JP2007022914A - Method for manufacturing silicon/silicon carbide composite material - Google Patents

Method for manufacturing silicon/silicon carbide composite material Download PDF

Info

Publication number
JP2007022914A
JP2007022914A JP2006296204A JP2006296204A JP2007022914A JP 2007022914 A JP2007022914 A JP 2007022914A JP 2006296204 A JP2006296204 A JP 2006296204A JP 2006296204 A JP2006296204 A JP 2006296204A JP 2007022914 A JP2007022914 A JP 2007022914A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
composite material
carbide composite
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296204A
Other languages
Japanese (ja)
Other versions
JP4612608B2 (en
Inventor
Akiko Suyama
章子 須山
Tsuneji Kameda
常治 亀田
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006296204A priority Critical patent/JP4612608B2/en
Publication of JP2007022914A publication Critical patent/JP2007022914A/en
Application granted granted Critical
Publication of JP4612608B2 publication Critical patent/JP4612608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon/silicon carbide composite material in which mechanical properties such as strength, toughness or the like and durability are improved, and that has high dependability and high durability. <P>SOLUTION: The method comprises: pressing the mixed powder of silicon carbide with the average particle diameter of 0.1 to 10 μm and carbon powder with the average particle diameter of 0.005 to 1 μm to a compact of a predetermined shape; heating the compact to a temperature beyond the melting point of silicon; and impregnating the compact heated at the temperature beyond the melting point of silicon with melt silicon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、強度、靭性などの機械的特性が改善された、高い信頼性と耐久性を有するシリコン/炭化ケイ素複合材料に係り、特に、半導体製造治具、半導体関連部品、摺動部品、高温用構造部品、ミラー部品、ポンプ部品等の用途に適したシリコン/炭化ケイ素複合材料の製造方法に関する。   The present invention relates to a highly reliable and durable silicon / silicon carbide composite material with improved mechanical properties such as strength and toughness, and in particular, semiconductor manufacturing jigs, semiconductor related parts, sliding parts, high temperature The present invention relates to a method for manufacturing a silicon / silicon carbide composite material suitable for applications such as structural parts, mirror parts, and pump parts.

一般に、セラミックス材料は、金属材料に比べて、強度及び靭性等の機械的特性が低いため、信頼性と耐久性の面で問題がある。このようなセラミックス材料を、高信頼性と高耐久性が要求される部品や製品へ適用できるようにするため、高強度化や高靭性化されたセラミックス材料が求められている。このような高強度化、高靭性化されたセラミックス材料としては、炭化ケイ素セラミックスや金属基複合材料(MMC:Metal Matrix Composite)が検討されているが、特に半導体製造治具、半導体関連部品、摺動部品、高温用構造部品、ミラー部品、ポンプ部品等の用途に適した機械的特性や耐久性に優れたセラミックス材料の開発が要望されている。   In general, ceramic materials have lower mechanical properties such as strength and toughness than metal materials, and thus have problems in terms of reliability and durability. In order to be able to apply such ceramic materials to parts and products that require high reliability and high durability, ceramic materials with high strength and high toughness are required. Silicon carbide ceramics and metal matrix composites (MMC: Metal Matrix Composite) are being studied as such high-strength and high-toughness ceramic materials. There is a demand for the development of ceramic materials with excellent mechanical properties and durability suitable for applications such as moving parts, high-temperature structural parts, mirror parts, and pump parts.

しかしながら、既存の炭化ケイ素セラミックスやMMC材料はいずれも機械的特性や耐久性が十分なものではなく、このため必要な機械的特性や耐久性を持たせるには、部品形状が大きくなってコスト高になるという問題があった。   However, none of the existing silicon carbide ceramics and MMC materials have sufficient mechanical properties and durability. Therefore, in order to provide the necessary mechanical properties and durability, the component shape becomes large and the cost increases. There was a problem of becoming.

特に、近年の傾向として機器及びシステム全体のコンパクト化が求められており、この点からも、より一層機械的特性や耐久性に優れた炭化ケイ素セラミックスやMMC材料の開発が望まれている。   In particular, as a recent trend, downsizing of devices and the entire system is demanded, and from this point of view, development of silicon carbide ceramics and MMC materials having further excellent mechanical properties and durability is desired.

本発明は、かかる従来の課題を解決すべくなされたもので、強度、靭性等の機械的特性や耐久性の改善された、高い信頼性と耐久性を有するシリコン/炭化ケイ素複合材料を提供することを目的とする。   The present invention has been made to solve such conventional problems, and provides a silicon / silicon carbide composite material having improved mechanical properties such as strength and toughness and improved durability and high reliability and durability. For the purpose.

上記目的を達成するため、本発明に係わるシリコン/炭化ケイ素複合材料の製造方法は、平均粒径0.1μmから10μmの炭化ケイ素と平均粒径0.005μmから1μmのカーボン粉末との混合粉末を、所定の形状の成形体に加圧成形する工程と、前記成形体をシリコンの融点以上の温度に加熱する工程と、前記シリコンの融点以上の温度に加熱されている前記成形体に溶融したシリコンを含浸させる工程とを有することを特徴としている。   In order to achieve the above object, a method for producing a silicon / silicon carbide composite material according to the present invention comprises a mixed powder of silicon carbide having an average particle diameter of 0.1 to 10 μm and carbon powder having an average particle diameter of 0.005 to 1 μm. A step of pressure-molding a molded body of a predetermined shape, a step of heating the molded body to a temperature equal to or higher than the melting point of silicon, and silicon melted in the molded body heated to a temperature equal to or higher than the melting point of silicon And a step of impregnating.

本発明により得られるシリコン/炭化ケイ素複合材料は、炭化ケイ素結晶の隙間を、シリコンがネットワーク状に連続して存在する気孔のない緻密質の焼結体である。典型的な本発明のシリコン/炭化ケイ素複合材料は、曲げ強度500MPa以上で、3MPa/m1/2 以上の破壊靭性値を有し、機械的特性のバラツキが小さく、高い信頼性と耐久性を有している。 The silicon / silicon carbide composite material obtained by the present invention is a dense sintered body having no pores in which silicon is continuously present in a gap between silicon carbide crystals. A typical silicon / silicon carbide composite material of the present invention has a bending strength of 500 MPa or more, a fracture toughness value of 3 MPa / m 1/2 or more, a small variation in mechanical properties, and high reliability and durability. Have.

本発明により得られるシリコン/炭化ケイ素複合材料は、好ましくは、シリコン/炭化ケイ素複合材料を構成する炭化ケイ素が通常2種類の結晶粒径分布を有している。より高い機械的特性をもつシリコン/炭化ケイ素複合材料を得るためには、結晶粒径分布の大きい方の炭化ケイ素の平均結晶粒径が、0.1μmから10μm、好ましくは0.1μmから5μm、小さい方の炭化ケイ素の平均結晶粒径が0.01μmから1μmであることが望ましい。結晶粒径分布の大きい方の炭化ケイ素結晶粒は、通常、出発原料の炭化ケイ素であり、製造過程において殆ど結晶成長が認められない。結晶粒径分布の大きい方の炭化ケイ素、すなわち出発原料の炭化ケイ素の平均粒径が0.05μm未満、通常は0.1μm未満であると製造プロセスにおいて粒子が凝集しやすくなり、均質な組織が容易に得られにくくなる
傾向が見られる。また、結晶粒径分布の大きい方の炭化ケイ素の平均粒径が30μm、通常は20μmを越えると、他の条件によっては10μmを越えると機械的特性である強度、靭性が十分に発現しない傾向が見られる。小さい方の炭化ケイ素は、一般に、製造過程において、出発原料のカーボン粉末とシリコンとが反応して形成されたものである。
In the silicon / silicon carbide composite material obtained by the present invention, the silicon carbide constituting the silicon / silicon carbide composite material usually has two types of crystal grain size distributions. In order to obtain a silicon / silicon carbide composite material having higher mechanical properties, the average crystal grain size of silicon carbide having a larger crystal grain size distribution is 0.1 μm to 10 μm, preferably 0.1 μm to 5 μm, It is desirable that the average crystal grain size of the smaller silicon carbide is 0.01 μm to 1 μm. The silicon carbide crystal grain having the larger crystal grain size distribution is usually silicon carbide as a starting material, and almost no crystal growth is observed in the production process. When the average grain size of silicon carbide having a larger crystal grain size distribution, that is, silicon carbide as a starting material is less than 0.05 μm, usually less than 0.1 μm, the particles are likely to aggregate in the production process, and a homogeneous structure is formed. There is a tendency that it is difficult to obtain easily. In addition, when the average grain size of silicon carbide having a larger crystal grain size distribution exceeds 30 μm, usually more than 20 μm, depending on other conditions, when it exceeds 10 μm, mechanical properties such as strength and toughness tend not to be sufficiently developed. It can be seen. The smaller silicon carbide is generally formed by reacting carbon powder as a starting material with silicon in the production process.

カーボン粉末は、通常、出発原料の炭化ケイ素に付着した状態で原料混合物中に分散しているため、平均粒径の小さい方の炭化ケイ素は、平均粒径の大きい炭化ケイ素の付近から成長し、平均粒径の大きい炭化ケイ素に接触したような状態でシリコン/炭化ケイ素複合材料中に存在する。   Since the carbon powder is usually dispersed in the raw material mixture in a state of adhering to the starting silicon carbide, the silicon carbide having a smaller average particle size grows from the vicinity of the silicon carbide having a larger average particle size, It exists in the silicon / silicon carbide composite material in a state of being in contact with silicon carbide having a large average particle diameter.

本発明のシリコン/炭化ケイ素複合材料を構成する炭化ケイ素は、通常、1種類または2種類の結晶相を有している。炭化ケイ素が2種類の結晶粒径分布を有する場合には、通常、大きい方の炭化ケイ素の結晶相がα相またはβ相であり、小さい方の炭化ケイ素の結晶相がβ相である。その理由は、出発原料の炭化ケイ素はα相とβ相とのものがあるのに対して、カーボン粉末と溶融シリコンとの反応ではβ相の炭化ケイ素しか生成しないためである。本発明においては、このカーボン粉末と溶融シリコンとの反応により生成したβ相の炭化ケイ素の存在より、気孔のない均質な焼結体が得られ、機械的特性にバラツキの小さい、高い信頼性と耐久性を有する材料が得られる。   The silicon carbide constituting the silicon / silicon carbide composite material of the present invention usually has one or two types of crystal phases. When silicon carbide has two types of crystal grain size distributions, usually the larger silicon carbide crystal phase is the α phase or β phase, and the smaller silicon carbide crystal phase is the β phase. The reason is that while silicon carbide as a starting material has α-phase and β-phase, only β-phase silicon carbide is produced by the reaction between carbon powder and molten silicon. In the present invention, due to the presence of β-phase silicon carbide produced by the reaction between the carbon powder and molten silicon, a homogeneous sintered body having no pores is obtained, and the mechanical properties are small and highly reliable. A durable material is obtained.

本発明のシリコン/炭化ケイ素複合材料においてネットワークを形成しているシリコンの含有量は、通常、5重量%から50重量%であり、好ましくは5重量%から30重量%である。シリコンの含有量が50重量%を超えると十分な機械的特性が得られない傾向が見られ、逆にシリコンの含有量が5重量%未満であると、シリコンがネットワークを形成できない可能性が高くなり、製造プロセス上、均質な組織の材料が得にくくなる。なお、前述した範囲内においては、分散粒子の含有量が多いほど、機械的特性である強度および靭性が向上する傾向が見られ、より高い信頼性と耐久性を有する材料が得られる。   The content of silicon forming a network in the silicon / silicon carbide composite material of the present invention is usually 5% to 50% by weight, preferably 5% to 30% by weight. If the silicon content exceeds 50% by weight, there is a tendency that sufficient mechanical properties cannot be obtained. Conversely, if the silicon content is less than 5% by weight, there is a high possibility that the silicon cannot form a network. Therefore, it is difficult to obtain a material having a homogeneous structure in the manufacturing process. In addition, within the range mentioned above, the tendency which the intensity | strength and toughness which are mechanical characteristics improve is seen, so that there is much content of a dispersion | distribution particle | grain, and the material which has higher reliability and durability is obtained.

また、本発明のシリコン/炭化ケイ素複合材料において、ネットワークを形成しているシリコンを除去して求めた細孔の比表面積は、好ましくは0.1平方m/gから10平方m/gであり、より好ましくは0.1平方m/gから6平方m/gである。ネットワークを形成しているシリコンを除去して求めた細孔の比表面積は、シリコンと炭化ケイ素間の粒界面積に相当する。上記範囲内にシリコンと炭化ケイ素の粒界面積を調整した場合、シリコンが炭化ケイ素結晶粒の隙間に満遍なく充填され、したがって、カーボン粉末と溶融シリコンの反応も均一に行われて、機械的特性にすぐれた、高い信頼性と耐久性をもつ材料が得られる。   In the silicon / silicon carbide composite material of the present invention, the specific surface area of the pores obtained by removing the silicon forming the network is preferably from 0.1 square m / g to 10 square m / g. More preferably, it is 0.1 square m / g to 6 square m / g. The specific surface area of the pores obtained by removing the silicon forming the network corresponds to the grain interface area between silicon and silicon carbide. When the interfacial area of silicon and silicon carbide is adjusted within the above range, silicon is uniformly filled in the gaps between the silicon carbide crystal grains, so that the reaction between the carbon powder and the molten silicon is uniformly performed, and the mechanical properties are improved. An excellent material with high reliability and durability can be obtained.

さらにまた、本発明のシリコン/炭化ケイ素複合材料において、ネットワークを形成しているシリコンを除去して求めた平均細孔径は、好ましくは0.03μmから3μm、より好ましくは0.03μmから2μmである。この平均細孔径が、3μmを超えると、曲げ強度が500MPaを下回るものが発現するようになり、逆に、平均細孔径が0.03μmを下回ると、製造プロセス上、シリコンをネットワーク状に連続して存在させることが難しくなって、機械的特性のバラツキが見られるようになる。   Furthermore, in the silicon / silicon carbide composite material of the present invention, the average pore diameter obtained by removing the silicon forming the network is preferably 0.03 μm to 3 μm, more preferably 0.03 μm to 2 μm. . When this average pore diameter exceeds 3 μm, a material having a bending strength of less than 500 MPa is developed. Conversely, when the average pore diameter is less than 0.03 μm, silicon is continuously formed in a network for the manufacturing process. It becomes difficult to be present, and variations in mechanical properties can be seen.

なお、このシリコンを除去して求めた平均細孔径は、シリコン/炭化ケイ素複合材料を、減圧下1600℃で加熱して含有するシリコンを除去し、水銀圧入法を用いて細孔を円柱と仮定したときの径を求めたものである。この平均細孔径は炭化ケイ素粒子間の平均距離に相当する。   The average pore diameter obtained by removing the silicon is assumed to be a cylinder using the mercury intrusion method by removing the silicon contained by heating the silicon / silicon carbide composite material at 1600 ° C. under reduced pressure. The diameter when obtained is obtained. This average pore diameter corresponds to the average distance between silicon carbide particles.

このシリコンを除去して求めた平均細孔径が3μm以下である場合、炭化ケイ素が均質分散され、安定して高強度・高靭性を示す材料が得られる。   When the average pore diameter obtained by removing this silicon is 3 μm or less, silicon carbide is homogeneously dispersed, and a material having high strength and high toughness can be obtained stably.

本発明のシリコン/炭化ケイ素複合材料は、炭化ケイ素とカーボンからなる成形体に、溶かしたシリコンを溶浸することにより製造される。   The silicon / silicon carbide composite material of the present invention is produced by infiltrating molten silicon into a molded body made of silicon carbide and carbon.

上記の炭化ケイ素としては、平均粒径0.1μmから15μm、好ましくは0.1μmから10μm、より好ましくは平均粒径0.1μmから5μmの範囲のものである。また、カーボン粉末として平均粒径0.01μmから1μmのものが好ましい。   The silicon carbide has an average particle size of 0.1 μm to 15 μm, preferably 0.1 μm to 10 μm, more preferably an average particle size in the range of 0.1 μm to 5 μm. Carbon powder having an average particle size of 0.01 μm to 1 μm is preferable.

炭化ケイ素とカーボンの配合比は、重量比で10:1〜10(10:1〜10:10)が好ましく、10:3〜5(10:3〜10:5)の範囲がより好ましい。10:3〜5の範囲に入る場合、製造プロセス上大きな形状のものまで、安定して高強度、高靭性を示す材料が得られる。   The compounding ratio of silicon carbide and carbon is preferably 10: 1 to 10 (10: 1 to 10:10) by weight and more preferably 10: 3 to 5 (10: 3 to 10: 5). When it falls within the range of 10: 3 to 5, a material that stably exhibits high strength and high toughness can be obtained up to a large shape in the manufacturing process.

炭化ケイ素とカーボンには、必要に応じて公知の有機バインダの適当量を添加してもよい。   An appropriate amount of a known organic binder may be added to silicon carbide and carbon as necessary.

成形体は、炭化ケイ素とカーボンの混合粉末をそのまま加圧成形したり、水または有機系溶媒に分散して加圧成形した後乾燥することにより得られる。   The molded body can be obtained by pressure-molding a mixed powder of silicon carbide and carbon as it is, or by dispersing in water or an organic solvent, pressure-molding, and drying.

加圧成形の場合の成形圧力は、0.5MPaから2MPaの範囲が望ましく、水又は有機系溶媒に分散させた場合の成形圧力は、0.5MPaから10MPaの範囲が好ましい。   The molding pressure in the case of pressure molding is desirably in the range of 0.5 MPa to 2 MPa, and the molding pressure when dispersed in water or an organic solvent is preferably in the range of 0.5 MPa to 10 MPa.

本発明に係るシリコン/炭化ケイ素複合材料は、炭化ケイ素とカーボンからなる成形体の組成と、成形体の密度を調整することによって、上述した構造をもたせることが可能となる。   The silicon / silicon carbide composite material according to the present invention can have the above-described structure by adjusting the composition of a molded body composed of silicon carbide and carbon and the density of the molded body.

本発明に係るシリコン/炭化ケイ素複合材料は、例えば、平均粒径0.1μmから10μm炭化ケイ素と平均粒径0.005μmから1μmのカーボン粉末との混合粉末を、所定の形状の成形体に加圧成形する工程と、前記成形体をシリコンの融点以上の温度に加熱する工程と、前記シリコンの融点以上の温度に加熱されている前記成形体に溶融したシリコンを含浸させる工程とからなる方法により製造される。上記の炭化ケイ素とカーボンの混合比率は、重量比で10:1〜10であることが望ましい。成形体は、例えば炭化ケイ素とカーボン粉末との混合粉末を分散媒に分散させたスラリーを0.5MPaから10MPaの加圧下で鋳込み成形することができる。また、成形体は、炭化ケイ素とカーボン粉末との混合粉末を0.5MPaから2MPaの加圧下でプレス成形やCIP成形などの加圧成形することによっても成形することができる。成形体へのシリコンの含浸は、必要に応じて成形体を脱脂した後、減圧下又は不活性雰囲気下で成形体をシリコンの融点以上、例えば1400℃以上に加熱し、この加熱した成形体に溶融したシリコンを含浸させることにより行われる。成形体の大きさにもよるが、溶融シリコンの成形体への含浸は迅速に(秒の単位)行われ、次いで溶融シリコンとカーボン粉末との反応も迅速に(分の単位)で行われる。なお、炭化ケイ素のみからなる成形体にシリコンを溶浸したのでは、上記のような優れた機械的特性を持つシリコン/炭化ケイ素複合材料は得られない。本発明のシリコン/炭化ケイ素複合材料は、炭化ケイ素とカーボンからなる成形体中に溶融したシリコンを含浸させ、成形体中のカーボンと含浸したシリコンを反応させて、出発原料の炭化ケイ素の表面にこれとは別の平均粒径の小さい炭化ケイ素を形成させたものである。このように、出発原料の炭化ケイ素の粒子間に、溶融シリコンとカーボン粉末との反応により形成された炭化ケイ素とシリコン相とを存在させることによって、優れた機械的特性と、高い信頼性と耐久性を有するシリコン/炭化ケイ素複合材料が得られる。上記の方法では、炭化ケイ素とカーボンからなる成形体を加圧成形したのちにシリコンを溶浸するため、緻密な材料が得られ、溶浸・焼結時に材料の収縮がない。また、ネットあるいはニヤネットで大型かつ複雑形状の製品を、短時間・低コストプロセスで製作することができる。   In the silicon / silicon carbide composite material according to the present invention, for example, a mixed powder of silicon carbide having an average particle diameter of 0.1 μm to 10 μm and carbon powder having an average particle diameter of 0.005 μm to 1 μm is added to a molded body having a predetermined shape. By a method comprising: a step of pressure forming; a step of heating the molded body to a temperature equal to or higher than a melting point of silicon; and a step of impregnating molten silicon into the molded body heated to a temperature equal to or higher than the melting point of silicon. Manufactured. The mixing ratio of silicon carbide and carbon is preferably 10: 1 to 10 by weight. The molded body can be formed by, for example, casting a slurry in which a mixed powder of silicon carbide and carbon powder is dispersed in a dispersion medium under a pressure of 0.5 MPa to 10 MPa. The molded body can also be molded by pressing a mixed powder of silicon carbide and carbon powder under pressure such as press molding or CIP molding under a pressure of 0.5 MPa to 2 MPa. In the impregnation of the molded product with silicon, the molded product is degreased as necessary, and then the molded product is heated to a melting point of silicon or higher, for example, 1400 ° C. or higher under reduced pressure or under an inert atmosphere. This is done by impregnating molten silicon. Depending on the size of the molded body, impregnation of the molten silicon into the molded body is performed rapidly (unit: seconds), and then the reaction between the molten silicon and the carbon powder is also performed quickly (unit: minutes). In addition, if silicon is infiltrated into a molded body made only of silicon carbide, a silicon / silicon carbide composite material having excellent mechanical properties as described above cannot be obtained. The silicon / silicon carbide composite material of the present invention is obtained by impregnating a molten silicon in a molded body composed of silicon carbide and carbon, reacting the carbon in the molded body with the impregnated silicon, and reacting the surface of the starting silicon carbide. Another silicon carbide having a small average particle diameter is formed. In this way, the presence of silicon carbide and silicon phase formed by the reaction of molten silicon and carbon powder between the silicon carbide particles of the starting material, excellent mechanical properties, high reliability and durability A silicon / silicon carbide composite material having properties is obtained. In the above-described method, since the silicon carbide is infiltrated after press-molding a molded body made of silicon carbide and carbon, a dense material is obtained, and there is no shrinkage of the material during infiltration and sintering. In addition, large and complex shaped products can be manufactured in a short time and at a low cost using nets or near nets.

以上の実施例からも明らかなように、本発明に係るシリコン/炭化ケイ素複合材料は、原料の炭化ケイ素結晶粒の隙間に、カーボン粉末と溶融シリコンとの反応によって生成した炭化ケイ素が存在し、かつこれらの炭化ケイ素のシリコンがネットワーク状に連続して存在するため、優れた曲げ強度を有し、高い信頼性と耐久性が要求される用途に好適している。   As is clear from the above examples, the silicon / silicon carbide composite material according to the present invention has silicon carbide produced by the reaction of carbon powder and molten silicon in the gaps between the raw material silicon carbide crystal grains, Moreover, since these silicon carbide silicons are continuously present in the form of a network, they have excellent bending strength and are suitable for applications that require high reliability and durability.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明に係わるシリコン/炭化ケイ素複合材料を製造する過程を模式的に示す拡大断面図、図2は本発明に係わるシリコン/炭化ケイ素複合材料の組織を模式的に示す拡大断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an enlarged sectional view schematically showing a process for producing a silicon / silicon carbide composite material according to the present invention, and FIG. 2 is an enlarged sectional view schematically showing a structure of the silicon / silicon carbide composite material according to the present invention. It is.

本発明のシリコン/炭化ケイ素複合材料1は、図1に示すように、炭化ケイ素3とカーボン粉末4を加圧下に所定の形状に成形してなる成形体2を高温に加熱し、この高温の成形体2に溶融したシリコン5を含浸させて製作される。   As shown in FIG. 1, the silicon / silicon carbide composite material 1 of the present invention heats a molded body 2 formed by molding silicon carbide 3 and carbon powder 4 into a predetermined shape under pressure to a high temperature. The molded body 2 is manufactured by impregnating molten silicon 5.

成形体中のカーボン粉末4は、高温下で溶融シリコン5と接触して反応し、出発原料の炭化ケイ素3より平均粒径の小さい炭化ケイ素6を生成する。この反応過程で出発原料の炭化ケイ素3は殆ど粒成長をしない。このため、本発明のシリコン/炭化ケイ素複合材料は、一般に、相対的に平均粒径の大きい出発原料の炭化ケイ素3と、相対的に平均粒径の小さいカーボン粉末と溶融シリコンとの反応により生成した炭化ケイ素6と、これら炭化ケイ素3,6の間隙にマトリックス状に充填された遊離シリコン7とから構成されている。   The carbon powder 4 in the molded body reacts with contact with the molten silicon 5 at a high temperature to produce silicon carbide 6 having an average particle size smaller than that of the starting silicon carbide 3. In this reaction process, the starting silicon carbide 3 hardly grows. For this reason, the silicon / silicon carbide composite material of the present invention is generally produced by a reaction between a starting silicon carbide 3 having a relatively large average particle size, a carbon powder having a relatively small average particle size, and molten silicon. Silicon carbide 6 and free silicon 7 filled in a matrix between the silicon carbides 3 and 6.

[実施例1]
平均粒径0.5μmの炭化ケイ素粉末(α−SiC)と平均粒径0.03μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/4の混合比率(重量)で混合し、溶媒中に分散して低粘度のスラリーを作製した。次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に7MPaで加圧しながら充填し、所定の成形体密度の板状の成形体を作製した。この成形体を自然乾燥した後、不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、この成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例1に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 1]
Silicon carbide powder (α-SiC) having an average particle size of 0.5 μm and carbon powder (carbon black) having an average particle size of 0.03 μm, together with a predetermined organic binder, a mixing ratio of silicon carbide / carbon powder = 10/4 ( Weight) and dispersed in a solvent to produce a low viscosity slurry. Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 7 MPa to produce a plate-shaped molded body having a predetermined molded body density. The molded body is naturally dried, heated and held at a temperature of 600 ° C. in an inert gas atmosphere, degreased the organic binder, and then heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere. The molded body was impregnated and sintered with molten silicon. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 1.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法及び焼結体密度から求めたシリコン、炭化ケイ素の理論密度から算出して求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was obtained by calculating from the theoretical density of silicon and silicon carbide obtained from the image processing method based on the structure observation photograph and the density of the sintered body. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例1に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が0.5m、小さい方の炭化ケイ素の平均結晶粒径が0.05mであり、大きい方の炭化ケイ素の結晶相はα相、小さい方の炭化ケイ素の結晶相はβ相であった。また、ネットワークを形成しているシリコンの含有量は18重量%であり、シリコンと炭化ケイ素の粒界面積が4平方m/gであり、シリコンを円柱と見なしたときの平均径は0.08μmであった。   In the silicon / silicon carbide composite material according to Example 1, the silicon carbide has two types of crystal grain size distributions. The average crystal grain size of the larger silicon carbide is 0.5 m, and the smaller silicon carbide The average crystal grain size was 0.05 m, the larger silicon carbide crystal phase was α-phase, and the smaller silicon carbide crystal phase was β-phase. The content of silicon forming the network is 18% by weight, the grain interface area between silicon and silicon carbide is 4 square m / g, and the average diameter when silicon is regarded as a cylinder is 0. It was 08 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法(インデンテーション・フラクチャー法、圧子圧入法)を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例1に係わるシリコン/炭化ケイ素複合材料は、曲げ強度1200MPa、破壊靭性値3.6MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using IF method (indentation fracture method, indentation press-fitting method). The silicon / silicon carbide composite material according to Example 1 had a bending strength of 1200 MPa and a fracture toughness value of 3.6 MPa / m 1/2 .

[実施例2]
平均粒径1μmの炭化ケイ素粉末(α−SiC)と平均粒径0.07μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/5の混合比率(重量)で混合し、溶媒中に分散して低粘度のスラリーを作製した。次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に5MPaで加圧しながら充填し、所定の成形体密度の成形体を作製した。
この成形体を自然乾燥し、不活性ガス雰囲気中600℃の温度で加熱・保持して、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例2に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 2]
Silicon carbide powder (α-SiC) having an average particle diameter of 1 μm and carbon powder (carbon black) having an average particle diameter of 0.07 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/5 And mixed in a solvent to prepare a low-viscosity slurry. Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 5 MPa to produce a molded body having a predetermined molded body density.
The molded body is naturally dried, heated and held at a temperature of 600 ° C. in an inert gas atmosphere to degrease the organic binder, and then heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere to be molded. The body was impregnated and sintered with molten silicon. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 2.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法、及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method using a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例2に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が1μm、小さい方の炭化ケイ素の平均結晶粒径が0.1μmであり、大きい方の炭化ケイ素の結晶相はα相、小さい方の炭化ケイ素の結晶相はβ相であった。また、ネットワークを形成しているシリコンの含有量が12重量%であり、シリコンと炭化ケイ素の粒界面積が1平方m/gであり、シリコンを円柱と見なしたときの平均径は0.1μmであった。   In the silicon / silicon carbide composite material according to Example 2, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 1 μm, and the average crystal of the smaller silicon carbide The grain size was 0.1 μm, the larger silicon carbide crystal phase was the α phase, and the smaller silicon carbide crystal phase was the β phase. Further, the content of silicon forming a network is 12% by weight, the grain interface area of silicon and silicon carbide is 1 square m / g, and the average diameter when silicon is regarded as a cylinder is 0. It was 1 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例2に係わるシリコン/炭化ケイ素複合材料は、曲げ強度1000MPa、破壊靭性値3.8MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 2 had a bending strength of 1000 MPa and a fracture toughness value of 3.8 MPa / m 1/2 .

[実施例3]
平均粒径5μmの炭化ケイ素粉末(α−SiC)と平均粒径0.3μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/3の混合比率(重量)で混合して、溶媒中に分散して低粘度のスラリーを作製した。次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に3MPaで加圧しながら充填し、所定の成形体密度の成形体を作製した。
この成形体を不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、この成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例3に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 3]
Silicon carbide powder (α-SiC) having an average particle diameter of 5 μm and carbon powder (carbon black) having an average particle diameter of 0.3 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/3 And dispersed in a solvent to prepare a low-viscosity slurry. Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 3 MPa to produce a molded body having a predetermined molded body density.
The molded body was heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the organic binder, the molded body was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and melted in the molded body. Silicon was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 3.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出して求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was calculated from the theoretical density of silicon and silicon carbide from the image processing method based on the structure observation photograph and the density of the sintered body. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例3に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が5μm、小さい方の炭化ケイ素の平均結晶粒径が0.5μmであり、大きい方の炭化ケイ素の結晶相はα相、小さい方の炭化ケイ素の結晶相はβ相であった。また、ネットワークを形成しているシリコンの含有量が9重量%であり、シリコンと炭化ケイ素の粒界面積が単位重量あたり、0.2平方mであり、シリコンを円柱と見なしたときの平均径が1.0μmであった。   In the silicon / silicon carbide composite material according to Example 3, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 5 μm, and the average crystal of the smaller silicon carbide The grain size was 0.5 μm, the larger silicon carbide crystal phase was the α phase, and the smaller silicon carbide crystal phase was the β phase. The content of silicon forming the network is 9% by weight, the interfacial area of silicon and silicon carbide is 0.2 square meters per unit weight, and the average when silicon is regarded as a cylinder The diameter was 1.0 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法(インデンテーション・フラクチャー法、圧子圧入法)を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例3に係わるシリコン/炭化ケイ素複合材料は、曲げ強度800MPa、破壊靭性値3.7MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using IF method (indentation fracture method, indentation press-fitting method). The silicon / silicon carbide composite material according to Example 3 had a bending strength of 800 MPa and a fracture toughness value of 3.7 MPa / m 1/2 .

[実施例4]
平均粒径0.2μmの炭化ケイ素粉末(β−SiC)と平均粒径0.01μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/2の混合比率(重量)で混合して造粒粉末を作製した。次に、成形機を用いて、上記粉末を成形型に充填し、2MPaの圧力で加圧して、所定の成形体密度の成形体を作製した。この成形体を、不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例4に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 4]
Silicon carbide powder (β-SiC) having an average particle size of 0.2 μm and carbon powder (carbon black) having an average particle size of 0.01 μm, together with a predetermined organic binder, a mixing ratio of silicon carbide / carbon powder = 10/2 ( Weight) to prepare a granulated powder. Next, using a molding machine, the powder was filled in a mold and pressed with a pressure of 2 MPa to produce a molded body having a predetermined molded body density. This molded body was heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the organic binder, the molded body was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere to melt into the molded body. Silicon was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 4.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法、及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method using a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例4に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が0.2μm、小さい方の炭化ケイ素の平均結晶粒径が0.02μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相もβ相であった。また、ネットワークを形成しているシリコンの含有量が36重量%であり、シリコンと炭化ケイ素の粒界面積が2平方m/gであり、シリコンを円柱と見なしたときの平均径が0.8μmである。   In the silicon / silicon carbide composite material according to Example 4, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 0.2 μm, and the smaller silicon carbide The average crystal grain size was 0.02 μm, the crystal phase of the larger silicon carbide was the β phase, and the crystal phase of the smaller silicon carbide was also the β phase. Further, the content of silicon forming a network is 36% by weight, the grain interface area between silicon and silicon carbide is 2 square m / g, and the average diameter when silicon is regarded as a cylinder is 0.00. 8 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例4に係わるシリコン/炭化ケイ素複合材料は、曲げ強度900MPa、破壊靭性値3.2MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 4 had a bending strength of 900 MPa and a fracture toughness value of 3.2 MPa / m 1/2 .

[実施例5]
平均粒径5μmの炭化ケイ素粉末(β−SiC)と平均粒径0.5μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/3の混合比率(重量)で混合して造粒粉末を作製した。次に、プレス成形機を用いて、上記粉末を成形型に充填し、1MPaの圧力で加圧して、所定の成形体密度の成形体を作製した。不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例5に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 5]
Silicon carbide powder (β-SiC) having an average particle diameter of 5 μm and carbon powder (carbon black) having an average particle diameter of 0.5 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/3 To prepare a granulated powder. Next, using a press molding machine, the powder was filled in a mold and pressed with a pressure of 1 MPa to produce a molded body having a predetermined molded body density. After heating and holding at a temperature of 600 ° C. in an inert gas atmosphere and degreasing the organic binder, it is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body is impregnated and baked. I concluded. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 5.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法、及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method using a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例5に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が8μm、小さい方の炭化ケイ素の平均結晶粒径が0.8μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相もβ相であった。また、ネットワークを形成しているシリコンの含有量が24重量%であり、シリコンと炭化ケイ素の粒界面積が0.3平方m/gであり、シリコンを円柱と見なしたときの平均径が1.5μmである。   In the silicon / silicon carbide composite material according to Example 5, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 8 μm, and the average crystal of the smaller silicon carbide The grain size was 0.8 μm, the crystal phase of the larger silicon carbide was the β phase, and the crystal phase of the smaller silicon carbide was also the β phase. The content of silicon forming the network is 24% by weight, the grain interface area between silicon and silicon carbide is 0.3 square m / g, and the average diameter when silicon is regarded as a cylinder is 1.5 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例5に係わるシリコン/炭化ケイ素複合材料は、曲げ強度700MPa、破壊靭性値3.4MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 5 had a bending strength of 700 MPa and a fracture toughness value of 3.4 MPa / m 1/2 .

[実施例6]
平均粒径0.08μmの炭化ケイ素粉末(α−SiC)と平均粒径0.001μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/4の混合比率(重量)で混合し、溶媒中に分散して低粘度のスラリーを作製した。
[Example 6]
Silicon carbide powder (α-SiC) having an average particle size of 0.08 μm and carbon powder (carbon black) having an average particle size of 0.001 μm, together with a predetermined organic binder, a mixing ratio of silicon carbide / carbon powder = 10/4 ( Weight) and dispersed in a solvent to produce a low viscosity slurry.

次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に2MPaで加圧しながら充填し、所定の成形体密度の成形体を作製した。自然乾燥した後、不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例6に係わるシリコン/炭化ケイ素複合材料を作製した。   Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 2 MPa to produce a molded body having a predetermined molded body density. After natural drying, it was heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the organic binder, it was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere and melted into a molded body. Silicon was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 6.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法及び焼結体密度から
シリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。
The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例6に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が0.08μm、小さい方の炭化ケイ素の平均決勝粒径が0.02μmであり、大きい方の炭化ケイ素の結晶相は、α相、小さい方の炭化ケイ素の結晶層はβ相であった。また、ネットワークを形成しているシリコンの含有量が19重量%であり、シリコンと炭化ケイ素の粒界面積が15平方m/gであり、シリコンを円柱と見なしたときの平均径が2μmである。   In the silicon / silicon carbide composite material according to Example 6, silicon carbide has two types of crystal grain size distributions. The average crystal grain size of the larger silicon carbide is 0.08 μm, and the smaller silicon carbide The average final grain size was 0.02 μm, the larger silicon carbide crystal phase was the α phase, and the smaller silicon carbide crystal layer was the β phase. The content of silicon forming the network is 19% by weight, the interfacial area of silicon and silicon carbide is 15 square m / g, and the average diameter when silicon is considered as a cylinder is 2 μm. is there.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例6に係わるシリコン/炭化ケイ素複合材料は、曲げ強度600MPa、破壊靭性値2.4MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 6 had a bending strength of 600 MPa and a fracture toughness value of 2.4 MPa / m 1/2 .

[実施例7]
平均粒径1μmの炭化ケイ素粉末(α−SiC)と平均粒径0.7μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/5の混合比率(重量)で混合し、溶媒中に分散して低粘度のスラリーを作製した。
[Example 7]
Silicon carbide powder (α-SiC) having an average particle diameter of 1 μm and carbon powder (carbon black) having an average particle diameter of 0.7 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/5 And mixed in a solvent to prepare a low-viscosity slurry.

次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に4MPaで加圧しながら充填し、所定の成形体密度の成形体を作製した。自然乾燥した後、不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例7に係わるシリコン/炭化ケイ素複合材料を作製した。   Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 4 MPa to produce a molded body having a predetermined molded body density. After natural drying, it was heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the organic binder, it was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere and melted into a molded body. Silicon was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 7.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を実施した。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the crystal phase of silicon carbide was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例7に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素の結晶粒径分布は1種類であり、炭化ケイ素の平均結晶粒径が1μm、炭化ケイ素は2種類の結晶相、α相とβ相を有していることがわかった。また、ネットワークを形成しているシリコンの含有量が14重量%であり、シリコンと炭化ケイ素の粒界面積が0.2平方m/gであり、シリコンを円柱と見なしたときの平均径が3μmである。   The silicon / silicon carbide composite material according to Example 7 has one type of crystal grain size distribution of silicon carbide, the average crystal grain size of silicon carbide is 1 μm, silicon carbide has two types of crystal phases, α phase and β phase. It was found that Further, the content of silicon forming the network is 14% by weight, the grain interface area between silicon and silicon carbide is 0.2 square m / g, and the average diameter when silicon is regarded as a cylinder is 3 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で実施した。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例7に係わるシリコン/炭化ケイ素複合材料は、曲げ強度500MPa、破壊靭性値2.6MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 7 had a bending strength of 500 MPa and a fracture toughness value of 2.6 MPa / m 1/2 .

[実施例8]
平均粒径5μmの炭化ケイ素粉末(β−SiC)と平均粒径2μmのカーボン粉末(黒鉛粉末)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/8の混合比率(重量)で混合して造粒粉末を作製した。次に、プレス成形機を用いて、上記粉末を成形型に充填し、2MPaの圧力で加圧して、所定の成形体密度の成形体を作製した。不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例8に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 8]
Silicon carbide powder (β-SiC) having an average particle diameter of 5 μm and carbon powder (graphite powder) having an average particle diameter of 2 μm are mixed with a predetermined organic binder at a mixing ratio (weight) of silicon carbide / carbon powder = 10/8. Thus, a granulated powder was produced. Next, using a press molding machine, the powder was filled in a mold and pressed with a pressure of 2 MPa to produce a molded body having a predetermined molded body density. After heating and holding at a temperature of 600 ° C. in an inert gas atmosphere and degreasing the organic binder, it is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body is impregnated and baked. I concluded. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 8.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を実施した。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the crystal phase of silicon carbide was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例8に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が5μm、小さい方の炭化ケイ素の平均結晶粒径が3μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相もβ相であった。また、ネットワークを形成しているシリコンの含有量が8重量%であり、シリコンと炭化ケイ素の粒界面積が単位重量あたり、0.2平方mであり、シリコンを円柱と見なしたときの平均径が5μmである。   In the silicon / silicon carbide composite material according to Example 8, silicon carbide has two types of crystal grain size distribution, the average crystal grain size of the larger silicon carbide is 5 μm, and the average crystal of the smaller silicon carbide The grain size was 3 μm, the crystal phase of the larger silicon carbide was the β phase, and the crystal phase of the smaller silicon carbide was also the β phase. Further, the content of silicon forming the network is 8% by weight, the interfacial area of silicon and silicon carbide is 0.2 square meters per unit weight, and the average when silicon is regarded as a cylinder The diameter is 5 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で実施した。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例8に係わるシリコン/炭化ケイ素複合材料は、曲げ強度400MPa、破壊靭性値3.0MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 8 had a bending strength of 400 MPa and a fracture toughness value of 3.0 MPa / m 1/2 .

[実施例9]
平均粒径0.05μmの炭化ケイ素粉末(α−SiC)と平均粒径0.3μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/10の混合比率(重量)で混合した粉末により成形体を加圧形成し、これを不活性ガス雰囲気中600℃の温度で加熱・保持し、成形助剤を脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例9に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 9]
Silicon carbide powder (α-SiC) having an average particle diameter of 0.05 μm and carbon powder (carbon black) having an average particle diameter of 0.3 μm, together with a predetermined organic binder, a mixing ratio of silicon carbide / carbon powder = 10/10 ( The molded body is press-formed with the powder mixed in weight), heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the molding aid, 1400 in a reduced pressure or in an inert gas atmosphere. The molded body was heated to a temperature of ℃ or higher, and the silicon melt was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 9.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を実施した。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the crystal phase of silicon carbide was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例9に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が0.5μm、小さい方の炭化ケイ素の平均結晶粒径が0.05μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相はα相であった。また、ネットワークを形成しているシリコンの含有量が17重量%であり、シリコンと炭化ケイ素の粒界面積が0.04平方m/gであり、シリコンを円柱と見なしたときの平均径が3μmである。   In the silicon / silicon carbide composite material according to Example 9, silicon carbide has two types of crystal grain size distributions. The average crystal grain size of the larger silicon carbide is 0.5 μm, and the smaller silicon carbide The average crystal grain size was 0.05 μm, the crystal phase of the larger silicon carbide was the β phase, and the crystal phase of the smaller silicon carbide was the α phase. Further, the content of silicon forming the network is 17% by weight, the grain interface area of silicon and silicon carbide is 0.04 square m / g, and the average diameter when silicon is regarded as a cylinder is 3 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で実施した。次に、IF法(インデンテーション・フラクチャー法、圧子圧入法)を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例9に係わるシリコン/炭化ケイ素複合材料は、曲げ強度500MPa、破壊靭性値2.4MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using IF method (indentation fracture method, indentation press-fitting method). The silicon / silicon carbide composite material according to Example 9 had a bending strength of 500 MPa and a fracture toughness value of 2.4 MPa / m 1/2 .

[実施例10]
平均粒径1μmの炭化ケイ素粉末(β−SiC)と平均粒径0.07μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/10の混合比率で混合し、溶媒中に分散して低粘度スラ
リーを作製した。次に、圧力鋳込み成形機を用いて、上記スラリーを成形型に4MPaで加圧しながら充填し、所定の成形体密度の成形体を作製した。不活性ガス雰囲気中500〜800℃の温度で加熱・保持し、成形助剤を脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例10に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 10]
Silicon carbide powder (β-SiC) having an average particle diameter of 1 μm and carbon powder (carbon black) having an average particle diameter of 0.07 μm are mixed together with a predetermined organic binder at a mixing ratio of silicon carbide / carbon powder = 10/10. The slurry was dispersed in a solvent to prepare a low-viscosity slurry. Next, using a pressure casting molding machine, the slurry was filled into the mold while being pressurized at 4 MPa to produce a molded body having a predetermined molded body density. After heating and holding at a temperature of 500 to 800 ° C. in an inert gas atmosphere and degreasing the molding aid, it is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the silicon melted in the molded body is heated. Impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 10.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を実施した。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the crystal phase of silicon carbide was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例10に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が1μm、小さい方の炭化ケイ素の平均結晶粒径が0.1μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相もβ相であった。また、ネットワークを形成しているシリコンの含有量が4重量%であり、シリコンと炭化ケイ素の粒界面積が単位重量あたり、0.2平方mであり、シリコンを円柱と見なしたときの平均径が0.1μmである。   In the silicon / silicon carbide composite material according to Example 10, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 1 μm, and the average crystal of the smaller silicon carbide The particle size was 0.1 μm, the crystal phase of the larger silicon carbide was the β phase, and the crystal phase of the smaller silicon carbide was also the β phase. Further, the content of silicon forming the network is 4% by weight, the interfacial area of silicon and silicon carbide is 0.2 square meters per unit weight, and the average when silicon is regarded as a cylinder The diameter is 0.1 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード速度0.5mm/minの条件で3点曲げ試験を室温で実施した。次に、IF法を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例10に係わるシリコン/炭化ケイ素複合材料は、曲げ強度350MPa、破壊靭性値3.2MPa/m1/2 であった。 From the obtained silicon / silicon carbide composite material, a bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm is processed, and a three-point bending test is performed at room temperature under a span of 30 mm and a head speed of 0.5 mm / min. did. Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using the IF method. The silicon / silicon carbide composite material according to Example 10 had a bending strength of 350 MPa and a fracture toughness value of 3.2 MPa / m 1/2 .

[実施例11]
平均粒径1μmの炭化ケイ素粉末(α−SiC)と平均粒径0.07μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/1の混合比率(重量)で混合して造粒粉末を作製した。次に、プレス成形機を用いて、上記粉末を成形型に充填し、0.5MPaの圧力で加圧して、所定の成形体密度の成形体を作製した。不活性ガス雰囲気中600℃の温度で加熱・保持し、成形助剤を脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、実施例11に係わるシリコン/炭化ケイ素複合材料を作製した。
[Example 11]
Silicon carbide powder (α-SiC) having an average particle diameter of 1 μm and carbon powder (carbon black) having an average particle diameter of 0.07 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/1 To prepare a granulated powder. Next, using a press molding machine, the powder was filled in a mold and pressed with a pressure of 0.5 MPa to produce a molded body having a predetermined molded body density. After heating and holding at a temperature of 600 ° C. in an inert gas atmosphere and degreasing the molding aid, it is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body is impregnated with molten silicon. Sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Example 11.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を実施した。材料組成比は、組織観察写真による画像処理法及び焼結体密度からシリコン、炭化ケイ素の理論密度から算出する方法により求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the crystal phase of silicon carbide was identified by X-ray diffraction in a minute region. The material composition ratio was determined by an image processing method based on a structure observation photograph and a method of calculating from the theoretical density of silicon and silicon carbide from the sintered body density. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

実施例11に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が1μm、小さい方の炭化ケイ素の平均結晶粒径が0.1μmであり、大きい方の炭化ケイ素の結晶相はβ相、小さい方の炭化ケイ素の結晶相はα相であった。また、ネットワークを形成しているシリコンの含有量が55重量%であり、シリコンと炭化ケイ素の粒界面積が単位重量あたり、0.08平方mであり、シリコンを円柱と見なしたときの平均径が5μmである。   In the silicon / silicon carbide composite material according to Example 11, silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 1 μm, and the average crystal of the smaller silicon carbide The grain size was 0.1 μm, the larger silicon carbide crystal phase was the β phase, and the smaller silicon carbide crystal phase was the α phase. The content of silicon forming the network is 55% by weight, the interfacial area of silicon and silicon carbide is 0.08 square meters per unit weight, and the average when silicon is regarded as a cylinder The diameter is 5 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード速度0.5mm/minの条件で3点曲げ試験を室温で実施した。次に、IF法(インデンテーション・フラクチャー法、圧子圧入法)を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例11に係わるシリコン/炭化ケイ素複合材料は、曲げ強度400MPa、破壊靭性値2.0MPa/m1/2 であった。 From the obtained silicon / silicon carbide composite material, a bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm is processed, and a three-point bending test is performed at room temperature under a span of 30 mm and a head speed of 0.5 mm / min. did. Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using IF method (indentation fracture method, indentation press-fitting method). The silicon / silicon carbide composite material according to Example 11 had a bending strength of 400 MPa and a fracture toughness value of 2.0 MPa / m 1/2 .

[比較例1]
平均粒径30μmの炭化ケイ素粉末(α−SiC)と平均粒径0.07μmのカーボン粉末(カーボンブラック)とを、所定の有機バインダとともに炭化ケイ素/カーボン粉末=10/1の混合比率(重量)で混合して造粒粉末を作製した。次に、プレス成形機を用いて、上記粉末を成形型に充填し、0.5MPaの圧力で加圧して、所定の成形体密度の成形体を作製した。この成形体を、不活性ガス雰囲気中600℃の温度で加熱・保持し、有機バインダを脱脂した後に、減圧下または不活性ガス雰囲気中において1400℃以上の温度に加熱し、この成形体に溶融したシリコンを含浸・焼結させた。得られた焼結体は、表面研磨加工を実施して、比較例1に係わるシリコン/炭化ケイ素複合材料を作製した。
[Comparative Example 1]
Silicon carbide powder (α-SiC) having an average particle size of 30 μm and carbon powder (carbon black) having an average particle size of 0.07 μm, together with a predetermined organic binder, a mixing ratio (weight) of silicon carbide / carbon powder = 10/1 To prepare a granulated powder. Next, using a press molding machine, the powder was filled in a mold and pressed with a pressure of 0.5 MPa to produce a molded body having a predetermined molded body density. This molded body is heated and held at a temperature of 600 ° C. in an inert gas atmosphere, and after degreasing the organic binder, the molded body is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere to melt into the molded body. Impregnated silicon was impregnated and sintered. The obtained sintered body was subjected to surface polishing to produce a silicon / silicon carbide composite material according to Comparative Example 1.

得られたシリコン/炭化ケイ素複合材料は、鏡面仕上げ後電子顕微鏡を用いて組織観察を行い、観察写真画像処理により炭化ケイ素の結晶粒径を測定し、平均粒径を算出した。また、微小領域でのX線回折法により炭化ケイ素の結晶相の同定を行った。材料組成比は、組織観察写真による画像処理法及び焼結体密度から求めたシリコン、炭化ケイ素の理論密度から算出して求めた。シリコンと炭化ケイ素の粒界面積は、シリコン/炭化ケイ素複合材料を減圧下1600℃に加熱し、シリコンを除去した後、水銀圧入法により比表面積を測定し、これを粒界面積とした。また、このとき同時に測定される細孔径の平均値を、シリコンを円柱と見なした時の平均径とした。   The obtained silicon / silicon carbide composite material was subjected to a structure observation using an electron microscope after mirror finishing, the crystal grain size of silicon carbide was measured by observation photograph image processing, and the average particle size was calculated. In addition, the silicon carbide crystal phase was identified by X-ray diffraction in a minute region. The material composition ratio was obtained by calculating from the theoretical density of silicon and silicon carbide obtained from the image processing method based on the structure observation photograph and the density of the sintered body. The interfacial area of silicon and silicon carbide was determined by heating the silicon / silicon carbide composite material to 1600 ° C. under reduced pressure to remove the silicon, and then measuring the specific surface area by the mercury intrusion method. Moreover, the average value of the pore diameters measured simultaneously at this time was taken as the average diameter when silicon was regarded as a cylinder.

比較例1に係わるシリコン/炭化ケイ素複合材料は、炭化ケイ素が2種類の結晶粒径分布を有しており、大きい方の炭化ケイ素の平均結晶粒径が30μm、小さい方の炭化ケイ素の平均結晶粒径が0.1μmであり、大きい方の炭化ケイ素の結晶相はα相、小さい方の炭化ケイ素の結晶相はβ相であった。また、ネットワークを形成しているシリコンの含有量は45重量%であり、シリコンと炭化ケイ素の粒界面積が0.01平方m/gであり、シリコンを円柱と見なしたときの平均径は10μmであった。   In the silicon / silicon carbide composite material according to Comparative Example 1, the silicon carbide has two types of crystal grain size distributions, the average crystal grain size of the larger silicon carbide is 30 μm, and the average crystal of the smaller silicon carbide The grain size was 0.1 μm, the larger silicon carbide crystal phase was the α phase, and the smaller silicon carbide crystal phase was the β phase. The content of silicon forming the network is 45% by weight, the grain interface area between silicon and silicon carbide is 0.01 square m / g, and the average diameter when silicon is regarded as a cylinder is It was 10 μm.

得られたシリコン/炭化ケイ素複合材料から、幅4mm、厚み3mm、長さ40mmの曲げ試験片を加工し、スパン30mm、ヘッドスピード0.5mm/minの条件で3点曲げ試験を室温で行った。次に、IF法(インデンテーション・フラクチャー法、圧子圧入法)を用いて、シリコン/炭化ケイ素複合材料の破壊靭性値を測定した。実施例1に係わるシリコン/炭化ケイ素複合材料は、曲げ強度200MPa、破壊靭性値1.6MPa/m1/2 であった。 A bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from the obtained silicon / silicon carbide composite material, and a three-point bending test was performed at room temperature under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. . Next, the fracture toughness value of the silicon / silicon carbide composite material was measured using IF method (indentation fracture method, indentation press-fitting method). The silicon / silicon carbide composite material according to Example 1 had a bending strength of 200 MPa and a fracture toughness value of 1.6 MPa / m 1/2 .

表1に、実施例1乃至実施例11及び比較例1のシリコン/炭化ケイ素複合材料の組織と機械的特性をまとめて示す。   Table 1 summarizes the structures and mechanical properties of the silicon / silicon carbide composite materials of Examples 1 to 11 and Comparative Example 1.

Figure 2007022914
Figure 2007022914

本発明に係るシリコン/炭化ケイ素複合材料は、半導体製造治具、半導体関連部品(ヒートシンク、ダミーウエハ)、ガスタービン高温構造部材、宇宙及び航空用構造部材、メカニカルシール部材、ブレーキ用部材、摺動部品、ミラー部品、ポンプ部品等に適用することができる。   The silicon / silicon carbide composite material according to the present invention includes a semiconductor manufacturing jig, a semiconductor-related component (heat sink, dummy wafer), a gas turbine high-temperature structural member, a space and aviation structural member, a mechanical seal member, a brake member, and a sliding component. It can be applied to mirror parts, pump parts and the like.

本発明に係わるシリコン/炭化ケイ素複合材料を製造する過程を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the process of manufacturing the silicon / silicon carbide composite material concerning the present invention. 本発明に係わるシリコン/炭化ケイ素複合材料の組織を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the organization of the silicon / silicon carbide composite material concerning the present invention.

符号の説明Explanation of symbols

1……シリコン/炭化ケイ素複合材料、2……炭化ケイ素とカーボン粉末からなる成形体、3……出発原料の炭化ケイ素、4……カーボン粉末、5……溶融したシリコン、6……カーボン粉末と溶融シリコンの反応により生成した炭化ケイ素、7……遊離シリコン。   DESCRIPTION OF SYMBOLS 1 ... Silicon / silicon carbide composite material, 2 ... Molded body made of silicon carbide and carbon powder, 3 ... Starting silicon carbide, 4 ... Carbon powder, 5 ... Molten silicon, 6 ... Carbon powder Silicon carbide produced by the reaction of molten silicon with 7 ... free silicon.

Claims (7)

平均粒径0.1μmから10μmの炭化ケイ素と平均粒径0.005μmから1μmのカーボン粉末との混合粉末を、所定の形状の成形体に加圧成形する工程と、
前記成形体をシリコンの融点以上の温度に加熱する工程と、
前記シリコンの融点以上の温度に加熱されている前記成形体に溶融したシリコンを含浸させる工程と
を有することを特徴とするシリコン/炭化ケイ素複合材料の製造方法。
Pressing a mixed powder of silicon carbide having an average particle size of 0.1 μm to 10 μm and carbon powder having an average particle size of 0.005 μm to 1 μm into a molded body having a predetermined shape;
Heating the molded body to a temperature equal to or higher than the melting point of silicon;
And a step of impregnating molten silicon into the molded body heated to a temperature equal to or higher than the melting point of the silicon.
前記混合粉末は、さらに有機バインダを含むことを特徴とする請求項1記載のシリコン/炭化ケイ素複合材料の製造方法。   2. The method for producing a silicon / silicon carbide composite material according to claim 1, wherein the mixed powder further contains an organic binder. 炭化ケイ素とカーボンの混合比率が、重量比で10:1〜10であることを特徴とする請求項1乃至2のいずれか1項記載のシリコン/炭化ケイ素複合材料の製造方法。   3. The method for producing a silicon / silicon carbide composite material according to claim 1, wherein a mixing ratio of silicon carbide and carbon is 10: 1 to 10 by weight. 4. 成形体の成形が、前記混合粉末を分散媒に分散させたスラリーを0.5MPaから10MPaの加圧下で鋳込み成形により行われることを特徴とする請求項1乃至3のいずれか1項記載のシリコン/炭化ケイ素複合材料の製造方法。   The silicon according to any one of claims 1 to 3, wherein the molded body is formed by casting a slurry in which the mixed powder is dispersed in a dispersion medium under a pressure of 0.5 MPa to 10 MPa. / Manufacturing method of silicon carbide composite material. 成形体の成形が、前記混合粉末を0.5MPaから2MPaの加圧下で加圧成形により行われることを特徴とする請求項1乃至4のいずれか1項記載のシリコン/炭化ケイ素複合材料の製造方法。   5. The silicon / silicon carbide composite material according to claim 1, wherein the molded body is molded by pressure molding the mixed powder under a pressure of 0.5 MPa to 2 MPa. Method. 成形体の成形が、前記炭化ケイ素と前記カーボン粉末との混合粉末を造粒した造粒粉末を用いて行われることを特徴とする請求項5記載のシリコン/炭化ケイ素複合材料の製造方法。   6. The method for producing a silicon / silicon carbide composite material according to claim 5, wherein the compact is molded using a granulated powder obtained by granulating a mixed powder of the silicon carbide and the carbon powder. 成形体へのシリコンの含浸が、1400℃以上で、減圧下又は不活性雰囲気下で行われることを特徴とする請求項1乃至6のいずれか1項記載のシリコン/炭化ケイ素複合材料の製造方法。   The method for producing a silicon / silicon carbide composite material according to any one of claims 1 to 6, wherein the molded body is impregnated with silicon at 1400 ° C or higher under reduced pressure or in an inert atmosphere. .
JP2006296204A 2006-10-31 2006-10-31 Method for producing silicon / silicon carbide composite material Expired - Lifetime JP4612608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296204A JP4612608B2 (en) 2006-10-31 2006-10-31 Method for producing silicon / silicon carbide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296204A JP4612608B2 (en) 2006-10-31 2006-10-31 Method for producing silicon / silicon carbide composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002176680A Division JP4261130B2 (en) 2002-06-18 2002-06-18 Silicon / silicon carbide composite material

Publications (2)

Publication Number Publication Date
JP2007022914A true JP2007022914A (en) 2007-02-01
JP4612608B2 JP4612608B2 (en) 2011-01-12

Family

ID=37784162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296204A Expired - Lifetime JP4612608B2 (en) 2006-10-31 2006-10-31 Method for producing silicon / silicon carbide composite material

Country Status (1)

Country Link
JP (1) JP4612608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190950A (en) * 2008-02-18 2009-08-27 Toshiba Corp Silicon carbide composite material and method for producing the same
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788079A (en) * 1980-11-21 1982-06-01 Kyoto Ceramic Manufacture of silicon carbide sintered body
JPS6212668A (en) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 Constitutional member for semiconductor diffusion oven
JPH0231030B2 (en) * 1980-07-17 1990-07-11 Stemcor Corp
JPH0790418A (en) * 1993-09-16 1995-04-04 Toyota Motor Corp Production of formed body for metal-based composite material
JPH10251086A (en) * 1997-03-07 1998-09-22 Sumitomo Special Metals Co Ltd Material for magnetic head slider and its production
JP2000072550A (en) * 1998-08-24 2000-03-07 Toshiba Corp Sliding member
JP2000247745A (en) * 1999-02-26 2000-09-12 Toshiba Corp Ceramics-base fiber composite material, its production and gas turbine part
JP2001348288A (en) * 2000-06-05 2001-12-18 Toshiba Corp Particle-dispersed silicon material and method of producing the same
WO2003076363A1 (en) * 2002-03-11 2003-09-18 Bridgestone Corporation Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231030B2 (en) * 1980-07-17 1990-07-11 Stemcor Corp
JPS5788079A (en) * 1980-11-21 1982-06-01 Kyoto Ceramic Manufacture of silicon carbide sintered body
JPS6212668A (en) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 Constitutional member for semiconductor diffusion oven
JPH0790418A (en) * 1993-09-16 1995-04-04 Toyota Motor Corp Production of formed body for metal-based composite material
JPH10251086A (en) * 1997-03-07 1998-09-22 Sumitomo Special Metals Co Ltd Material for magnetic head slider and its production
JP2000072550A (en) * 1998-08-24 2000-03-07 Toshiba Corp Sliding member
JP2000247745A (en) * 1999-02-26 2000-09-12 Toshiba Corp Ceramics-base fiber composite material, its production and gas turbine part
JP2001348288A (en) * 2000-06-05 2001-12-18 Toshiba Corp Particle-dispersed silicon material and method of producing the same
WO2003076363A1 (en) * 2002-03-11 2003-09-18 Bridgestone Corporation Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190950A (en) * 2008-02-18 2009-08-27 Toshiba Corp Silicon carbide composite material and method for producing the same
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Also Published As

Publication number Publication date
JP4612608B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
US11883978B2 (en) In situ synthesis, densification and shaping of non-oxide ceramics by vacuum additive manufacturing technologies
KR102319079B1 (en) SiC composites and method for manufacturing thereof
KR20100129327A (en) Composite material and method for producing the same
Herzog et al. Novel application of ceramic precursors for the fabrication of composites
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
RU2718682C2 (en) Method of making ceramics based on silicon carbide, reinforced with silicon carbide fibres
JP2007055897A (en) Silicon/silicon carbide composite material
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JP2009051705A (en) Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
TW201004895A (en) Composite material and method of manufacturing the same
JP2013500225A (en) Dry and wet low friction silicon carbide seal
JP5856743B2 (en) Method for producing metal-ceramic composite material
CN116947524B (en) Laser curing forming method of ceramic bond fine-grained diamond honeycomb grinding block
JP2008297188A (en) Method of manufacturing tungsten-addition zirconium boride
JP5859850B2 (en) Composite material and manufacturing method thereof
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
WO2022224549A1 (en) Method for producing metal matrix composite material and method for manufacturing preform
JP2002275556A (en) Metal-ceramic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4612608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

EXPY Cancellation because of completion of term