JP5856743B2 - Method for producing metal-ceramic composite material - Google Patents

Method for producing metal-ceramic composite material Download PDF

Info

Publication number
JP5856743B2
JP5856743B2 JP2011050171A JP2011050171A JP5856743B2 JP 5856743 B2 JP5856743 B2 JP 5856743B2 JP 2011050171 A JP2011050171 A JP 2011050171A JP 2011050171 A JP2011050171 A JP 2011050171A JP 5856743 B2 JP5856743 B2 JP 5856743B2
Authority
JP
Japan
Prior art keywords
sic
metal
powder
volume
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011050171A
Other languages
Japanese (ja)
Other versions
JP2012184493A (en
Inventor
諒一 末松
諒一 末松
引田 友幸
友幸 引田
石井 守
守 石井
秀明 有松
秀明 有松
井口 真仁
真仁 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Co Ltd
Original Assignee
Japan Fine Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Co Ltd filed Critical Japan Fine Ceramics Co Ltd
Priority to JP2011050171A priority Critical patent/JP5856743B2/en
Publication of JP2012184493A publication Critical patent/JP2012184493A/en
Application granted granted Critical
Publication of JP5856743B2 publication Critical patent/JP5856743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属−セラミックス複合材料、特にセラミックス充填率が低い金属−セラミックス複合材料の製造方法に関する。 The present invention is a metal - ceramic composite material, in particular ceramic filler having a low metal - relates to a method for producing ceramic composite materials.

SiC/Si複合材料などの金属−セラミックス複合材料は、金属とセラミックスの割合を変化させることにより熱膨張係数、ヤング率などを制御することができ、半導体製造装置や液晶製造装置などの精密機械に幅広く使用されている。   Metal-ceramic composite materials such as SiC / Si composite materials can control the coefficient of thermal expansion, Young's modulus, etc. by changing the ratio of metal and ceramics, and can be used in precision machines such as semiconductor manufacturing equipment and liquid crystal manufacturing equipment. Widely used.

一般的に、金属−セラミックス複合材料中のセラミックスの占有率(以下、これをセラミックス充填率という)を50体積%以上とするとき、セラミックス粉末で構成される多孔体に金属を加圧又は非加圧により浸透させて製造する。一方、セラミックス充填率を50体積%未満とするとき、溶融金属にセラミックス粒子を分散させて製造する。   In general, when the occupancy ratio of ceramics in a metal-ceramic composite material (hereinafter referred to as ceramic filling ratio) is 50% by volume or more, a metal is pressed or non-applied to a porous body made of ceramic powder. Manufacture with pressure. On the other hand, when the ceramic filling rate is less than 50% by volume, it is produced by dispersing ceramic particles in molten metal.

SiC/Si複合材料は、一般的には、SiC粉末と有機バインダと必要に応じて炭素粉末とからなる混合物をプレス成形して成形体を形成し、その成形体に脱バインダ処理及び焼結処理を行って多孔質焼結体を得て、この多孔質焼結体に金属Siを含浸させるという手順で製造される(例えば、特許文献1,2参照)。   A SiC / Si composite material is generally formed by pressing a mixture of SiC powder, an organic binder, and, if necessary, carbon powder to form a molded body, and the binder is subjected to binder removal and sintering processes. To obtain a porous sintered body and impregnate the porous sintered body with metal Si (see, for example, Patent Documents 1 and 2).

有機バインダや炭素粉末等の炭素源の添加量を増加させれば、脱バインダ処理を行った後に残存する炭素量が増加し、この炭素と金属Siとが反応してSiCを生成するので、SiC/Si複合材料中のSiCの占有率(以下、これをSiC充填率という)は増加すると考えられる。   If the amount of carbon source added such as an organic binder or carbon powder is increased, the amount of carbon remaining after the binder removal treatment is increased, and this carbon and metal Si react to produce SiC, so SiC. It is considered that the occupation ratio of SiC in the / Si composite material (hereinafter referred to as SiC filling ratio) increases.

特公昭36−8728号公報Japanese Patent Publication No. 36-8728 特開2001−151579号公報JP 2001-151579 A

しかしながら、SiC充填率、さらに一般化して述べれば金属−セラミックス複合材料のセラミックス充填率が低く尚且つ均質な組織を有する金属基複合材料の製造方法は確立されていなかった。SiC充填率を50体積%未満とするには、金属溶湯中にSiCを添加すればよいが、時間経過によりSiC粒子が沈降するため、素材の上下でSiC充填率に差が生じる。これにより、熱膨張差による変形が生じやすくなる。   However, a method for producing a metal-based composite material having a low SiC filling rate, more generally, a ceramic-filling rate of a metal-ceramic composite material and having a homogeneous structure has not been established. In order to make the SiC filling rate less than 50% by volume, SiC may be added to the molten metal. However, since SiC particles settle with time, a difference occurs in the SiC filling rate above and below the material. Thereby, the deformation due to the difference in thermal expansion is likely to occur.

成形体を保形可能な下限まで有機バインダの添加量を減らしてSiCの反応生成量を抑えても、SiC/Si複合材料のSiC充填率を50体積%未満にすることはできない。また、SiCからなる多孔質焼結体の気孔率を増加させると、弱体化して多孔質焼結体自体を得ることができない。   Even if the amount of addition of the organic binder is reduced to the lower limit at which the molded body can be retained to suppress the reaction reaction amount of SiC, the SiC filling rate of the SiC / Si composite material cannot be made less than 50% by volume. Further, when the porosity of the porous sintered body made of SiC is increased, the porous sintered body itself cannot be obtained due to weakening.

本発明は、これらの問題に鑑みてなされたものであり、セラミックス充填率が低く尚且つ均質な金属−セラミックス複合材料の製造方法を提供することを目的とする。 The present invention has been made in view of these problems, the ceramic filling rate is low besides homogeneous metal - and to provide a method for producing ceramic composite materials.

本発明の金属−セラミックス複合材料の製造方法は、SiCからなるセラミックス粉末と有機バインダとに、前記セラミックス粉末に対する平均粒径比が1/2以上2以下であってiからなる金属粉末を添加した混合物を成形した成形体を焼成して気孔率が40〜50%の多孔質焼結体を得て、該多孔質焼結体に前記金属粉末と同種の金属を含浸させて、セラミックスの充填率が20〜50体積%の金属−セラミックス複合材料を製造する製造方法であって、前記有機バインダの添加量は、前記セラミックス粉末及び前記金属粉末を成形型にタップ充填した際に生じる空隙の容積の20〜30体積%であることを特徴とする。 Metal of the present invention - a ceramic manufacturing method of a composite material, Si C or in the Ranaru ceramic powder and an organic binder, S i or Ranaru metal mean particle size ratio is not more 1/2 to 2 for said ceramic powder A molded body obtained by molding a mixture to which powder is added is fired to obtain a porous sintered body having a porosity of 40 to 50%, and the porous sintered body is impregnated with the same metal as the metal powder, A manufacturing method for manufacturing a metal-ceramic composite material having a ceramic filling rate of 20 to 50% by volume , wherein the addition amount of the organic binder is generated when the ceramic powder and the metal powder are tapped into a mold. It is characterized by being 20 to 30% by volume of the void volume .

本発明の金属−セラミックス複合材料の製造方法によれば、セラミックス粉末及び有機バインダの他に成形材料に予め金属粉末を添加しておくことにより、成形体におけるセラミックスの初期充填率が低下する。これに伴い、成形体を焼結して得られる多孔質焼結体は、セラミックス充填率が低くなると共に空孔が大きくならず強度的に優れたものとなる。そして、この多孔質焼結体に金属を含浸させることにより、セラミックス充填率が低く尚且つ均質な金属−セラミックス複合材料を得ることができる。なお、焼成後に残存する有機バインダの炭素成分は、その後浸透させる金属と反応し炭化物となる。   According to the method for producing a metal-ceramic composite material of the present invention, by adding metal powder to the molding material in addition to the ceramic powder and the organic binder in advance, the initial filling rate of the ceramic in the molded body is lowered. Along with this, the porous sintered body obtained by sintering the molded body has a low ceramic filling rate and is excellent in strength without increasing pores. And by impregnating this porous sintered body with a metal, it is possible to obtain a metal-ceramic composite material having a low ceramic filling ratio and being homogeneous. In addition, the carbon component of the organic binder remaining after firing reacts with the metal to be permeated thereafter to become a carbide.

金属粉末の添加量に応じてセラミックス充填率が調整され、金属粉末の添加量を増やすことによって、セラミックス充填率を20〜50体積%とすること可能である。 Is adjusted ceramic packing ratio in accordance with the amount of metal powder, by increasing the addition amount of the metal powder, it is possible to the ceramic filling factor and 20 to 50 vol%.

なお、粒径差が大きいと粗粒間の隙間に細粒が入り込み、成形型における混合粉末の充填率が上昇する。同程度の粒径であれば混合粉末の充填率が上昇することなく、Siが添加された分だけSiCの占有率は低下する。よって、本発明の金属−セラミックス複合材料の製造方法において、前記セラミックス粉末に対する前記金属粉末の平均粒径比が1/2以上2以下であることが好ましい。   When the particle size difference is large, fine particles enter the gaps between the coarse particles, and the filling rate of the mixed powder in the mold increases. If the particle size is about the same, the filling rate of the mixed powder does not increase, and the occupation ratio of SiC decreases by the amount of Si added. Therefore, in the method for producing a metal-ceramic composite material of the present invention, it is preferable that an average particle diameter ratio of the metal powder to the ceramic powder is 1/2 or more and 2 or less.

また、セラミックス粉末を成形型にタップ充填した際に生じる空隙の容積の100体積%を超える量の有機バインダを添加した場合、多孔質焼結体の気孔率が低下し、有機バインダが熱硬化の縮重合反応により発生する縮重合水の抜け道が少なくなる。そのため、脱バインダ処理の際に成形体中の縮重合水が急激に体積膨張して、クラックが発生するおそれが生じる。   In addition, when an organic binder in an amount exceeding 100 volume% of the void volume generated when the ceramic powder is tapped into the mold, the porosity of the porous sintered body is lowered, and the organic binder is thermally cured. The passage of condensation polymerization water generated by the condensation polymerization reaction is reduced. Therefore, the condensation polymerization water in the molded body suddenly undergoes volume expansion during the binder removal treatment, and there is a risk that cracks will occur.

そこで、本発明の金属−セラミックス複合材料の製造方法において、前記有機バインダの添加量は、前記セラミックス粉末及び前記金属粉末を成形型にタップ充填した際に生じる空隙の容積の100体積%以下であることが好ましい。なお、有機バインダの添加量の下限は、成形体の保形限界から10体積%以上、より好ましくは20〜30体積%以上である。   Therefore, in the method for producing a metal-ceramic composite material of the present invention, the amount of the organic binder added is 100% by volume or less of the volume of voids generated when the ceramic powder and the metal powder are tapped into a mold. It is preferable. In addition, the minimum of the addition amount of an organic binder is 10 volume% or more from the shape-retaining limit of a molded object, More preferably, it is 20-30 volume% or more.

金属Si粉末の添加量とSiC/Si複合材料のSiC充填率との関係を表すグラフ。The graph showing the relationship between the addition amount of metal Si powder, and the SiC filling rate of a SiC / Si composite material.

本発明の金属−セラミックス複合材料の製造方法で製造される金属−セラミックス複合材料は、セラミックス及びマトリックス金属からなる多孔質焼結体に金属を含浸させてなり、セラミックスがSiC(炭化珪素)であり、マトリックス金属及び金属が同種でSi(珪素)であり、前記セラミックスの充填率が20〜50体積%であるものである。 The metal-ceramic composite material manufactured by the metal-ceramic composite material manufacturing method of the present invention is obtained by impregnating a porous sintered body made of ceramic and matrix metal with metal, and the ceramic is SiC (silicon carbide ) . The matrix metal and the metal are the same type and Si (silicon), and the ceramic filling rate is 20 to 50% by volume.

本発明の金属−セラミックス複合材料は、SiCからなるセラミックス粉末と有機バインダとにSiからなる金属粉末を添加した混合物を成形した成形体を焼成して多孔質焼結体を得て、該多孔質焼結体に前記金属粉末と同種の金属を含浸させる本発明の金属−セラミックス複合材料の製造方法によって製造することができる。 Metal of the present invention - ceramic composite material is in the SiC or Ranaru ceramic powder and an organic binder by sintering a compact molded mixture was added S i or Ranaru metal powder to obtain a porous sintered body, The porous sintered body can be produced by the method for producing a metal-ceramic composite material of the present invention in which the same kind of metal as the metal powder is impregnated.

以下、SiC/Si複合材料を、本発明の金属−セラミックス複合材料の製造方法の実施形態によって製造する場合を例に挙げて説明する。SiC/Si複合材料は、マトリックス金属をSi、強化材をSiCとした金属−セラミックス複合材料である。 Hereinafter , a case where the SiC / Si composite material is manufactured according to the embodiment of the method for manufacturing a metal-ceramic composite material of the present invention will be described as an example. The SiC / Si composite material is a metal-ceramic composite material in which the matrix metal is Si and the reinforcing material is SiC.

本SiC/Si複合材料の製造方法は、SiC粉末及び金属Si粉末に有機バインダを添加し混合して混合粉末を得る混合工程の他に、成型工程、脱バインダ工程、焼結工程、含浸工程を含むものであり、SiC充填率が50体積%以下と低いSiC/Si複合材料を製造することができる。なお、成型工程、脱バインダ工程、焼結工程、含浸工程は、以下に説明する方法に限定されず、任意の既知の方法を用いることができる。   This SiC / Si composite material manufacturing method includes a molding step, a binder removal step, a sintering step, and an impregnation step in addition to a mixing step in which an organic binder is added to and mixed with SiC powder and metallic Si powder. In addition, a SiC / Si composite material having a SiC filling rate as low as 50% by volume or less can be manufactured. In addition, a shaping | molding process, a binder removal process, a sintering process, and an impregnation process are not limited to the method demonstrated below, Arbitrary known methods can be used.

まず、混合工程において、原料粉末であるSiC粉末と金属Si粉末に、有機バインダを添加し混合して、成形原料を作製する。混合方法は、湿式、乾式の何れであってもよく、例えばボールミル、振動ミルなどの混合器を用いることができる。なお、焼結助剤などの添加剤を少量添加してもよい。   First, in a mixing process, an organic binder is added and mixed with SiC powder and metal Si powder which are raw material powder, and a shaping | molding raw material is produced. The mixing method may be either wet or dry, and for example, a mixer such as a ball mill or a vibration mill can be used. A small amount of additives such as a sintering aid may be added.

SiC粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。   The SiC powder preferably has a high purity, and the purity is preferably 96% or more, more preferably 98% or more.

金属Si粉末は、高純度であることが好ましく、その純度は、好ましくは96%以上、より好ましくは98%以上である。金属Si粉末の添加量は、SiC/Si複合材料のSiC充填率に応じて適宜調整すればよいが、好ましくはSiC粉末100重量部に対して30〜130重量部である。そして、SiC粉末に対する金属Si粉末の平均粒径比は、1/2以上2以下である。 The metal Si powder preferably has a high purity, and the purity is preferably 96% or more, more preferably 98% or more. The addition amount of the metal Si powder may be appropriately adjusted according to the SiC filling rate of the SiC / Si composite material, but is preferably 30 to 130 parts by weight with respect to 100 parts by weight of the SiC powder. Then, the average particle size ratio of the metal Si powder to the SiC powder is 1/2 to 2.

有機バインダとして、特に好ましくはフェノール樹脂であるが、ポリビニルアルコール(PVA)、メチルセルロース(MC)、イソバン、ポリエチレンイミン等の樹脂も好ましい。有機バインダは、成形体を保形可能な下限値から前記セラミックス粉末及び前記金属粉末を成形型にタップ充填した際に生じる空隙の容積の20〜30体積%添加することができる The organic binder is particularly preferably a phenol resin, but resins such as polyvinyl alcohol (PVA), methyl cellulose (MC), isoban, and polyethyleneimine are also preferable. The organic binder can be added in an amount of 20 to 30% by volume of the void volume generated when the ceramic powder and the metal powder are tap-filled into the mold from the lower limit value capable of retaining the molded body .

混合工程で得られた成形原料を、成形工程において、適宜な形状にプレス成型する。その方法は、特に限定されず、一軸プレス成形、冷間静水圧プレス(CIP)、加圧鋳込などの既知の成形方法を用いることができる。成形圧力は、2.0〜5.0MPaであることが好ましい。   The forming raw material obtained in the mixing step is press-molded into an appropriate shape in the forming step. The method is not particularly limited, and known molding methods such as uniaxial press molding, cold isostatic pressing (CIP), and pressure casting can be used. The molding pressure is preferably 2.0 to 5.0 MPa.

成形工程で得られた成形体を、脱バインダ工程において、添加された有機バインダを完全に炭化させる。脱バインダ処理は、真空雰囲気中で、例えば、250〜1000℃の温度範囲を昇温速度30℃/hr以下で行うことが好ましい。ただし、温度範囲や昇温速度は、生産効率等を考慮して適宜定めればよい。炭化して生じた微量の炭素成分は、成形体中に残留する。   In the binder removal step, the added organic binder is completely carbonized in the molded body obtained in the molding step. The binder removal treatment is preferably performed in a vacuum atmosphere at, for example, a temperature range of 250 to 1000 ° C. at a temperature increase rate of 30 ° C./hr or less. However, the temperature range and the temperature increase rate may be appropriately determined in consideration of production efficiency and the like. A trace amount of carbon component generated by carbonization remains in the molded body.

なお、有機バインダの添加量は、SiC粉末及び金属Si粉末を成形型にタップ充填した際に生じる空隙の容積の100体積%以下とすることが好ましい。空隙の容積の100体積%を超える有機バインダを添加した場合、多孔質焼結体の気孔率が低下し、有機バインダが熱硬化の縮重合反応により発生する縮重合水の抜け道が少なくなる。そのため、脱バインダ処理の際に成形体中の縮重合水が急激に体積膨張して、クラックが発生するおそれが生じる。また、SiCの反応生成量も増加するので、SiC/Si複合材料のSiC充填率が増加することになる。   In addition, it is preferable that the addition amount of an organic binder shall be 100 volume% or less of the volume of the space | gap produced when a tap mold is filled with SiC powder and metal Si powder. When an organic binder exceeding 100% by volume of the void volume is added, the porosity of the porous sintered body is lowered, and the passage of condensation polymerization water generated by the condensation polymerization reaction of the organic binder is reduced. Therefore, the condensation polymerization water in the molded body suddenly undergoes volume expansion during the binder removal treatment, and there is a risk that cracks will occur. Moreover, since the reaction production amount of SiC also increases, the SiC filling rate of the SiC / Si composite material increases.

脱バインダ処理した成形体を、脱酸素工程において、脱酸素処理を行い、多孔質焼結体を得る。脱酸素処理は、真空雰囲気中で、例えば、1300〜1410℃の温度範囲で、5〜20時間保持する。より好ましくは、真空雰囲気中で、1350〜1410℃の温度範囲で、15〜20時間焼成する。なお、焼結雰囲気の圧力は限定されず、減圧、常圧から数気圧の加圧まで任意であるが、コスト面からは常圧が好ましい。   The molded body that has been subjected to binder removal treatment is subjected to deoxygenation treatment in a deoxidation step to obtain a porous sintered body. The deoxygenation treatment is held in a vacuum atmosphere at, for example, a temperature range of 1300 to 1410 ° C. for 5 to 20 hours. More preferably, baking is performed in a vacuum atmosphere at a temperature range of 1350 to 1410 ° C. for 15 to 20 hours. Note that the pressure of the sintering atmosphere is not limited and can be any pressure from reduced pressure, normal pressure to several atmospheric pressure, but normal pressure is preferable from the viewpoint of cost.

焼成して得られた多孔質焼結体は、5〜20μmの多数の気孔を有し、気孔率は、40〜50%である。なお、多孔質焼結体を、必要に応じて、機械的手段によって研削してもよい。予め多孔質焼結体を所定形状に形成すれば、得られるSiC/Si複合材料がニアネットとなり、最終形状とする際に必要な加工を削減することができる。 The porous sintered body obtained by firing has a large number of pores of 5 to 20 μm, and the porosity is 40 to 50%. In addition, you may grind a porous sintered compact by a mechanical means as needed. If the porous sintered body is formed in a predetermined shape in advance, the obtained SiC / Si composite material becomes a near net, and processing required for making the final shape can be reduced.

そして、得られた多孔質焼結体を、含浸工程において、溶解された金属Siを含浸させる。含浸処理は、非加圧浸透法で行うことが好ましいが、加圧浸透法などの他の方法で行ってもよい。非加圧浸透で行う場合、例えば、真空雰囲気で1550℃まで加熱し、さらに、それ以降は不活性ガス雰囲気で1645℃まで加熱して、10時間、より好ましくは20〜30時間保持する。金属Siの一部は多孔質焼結体に残留した炭素成分と反応してSiCが生成されるが、大部分の金属Siは気孔に含浸する。   Then, the obtained porous sintered body is impregnated with dissolved metal Si in the impregnation step. The impregnation treatment is preferably performed by a non-pressure permeation method, but may be performed by other methods such as a pressure permeation method. When performing non-pressure permeation, for example, it is heated to 1550 ° C. in a vacuum atmosphere, and further heated to 1645 ° C. in an inert gas atmosphere, and held for 10 hours, more preferably 20 to 30 hours. A part of the metal Si reacts with the carbon component remaining in the porous sintered body to generate SiC, but most of the metal Si impregnates the pores.

これにより、SiC充填率が20〜50体積%と低いSiC/Si複合材料を得ることができる。なお、SiC/Si複合材料を、必要に応じて、機械的手段によって研削してもよい。   Thereby, a SiC / Si composite material having a low SiC filling rate of 20 to 50% by volume can be obtained. In addition, you may grind a SiC / Si composite material by a mechanical means as needed.

以上説明したように、SiC粉末及び有機バインダを含む成形材料に予め金属Si粉末を添加しておくことにより、成形体におけるSiCの初期充填率が低下する。これに伴い、成形体を焼結して得られる多孔質焼結体は、SiC充填率が低くなると共に空孔が大きくならず強度的に優れたものとなる。そして、この多孔質焼結体に金属Siを含浸させることにより、SiC充填率が低いSiC/Si複合材料を得ることができる。金属Si粉末の添加量を増やすことによって、SiC充填率を20〜50体積%とすることも可能となる。   As described above, by adding the metal Si powder to the molding material containing the SiC powder and the organic binder in advance, the initial filling rate of SiC in the molded body is lowered. Along with this, the porous sintered body obtained by sintering the molded body has a low SiC filling rate and is excellent in strength without increasing pores. And by impregnating this porous sintered body with metal Si, a SiC / Si composite material having a low SiC filling rate can be obtained. By increasing the addition amount of the metal Si powder, the SiC filling rate can be 20 to 50% by volume.

なお、成形材料に金属Si粉末を添加せず有機バインダの添加量を増加させた場合、多孔質焼結体の気孔率が大き過ぎて強度的に問題があり、最終製品であるSiC/Si複合材料のSiC充填率は50体積%が実質的な限界であった。本発明では成形材料に金属Si粉末を予め混入することにより、多孔質焼結体の気孔率が過度に高くなることを防止して、この問題を解決した。   If the amount of the organic binder added is increased without adding metal Si powder to the molding material, the porosity of the porous sintered body is too large and there is a problem in strength, and the SiC / Si composite that is the final product The SiC filling rate of the material was practically limited to 50% by volume. In the present invention, the metal Si powder is mixed in the molding material in advance to prevent the porosity of the porous sintered body from becoming excessively high, thereby solving this problem.

以下、本発明の実施例及び比較例を具体的に挙げ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples and comparative examples of the present invention.

実施例1〜10及び比較例1では、まず、原料粉末として、SiC粉末(♯800、平均粒径17μm、信濃電気製錬株式会社製のGP#800)と金属Si粉末(平均粒径10μm、福田金属箔粉工業株式会社製のSi−S−10μm)を準備した。また、有機バインダとして、フェノール樹脂(大日本インキ化学工業株式会社製のOI−305A)を準備した。SiC粉末に対する金属Si粉末の平均粒径比は10/17である。   In Examples 1 to 10 and Comparative Example 1, first, as raw material powder, SiC powder (# 800, average particle size 17 μm, GP # 800 manufactured by Shinano Electric Smelting Co., Ltd.) and metal Si powder (average particle size 10 μm, Fukuda Metal Foil Powder Industry Co., Ltd. Si-S-10 μm) was prepared. Moreover, the phenol resin (OI-305A by Dainippon Ink and Chemicals, Inc.) was prepared as an organic binder. The average particle size ratio of the metal Si powder to the SiC powder is 10/17.

そして、SiC粉末の添加量を100重量部、金属Si粉末の添加量を表1に示した重量部とし、SiC粉末及び金属Si粉末をタップ充填した際に成形型に生じた空隙の容積に対するフェノール樹脂の添加量を表1に示した体積%として、これらを混合して成形型に入れ、2.94MPaの成形圧力で、一辺200mm厚さ10mmの正方形板状の成形体を作製した。   Then, the addition amount of SiC powder is 100 parts by weight, the addition amount of metal Si powder is the weight part shown in Table 1, and phenol with respect to the volume of voids formed in the mold when the SiC powder and metal Si powder are tapped. With the addition amount of the resin as the volume% shown in Table 1, these were mixed and put into a mold, and a square plate-like molded body having a side of 200 mm and a thickness of 10 mm was produced at a molding pressure of 2.94 MPa.

そして、得られた成形体を、真空雰囲気中で250〜1000℃の温度範囲を昇温速度28℃/hrで加熱して、脱バインダ処理を行った。その後、真空雰囲気中で1300〜1410℃の温度範囲を昇温速度22℃/hrで加熱して、焼結処理を行い、多孔質焼結体を得た。   And the obtained molded object was heated in the temperature range of 250-1000 degreeC with the temperature increase rate of 28 degreeC / hr in the vacuum atmosphere, and the binder removal process was performed. Then, the temperature range of 1300-1410 degreeC was heated with the temperature increase rate of 22 degreeC / hr in the vacuum atmosphere, the sintering process was performed, and the porous sintered compact was obtained.

そして、得られた多孔質焼結体と融点以上に加熱されたSi(日本電工株式会社製)を接触させ、不活性ガス雰囲気中で1645℃の温度で24時間保持して、溶融したSiと多孔質焼結体中に含まれている炭素とを反応させてSiCにとすると同時にSiを気孔に含浸させることにより、SiC/Si複合材料を作製した。   Then, the obtained porous sintered body is brought into contact with Si heated to a melting point or higher (manufactured by Nippon Denko Co., Ltd.), held in an inert gas atmosphere at a temperature of 1645 ° C. for 24 hours, and melted Si and A SiC / Si composite material was produced by reacting carbon contained in the porous sintered body to form SiC, and simultaneously impregnating Si with pores.

そして、得られたSiC/Si複合材料の中央部及び4つの角部の嵩密度をそれぞれ測定して、測定結果からSiC充填率とその標準偏差を求めた。結果を表1にまとめ、金属Si添加量とSiC充填率との関係を図1に表した。   And the bulk density of the center part and four corner | angular parts of the obtained SiC / Si composite material was measured, respectively, and the SiC filling rate and its standard deviation were calculated | required from the measurement result. The results are summarized in Table 1, and the relationship between the metal Si addition amount and the SiC filling rate is shown in FIG.

Figure 0005856743
Figure 0005856743

比較例1のように金属Si粉末の添加量を0重量部とした場合、得られたSiC/Si複合材料のSiC充填率は59.1体積%となり、50体積%を大きく超えた。SiC充填率の標準偏差は0.61体積%であった。   When the addition amount of the metal Si powder was 0 part by weight as in Comparative Example 1, the SiC filling rate of the obtained SiC / Si composite material was 59.1% by volume, greatly exceeding 50% by volume. The standard deviation of the SiC filling rate was 0.61% by volume.

実施例1,2のように金属Si粉末の添加量を10重量部、20重量部とした場合、得られたSiC/Si複合材料のSiC充填率はそれぞれ54.4体積%、52.1体積%となり、50体積%を超えた。SiC充填率の標準偏差はそれぞれ0.21体積%、0.28体積%であり、SiC充填率のばらつきは比較例1より小さかった。   When the addition amount of the metal Si powder was 10 parts by weight and 20 parts by weight as in Examples 1 and 2, the SiC filling rate of the obtained SiC / Si composite material was 54.4% by volume and 52.1% by volume, respectively. %, Exceeding 50% by volume. The standard deviation of the SiC filling rate was 0.21% by volume and 0.28% by volume, respectively, and the variation of the SiC filling rate was smaller than that of Comparative Example 1.

実施例3,4,5,6,7,8,9,10のように金属Si粉末の添加量を30重量部、35重量部、40重量部、44重量部、52重量部、66重量部、80重量部、94重量部とした場合、得られたSiC/Si複合材料のSiC充填率はそれぞれ47.1体積%、46.4体積%、44.5体積%、41.9体積%、39.5体積%、35.7体積%、33.2体積%、29.9体積%となり、50体積%以下となった。SiC充填率の標準偏差は0.29〜0.57体積%であり、SiC充填率のばらつきは比較例1と同等以下であった。   As in Examples 3, 4, 5, 6, 7, 8, 9, and 10, the addition amount of the metal Si powder was 30 parts by weight, 35 parts by weight, 40 parts by weight, 44 parts by weight, 52 parts by weight, 66 parts by weight. , 80 parts by weight, 94 parts by weight, the SiC filling rate of the obtained SiC / Si composite material is 47.1% by volume, 46.4% by volume, 44.5% by volume, 41.9% by volume, It became 39.5 volume%, 35.7 volume%, 33.2 volume%, 29.9 volume%, and became 50 volume% or less. The standard deviation of the SiC filling rate was 0.29 to 0.57% by volume, and the variation of the SiC filling rate was equal to or less than that of Comparative Example 1.

そして、図1に示すように、金属Si粉末の添加量が増加するほど、SiC/Si複合材料のSiC充填率は低下することが分かった。これより、SiC粉末100重量部に対し金属Si粉末を130重量部添加すれば、SiC/Si複合材料中のSiC充填率は20体積%程度になると推定される。   And as shown in FIG. 1, it turned out that the SiC filling rate of a SiC / Si composite material falls, so that the addition amount of metal Si powder increases. From this, it is estimated that if 130 parts by weight of metal Si powder is added to 100 parts by weight of SiC powder, the SiC filling rate in the SiC / Si composite material is about 20% by volume.

さらに、比較例2として、金属Si粉末の代わりにカーボンビーズ(平均粒径6μm、オリエンタル産業株式会社製のATNo.40−C)を使用したこと以外は、実施例5と同様にしてSiC/Si複合材料を作製した。得られたSiC/Si複合材料の嵩密度の測定結果から求めたSiC充填率は、70.9体積%であり、50体積%を大きく超えた。   Further, as Comparative Example 2, SiC / Si was used in the same manner as in Example 5 except that carbon beads (average particle size 6 μm, ATNo. 40-C manufactured by Oriental Sangyo Co., Ltd.) were used instead of metal Si powder. A composite material was prepared. The SiC filling rate obtained from the bulk density measurement result of the obtained SiC / Si composite material was 70.9% by volume, greatly exceeding 50% by volume.

比較例3として、フェノール樹脂の添加量を、SiC粉末をタップした際に金型に生じた空隙の容積の120体積%としたこと以外は、実施例5と同様にしてSiC/Si複合材料を作製した。しかし、プレス成形の際に成形体にクラックが発生した。   As Comparative Example 3, the SiC / Si composite material was prepared in the same manner as in Example 5 except that the addition amount of the phenol resin was 120% by volume of the void volume generated in the mold when the SiC powder was tapped. Produced. However, cracks occurred in the molded body during press molding.

さらに、実施例11として、SiC粉末としてESK Ceramics GmbH & Co.(ドイツ)製のGC#180(♯180、平均粒径88μm)を使用したこと以外は、実施例5と同様にしてSiC/Si複合材料を作製した。このとき、SiC粉末に対する金属Si粉末の平均粒径比は、10/88であり1/2以下であった。得られたSiC/Si複合材料の嵩密度の測定結果から求めたSiC充填率は、59.1体積%であり、50体積%を超えた。   Furthermore, as Example 11, as SiC powder, ESK Ceramics GmbH & Co. A SiC / Si composite material was produced in the same manner as in Example 5 except that GC # 180 (# 180, average particle size 88 μm) manufactured by (Germany) was used. At this time, the average particle diameter ratio of the metal Si powder to the SiC powder was 10/88, which was 1/2 or less. The SiC filling rate obtained from the measurement result of the bulk density of the obtained SiC / Si composite material was 59.1% by volume and exceeded 50% by volume.

実施例12として、金属Si粉末として山石金属株式会社製のM.Si.No.600(平均粒径3μm)を使用したこと以外は、実施例5と同様にしてSiC/Si複合材料を作製した。このとき、これより、SiC粉末に対する金属Si粉末の平均粒径比が3/17であり1/2以下であった。る場合、得られたSiC/Si複合材料の嵩密度の測定結果から求めたSiC充填率は、55.1体積%であり、50体積%を超えた。実施例5,11,12の結果を表2にまとめた。   As Example 12, as a metal Si powder, M.I. Si. A SiC / Si composite material was produced in the same manner as in Example 5 except that 600 (average particle diameter of 3 μm) was used. At this time, the average particle diameter ratio of the metal Si powder to the SiC powder was 3/17, which was 1/2 or less. In this case, the SiC filling rate obtained from the measurement result of the bulk density of the obtained SiC / Si composite material was 55.1% by volume and exceeded 50% by volume. The results of Examples 5, 11, and 12 are summarized in Table 2.

Figure 0005856743
Figure 0005856743

Claims (1)

SiCからなるセラミックス粉末と有機バインダとに、前記セラミックス粉末に対する平均粒径比が1/2以上2以下であってiからなる金属粉末を添加した混合物を成形した成形体を焼成して気孔率が40〜50%の多孔質焼結体を得て、該多孔質焼結体に前記金属粉末と同種の金属を含浸させて、セラミックスの充填率が20〜50体積%の金属−セラミックス複合材料を製造する製造方法であって、
前記有機バインダの添加量は、前記セラミックス粉末及び前記金属粉末を成形型にタップ充填した際に生じる空隙の容積の20〜30体積%であることを特徴とする金属−セラミックス複合材料の製造方法。
On the Si C or Ranaru ceramic powder and an organic binder, the average particle diameter ratio is 1/2 to 2 in a by sintering a compact molded mixture was added S i or Ranaru metal powder to the ceramic powder To obtain a porous sintered body having a porosity of 40 to 50%, and impregnating the porous sintered body with the same kind of metal as the metal powder, so that the ceramic filling rate is 20 to 50% by volume. A manufacturing method for manufacturing a ceramic composite material ,
The method for producing a metal-ceramic composite material , wherein the addition amount of the organic binder is 20 to 30% by volume of the void volume generated when the ceramic powder and the metal powder are tapped into a mold .
JP2011050171A 2011-03-08 2011-03-08 Method for producing metal-ceramic composite material Active JP5856743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050171A JP5856743B2 (en) 2011-03-08 2011-03-08 Method for producing metal-ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050171A JP5856743B2 (en) 2011-03-08 2011-03-08 Method for producing metal-ceramic composite material

Publications (2)

Publication Number Publication Date
JP2012184493A JP2012184493A (en) 2012-09-27
JP5856743B2 true JP5856743B2 (en) 2016-02-10

Family

ID=47014801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050171A Active JP5856743B2 (en) 2011-03-08 2011-03-08 Method for producing metal-ceramic composite material

Country Status (1)

Country Link
JP (1) JP5856743B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197946B1 (en) 2022-01-14 2022-12-28 アドバンスコンポジット株式会社 METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274746A (en) * 1987-05-06 1988-11-11 Tokyo Yogyo Co Ltd Manufacture of ceramics-reinforced aluminum composite material
JPH10280067A (en) * 1997-04-14 1998-10-20 Furukawa Electric Co Ltd:The Production of composite material

Also Published As

Publication number Publication date
JP2012184493A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US9994487B2 (en) Process for producing reaction bonded silicon carbide member
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP4261130B2 (en) Silicon / silicon carbide composite material
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP5856743B2 (en) Method for producing metal-ceramic composite material
JP2014122406A (en) Metal-ceramic composite material, and method for manufacturing the same
JP5746573B2 (en) Sputtering target
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2009274889A (en) Carbon fiber-reinforced silicon carbide composite material, and method for producing the same
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JPWO2017056202A1 (en) Method for producing aluminum alloy-silicon carbide composite
JP2015124124A (en) PRODUCTION METHOD OF SiC-METAL COMPOSITE MATERIAL BODY
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JP5859850B2 (en) Composite material and manufacturing method thereof
JP2014108896A (en) SiC/Si COMPOSITE MATERIAL BODY AND METHOD OF PRODUCING THE SAME
JP6034692B2 (en) Composite material and manufacturing method thereof
JP6132586B2 (en) Method for producing SiC molded body
JP5950408B2 (en) Silicon carbide ceramics
JP2014058709A (en) Metal-ceramics compound material, and method for producing the same
JP2011136845A (en) Preform and metal-ceramic composite material
JP5706076B2 (en) Porous SiC molded body, SiC / Si composite material and manufacturing method thereof
JP2007055897A (en) Silicon/silicon carbide composite material
KR20210065254A (en) Porous carbon and fabrication for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250