JPH11147762A - Zirconium dioxide-based sintered product and its production - Google Patents

Zirconium dioxide-based sintered product and its production

Info

Publication number
JPH11147762A
JPH11147762A JP9325266A JP32526697A JPH11147762A JP H11147762 A JPH11147762 A JP H11147762A JP 9325266 A JP9325266 A JP 9325266A JP 32526697 A JP32526697 A JP 32526697A JP H11147762 A JPH11147762 A JP H11147762A
Authority
JP
Japan
Prior art keywords
sintered body
powder
zirconium oxide
based sintered
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9325266A
Other languages
Japanese (ja)
Other versions
JP3134092B2 (en
Inventor
Masashi Yoshimura
雅司 吉村
Koichi Niihara
晧一 新原
Mutsuo Santo
睦夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS GIJUTSU KENKYU K
FINE CERAMICS GIJUTSU KENKYU KUMIAI
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
FINE CERAMICS GIJUTSU KENKYU K
FINE CERAMICS GIJUTSU KENKYU KUMIAI
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS GIJUTSU KENKYU K, FINE CERAMICS GIJUTSU KENKYU KUMIAI, Agency of Industrial Science and Technology filed Critical FINE CERAMICS GIJUTSU KENKYU K
Priority to JP09325266A priority Critical patent/JP3134092B2/en
Publication of JPH11147762A publication Critical patent/JPH11147762A/en
Application granted granted Critical
Publication of JP3134092B2 publication Critical patent/JP3134092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zirconium dioxide-based sintered product comprising uniform and highly fine crystal particles and reconciling good mechanical characteristics and good processability, and to provide a method for producing the same. SOLUTION: This zirconium dioxide-based sintered product containing a tetragonal phase of high temperature stable phase at ordinary temperature has characteristics that all crystal particle diameters of the sintered product are >=100 nm and that the relative density is >=95%. The method for producing the zirconium dioxide sintered product comprises using the crystal powder or amorphous powder of zirconium dioxide or zirconium dioxide-alumina crystal powder comprising <=20 nm crystal particles produced by a sol-gel method and/or a coprecipitation method as the powder of the raw material, and subsequently sintering the powder at a temperature-rising rate of >=100 deg.C/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、均一で非常に微細
な結晶粒で構成され、機械的特性と加工性を両立させた
新規な酸化ジルコニウム系焼結体に関するものであり、
更に詳しくは、本発明は、中低温域で優れた特性を有す
る微細粒径を持つ酸化ジルコニウム系セラミックス焼結
体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel zirconium oxide sintered body which is composed of uniform and extremely fine crystal grains and has both mechanical properties and workability.
More specifically, the present invention relates to a zirconium oxide-based ceramics sintered body having a fine particle size and having excellent characteristics in a medium to low temperature range, and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックスは、強度、耐熱性、断熱
性、耐磨耗性に優れているため、各種の用途に使用され
ている。しかし、セラミックスは、脆いことや加工性に
劣るためにその使用が限定されている。このような問題
を解決するために、従来、セラミックスの強度や加工性
等の向上を図る試みが種々行われている。たとえば、特
開昭61−59267においては、Al2 3 セラミッ
クス材料の中に第2相を分散させその強度・靭性を向上
させている。しかし、セラミックス材料の中に第2相を
分散させた場合、室温特性は向上するものの加工性が減
少しており、実材料として用いられるためには更なる加
工性の向上が望まれる。また、加工性能に関しては、特
開平1−242461には、Al2 3 セラミックスに
おいて塑性加工が可能であるセラミックスについて開示
されており、更に、特公平7−26747には、ZrO
2 セラミックスにおいて塑性加工したセラミックスピス
トンリングが開示されている。しかし、いずれの場合
も、その変形温度は1200℃以上であり、安価に実用
化することは非常に困難であった。更に、変形温度を低
下させるために、粒界にガラス相を添加することによっ
て変形温度を低下させる手法が報告されている。しか
し、該方法は、高温のみならず、室温の材料機械的特性
を減じるために好ましくない。
2. Description of the Related Art Ceramics are used for various purposes because of their excellent strength, heat resistance, heat insulation and abrasion resistance. However, the use of ceramics is limited due to its brittleness and poor workability. In order to solve such a problem, various attempts have conventionally been made to improve the strength and workability of ceramics. For example, in JP-A-61-59267, a second phase is dispersed in an Al 2 O 3 ceramic material to improve its strength and toughness. However, when the second phase is dispersed in a ceramic material, the room temperature characteristics are improved, but the workability is reduced, and further improvement in workability is desired in order to be used as an actual material. Regarding the processing performance, Japanese Patent Application Laid-Open No. 1-224461 discloses a ceramic which can be plastically processed in Al 2 O 3 ceramics.
A ceramic piston ring plastically worked on two ceramics is disclosed. However, in any case, the deformation temperature was 1200 ° C. or more, and it was very difficult to commercialize it at low cost. Furthermore, in order to lower the deformation temperature, a method of lowering the deformation temperature by adding a glass phase to the grain boundaries has been reported. However, this method is not preferred because it reduces the material mechanical properties at room temperature as well as at high temperatures.

【0003】[0003]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、中低温域で
優れた特性を有し、かつ加工性能が向上化した新しい酸
化ジルコニウム系セラミックス焼結体を製造することを
目標として鋭意研究を積み重ねた結果、原料粉末にゾル
ーゲル法および/または共沈法で作製された粉末を用
い、該粉末を100℃/min以上の昇温速度で焼結す
ることにより所期の目的を達成し得ることを見出し、本
発明を完成するに至った。本発明は、上記のような実用
化への課題を解決するものであって、均一で非常に微細
な結晶粒で構成され、強度などの機械的特性と加工性を
両立させた酸化物系焼結体およびその製造方法を提供す
ることを目的としている。
Under these circumstances, the present inventors have developed a new oxidizer having excellent characteristics in the middle and low temperature range and improved processing performance in view of the above prior art. As a result of intensive studies aimed at producing a zirconium-based ceramic sintered body, a powder produced by a sol-gel method and / or a coprecipitation method was used as a raw material powder, and the powder was heated at a rate of 100 ° C./min or more. It has been found that the intended purpose can be achieved by sintering at a high speed, and the present invention has been completed. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems for practical use, and comprises oxide-based sintering that is composed of uniform and extremely fine crystal grains and has both mechanical properties such as strength and workability. It is an object of the present invention to provide a body and a method of manufacturing the same.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、以下の技術的手段が採用される。 (1)焼結体の全ての結晶粒径100nm以下であり、
相対密度が95%以上であることを特徴とする高温安定
相である正方晶を常温において含む酸化ジルコニウム系
焼結体。 (2)焼結体の全ての結晶粒径50nm以下であり、相
対密度が95%以上であることを特徴とする高温安定相
である正方晶を常温において含む酸化ジルコニウム系焼
結体。 (3)焼結体の全ての結晶粒径100nm以下であり、
0.1vol%〜30vol%の分散相が含まれること
を特徴とする上記(1)または(2)記載の酸化ジルコ
ニウム系焼結体。 (4)分散相がAl2 3 であることを特徴とする上記
(3)記載の酸化ジルコニウム系焼結体。 (5)1200℃以下の温度で塑性加工が可能であるこ
とを特徴とする上記(1)または(2)記載の酸化ジル
コニウム系焼結体。 (6)上記(1)〜(5)のいずれか1項に記載の酸化
ジルコニウム系焼結体の製造方法であって、原料粉末に
ゾル−ゲル法および/または共沈法で作製された20n
m以下の結晶粒から構成される酸化ジルコニウム、また
は酸化ジルコニウム−アルミナの結晶粉末またはアモル
ファス粉末を用い、該粉末を100℃/min以上の昇
温速度で焼結することを特徴とする酸化ジルコニウム系
焼結体の製造方法。
In order to solve the above problems, the present invention employs the following technical means. (1) All the crystal grains of the sintered body are 100 nm or less,
A zirconium oxide-based sintered body containing a tetragonal crystal as a high-temperature stable phase at room temperature, having a relative density of 95% or more. (2) A zirconium oxide-based sintered body containing a tetragonal crystal, which is a high-temperature stable phase, at room temperature, wherein all of the sintered bodies have a crystal grain size of 50 nm or less and a relative density of 95% or more. (3) All the crystal grains of the sintered body have a grain size of 100 nm or less,
The zirconium oxide-based sintered body according to the above (1) or (2), comprising a dispersed phase of 0.1 vol% to 30 vol%. (4) The zirconium oxide-based sintered body according to the above (3), wherein the dispersed phase is Al 2 O 3 . (5) The zirconium oxide-based sintered body according to the above (1) or (2), wherein plastic working can be performed at a temperature of 1200 ° C or lower. (6) The method for producing a zirconium oxide-based sintered body according to any one of the above (1) to (5), wherein 20n produced by a sol-gel method and / or a coprecipitation method on a raw material powder.
a zirconium oxide comprising zirconium oxide or zirconium oxide-alumina crystal powder or amorphous powder composed of crystal grains of m or less, and sintering the powder at a heating rate of 100 ° C./min or more. A method for manufacturing a sintered body.

【発明の実施の形態】次に、本発明について、詳細に説
明する。上記のように、本発明の酸化ジルコニウム系焼
結体は、粒径は100nm以下であり、密度が95%以
上であることを特徴とする。また、本焼結体は、100
℃/min以上の焼結速度で焼結することを特徴として
いる。
Next, the present invention will be described in detail. As described above, the zirconium oxide-based sintered body of the present invention is characterized in that the particle size is 100 nm or less and the density is 95% or more. In addition, the present sintered body is 100
It is characterized in that sintering is performed at a sintering rate of at least ℃ / min.

【0005】[0005]

【作用】本発明の酸化物系セラミックスは高温安定相で
ある正方晶を常温において含み、粒径は100nm以
下、好ましくは50nm以下の結晶粒で構成されてい
る。このように均一かつ微細な組織が達成されることに
より、焼結体に劇的な加工特性の変化がもたらされる。
本発明の範囲内に粒径を制御し、かつ密度を95%以上
としたときにはその酸化物系材料において従来にない低
温での変形が可能になる。
The oxide-based ceramic of the present invention contains a tetragonal crystal, which is a high-temperature stable phase, at room temperature, and has a grain size of 100 nm or less, preferably 50 nm or less. The achievement of such a uniform and fine structure results in a dramatic change in the processing characteristics of the sintered body.
When the particle size is controlled within the range of the present invention and the density is 95% or more, the oxide material can be deformed at a lower temperature than ever before.

【0006】工業的によく利用されるZrO2 の場合に
ついて説明すると、本発明の焼結体は、1200℃以下
での低温で変形させることができる。本発明の上記粒径
より大きくしたときは、この温度域では変形加工の速度
が極めて遅くなったり、加工中に破壊することがある。
また、密度が95%以下の場合は変形中にポアーが成長
し、同じく機械的特性を減ずる。
The case of ZrO 2 , which is often used industrially, will be described. The sintered body of the present invention can be deformed at a low temperature of 1200 ° C. or lower. When the particle size is larger than the above-mentioned particle size of the present invention, the deformation processing speed may be extremely slow in this temperature range, or breakage may occur during the processing.
When the density is 95% or less, the pores grow during the deformation, and the mechanical properties are similarly reduced.

【0007】従来、酸化物系セラミックスは、高温域で
変形すると、表面成分の拡散・揮発により表面の面粗度
が低下するか、変形冶具と反応し、機械的特性が減じる
ことがあったが、本発明の焼結体は、低温域で加工可能
であることから、本発明によって、機械的特性を損なわ
ない材料を得ることができる。また、この温度域で変形
させることにより、従来冶具として用いていた高価なセ
ラミックス製の冶具を用いる必要がなく、セラミックス
部品のコストを大幅に減少させることが可能となる。
Conventionally, when oxide-based ceramics are deformed in a high temperature range, the surface roughness of the surface is reduced due to the diffusion and volatilization of surface components, or the oxide-based ceramics reacts with a deformation jig, and the mechanical properties are reduced. Since the sintered body of the present invention can be processed in a low temperature range, a material that does not impair the mechanical properties can be obtained by the present invention. Further, by deforming in this temperature range, it is not necessary to use an expensive ceramic jig which has been conventionally used as a jig, and the cost of the ceramic component can be greatly reduced.

【0008】また、より微細な焼結体を得る手法として
は0.1vol%〜30vol%の第2相を添加分散さ
せることが有効である。その際の添加物としては、機械
的特性に優れたAl2 3 が挙げられる。この添加範囲
内では均一微細な酸化アルミニウムを固溶した酸化ジル
コニウム系焼結体を作製することが可能であり、その特
性を改善することができる。また、各々の材料において
分散相が30vol%以上になると第2相成分がパーコ
レーションを起こしたり、高密度を達成するのが困難に
なるために好ましくない。
As a technique for obtaining a finer sintered body, it is effective to add and disperse a second phase of 0.1 vol% to 30 vol%. As an additive at that time, Al 2 O 3 having excellent mechanical properties can be used. Within this addition range, it is possible to produce a zirconium oxide-based sintered body in which uniformly fine aluminum oxide is dissolved, and the characteristics thereof can be improved. Further, when the dispersed phase of each material is 30 vol% or more, it is not preferable because the second phase component causes percolation and it is difficult to achieve high density.

【0009】本発明の焼結体を作製する方法は、20n
m以下(好ましくは10nm以下)の結晶粒から構成さ
れる結晶粉末またはアモルファス粉末を使用する。該原
料粉末としては、Zr、Y、Alのアルコキシド粉末や
塩化物が使用される。また、粒径や使用目的に応じて0
〜4mol%の酸化イットリウムを適宜加える。このよ
うな微細な粉末としてはゾル/ゲル法、共沈法から作製
される粉末が望ましい。これらの粉末では、凝集の少な
い数nmの粉末を得ることが可能であり、かつ不純物の
混入が少ない。また、これらの得られた粉末はその凝集
やC等の不純物の混在、成形のしやすさなどを考慮し、
適宜、大気炉やボールミル等により仮焼や解砕・混合を
行う。
The method for producing the sintered body of the present invention is as follows.
Crystal powder or amorphous powder composed of crystal grains of m or less (preferably 10 nm or less) is used. As the raw material powder, Zr, Y, Al alkoxide powder or chloride is used. Also, depending on the particle size and the purpose of use, 0
Add ~ 4 mol% yttrium oxide as appropriate. As such a fine powder, a powder produced by a sol / gel method or a coprecipitation method is desirable. With these powders, it is possible to obtain a powder of several nm with little aggregation, and there is little contamination of impurities. In addition, these obtained powders are considered in consideration of aggregation, mixing of impurities such as C, ease of molding, and the like.
As appropriate, calcination, crushing and mixing are performed using an air furnace, a ball mill, or the like.

【0010】また、焼結は100℃/min以上少なく
とも50℃/min以上の昇温速度で行うことが望まし
い。上記昇温速度で行うことにより、焼結体の緻密化が
促進され、かつ粒成長を抑制することができる。本材料
の焼結方法としては、例えば、HIP、放電プラズマ等
が例示され、いずれを用いてもよいが、HIPにおいて
はその製造工程が複雑なことや装置において昇温速度が
あげられないこともあり、より好ましくは放電プラズマ
焼結(SPS)を用いる。この焼結法を用いることによ
り、粒子表面にある水酸基を除去することができ、粒子
が活性化されると共に放電により粒子間に電界拡散が発
生し、低温で焼結を進行させることができるため、簡便
な手法で焼結体が得られる。
The sintering is desirably performed at a rate of 100 ° C./min or more and at least 50 ° C./min or more. By performing the heating at the above-mentioned heating rate, densification of the sintered body is promoted, and grain growth can be suppressed. As a sintering method of the present material, for example, HIP, discharge plasma, etc. are exemplified, and any of them may be used. However, in HIP, the manufacturing process is complicated and the temperature rise rate cannot be increased in an apparatus. Yes, and more preferably, spark plasma sintering (SPS) is used. By using this sintering method, the hydroxyl groups on the particle surface can be removed, the particles are activated, and electric discharge occurs between the particles due to electric discharge, so that sintering can proceed at a low temperature. A sintered body can be obtained by a simple method.

【0011】[0011]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は該実施例により何ら限定されるもの
ではない。 実施例1 Zr(iso−OPr)4 に、3mol%のY(iso
−OPr)3 、および表1に示すAl2 3 のvol%
になるようにAl(iso−OPr)3 のアルコキシド
粉末を加えた。これらをイソプロパノール中で溶解させ
沸煮させた後、アンモニア水を滴下させ、加水分解を行
い、アモルファス粉末を得た。これらを所定の温度で仮
焼した後、ボールミルにて粉砕し、表1に示す条件で放
電プラズマ焼結機において30MPa、またはHIPに
おいて加圧力100MPaの条件で焼結した。また、得
られた焼結体は1000℃、10minで熱エッチング
を施し、FE−SEM観察により粒径測定を行った。比
較例(表1中、※を付したNo.のもの)として、分散
相の添加量、焼結温度および昇温速度を表1に示す条件
にした以外は、上記実施例と同様に処理して焼結体を製
造し、同様の測定を行った。上記焼結体の密度、粒径を
表1に示す。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example 1 3 mol% of Y (iso-OPr) 4 was added to Zr (iso-OPr) 4.
—OPr) 3 , and vol% of Al 2 O 3 shown in Table 1.
Al (iso-OPr) 3 alkoxide powder was added so that These were dissolved in isopropanol and boiled, and then ammonia water was added dropwise to carry out hydrolysis to obtain amorphous powder. These were calcined at a predetermined temperature, pulverized by a ball mill, and sintered under the conditions shown in Table 1 in a discharge plasma sintering machine at 30 MPa, or HIP under a pressure of 100 MPa. The obtained sintered body was subjected to thermal etching at 1000 ° C. for 10 minutes, and the particle size was measured by FE-SEM observation. As a comparative example (No. marked with * in Table 1), the treatment was performed in the same manner as in the above example, except that the addition amount of the dispersed phase, the sintering temperature and the heating rate were set to the conditions shown in Table 1. To produce a sintered body, and the same measurement was performed. Table 1 shows the density and particle size of the sintered body.

【0012】[0012]

【表1】 [Table 1]

【0013】表1からわかるように、SPS焼結法にお
いて毎分100℃以上で昇温することによって、密度9
5%以上、粒径100nm以下が達成されていることが
わかる。なおHIPにおいては、装置構造から毎分10
0℃という高い昇温速度の実現は困難であることに加
え、SPS焼結の方が高密度で粒径が細かいことがわか
る。また、Al2 3 の添加量を増加させた場合、その
密度が低下することが示される。次に、焼結した材料か
らφ10×1mmの円盤を切り出し、外部リング6m
m、内部リング1mmの条件でASTM F−394−
78 のリング オン リングの試験法で強度測定を行
った。また、10×5×5mmの試験片に加工した後、
所定の温度にて圧縮試験を行った。その結果を表2に示
す。
As can be seen from Table 1, by increasing the temperature at 100 ° C. or more per minute in the SPS sintering method, the density 9
It can be seen that 5% or more and a particle size of 100 nm or less have been achieved. In the case of HIP, 10
It can be seen that it is difficult to achieve a high heating rate of 0 ° C., and that SPS sintering has a higher density and a smaller particle size. In addition, it is shown that when the amount of Al 2 O 3 added is increased, the density decreases. Next, a disk of φ10 × 1 mm was cut out from the sintered material, and an outer ring 6 m
m, ASTM F-394
Strength measurements were performed on 78 ring-on-ring test methods. Also, after processing into a 10 × 5 × 5 mm test piece,
A compression test was performed at a predetermined temperature. Table 2 shows the results.

【0014】[0014]

【表2】 [Table 2]

【0015】表2で示したサンプルはいずれも80%変
形時でも良好な形態を保った。
All of the samples shown in Table 2 maintained good morphology even at 80% deformation.

【0016】実施例2 ZrOCl2 に3mol%相当のYCl3 を加え、さら
に表3に示すAl2 3 のvol%になるようにAlC
3 を加えたHCl水溶液の中に溶解させNH4 OH中
に滴下した。水洗した後に900−1100℃の温度で
仮焼し、粉末を得、実施例1と同様な処理を行った。焼
結した材料は、実施例1同様に強度試験と初期歪み速度
1×10-4-1で圧縮試験を行った。その結果を表4に
示す。
Example 2 YCl 3 equivalent to 3 mol% was added to ZrOCl 2 , and AlC was added so that the vol% of Al 2 O 3 shown in Table 3 was attained.
was added dropwise to NH 4 during OH was dissolved in aqueous HCl was added l 3. After washing with water, the powder was calcined at a temperature of 900 to 1100 ° C. to obtain a powder, and the same treatment as in Example 1 was performed. The sintered material was subjected to a strength test and a compression test at an initial strain rate of 1 × 10 −4 s −1 as in Example 1. Table 4 shows the results.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】表4で示したサンプルは80%変形時でも
良好な形態を保った。
The samples shown in Table 4 maintained good morphology even at 80% deformation.

【0020】[0020]

【発明の効果】以上詳述したように、本発明は、焼結体
の全ての結晶粒径100nm以下であり、相対密度が9
5%以上であることを特徴とする常温で正方晶を含む酸
化ジルコニウム系焼結体に係るものであり、本発明によ
れば、均一で非常に微細な結晶粒で構成され、機械的特
性と加工性を両立させた酸化ジルコニウム系焼結体およ
びその製造方法を提供できる、また、酸化ジルコニウム
系焼結体の変形温度を低下させることができる、更に、
中低温で優れた特性を有する酸化ジルコニウム系セラミ
ックス焼結体を作製することができる、等の効果が得ら
れる。
As described above in detail, according to the present invention, all of the sintered bodies have a crystal grain size of 100 nm or less and a relative density of 9 nm.
The present invention relates to a zirconium oxide-based sintered body containing a tetragonal crystal at room temperature, which is characterized by being at least 5%, and according to the present invention, it is composed of uniform and extremely fine crystal grains, It is possible to provide a zirconium oxide-based sintered body having both workability and a method for producing the same, and it is possible to lower the deformation temperature of the zirconium oxide-based sintered body.
The effect is obtained that a zirconium oxide-based ceramics sintered body having excellent properties at medium and low temperatures can be produced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新原 晧一 大阪府吹田市山田東3丁目18番地の1− 608 (72)発明者 山東 睦夫 愛知県名古屋市緑区鳴子町5丁目41番地 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Niihara 1-608-3-18 Yamadahigashi, Suita-shi, Osaka

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼結体の全ての結晶粒径100nm以下
であり、相対密度が95%以上であることを特徴とする
高温安定相である正方晶を常温において含む酸化ジルコ
ニウム系焼結体。
1. A zirconium oxide-based sintered body containing a tetragonal crystal as a high-temperature stable phase at room temperature, wherein all the crystal grains of the sintered body have a crystal grain size of 100 nm or less and a relative density of 95% or more.
【請求項2】 焼結体の全ての結晶粒径50nm以下で
あり、相対密度が95%以上であることを特徴とする高
温安定相である正方晶を常温において含む酸化ジルコニ
ウム系焼結体。
2. A zirconium oxide-based sintered body containing tetragonal crystals at room temperature, which is a high-temperature stable phase, wherein all the crystal grains of the sintered body have a crystal grain size of 50 nm or less and a relative density of 95% or more.
【請求項3】 焼結体の全ての結晶粒径100nm以下
であり、0.1vol%〜30vol%の分散相が含ま
れることを特徴とする請求項1または2記載の酸化ジル
コニウム系焼結体。
3. The zirconium oxide-based sintered body according to claim 1, wherein all of the sintered bodies have a crystal grain size of 100 nm or less and contain a dispersed phase of 0.1 vol% to 30 vol%. .
【請求項4】 分散相がAl2 3 であることを特徴と
する請求項3記載の酸化ジルコニウム系焼結体。
4. The zirconium oxide-based sintered body according to claim 3 , wherein the dispersed phase is Al 2 O 3 .
【請求項5】 1200℃以下の温度で塑性加工が可能
であることを特徴とする請求項1または2記載の酸化ジ
ルコニウム系焼結体。
5. The zirconium oxide-based sintered body according to claim 1, wherein plastic working can be performed at a temperature of 1200 ° C. or lower.
【請求項6】 請求項1〜5のいずれか1項に記載の酸
化ジルコニウム系焼結体の製造方法であって、原料粉末
にゾル−ゲル法および/または共沈法で作製された20
nm以下の結晶粒から構成される酸化ジルコニウム、ま
たは酸化ジルコニウム−アルミナ結晶粉末またはアモル
ファス粉末を用い、該粉末を100℃/min以上の昇
温速度で焼結することを特徴とする酸化ジルコニウム系
焼結体の製造方法。
6. The method for producing a zirconium oxide-based sintered body according to claim 1, wherein the raw material powder is produced by a sol-gel method and / or a coprecipitation method.
using zirconium oxide or zirconium oxide-alumina crystal powder or amorphous powder composed of crystal grains having a diameter of not more than 100 nm, and sintering the powder at a heating rate of 100 ° C./min or more. The method of manufacturing the aggregate.
JP09325266A 1997-11-11 1997-11-11 Zirconium oxide-based sintered body and method for producing the same Expired - Lifetime JP3134092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09325266A JP3134092B2 (en) 1997-11-11 1997-11-11 Zirconium oxide-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09325266A JP3134092B2 (en) 1997-11-11 1997-11-11 Zirconium oxide-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11147762A true JPH11147762A (en) 1999-06-02
JP3134092B2 JP3134092B2 (en) 2001-02-13

Family

ID=18174899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09325266A Expired - Lifetime JP3134092B2 (en) 1997-11-11 1997-11-11 Zirconium oxide-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3134092B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214168A (en) * 2007-03-07 2008-09-18 Tosoh Corp Light-transmitting zirconia sintered compact and its production method
JP2010514665A (en) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Zirconia body and method
WO2012153645A1 (en) * 2011-05-12 2012-11-15 学校法人同志社 METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
JP2014189474A (en) * 2013-03-28 2014-10-06 Doshisha METHOD OF MANUFACTURING HIGH STRENGTH HIGH TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
JP2016117618A (en) * 2014-12-22 2016-06-30 クラレノリタケデンタル株式会社 Zirconia composition, zirconia calcinated body, zirconia sintered body and manufacturing zirconia sintered body and dental product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514665A (en) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Zirconia body and method
JP2008214168A (en) * 2007-03-07 2008-09-18 Tosoh Corp Light-transmitting zirconia sintered compact and its production method
WO2012153645A1 (en) * 2011-05-12 2012-11-15 学校法人同志社 METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
JPWO2012153645A1 (en) * 2011-05-12 2015-04-27 学校法人同志社 Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
JP2014189474A (en) * 2013-03-28 2014-10-06 Doshisha METHOD OF MANUFACTURING HIGH STRENGTH HIGH TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
JP2016117618A (en) * 2014-12-22 2016-06-30 クラレノリタケデンタル株式会社 Zirconia composition, zirconia calcinated body, zirconia sintered body and manufacturing zirconia sintered body and dental product

Also Published As

Publication number Publication date
JP3134092B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP5685846B2 (en) Transparent zirconia sintered body, method for producing the same, and use thereof
JP2945935B2 (en) Zirconia-based composite ceramic sintered body and method for producing the same
US20070179041A1 (en) Zirconia Ceramic
WO1995029141A1 (en) Zirconia sinter, process for producing the same, grinding part material, and orthodontic bracket material
JPS60141673A (en) Zirconia ceramic and manufacture
CN112851342A (en) Zirconia ceramic material and preparation method and application thereof
JP2659082B2 (en) Manufacturing method of zirconia-based composite ceramic sintered body
JP3134092B2 (en) Zirconium oxide-based sintered body and method for producing the same
JPH0214823A (en) Production of submicron powder of zirconium oxide stabilized by yttrium oxide
CN114835473B (en) Alumina ceramic and preparation method thereof
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
CN114685149B (en) Functionalized alumina ceramic fiber and preparation method thereof
JP2810922B2 (en) Alumina-zirconia composite sintered body and method for producing the same
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
CN114956811A (en) Scandium-cerium co-doped gadolinium zirconate thermal barrier coating material and preparation method thereof, and thermal barrier coating and preparation process thereof
JP2580532B2 (en) Production method of highly homogeneous and high purity yttrium-containing zirconia powder
JP3023784B1 (en) High strength, high toughness aluminum oxide sintered body and method for producing the same
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP2966644B2 (en) Silicon nitride sintered body and method for producing the same
JP2580531B2 (en) Method for producing highly homogeneous high purity yttrium-containing zirconia powder
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JP3139646B2 (en) Method for producing silicon nitride sintered body
JP2002121070A (en) Sintered low temperature thermal deterioration resistant zirconia compact and method of manufacturing for the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term