder is sized and then molded (98 MPa), followed by cold isostatic pressing (245 MPa), and then a commercially available pulse current pressure sintering apparatus (SPS Syntex). (Uses Co., Ltd./SPS-510A) and pulsed energization under an argon gas atmosphere at a pressure of 60 MPa, a sintering temperature of 1100 to 1350 ° C., a holding time of 10 minutes, and a heating rate of 100 ° C./min. Pressure sintering was performed to obtain a sintered body (ZrO 2 (1.5Y) -Al 2 O 3 solid solution ceramics).
  • FIG. 2 shows an XRD pattern of the solid solution ceramic sintered body thus obtained.
  • (A) is an XRD of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramic sintered at 1100 ° C.
  • the pattern (B) is an XRD pattern of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C.
  • (A) in (C) is an XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder calcined at 820 ° C., and (b) to (f) are sintered An XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics obtained by changing the temperature from 1100 ° C.
  • FIG. 3 shows SEM photographs of the calcined powder thus obtained and the fracture surface of the solid solution ceramic sintered body.
  • A -1 is ZrO calcined at 800 ° C. a SEM photograph of 2 -25mol% Al 2 O 3 solid solution ceramic powder
  • (a) -2 is an SEM photograph of the fracture surface of the ZrO 2 -25mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C.
  • (B) -1 is an SEM photograph of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 820 ° C.
  • B) -2 is sintered at 1200 ° C.
  • FIG. 4 shows an SEM photograph of the fracture surface of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics when the firing temperature is changed, and (A) shows a firing temperature of 1200 ° C.
  • the firing temperature is 1250 ° C.
  • (C) is the case where the firing temperature is 1300 ° C. From these SEM photographs, it can be seen that the firing temperature is 1200 ° C. to 1300 ° C. and that the structure is denser. From the comparison of the respective average particle diameters, the firing temperature increases slightly from 180 to 200 nm. I understand that.
  • Tables 1 and 2 below show the squares of the ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics and the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics prepared in the above experiment.
  • the volume ratio (t / m), theoretical density, bulk density and relative density of crystalline zirconium oxide (t-ZrO 2 ) / monoclinic zirconium oxide (m-ZrO 2 ) are summarized.
  • FIG. 5 shows the sintering temperature, bending strength ⁇ b , and fracture toughness value K IC for the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic when the firing temperature is changed. , the relationship of Vickers hardness H v is shown in a graph.
  • a bending strength ⁇ b of 1 GPa or higher can be achieved (1.33 GPa when the sintering temperature is 1300 ° C.), and the sintering temperature is about 1230 ° C.- in the case of 1360 ° C. 18 MPa ⁇ m 1/2 or more, 21.3MPa ⁇ in the case of about 1270 °C ⁇ 1330 °C 20MPa ⁇ m 1/2 or more fracture toughness K IC (sintering temperature 1300 ° C. in the case of m 1/2 ) can be achieved.
  • the Vickers hardness H v is the sintering temperature was above 13GPa to not less than about 1230 °C (13.4GPa when the sintering temperature is 1300 ° C.).
  • Comparative product 1 ZrO 2 (1.5Y-ZrO 2 ) powder added with commercially available 1.5 mol% Y 2 O 3 (98.5 mol% ZrO 2 -1.5 mol% Y 2 O 3 ) and commercially available Al 2 O 3 fine particles was mixed with a planetary ball mill to obtain a mixed powder (Z
  • High pressure sintering was performed under the conditions of 1 GPa, a sintering temperature of 900 ° C., and a holding time of 30 minutes to obtain a sintered body.
  • the bending strength ⁇ b was 1.125 GPa and the fracture toughness value K IC was 15.8 MPa ⁇ m 1/2 .
  • a forming process under a very high pressure, a cold isostatic press It was found that a treatment process and a sintering process are necessary.
  • Example 3 ZrO 2 (1.5Y) -25mol% Al 2 O 3 solid solution ceramics produced using the solid solution powder, ZrO 2 (3.0Y) produced by using the mixed powder -25mol% Al 2 Comparison of mechanical properties with O 3 composite ceramics ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics produced by using a solid solution powder by changing the sintering temperature in the range of 1100 to 1350 ° C., The mechanical properties (bending strength, Vickers hardness, fracture toughness value) of each of the ZrO 2 (3.0Y) -25 mol% Al 2 O 3 composite ceramics produced by sintering the mixed powder were measured.
  • the Vickers hardness increases (16 GPa or more), but the bending strength becomes 1000 MPa or less.
  • the fracture toughness value is 7 MPa ⁇ m 1/2 or less.
  • Example 4 Y 2 O 3 amount when changing the addition, when the amount of change Y 2 O 3 of fracture toughness and Vickers hardness was varied in the range of 0 ⁇ 3 mol%, the fracture toughness value and The change in Vickers hardness was measured.
  • the sintering conditions were a pressure of 50 to 60 MPa, a sintering temperature of 1300 ° C., and a holding time of 10 minutes.
  • the result is shown in FIG. From the graph of FIG. 7A, regarding the fracture toughness value K IC , the amount of Y 2 O 3 added is 15 MPa ⁇ m 1/2 or more in the range of 0.3 to 1.7 mol%, and 0.7 to 1.5 mol. % Range was found to be 18 MPa ⁇ m 1/2 or more.
  • the bending strength in the range of such addition amount is 1 GPa or more.
  • the Vickers hardness is 12 GPa or more when the Y 2 O 3 addition amount is in the range of 0.3 to 1.7 mol%, and 14 GPa in the range of 0.7 to 1.5 mol%. It turns out that it becomes the above. Therefore, the amount of Y 2 O 3 added for producing high strength toughness ZrO 2 —Al 2 O 3 based solid solution ceramics is in the range of 0.3 to 1.7 mol%, and a particularly preferable range is 0.8. It was found to be 7 to 1.5 mol%.
  • Example 5 Mechanical properties of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics (product of the present invention) prepared from raw materials obtained using the sol-gel method, and water-soluble raw materials Mechanical properties of the product obtained by using the three types of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics manufactured under the manufacturing conditions shown in FIG. 8 and measuring various mechanical properties for each. did. From the measurement results shown in FIG. 8, in the case of using the raw material by the sol-gel method (the manufacturing method of the present invention), the crystal structure of the produced solid solution ceramic is more tetragonal than monoclinic (m).
  • the ZrO 2 -Al 2 O 3 solid solution ceramics obtained using the production method of the present invention has a bending strength of 1 GPa or more and a fracture toughness value of 15 MPa ⁇ m 1/2 or more. It can be used for various applications that require toughness, such as ceramic machine parts, biological ceramics (artificial roots, artificial joints, artificial bones), household knives, cutting boards, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)

Abstract

Provided is a method for producing a high-strength high-toughness ZrO2-Al2O3-based solid solution ceramic. Y2O3 in an amount of 0.3-1.7 mol% is added ZrO2 employing a sol-gel method to prepare an amorphous ZrO2-(20-30 mol% Al2O3) solid solution powder, and the resultant amorphous solid solution powder is pre-sintered at a temperature equal to or higher than a crystallization temperature, thereby preparing a crystalline ZrO2 solid solution powder (step A). The resultant crystalline ZrO2 solid solution powder is molded, and the molded product is then sintered in an inert gas atmosphere under the conditions of a temperature rising rate of 50ºC/min or more, a pressure of 30-100 MPa and a sintering temperature of 1250-1350˚C for 3-30 minutes (step B). In this process, it is preferred to perform the molding in the step B by means of cold isostatic press and perform the sintering by a pulse current pressure sintering method or a spark plasma sintering method in an argon or nitrogen gas atmosphere.

Description

高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
 本発明は、高強度強靱性のZrO‐Al系固溶体セラミックスを作製するための方法に関する。 The present invention relates to a method for making high strength toughness ZrO 2 -Al 2 O 3 based solid solution ceramics.
 金属に比較して、化学的安定性、対腐食性、高温環境下での使用可能といった多くの特徴を有するセラミックス材料は、硬度や強度が高いが、靱性が低いという弱点のため、その応用が限定されてきた。
 セラミックスの強靱性、すなわち破壊靱性値(KIC)向上のため現在まで多くの研究がなされてきており、特に、酸化イットリウム(Y)を2~3mol%添加固溶させた部分安定化ジルコニア(Partially stabilized zirconium, PSZ)に注目が集まり、熱間静水圧プレス(Hot isostatic pressing:HIP)焼結によるY部分安定化ZrO‐Al複合材料の強靱性・高強度化が明らかになった。他方、ZrO‐Al系固溶体はあまり注目されていなかった。
Compared to metals, ceramic materials with many characteristics such as chemical stability, anti-corrosion properties, and use in high-temperature environments have high hardness and strength, but their weakness is low toughness. Limited.
Many studies have been made to improve the toughness of ceramics, that is, the fracture toughness value (K IC ), and in particular, partial stabilization by adding 2-3 mol% of yttrium oxide (Y 2 O 3 ) as a solid solution. Attention has been focused on zirconia (Partially stabilized zirconium, PSZ), and the toughness and high strength of Y 2 O 3 partially stabilized ZrO 2 -Al 2 O 3 composites by hot isostatic pressing (HIP) sintering It became clear. On the other hand, ZrO 2 -Al 2 O 3 based solid solution has not been much attention.
 そこで、本発明者等は、下記の非特許文献1において、ゾル‐ゲル法(金属の有機及び無機化合物の溶液をゲルとして固化し、ゲルの加熱によって酸化物の固体を作製する方法)を用いてZrO‐25mol%Al固溶体粉体を調製し、HIP焼結によりこの系の固溶体セラミックスを作製し、破壊靱性値KICが23MPa・m1/2というセラミックスでは驚異的な値を報告した。しかし、曲げ強度(σ)は約570MPaに留まり、σが1GPa以上必要な実用化には及ばず、高強度(≧1GPa)と強靱性(≧15MPa・m1/2)を同時に満足する高強度強靱性のセラミックスが求められていた。 Therefore, the present inventors use the sol-gel method (a method of solidifying a solution of metal organic and inorganic compounds as a gel and producing an oxide solid by heating the gel) in Non-Patent Document 1 below. ZrO 2 -25 mol% Al 2 O 3 solid solution powder was prepared, solid solution ceramics of this system were prepared by HIP sintering, and the ceramic with a fracture toughness value K IC of 23 MPa · m 1/2 is an astonishing value. reported. However, the bending strength (σ b ) remains at about 570 MPa, and it does not reach practical use where σ b is 1 GPa or more, and simultaneously satisfies high strength (≧ 1 GPa) and toughness (≧ 15 MPa · m 1/2 ). There has been a demand for ceramics having high strength and toughness.
 本発明は、従来技術における前述の問題点を解決し、高強度(≧1GPa)と強靱性(≧15MPa・m1/2)を同時に満足する高強度強靱性のZrO‐Al系固溶体セラミックスを作製可能な方法を提供することを課題とする。
 本発明者等は、種々検討を行った結果、ゾル‐ゲル法を用いてZrOに対し1.5mol%Yを添加したZrO(98.5mol%ZrO‐1.5mol%Y)‐25mol%Alの非晶質の固溶体粉体(以下、「ZrO(1.5Y)‐25mol%Al固溶体粉体」と表す)を調製し、この固溶体粉体を結晶化温度以上で仮焼した後に成形し、その後、一定条件下で焼結を行なった場合に、上記の強度(曲げ強度)及び破壊靱性値を同時に満足する高強度強靱性のZrO‐Al系固溶体セラミックスが作製できることを見出し、Y添加量の最適範囲を検討して本発明を完成した。
The present invention solves the above-mentioned problems in the prior art, and a high-strength toughness ZrO 2 -Al 2 O 3 system that simultaneously satisfies high strength (≧ 1 GPa) and toughness (≧ 15 MPa · m 1/2 ). It is an object of the present invention to provide a method capable of producing solid solution ceramics.
As a result of various studies, the present inventors have found that ZrO 2 (98.5 mol% ZrO 2 -1.5 mol% Y) in which 1.5 mol% Y 2 O 3 is added to ZrO 2 using a sol-gel method. 2 O 3 ) -25 mol% Al 2 O 3 amorphous solid solution powder (hereinafter referred to as “ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder”) was prepared, and this solid solution was prepared. A high strength toughness ZrO that satisfies the above-mentioned strength (bending strength) and fracture toughness values when the powder is calcined at a temperature higher than the crystallization temperature and then sintered under a certain condition. The present inventors have found that 2- Al 2 O 3 based solid solution ceramics can be produced and studied the optimum range of the amount of Y 2 O 3 added, thereby completing the present invention.
 上記の課題を解決可能な本発明の高強度強靱性ZrO‐Al系固溶体セラミックスの作製法は、以下の工程A及びB:
 工程A:ゾル‐ゲル法を用いてZrOに対し0.3~1.7mol%Yを添加したZrO(99.7~98.3mol%ZrO‐0.3~1.7mol%Y)‐20~30mol%Alの非晶質の固溶体粉体を調製し、得られた固溶体粉体を結晶化温度以上で仮焼して結晶質のZrO固溶体粉体を調製する工程、及び
 工程B:前記工程Aで得られた結晶質のZrO固溶体粉体を成形し、次いで、不活性ガス雰囲気下、昇温速度50℃/min以上、圧力30~100MPa、焼結温度1250~1350℃で3~30分の条件にて焼結する工程
を含むことを特徴とする。
The method for producing the high-strength toughness ZrO 2 -Al 2 O 3 solid solution ceramics of the present invention capable of solving the above-mentioned problems is the following steps A and B:
Step A: Sol - to ZrO 2 using a gel method 0.3 ~ 1.7mol% Y 2 O 3 ZrO 2 was added (99.7 ~ 98.3mol% ZrO 2 -0.3 ~ 1.7mol % Y 2 O 3 ) -20-30 mol% Al 2 O 3 amorphous solid solution powder, and the resulting solid solution powder is calcined at a temperature equal to or higher than the crystallization temperature to obtain crystalline ZrO 2 solid solution powder. A step of preparing the body, and step B: forming the crystalline ZrO 2 solid solution powder obtained in the step A, and then heating in an inert gas atmosphere at a heating rate of 50 ° C./min or more and a pressure of 30 to 100 MPa. And a sintering step at a sintering temperature of 1250 to 1350 ° C. for 3 to 30 minutes.
 又、本発明は、上記の特徴を有した作製法において、前記工程Bにおける成形を冷間静水圧プレス(cold isostatic pressing:CIP)にて行い、当該工程Bにおける焼結をパルス通電加圧焼結法(Pulsed Electric-Current Pressure Sintering:PECPS)又は、放電プラズマ焼結法(Spark Plasma Sintering: SPS)にて行うことを特徴とするものでもある。
 更に、本発明は、上記の特徴を有した作製法において、工程Bにおける焼結を主としてアルゴンガス雰囲気下又は窒素ガス雰囲気下で行うことを特徴とするものでもある。
Further, in the production method having the above-described features, the present invention performs the molding in the step B by cold isostatic pressing (CIP), and the sintering in the step B is performed by pulsed electric pressure sintering. It is also characterized by carrying out by a sintering method (Pulsed Electric-Current Pressure Sintering: PECPS) or a discharge plasma sintering method (Spark Plasma Sintering: SPS).
Furthermore, the present invention is characterized in that, in the manufacturing method having the above characteristics, the sintering in the step B is mainly performed in an argon gas atmosphere or a nitrogen gas atmosphere.
 固溶体粉体から、焼結時に微細な酸化アルミニウムAl微粒子を均一に析出させることで、強靱化が達成され、また、ゾル‐ゲル法を用いたナノ粒子を緻密化することで、高強度が得られ、本発明の作製法を用いることによって、曲げ強度σ≧1GPaで、しかも、破壊靱性値KIC≧15MPa・m1/2の高強度強靱性ZrO‐Al系固溶体セラミックスが作製できる。 Toughness is achieved by uniformly precipitating fine aluminum oxide Al 2 O 3 fine particles from the solid solution powder during sintering. In addition, by densifying the nanoparticles using the sol-gel method, High strength toughness ZrO 2 -Al 2 O 3 system with bending strength σ b ≧ 1 GPa and fracture toughness value K IC ≧ 15 MPa · m 1/2 by using the production method of the present invention. Solid solution ceramics can be produced.
本発明の高強度強靱性ZrO‐Al系固溶体セラミックス作製法における工程を示すフローチャートである。Is a flowchart illustrating steps in high strength toughness ZrO 2 -Al 2 O 3 solid solution ceramics production method of the present invention. (A)は、1100℃で焼結したZrO‐25mol%Al固溶体セラミックスのXRDパターンであり、(B)は、1200℃で焼結したZrO‐25mol%Al固溶体セラミックスのXRDパターンであり、(C)中の(a)は、820℃で仮焼したZrO(1.5Y)‐25mol%Al固溶体粉末のXRDパターンであり、(b)、(c)、(d)、(e)、(f)はそれぞれ、1100℃、1200℃、1250℃、1300℃、1350℃で焼結したZrO(1.5Y)‐25mol%Al固溶体セラミックスのXRDパターンである。(A) is an XRD pattern of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1100 ° C., and (B) is a ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C. (A) in (C) is an XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder calcined at 820 ° C., (b), (c) ), (D), (e), and (f) are ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics sintered at 1100 ° C., 1200 ° C., 1250 ° C., 1300 ° C., and 1350 ° C., respectively. This is an XRD pattern. (A)-1は、800℃で仮焼したZrO‐25mol%Al固溶体セラミックス粉末のSEM写真であり、(A)-2は、1200℃で焼結したZrO‐25mol%Al固溶体セラミックスの破面のSEM写真である。又、(B)-1は、820℃で仮焼したZrO(1.5Y)‐25mol%Al固溶体セラミックス粉末のSEM写真であり、(B)-2は、1200℃で焼結したZrO(1.5Y)‐25mol%Al固溶体セラミックスの破面のSEM写真であり、写真の右側には、それぞれの平均粒径が記載されている。(A) -1 is an SEM photograph of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 800 ° C., and (A) -2 is ZrO 2 -25 mol% Al sintered at 1200 ° C. It is a SEM photograph of a fracture surface of 2 O 3 solid solution ceramics. (B) -1 is an SEM photograph of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 820 ° C., and (B) -2 is sintered at 1200 ° C. 3 is a SEM photograph of the fracture surface of the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics, and the average particle diameter of each is shown on the right side of the photograph. (A)1200℃、(B)1250℃、(C)1300℃で焼結したZrO(1.5Y)‐25mol%Al固溶体セラミックスの破面のSEM写真であり、それぞれの平均粒径も記載されている。(A) SEM photograph of fracture surface of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C., (B) 1250 ° C., (C) 1300 ° C. The diameter is also listed. 焼結温度と、ZrO(1.5Y)‐25mol%Al固溶体セラミックスの曲げ強度σ、破壊靱性値KIC、ビッカース硬度Hの関係を示すグラフである。And sintering temperature is a graph showing ZrO 2 (1.5Y) -25mol% Al 2 O 3 solid solution ceramics bending strength sigma b, fracture toughness K IC, the relationship between the Vickers hardness H v. 固溶体粉体を使用して種々の焼結温度で作製したZrO(1.5Y)‐25mol%Al固溶体セラミックス及び、混合粉体を使用して種々の焼結温度で作製したZrO(3.0Y)‐25mol%Alコンポジットセラミックスの機械的特性(曲げ強度、ビッカース硬度、破壊靱性値)を示すグラフである。 ZrO 2 was using a solid solution powder prepared at various sintering temperatures (1.5Y) -25mol% Al 2 O 3 solid solution ceramics and, ZrO 2 that by using the mixed powder was made in a variety of sintering temperatures (3.0Y) -25mol% Al 2 O 3 composite mechanical properties (flexural strength, Vickers hardness, fracture toughness value) of ceramics is a graph showing a. ZrO‐25mol%Al固溶体セラミックスにおいて,ZrOに添加するY量を変化させた1300℃で焼結したセラミックスの、破壊靱性値及びビッカース硬度の変化を示すグラフである。It is a graph which shows the change of the fracture toughness value and the Vickers hardness of the ceramic sintered at 1300 ° C. in which the amount of Y 2 O 3 added to ZrO 2 is changed in ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics. ゾル‐ゲル法を用いて得られた原料から作製されたZrO(1.5Y)‐25mol%Al固溶体セラミックスの機械的特性と、水溶性原料を用いて得られたものの機械的特性を比較した表である。Mechanical properties of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics prepared from raw materials obtained using the sol-gel method, and those obtained using water-soluble raw materials It is the table which compared.
 高強度強靱性のZrO‐Al系固溶体セラミックスを作製することが可能な本発明の方法における工程A及び工程Bについて説明する。
 本発明における工程A(ZrO固溶体粉体の調製工程)では、ゾル‐ゲル法を用いてZrOに対し0.3~1.7mol%Yを添加したZrO70~80mol%に対して30~20mol%のAlを添加してなる固溶体粉体を調製するが、このような固溶体粉体の調製は、例えば、図1に示されるフローチャートに記載されるような工程により行われる。ただし、この図1に示された工程で使用されている原料及び条件に限定されるものではない。この際、ZrOに対するYの添加量が0.3~1.7mol%に限定されるのは、0.3mol%未満でも、逆に添加量が1.7mol%を超えても、室温における曲げ強度σが1000Maより小さく、又、破壊靭性値KICが15MPa・m1/2より小さくなるからであり、又、Alの添加量が20~30mol%に限定されるのは、20mol%未満の添加量でも、逆に添加量が30mol%を超えても、曲げ強度σが1000MPa未満となるからである。
 尚、本発明において、固溶体粉体を仮焼して正方晶(tetragonal)のZrO固溶体粉体を調製する際の温度は結晶化温度以上であれば良く、700℃~900℃が好ましい。
Step A and Step B in the method of the present invention capable of producing a high-strength toughness ZrO 2 -Al 2 O 3 solid solution ceramic will be described.
In step in the present invention A (step Preparation of ZrO 2 solid solution powder), sol - to ZrO 2 using gel method 0.3 ~ 1.7mol% Y 2 O 3 ZrO 2 70 ~ 80mol% with the addition of On the other hand, a solid solution powder prepared by adding 30 to 20 mol% of Al 2 O 3 is prepared. For example, such a solid solution powder is prepared by a process described in the flowchart shown in FIG. Done. However, it is not limited to the raw material and conditions used in the process shown in FIG. At this time, the amount of Y 2 O 3 added to ZrO 2 is limited to 0.3 to 1.7 mol%, even if the amount added is less than 0.3 mol%, or conversely exceeds 1.7 mol%, This is because the bending strength σ b at room temperature is smaller than 1000 Ma and the fracture toughness value K IC is smaller than 15 MPa · m 1/2 , and the addition amount of Al 2 O 3 is limited to 20 to 30 mol%. This is because even if the addition amount is less than 20 mol%, or conversely, the addition strength exceeds 30 mol%, the bending strength σ b becomes less than 1000 MPa.
In the present invention, the temperature at which the solid solution powder is calcined to prepare a tetragonal ZrO 2 solid solution powder may be higher than the crystallization temperature, and preferably 700 ° C. to 900 ° C.
 又、本発明における工程B(焼結工程)では、前記工程Aで得られた結晶質のZrO固溶体粉体を成形し、次いで、不活性ガス雰囲気下、昇温速度50℃/min以上、圧力30~100MPa、焼結温度1250~1350℃で3~30分の条件にて焼結することによって、高強度強靱性ZrO‐Al系固溶体セラミックスを製造する。ZrO固溶体粉体の成形を行うには冷間静水圧プレスが適しており、得られた成形体の焼結を行うには、アルゴンガス又は窒素ガス雰囲気下でのパルス通電加圧焼結法又は、放電プラズマ焼結法が適している。一軸加圧下において、低電圧でパルス状直流電流を流し、火花放電現象により瞬時に高エネルギーを発生させて試料の焼結を行うパルス通電加圧焼結法が適しているのは、急激なジュール加熱により溶解と高速拡散が起こり、短時間で高速焼結できるので、比較的粒成長を抑えた緻密な焼結体(相対密度90%以上)を得ることができるからであり、放電プラズマ焼結法が適しているのも同様の理由による。
 本発明におけるパルス通電加圧焼結の特に好ましい条件は、アルゴンガス雰囲気下、昇温速度50~100℃/分、加圧力60MPa、焼結温度1270~1330℃、保持時間10分の条件である。この際、焼結温度が1250℃未満になると、高い曲げ強度(≧1GPa)が得られず、焼結温度が1350℃を超えると、高い破壊靱性値(≧15MPa・m1/2)が得られなくなるので好ましくない。保持時間については、3~30分で充分緻密化するが、加圧力が30MPa未満では焼結密度が低くなり、逆に100MPaを超えると通電加圧焼結に使用する金型の強度に上限があり使用出来なくなるという問題がある。昇温速度については、50℃/分未満になると長時間の熱処理となり製造コストが高くなり、逆に100℃/分を超えると、焼結体内部の微細構造にムラが生じ、均質で大型の試料の作製が困難となるので好ましくない。
 尚、本発明において、曲げ強度σは、スパン長さ8mm、クロスヘッドの送り0.5mm/minの条件で測定された三点曲げ強度の値であり、破壊靱性値KICは、荷重10kg(98N)で5秒間正四角錐のダイヤモンド圧子をセラミックス表面に押し込み、形成された圧痕の四隅に発生するクラックの長さから評価するインデンテーション(IF)法(K. Niihara et al., J. Master. Sci. Lett., 1, 13-16 (1982))に従って測定された値である。
Further, in the step B (sintering step) in the present invention, the crystalline ZrO 2 solid solution powder obtained in the step A is molded, and then the heating rate is 50 ° C./min or more in an inert gas atmosphere. High strength toughness ZrO 2 -Al 2 O 3 based solid solution ceramics are produced by sintering at a pressure of 30 to 100 MPa and a sintering temperature of 1250 to 1350 ° C. for 3 to 30 minutes. A cold isostatic press is suitable for forming a ZrO 2 solid solution powder, and a pulsed current pressure sintering method in an argon gas or nitrogen gas atmosphere is used to sinter the obtained molded body. Alternatively, a discharge plasma sintering method is suitable. The pulsed current pressure sintering method, in which a pulsed direct current is applied at a low voltage under uniaxial pressure and high energy is instantaneously generated by the spark discharge phenomenon, is suitable for the rapid joule. This is because melting and high-speed diffusion occur by heating, and high-speed sintering can be achieved in a short time, so that a dense sintered body (relative density of 90% or more) with relatively suppressed grain growth can be obtained. The law is suitable for the same reason.
Particularly preferred conditions for pulsed current pressure sintering in the present invention are the conditions of a heating rate of 50 to 100 ° C./min, an applied pressure of 60 MPa, a sintering temperature of 1270 to 1330 ° C., and a holding time of 10 minutes in an argon gas atmosphere. . At this time, when the sintering temperature is less than 1250 ° C., a high bending strength (≧ 1 GPa) cannot be obtained, and when the sintering temperature exceeds 1350 ° C., a high fracture toughness value (≧ 15 MPa · m 1/2 ) is obtained. It is not preferable because it is not possible. The holding time is sufficiently densified in 3 to 30 minutes. However, if the applied pressure is less than 30 MPa, the sintering density is low, and conversely if it exceeds 100 MPa, the upper limit is imposed on the strength of the mold used for the electric current pressure sintering. There is a problem that it can not be used. As for the rate of temperature increase, if it is less than 50 ° C./minute, the heat treatment takes a long time and the manufacturing cost becomes high. Conversely, if it exceeds 100 ° C./minute, the microstructure inside the sintered body becomes uneven, resulting in a homogeneous and large Since preparation of a sample becomes difficult, it is not preferable.
In the present invention, the bending strength σ b is a three-point bending strength value measured under the conditions of a span length of 8 mm and a crosshead feed of 0.5 mm / min, and the fracture toughness value K IC is a load of 10 kg. (98N) Indentation (IF) method (K. Niihara et al., J. Master), in which a diamond indenter with a square pyramid is pushed into the ceramic surface for 5 seconds and evaluated from the length of cracks generated at the four corners Sci. Lett., 1, 13-16 (1982)).
実施例1:高強度強靱性ZrO‐Al系固溶体セラミックスの製造条件の検討
 ゾル‐ゲル法を用いてZrOに対して、1.5mol%Yを添加(98.5mol%ZrO‐1.5mol%Y)したZrO(1.5Y)‐25mol%Al固溶体粉体(ZrO(1.5Y)/Al=75/25mol比)を調製し(この段階では粉体は非結晶)、この粉体を820℃で空気中1時間仮焼して結晶質のZrO固溶体粉体を得た。そして、この結晶質の固溶体粉体を整粒した後、金型成形(98MPa)し、ついで冷間静水圧(245MPa)プレス処理し、その後、市販のパルス通電加圧焼結装置(SPSシンテックス(株)/SPS-510Aを使用)を用いて、アルゴンガス雰囲気下、加圧圧力60MPa、焼結温度1100~1350℃、保持時間10分、昇温速度100℃/分の条件でパルス通電加圧焼結を行い、焼結体(ZrO(1.5Y)‐Al固溶体セラミックス)を得た。
 一方、Yを添加せずにゾル‐ゲル法を用いてZrO‐25mol%Alの非晶質の固溶体粉体(ZrO/Al=75/25mol比)を調製し、同様の条件にて仮焼を行い、結晶質のZrO固溶体粉体を得た。そして、この結晶質の固溶体粉体を用いて、上記と同様にして金型成形、冷間静水圧プレス処理を行い、焼結温度1100℃及び1200℃において同様のパルス通電加圧焼結を行い、焼結体(ZrO‐Al固溶体セラミックス)を得た。
Example 1: Examination of production conditions of high strength toughness ZrO 2 -Al 2 O 3 based solid solution ceramics 1.5 mol% Y 2 O 3 was added to ZrO 2 using a sol-gel method (98.5 mol) % ZrO 2 -1.5 mol% Y 2 O 3 ) ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder (ZrO 2 (1.5Y) / Al 2 O 3 = 75/25 mol ratio) (At this stage, the powder was amorphous), and this powder was calcined in the air at 820 ° C. for 1 hour to obtain a crystalline ZrO 2 solid solution powder. The crystalline solid solution powder is sized and then molded (98 MPa), followed by cold isostatic pressing (245 MPa), and then a commercially available pulse current pressure sintering apparatus (SPS Syntex). (Uses Co., Ltd./SPS-510A) and pulsed energization under an argon gas atmosphere at a pressure of 60 MPa, a sintering temperature of 1100 to 1350 ° C., a holding time of 10 minutes, and a heating rate of 100 ° C./min. Pressure sintering was performed to obtain a sintered body (ZrO 2 (1.5Y) -Al 2 O 3 solid solution ceramics).
On the other hand, an amorphous solid solution powder of ZrO 2 -25 mol% Al 2 O 3 (ZrO 2 / Al 2 O 3 = 75/25 mol ratio) was prepared using a sol-gel method without adding Y 2 O 3. It was prepared and calcined under the same conditions to obtain a crystalline ZrO 2 solid solution powder. Then, using this crystalline solid solution powder, die molding and cold isostatic pressing are performed in the same manner as described above, and the same pulse current pressure sintering is performed at sintering temperatures of 1100 ° C. and 1200 ° C. A sintered body (ZrO 2 -Al 2 O 3 solid solution ceramics) was obtained.
 図2には、このようにして得られた固溶体セラミックス焼結体のXRDパターンが示されており、(A)は、1100℃で焼結したZrO‐25mol%Al固溶体セラミックスのXRDパターン、(B)は、1200℃で焼結したZrO‐25mol%Al固溶体セラミックスのXRDパターンである。(C)中の(a)は、820℃で仮焼したZrO(1.5Y)‐25mol%Al固溶体粉末のXRDパターンであり、(b)~(f)には、焼結温度を1100℃~1350℃に変化させて得られたZrO(1.5Y)‐25mol%Al固溶体セラミックスのXRDパターンが示されている。
 この図2の(A)~(C)より、酸化イットリウム(Y)が添加されていない(A)と(B)の場合(仮焼温度700~900℃、焼結温度1100℃及び1200℃)には、単斜晶の酸化ジルコニウム(m-ZrO)及び、正方晶の酸化ジルコニウム(t-ZrO)の両回折ピークが存在しているのに対し、酸化イットリウム(Y)が1.5mol%添加された(C)の場合には、仮焼により得られた粉末(a)においても、焼結により得られた固溶体セラミックス(b)~(f)においても、主として正方晶の酸化ジルコニウムである酸化イットリウムジルコニウムの回折ピークが存在していることがわかった。
FIG. 2 shows an XRD pattern of the solid solution ceramic sintered body thus obtained. (A) is an XRD of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramic sintered at 1100 ° C. The pattern (B) is an XRD pattern of ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C. (A) in (C) is an XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution powder calcined at 820 ° C., and (b) to (f) are sintered An XRD pattern of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics obtained by changing the temperature from 1100 ° C. to 1350 ° C. is shown.
From (A) to (C) of FIG. 2, in the case of (A) and (B) to which yttrium oxide (Y 2 O 3 ) is not added (calcination temperature 700 to 900 ° C., sintering temperature 1100 ° C. and At 1200 ° C., both diffraction peaks of monoclinic zirconium oxide (m-ZrO 2 ) and tetragonal zirconium oxide (t-ZrO 2 ) exist, whereas yttrium oxide (Y 2 O 3 ) In the case of (C) to which 1.5 mol% is added, both in the powder (a) obtained by calcination and in the solid solution ceramics (b) to (f) obtained by sintering, It was found that there is a diffraction peak of yttrium zirconium oxide, which is tetragonal zirconium oxide.
 又、図3には、このようにして得られた仮焼粉末及び、固溶体セラミックス焼結体の破面のSEM写真が示されており、(A)-1は、800℃で仮焼したZrO‐25mol%Al固溶体セラミックス粉末のSEM写真であり、(A)-2は、1200℃で焼結したZrO‐25mol%Al固溶体セラミックスの破面のSEM写真である。又、(B)-1は、820℃で仮焼したZrO(1.5Y)‐25mol%Al固溶体セラミックス粉末のSEM写真であり、(B)-2は、1200℃で焼結したZrO(1.5Y)‐25mol%Al固溶体セラミックスの破面のSEM写真である。
 この図3のSEM写真から、酸化イットリウム(Y)が添加されていない(A)-1及び(A)-2の場合には、仮焼後の粒(子)径は110nm、1200℃で焼結したセラミックスの結晶粒(子)径は200nmと約2倍粒成長していることがわかり、酸化イットリウム(Y)が1.5mol%添加された(B)-1及び(B)-2の場合には、粒子径はそれぞれ100及び180nmで、やや酸化イットリウムを添加し固溶させると粒成長が抑制されることがわかった。
 そして、平均粒径の比較から、Yを1.5mol%添加したセラミックスの方が結晶粒(子)径が小さくなることがわかった。
FIG. 3 shows SEM photographs of the calcined powder thus obtained and the fracture surface of the solid solution ceramic sintered body. (A) -1 is ZrO calcined at 800 ° C. a SEM photograph of 2 -25mol% Al 2 O 3 solid solution ceramic powder, (a) -2 is an SEM photograph of the fracture surface of the ZrO 2 -25mol% Al 2 O 3 solid solution ceramics sintered at 1200 ° C.. (B) -1 is an SEM photograph of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic powder calcined at 820 ° C., and (B) -2 is sintered at 1200 ° C. it is a SEM photograph of the fracture surface of the ZrO 2 (1.5Y) -25mol% Al 2 O 3 solid solution ceramics.
From the SEM photograph of FIG. 3, in the case of (A) -1 and (A) -2 to which yttrium oxide (Y 2 O 3 ) was not added, the grain (child) diameter after calcination was 110 nm, 1200 It can be seen that the crystal grain (child) diameter of ceramics sintered at 200 ° C. is about 200 nm, growing about twice as large, and 1.5 mol% of yttrium oxide (Y 2 O 3 ) was added (B) -1 and In the case of (B) -2, the particle diameters were 100 and 180 nm, respectively, and it was found that when yttrium oxide was slightly added and dissolved, grain growth was suppressed.
From the comparison of the average particle diameter, it was found that the crystal grain (child) diameter was smaller in the ceramic added with 1.5 mol% of Y 2 O 3 .
 図4には、焼成温度を変えた際の、ZrO(1.5Y)‐25mol%Al固溶体セラミックスの破面のSEM写真が示されており、(A)は焼成温度が1200℃の場合、(B)は焼成温度が1250℃の場合、(C)は焼成温度が1300℃の場合である。これらのSEM写真から、焼成温度が1200℃~1300℃になるとともに組織が緻密になっていることがわかり、それぞれの平均粒径の比較から、焼成温度の上昇とともに180から200nmへと少し大きくなることがわかる。 FIG. 4 shows an SEM photograph of the fracture surface of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics when the firing temperature is changed, and (A) shows a firing temperature of 1200 ° C. In the case of (B), the firing temperature is 1250 ° C., and (C) is the case where the firing temperature is 1300 ° C. From these SEM photographs, it can be seen that the firing temperature is 1200 ° C. to 1300 ° C. and that the structure is denser. From the comparison of the respective average particle diameters, the firing temperature increases slightly from 180 to 200 nm. I understand that.
 以下の表1及び表2には、上記実験にて作製されたZrO‐25mol%Al固溶体セラミックス及び、ZrO(1.5Y)‐25mol%Al固溶体セラミックスについての、正方晶酸化ジルコニウム(t-ZrO)/単斜晶酸化ジルコニウム(m-ZrO)の体積比率(t/m)、理論密度、かさ密度、相対密度が要約されている。 Tables 1 and 2 below show the squares of the ZrO 2 -25 mol% Al 2 O 3 solid solution ceramics and the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics prepared in the above experiment. The volume ratio (t / m), theoretical density, bulk density and relative density of crystalline zirconium oxide (t-ZrO 2 ) / monoclinic zirconium oxide (m-ZrO 2 ) are summarized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1及び表2から、焼成温度が1300℃の場合に得られたZrO(1.5Y)‐25mol%Al固溶体セラミックスが、かさ密度、相対密度の点において最も良好な結果を示すことがわかった。 From Table 1 and Table 2 above, ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics obtained when the firing temperature is 1300 ° C. shows the best results in terms of bulk density and relative density. I found out.
 又、図5には、焼成温度を変化させた際の、ZrO(1.5Y)‐25mol%Al固溶体セラミックスについての、焼結温度と、曲げ強度σ、破壊靱性値KIC、ビッカース硬度Hの関係がグラフにより示されている。 FIG. 5 shows the sintering temperature, bending strength σ b , and fracture toughness value K IC for the ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramic when the firing temperature is changed. , the relationship of Vickers hardness H v is shown in a graph.
 図5のグラフから、焼結温度が約1250℃以上の場合に1GPa以上の曲げ強度σが達成でき(焼結温度が1300℃の場合に1.33GPa)、焼結温度が約1230℃~1360℃の場合に18MPa・m1/2以上、約1270℃~1330℃の場合に20MPa・m1/2以上の破壊靱性値KIC(焼結温度が1300℃の場合に21.3MPa・m1/2)が達成できることがわかる。尚、ビッカース硬度Hは、焼結温度が約1230℃以上の場合に13GPa以上(焼結温度が1300℃の場合に13.4GPa)であった。 From the graph of FIG. 5, when the sintering temperature is about 1250 ° C. or higher, a bending strength σ b of 1 GPa or higher can be achieved (1.33 GPa when the sintering temperature is 1300 ° C.), and the sintering temperature is about 1230 ° C.- in the case of 1360 ° C. 18 MPa · m 1/2 or more, 21.3MPa · in the case of about 1270 ℃ ~ 1330 ℃ 20MPa · m 1/2 or more fracture toughness K IC (sintering temperature 1300 ° C. in the case of m 1/2 ) can be achieved. Incidentally, the Vickers hardness H v is the sintering temperature was above 13GPa to not less than about 1230 ℃ (13.4GPa when the sintering temperature is 1300 ° C.).
実施例2:本発明により作製されたZrO‐Al系固溶体セラミックスと、他の方法により作製されたZrO‐Al系固溶体セラミックスとの特性比較
(比較品1)
 市販の1.5mol%Yを添加(98.5mol%ZrO‐1.5mol%Y)したZrO(1.5Y-ZrO)粉体と市販のAl微粒子を、遊星ボールミルを用いて混合して得られた混合粉体(ZrO/Al=75/25mol比)を、前記実施例1と同様に、金型成形(98MPa)し、ついで冷間静水圧(245MPa)プレス処理し、その後、市販のパルス通電加圧焼結装置を用いてパルス通電加圧焼結(焼結温度1300℃)して焼結体を得た。
 このような混合により作製されたZrO(1.5Y)‐Al系コンポジットセラミックスの特性値を測定したところ、曲げ強度σは1.11GPaであったが、破壊靱性値KICは9.08MPa・m1/2であり、15MPa・m1/2以上の破壊靱性値を達成することはできなかった。
Example 2: Comparison of characteristics between ZrO 2 -Al 2 O 3 based solid solution ceramics produced according to the present invention and ZrO 2 -Al 2 O 3 based solid solution ceramics produced by other methods (Comparative product 1)
ZrO 2 (1.5Y-ZrO 2 ) powder added with commercially available 1.5 mol% Y 2 O 3 (98.5 mol% ZrO 2 -1.5 mol% Y 2 O 3 ) and commercially available Al 2 O 3 fine particles Was mixed with a planetary ball mill to obtain a mixed powder (ZrO 2 / Al 2 O 3 = 75/25 mol ratio) in the same manner as in Example 1 (98 MPa), followed by cooling. An intermediate hydrostatic pressure (245 MPa) press treatment was performed, and then, pulsed current pressure sintering (sintering temperature 1300 ° C.) was performed using a commercially available pulse current pressure sintering apparatus to obtain a sintered body.
When the characteristic value of the ZrO 2 (1.5Y) -Al 2 O 3 composite ceramics produced by such mixing was measured, the bending strength σ b was 1.11 GPa, but the fracture toughness value K IC was is 9.08MPa · m 1/2, it has not been possible to achieve a 15MPa · m 1/2 or more of the fracture toughness value.
(比較品2)
 ゾル‐ゲル法を用いて、Yが添加されていないZrO‐25mol%Alの非晶質固溶体粉体を調製し、この粉体を1000℃で空気中1時間仮焼して結晶質のZrO固溶体粉体を得た。そして、この結晶質の固溶体粉体を整粒した後、成形(196MPa)し、ついで冷間静水圧(392MPa)プレス処理し、その後、市販のピストンシリンダー型高圧発生装置を用いて、加圧圧力1GPa、焼結温度900℃、保持時間30分の条件下で高圧焼結を行い、焼結体を得た。
 このようにして作製されたZrO‐Al固溶体セラミックスの特性値を測定したところ、曲げ強度σが1.125GPaで、破壊靱性値KICが15.8MPa・m1/2であることが確認されたが、1GPa以上の曲げ強度と、15MPa・m1/2以上の破壊靱性値を達成するには、上記の如く、非常に高い圧力下での成形工程、冷間静水圧プレス処理工程、焼結工程が必要であることがわかった。
(Comparative product 2)
Using a sol-gel method, an amorphous solid solution powder of ZrO 2 -25 mol% Al 2 O 3 to which Y 2 O 3 was not added was prepared, and this powder was calcined in air at 1000 ° C. for 1 hour. Thus, a crystalline ZrO 2 solid solution powder was obtained. Then, the crystalline solid solution powder is sized, molded (196 MPa), then subjected to cold isostatic pressing (392 MPa), and then subjected to a pressurized pressure using a commercially available piston cylinder type high pressure generator. High pressure sintering was performed under the conditions of 1 GPa, a sintering temperature of 900 ° C., and a holding time of 30 minutes to obtain a sintered body.
When the characteristic values of the ZrO 2 —Al 2 O 3 solid solution ceramics thus produced were measured, the bending strength σ b was 1.125 GPa and the fracture toughness value K IC was 15.8 MPa · m 1/2 . However, in order to achieve a bending strength of 1 GPa or more and a fracture toughness value of 15 MPa · m 1/2 or more, as described above, a forming process under a very high pressure, a cold isostatic press It was found that a treatment process and a sintering process are necessary.
実施例3:固溶体粉体を用いて作製したZrO(1.5Y)‐25mol%Al固溶体セラミックスと、混合粉体を用いて作製したZrO(3.0Y)‐25mol%Alコンポジットセラミックスとの機械的特性比較
 焼結温度を1100~1350℃の範囲で変化させ、固溶体粉体を用いて作製したZrO(1.5Y)‐25mol%Al固溶体セラミックスと、混合粉体を焼結して作製したZrO(3.0Y)‐25mol%Alコンポジットセラミックスについて、それぞれの機械的特性(曲げ強度、ビッカース硬度、破壊靱性値)を測定した。図6には、その結果が示されており、(a)は曲げ強度σの変化、(b)はビッカース硬度Hの変化、(c)は破壊靱性値KICの変化を示すグラフであり、○は固溶体粉体を使用した場合、□は混合粉体を使用した場合である。
 図6のグラフから、固溶体粉体を使用し、かつ、焼結温度が1250~1350℃の範囲において、曲げ強度σ1000MPa以上、破壊靭性値KIC18MPa・m1/2以上のZrO(1.5Y)‐25mol%Al固溶体セラミックスが作製できることがわかった。尚、混合粉体を焼結して作製したZrO(3.0Y)‐25mol%Alコンポジットセラミックスの場合には、ビッカース硬度は大きくなる(16GPa以上)が、曲げ強度が1000MPa以下となり、破破壊靭性値が7MPa・m1/2以下となる。
Example 3: ZrO 2 (1.5Y) -25mol% Al 2 O 3 solid solution ceramics produced using the solid solution powder, ZrO 2 (3.0Y) produced by using the mixed powder -25mol% Al 2 Comparison of mechanical properties with O 3 composite ceramics ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics produced by using a solid solution powder by changing the sintering temperature in the range of 1100 to 1350 ° C., The mechanical properties (bending strength, Vickers hardness, fracture toughness value) of each of the ZrO 2 (3.0Y) -25 mol% Al 2 O 3 composite ceramics produced by sintering the mixed powder were measured. FIG. 6 shows the results, where (a) is a change in bending strength σ b , (b) is a change in Vickers hardness H v , and (c) is a graph showing a change in fracture toughness value K IC. Yes, ○ is when solid solution powder is used, and □ is when mixed powder is used.
From the graph of FIG. 6, when solid solution powder is used and the sintering temperature is in the range of 1250 to 1350 ° C., ZrO 2 (with bending strength σ b of 1000 MPa or more and fracture toughness value K IC 18 MPa · m 1/2 or more. It was found that 1.5Y) -25 mol% Al 2 O 3 solid solution ceramics can be produced. In the case of ZrO 2 (3.0Y) -25 mol% Al 2 O 3 composite ceramics produced by sintering the mixed powder, the Vickers hardness increases (16 GPa or more), but the bending strength becomes 1000 MPa or less. The fracture toughness value is 7 MPa · m 1/2 or less.
実施例4:Y添加量を変化させた際の、破壊靱性値及びビッカース硬度の変化
 Yの添加量を0~3mol%の範囲で変化させた際の、破壊靱性値及びビッカース硬度の変化を測定した。尚、焼結条件は、圧力50~60MPa、焼結温度1300℃、保持時間10分とした。その結果を図7に示す。
 図7(a)のグラフから、破壊靱性値KICに関して、Y添加量が0.3~1.7mol%の範囲において15MPa・m1/2以上となり、0.7~1.5mol%の範囲では18MPa・m1/2以上となることがわかった。又、このような添加量の範囲における曲げ強度は1GPa以上であることが確認された。尚、図7(b)のグラフから、ビッカース硬度に関しては、Y添加量が0.3~1.7mol%の範囲において12GPa以上となり、0.7~1.5mol%の範囲では14GPa以上となることがわかった。
 このことから、高強度強靱性のZrO‐Al系固溶体セラミックスを作製するためのY添加量は0.3~1.7mol%の範囲であり、特に好ましい範囲は0.7~1.5mol%であることがわかった。
Example 4: Y 2 O 3 amount when changing the addition, when the amount of change Y 2 O 3 of fracture toughness and Vickers hardness was varied in the range of 0 ~ 3 mol%, the fracture toughness value and The change in Vickers hardness was measured. The sintering conditions were a pressure of 50 to 60 MPa, a sintering temperature of 1300 ° C., and a holding time of 10 minutes. The result is shown in FIG.
From the graph of FIG. 7A, regarding the fracture toughness value K IC , the amount of Y 2 O 3 added is 15 MPa · m 1/2 or more in the range of 0.3 to 1.7 mol%, and 0.7 to 1.5 mol. % Range was found to be 18 MPa · m 1/2 or more. Moreover, it was confirmed that the bending strength in the range of such addition amount is 1 GPa or more. From the graph of FIG. 7B, the Vickers hardness is 12 GPa or more when the Y 2 O 3 addition amount is in the range of 0.3 to 1.7 mol%, and 14 GPa in the range of 0.7 to 1.5 mol%. It turns out that it becomes the above.
Therefore, the amount of Y 2 O 3 added for producing high strength toughness ZrO 2 —Al 2 O 3 based solid solution ceramics is in the range of 0.3 to 1.7 mol%, and a particularly preferable range is 0.8. It was found to be 7 to 1.5 mol%.
実施例5:ゾル‐ゲル法を用いて得られた原料から作製されたZrO(1.5Y)‐25mol%Al固溶体セラミックス(本発明品)の機械的特性と、水溶性原料を用いて得られたものの機械的特性
 図8に記載した製造条件にて、3種類のZrO(1.5Y)‐25mol%Al固溶体セラミックスを製造し、それぞれについて各種機械的特性を測定した。
 図8に示された測定結果から、ゾル‐ゲル法による原料を用いた場合(本発明の製法)の場合には、作製された固溶体セラミックスの結晶構造において単斜晶(m)よりも正方晶(t)の割合が高くなり、1000MPa以上の曲げ強度を有し、15MPa・m1/2以上の破壊靱性値を有した固溶体セラミックスが得られるが、ゾル‐ゲル法を用いない場合には、本発明の製法にて得られる固溶体セラミックスのような優れた機械的特性を有するものが作製できないことが確認された。
Example 5: Mechanical properties of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics (product of the present invention) prepared from raw materials obtained using the sol-gel method, and water-soluble raw materials Mechanical properties of the product obtained by using the three types of ZrO 2 (1.5Y) -25 mol% Al 2 O 3 solid solution ceramics manufactured under the manufacturing conditions shown in FIG. 8 and measuring various mechanical properties for each. did.
From the measurement results shown in FIG. 8, in the case of using the raw material by the sol-gel method (the manufacturing method of the present invention), the crystal structure of the produced solid solution ceramic is more tetragonal than monoclinic (m). When the ratio of (t) is increased, a solid solution ceramic having a bending strength of 1000 MPa or more and a fracture toughness value of 15 MPa · m 1/2 or more is obtained, but when the sol-gel method is not used, It was confirmed that a product having excellent mechanical properties such as solid solution ceramics obtained by the production method of the present invention could not be produced.
 本発明の作製法を用いて得られるZrO‐Al系固溶体セラミックスは、1GPa以上の曲げ強度と、15MPa・m1/2以上の破壊靱性値を有しているので、高強度及び強靱性が求められる各種用途、例えばセラミックス製機械部品、生体用セラミックス(人工歯根、人工関節、人工骨)、家庭用包丁、まな板等に利用可能である。 The ZrO 2 -Al 2 O 3 solid solution ceramics obtained using the production method of the present invention has a bending strength of 1 GPa or more and a fracture toughness value of 15 MPa · m 1/2 or more. It can be used for various applications that require toughness, such as ceramic machine parts, biological ceramics (artificial roots, artificial joints, artificial bones), household knives, cutting boards, and the like.

Claims (3)

  1.  高強度強靱性のZrO‐Al系固溶体セラミックスを作製することが可能な方法であって、当該方法が、
     工程A:ゾル‐ゲル法を用いてZrOに対し0.3~1.7mol%Yを添加したZrO(99.7~98.3mol%ZrO‐0.3~1.7mol%Y)‐20~30mol%Alの非晶質固溶体粉体を調製し、得られた非晶質固溶体粉体を結晶化温度以上で仮焼して結晶質のZrO固溶体粉体を調製する工程、及び
     工程B:前記工程Aで得られた結晶質のZrO固溶体粉体を成形し、次いで、不活性ガス雰囲気下、昇温速度50℃/min以上、圧力30~100MPa、焼結温度1250~1350℃で3~30分の条件にて焼結する工程
    を含むことを特徴とする高強度強靱性ZrO‐Al系固溶体セラミックスの作製法。
    A method capable of producing a high strength toughness ZrO 2 -Al 2 O 3 solid solution ceramics, the method comprising
    Step A: Sol - to ZrO 2 using a gel method 0.3 ~ 1.7mol% Y 2 O 3 ZrO 2 was added (99.7 ~ 98.3mol% ZrO 2 -0.3 ~ 1.7mol % Y 2 O 3 ) -20-30 mol% Al 2 O 3 amorphous solid solution powder is prepared, and the obtained amorphous solid solution powder is calcined at a temperature equal to or higher than the crystallization temperature to obtain crystalline ZrO 2 Step of preparing solid solution powder, and Step B: Forming the crystalline ZrO 2 solid solution powder obtained in Step A, and then heating at a rate of temperature rise of 50 ° C./min or more under an inert gas atmosphere at a pressure of 30 A method for producing a high-strength toughness ZrO 2 -Al 2 O 3 solid solution ceramic, comprising a step of sintering at a sintering temperature of 1 to 100 MPa and a sintering temperature of 1250 to 1350 ° C. for 3 to 30 minutes.
  2.  上記工程Bにおける成形を冷間静水圧プレスに行い、当該工程Bにおける焼結をパルス通電加圧焼結法又は、放電プラズマ焼結法にて行うことを特徴とする請求項1に記載の高強度強靱性ZrO‐Al系固溶体セラミックスの作製法。 The forming in the step B is performed by cold isostatic pressing, and the sintering in the step B is performed by a pulse current pressure sintering method or a discharge plasma sintering method. A method for producing a strong toughness ZrO 2 —Al 2 O 3 solid solution ceramics.
  3.  上記工程Bにおける焼結をアルゴンガス雰囲気下又は窒素ガス雰囲気下で行うことを特徴とする請求項1又は2に記載の高強度強靱性ZrO‐Al系固溶体セラミックスの作製法。 High strength toughness ZrO 2 -Al 2 method of producing O 3 solid solution ceramics according to claim 1 or 2 sintering and performing under an atmosphere of argon gas atmosphere or nitrogen gas in the step B.
PCT/JP2012/061196 2011-05-12 2012-04-26 METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC WO2012153645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513978A JP5930317B2 (en) 2011-05-12 2012-04-26 Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-107228 2011-05-12
JP2011107228 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153645A1 true WO2012153645A1 (en) 2012-11-15

Family

ID=47139129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061196 WO2012153645A1 (en) 2011-05-12 2012-04-26 METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC

Country Status (2)

Country Link
JP (1) JP5930317B2 (en)
WO (1) WO2012153645A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189474A (en) * 2013-03-28 2014-10-06 Doshisha METHOD OF MANUFACTURING HIGH STRENGTH HIGH TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
KR20170039225A (en) 2015-04-20 2017-04-10 스미토모덴키고교가부시키가이샤 Sintered body and cutting tool including same
US9902654B2 (en) 2016-06-20 2018-02-27 The Doshisha ZrO2-Al2O3-based ceramic sintered compact and production method thereof
US9988314B2 (en) 2015-05-29 2018-06-05 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
CN108409312A (en) * 2018-03-26 2018-08-17 淄博畅安陶瓷科技有限公司 Two pairs of rollers machine drum body porcelain piece and preparation method thereof
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
CN115819079A (en) * 2022-12-02 2023-03-21 中南大学湘雅二医院 Material for artificial teeth and preparation method thereof
JP7438501B1 (en) 2023-01-24 2024-02-27 学校法人 龍谷大学 Alumina-zirconia mixed material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306352A (en) * 1993-04-27 1994-11-01 Tosoh Corp Zirconia grit and its production
JPH11147762A (en) * 1997-11-11 1999-06-02 Fine Ceramics Gijutsu Kenkyu Kumiai Zirconium dioxide-based sintered product and its production
JP2002255642A (en) * 2001-03-02 2002-09-11 National Institute Of Advanced Industrial & Technology High density yttria-stabilized zirconia sintered body and production method therefor
JP2004075532A (en) * 2002-08-01 2004-03-11 Kobe Steel Ltd High strength / high toughness zirconia sintered material and biomaterial using the same
JP2006225205A (en) * 2005-02-17 2006-08-31 Osaka Univ Conductive zirconia sintered compact and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306352A (en) * 1993-04-27 1994-11-01 Tosoh Corp Zirconia grit and its production
JPH11147762A (en) * 1997-11-11 1999-06-02 Fine Ceramics Gijutsu Kenkyu Kumiai Zirconium dioxide-based sintered product and its production
JP2002255642A (en) * 2001-03-02 2002-09-11 National Institute Of Advanced Industrial & Technology High density yttria-stabilized zirconia sintered body and production method therefor
JP2004075532A (en) * 2002-08-01 2004-03-11 Kobe Steel Ltd High strength / high toughness zirconia sintered material and biomaterial using the same
JP2006225205A (en) * 2005-02-17 2006-08-31 Osaka Univ Conductive zirconia sintered compact and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O. YAMAGUCHI ET AL.: "Fabrication and mechanical properties of Zr02 solid solution and composite ceramics in the system ZrO2 (Y203)-A1203.", ADVANCED SYNTHESIS AND PROCESSING OF COMPOSITES AND ADVANCED CERAMICS, 1995, pages 353 - 360 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189474A (en) * 2013-03-28 2014-10-06 Doshisha METHOD OF MANUFACTURING HIGH STRENGTH HIGH TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
KR20170039225A (en) 2015-04-20 2017-04-10 스미토모덴키고교가부시키가이샤 Sintered body and cutting tool including same
US9988315B2 (en) 2015-04-20 2018-06-05 Sumitomo Electric Industries, Ltd. Sintered body and cutting tool including the same
US9988314B2 (en) 2015-05-29 2018-06-05 Sumitomo Electric Hardmetal Corp. Sintered compact and cutting tool
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
US9902654B2 (en) 2016-06-20 2018-02-27 The Doshisha ZrO2-Al2O3-based ceramic sintered compact and production method thereof
CN108409312A (en) * 2018-03-26 2018-08-17 淄博畅安陶瓷科技有限公司 Two pairs of rollers machine drum body porcelain piece and preparation method thereof
CN115819079A (en) * 2022-12-02 2023-03-21 中南大学湘雅二医院 Material for artificial teeth and preparation method thereof
JP7438501B1 (en) 2023-01-24 2024-02-27 学校法人 龍谷大学 Alumina-zirconia mixed material and its manufacturing method

Also Published As

Publication number Publication date
JPWO2012153645A1 (en) 2015-04-27
JP5930317B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5930317B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
CN109879669A (en) A kind of high entropy ceramic composite and its preparation method and application with high intensity
JP6052735B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
CN114315359B (en) Method for preparing high-strength and high-toughness complex-phase high-entropy ceramic by using solid solution coupling method and application
RU2744543C1 (en) Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers
CN106904977B (en) Preparation of surface hard and core tough Si by two-step sintering method3N4Method for producing ceramic material
CN108640672A (en) A kind of preparation method of light-weight magnesite-alumina spinel refractories
JP6908248B2 (en) SiC ceramics using coated SiC nanoparticles and their manufacturing method
JP6436905B2 (en) Boron carbide ceramics and manufacturing method thereof
Chen et al. Fabrication of YAG transparent ceramics by two-step sintering
US7833922B2 (en) Method of forming aluminum oxynitride material and bodies formed by such methods
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
Yin et al. Microstructure evolution and densification kinetics of Al2O3/Ti (C, N) ceramic tool material by microwave sintering
Zavareh et al. Fabrication of TiB2-TiC composites optimized by different amount of carbon in the initial Ti-BC powder mixture
KR100936016B1 (en) Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
CN112830792A (en) High-hardness hafnium-based ternary solid solution boride ceramic and preparation method and application thereof
CN111943682A (en) High-toughness oxidation-resistant textured high-entropy ceramic and preparation method and application thereof
JP2016147780A (en) Conductive high strength and high hardness composite ceramic and method of making the same
JP7116234B1 (en) Manufacturing method of composite ceramics
JP5408591B2 (en) Method for producing high-density metal boride
JP5245081B2 (en) High hardness high density cubic boron nitride sintered body and method for producing the same
JP5698568B2 (en) Aluminum oxide sintered body and method for producing the same
Toksoy et al. Densification and microstructural properties of boron-carbide in spark plasma sintering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12783001

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013513978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12783001

Country of ref document: EP

Kind code of ref document: A1