JP2009274889A - Carbon fiber-reinforced silicon carbide composite material, and method for producing the same - Google Patents

Carbon fiber-reinforced silicon carbide composite material, and method for producing the same Download PDF

Info

Publication number
JP2009274889A
JP2009274889A JP2008125640A JP2008125640A JP2009274889A JP 2009274889 A JP2009274889 A JP 2009274889A JP 2008125640 A JP2008125640 A JP 2008125640A JP 2008125640 A JP2008125640 A JP 2008125640A JP 2009274889 A JP2009274889 A JP 2009274889A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
silicon carbide
composite material
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008125640A
Other languages
Japanese (ja)
Other versions
JP5068218B2 (en
Inventor
Masasane Kume
将実 久米
Takeshi Ozaki
毅志 尾崎
Akio Hori
昭夫 堀
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008125640A priority Critical patent/JP5068218B2/en
Publication of JP2009274889A publication Critical patent/JP2009274889A/en
Application granted granted Critical
Publication of JP5068218B2 publication Critical patent/JP5068218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced silicon carbide composite material having uniform characteristics, and to provide a method for producing the same. <P>SOLUTION: Disclosed is the carbon fiber-reinforced silicon carbide composite material wherein a part of a carbon fiber-reinforced carbon base material obtained by carbonizing and firing a carbon fiber molded body comprising a plurality of kinds of carbon fibers having different reactivity with silicon, at least one kind selected from carbon powder and graphite powder and the granulated matter of resin powder is subjected to silicon carbonization. The carbon fiber molded body comprises at least one kind selected from carbon powder and graphite powder of 1.5 to 5.5 vol.%, and also has a voidage of 30 to 40%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軽量・高精度光学センサー部材に適した炭素繊維強化炭化ケイ素複合材料およびその製造方法に関するものである。   The present invention relates to a carbon fiber reinforced silicon carbide composite material suitable for a light-weight and high-precision optical sensor member and a method for producing the same.

炭化ケイ素セラミックスは、高温耐食部材、ヒーター材、耐摩耗部材、研削材、砥石等の用途に幅広く用いられているが、破壊靭性値が低いために高温用構造部材としては実用化されていない。   Silicon carbide ceramics are widely used in applications such as high-temperature corrosion-resistant members, heater materials, wear-resistant members, abrasives, and grindstones, but have not been put into practical use as high-temperature structural members because of their low fracture toughness values.

このため、炭化ケイ素セラミックスの破壊靭性を向上させることを目的として、繊維状の強化材を複合化させた炭化ケイ素複合材料が提案されている。一般的に、繊維強化炭化ケイ素複合材料は、有機金属ポリマーの含浸、熱分解焼成の繰り返し法、化学蒸着法(CVI法)、シリコン溶融含浸法(反応焼結法)等により製造されている。   For this reason, silicon carbide composite materials in which fibrous reinforcing materials are combined have been proposed for the purpose of improving the fracture toughness of silicon carbide ceramics. In general, the fiber reinforced silicon carbide composite material is manufactured by impregnation with an organometallic polymer, a method of repeated pyrolysis firing, a chemical vapor deposition method (CVI method), a silicon melt impregnation method (reactive sintering method), or the like.

しかしながら、有機金属ポリマーの含浸や熱分解焼成の繰り返しにより製造する方法では、一回の含浸で密度も強度特性も低いものしか得られない。この方法で強度特性を上げるには、10回程度の含浸・焼成を繰り返して開気孔率を10%以下に減少する必要がある。このため、製造期間が長くなって、実用化には大きな問題点がある。   However, in the method of producing by repeating impregnation with an organometallic polymer and pyrolysis firing, only those having low density and strength characteristics can be obtained by one impregnation. In order to improve the strength characteristics by this method, it is necessary to reduce the open porosity to 10% or less by repeating impregnation and firing about 10 times. For this reason, a manufacturing period becomes long and there exists a big problem in practical use.

また、化学蒸着により製造する方法では、1100℃程度の比較的低温で、かつ複雑な形状のものも製造し得るが、充填に数週間という長時間を要する上、使用するガスが有毒であるなどの欠点がある。しかも、この化学蒸着により製造する方法、又は上述した有機金属ポリマーの含浸や熱分解焼成の繰り返しにより製造する方法のみでは開気孔率が5%以下の複合材料を得ることは非常に困難である。   In addition, in the method of manufacturing by chemical vapor deposition, a relatively low temperature of about 1100 ° C. and a complicated shape can be manufactured. However, the filling takes a long time of several weeks, and the gas used is toxic. There are disadvantages. In addition, it is very difficult to obtain a composite material having an open porosity of 5% or less only by the method of manufacturing by chemical vapor deposition, or the method of manufacturing by repeating the above-described impregnation with organometallic polymer and repeated pyrolysis firing.

反応焼結法は、反応時間も短く、短期間に緻密な複合材料が製造できるという長所がある。従来のシリコンの溶融含浸法による繊維強化炭化ケイ素複合材料の製造には、繊維束部分を樹脂からのガラス状炭素で緻密に覆い、シリコンと樹脂からの炭素との体積減少を伴った炭化ケイ素生成反応により生じるポーラスな部分をマトリックスの特定部分のみに生成させ、このポーラスな部分にシリコンの溶融含浸を行うものが提案されている。これにより、繊維表面にBN等のコーティングを施すことなく、繊維強化炭化ケイ素複合材料を製造することが可能である。   The reaction sintering method has the advantages that the reaction time is short and a dense composite material can be produced in a short time. In the production of fiber-reinforced silicon carbide composites by the conventional silicon melt impregnation method, the fiber bundle part is densely covered with glassy carbon from the resin, and silicon carbide is produced with volume reduction of silicon and carbon from the resin. There has been proposed a method in which a porous portion generated by a reaction is generated only in a specific portion of a matrix and silicon is impregnated with the porous portion. Thereby, it is possible to manufacture a fiber-reinforced silicon carbide composite material without applying a coating such as BN to the fiber surface.

例えば、特許文献1には、上述したシリコンの溶融含浸法による繊維強化炭化ケイ素複合材料の製造方法が開示されている。この方法を簡単に説明すると、先ず、シリコン粉末と炭素源としての樹脂と繊維からなるプリプレグを作製して成形するか、又は樹脂を含んだ繊維のプリプレグと、シリコン粉末および樹脂を含んだプリプレグとを交互に積層して成形する。次に、不活性雰囲気下で900℃〜1350℃程度の温度で炭素化する。続いて、得られた複合材料に樹脂を含浸し、再び不活性雰囲気下で900℃〜1350℃程度の温度で炭素化する。この樹脂含浸および炭素化処理を繰り返した後、真空或いは不活性雰囲気下で1300℃以上の温度で反応焼結する。この後、最終的に真空或いは不活性雰囲気下において1300℃〜1800℃程度の温度でシリコンを溶融含浸することにより、繊維強化炭化ケイ素複合材料を得るというものである。   For example, Patent Document 1 discloses a method for producing a fiber-reinforced silicon carbide composite material by the above-described silicon melt impregnation method. Briefly explaining this method, first, a prepreg made of silicon powder and a resin and a fiber as a carbon source is formed and molded, or a fiber prepreg containing a resin, and a prepreg containing a silicon powder and a resin. Are alternately laminated and formed. Next, carbonization is performed at a temperature of about 900 ° C. to 1350 ° C. in an inert atmosphere. Subsequently, the obtained composite material is impregnated with resin, and again carbonized at a temperature of about 900 ° C. to 1350 ° C. in an inert atmosphere. After repeating this resin impregnation and carbonization treatment, reaction sintering is performed at a temperature of 1300 ° C. or higher in a vacuum or an inert atmosphere. Thereafter, a fiber-reinforced silicon carbide composite material is obtained by finally melt-impregnating silicon at a temperature of about 1300 ° C. to 1800 ° C. in a vacuum or an inert atmosphere.

このようにして得られた炭素繊維強化炭化ケイ素複合材料は、非線形な破壊挙動を示し緻密質であるとされる。しかし、特許文献1に開示の方法では、強化繊維としての炭素繊維に連続繊維を用いてプリプレグを作製し、それを積層して成形しているため、強化繊維の配向の影響により炭素繊維強化炭化ケイ素複合材料の材料物性に異方性が生じてしまい、この成形体を各種構造部材に適応する際に構造設計が複雑になり汎用性が低いという課題があった。さらに、この炭素繊維強化炭化ケイ素複合材料は、炭素繊維および炭素マトリックス含有率が高いため、焼結SiCと比較して強度や剛性が低いという課題があった。
また、特許文献1に開示の方法では、製造プロセスが比較的長く、製造に長期間を要する。さらに、炭素化や反応焼結において1300℃以上の温度で処理をする必要があり、焼成炉としてかなり特別な仕様の設備が必要である。このため、製造コストがかさむという課題があった。
The carbon fiber reinforced silicon carbide composite material thus obtained is considered to be dense with non-linear fracture behavior. However, in the method disclosed in Patent Document 1, a prepreg is produced by using continuous fibers as carbon fibers as reinforcing fibers, and is laminated and molded. Therefore, carbon fiber reinforced carbonization is caused by the influence of the orientation of the reinforcing fibers. Anisotropy occurs in the material properties of the silicon composite material, and there is a problem in that the structural design becomes complicated and the versatility is low when the molded body is applied to various structural members. Furthermore, since the carbon fiber reinforced silicon carbide composite material has a high carbon fiber and carbon matrix content, there is a problem that strength and rigidity are low as compared with sintered SiC.
Further, in the method disclosed in Patent Document 1, the manufacturing process is relatively long and requires a long time for manufacturing. Furthermore, it is necessary to perform the treatment at a temperature of 1300 ° C. or higher in carbonization or reaction sintering, and equipment with a very special specification is required as a firing furnace. For this reason, there existed a subject that manufacturing cost increased.

これらの課題を解決する得るものとして、特許文献2には、シリコンとの反応性が異なる複数種類の炭素繊維、黒鉛粉末および樹脂粉末を混合して得られる混合物を加熱加圧成形して炭素繊維成形体を形成し、これを炭化して炭素繊維強化炭素基材とした後、シリコンの溶融含浸により炭素繊維の一部を炭化ケイ素化する炭素繊維強化炭化ケイ素複合材料の製造方法が開示されている。特許文献2では、シリコンとの反応性が異なる種類の炭素繊維および炭素マトリックスの組み合わせや配合比率を制御することにより、炭素繊維の一部をシリコンと反応させずに残し、残りの炭素質部分をシリコンと反応させて炭化ケイ素化している。これにより、SiC化を促進させることができ、SiC比率の高い組織が得られる。この結果、焼結SiC並みの優れた強度、剛性を有する炭素繊維強化炭化ケイ素複合材料が製造可能になり、耐熱構造部材への適応性を向上させることができるとされる。   As a method for solving these problems, Patent Document 2 discloses that a carbon fiber obtained by heating and pressing a mixture obtained by mixing a plurality of types of carbon fibers having different reactivity with silicon, graphite powder and resin powder. A method for producing a carbon fiber reinforced silicon carbide composite material is disclosed in which a formed body is formed and carbonized to form a carbon fiber reinforced carbon base material, and then a part of the carbon fiber is siliconized by melt impregnation of silicon. Yes. In Patent Document 2, by controlling the combination and blending ratio of carbon fibers and carbon matrixes having different reactivity with silicon, a part of the carbon fibers is left unreacted with silicon, and the remaining carbonaceous portion is removed. It reacts with silicon to form silicon carbide. Thereby, SiC-ization can be accelerated | stimulated and a structure | tissue with a high SiC ratio is obtained. As a result, a carbon fiber reinforced silicon carbide composite material having excellent strength and rigidity comparable to sintered SiC can be manufactured, and adaptability to a heat-resistant structural member can be improved.

特開2000−313676号公報JP 2000-313676 A 特開2006−290670号公報JP 2006-290670 A

しかしながら、本発明者らが検討したところによれば、特許文献2に開示の方法で比較的大型、特に厚さのある炭素繊維強化炭化ケイ素複合材料を得ようとすると、炭素繊維基材を炭化する際に変形やクラックが発生し、これが後工程の炭化ケイ素化にも影響を及ぼし、炭素繊維強化炭化ケイ素複合材料の表面と内部とで物性に差が生じるということが分かった。   However, according to a study by the present inventors, if a carbon fiber reinforced silicon carbide composite material having a relatively large size, particularly a thickness, is obtained by the method disclosed in Patent Document 2, the carbon fiber base material is carbonized. It was found that deformations and cracks were generated during this process, which affected the subsequent siliconization, and that the physical properties were different between the surface and the inside of the carbon fiber reinforced silicon carbide composite material.

従って、本発明は、上記のような課題を解決するためになされたもので、一様な特性を有する炭素繊維強化炭化ケイ素複合材料およびその製造方法を提供することを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a carbon fiber-reinforced silicon carbide composite material having uniform characteristics and a method for producing the same.

本発明者らは、従来の製造方法で得られる炭素繊維強化炭化ケイ素複合材料で表面と内部とで物性に差が生じる原因について調査した。まず、炭素繊維成形体は、緻密ではなくポーラスであるため、これを加熱加圧成形する際に樹脂が溶融して流動し易くなり、炭素繊維成形体中で偏在してしまい、分布が一様になり難いということが分かった。特に、大型で厚さのある炭素繊維成形体では、加熱加圧成形時に表面と内部との温度勾配の発生が不可避であることから、表面付近と内部とで樹脂の溶融開始時期が異なり圧縮性に顕著な差が生じることが分かった。このように圧縮性に差が生じると、毛細管現象により生じる毛管力により炭素繊維成形体の緻密な部分に樹脂が偏在したり、重力により炭素繊維成形体の下部に樹脂が偏在し、炭素繊維成形体における密度分布幅が大きくなる。   The present inventors investigated the cause of the difference in physical properties between the surface and the inside of a carbon fiber reinforced silicon carbide composite material obtained by a conventional manufacturing method. First, since the carbon fiber molded body is porous rather than dense, the resin melts and flows easily when it is heated and pressed, and is unevenly distributed in the carbon fiber molded body, resulting in a uniform distribution. I found out that it was difficult. In particular, in large and thick carbon fiber molded bodies, the temperature start and the inside of the interior are inevitable during heat and pressure molding. It was found that there was a significant difference. When the difference in compressibility occurs in this way, the resin is unevenly distributed in the dense part of the carbon fiber molded body due to the capillary force generated by the capillary phenomenon, or the resin is unevenly distributed in the lower part of the carbon fiber molded body due to the gravity, so The density distribution width in the body is increased.

このように炭素繊維成形体における密度分布幅が大きくなると、後工程の炭化焼成において、炭素繊維成形体の表面と内部または上部と下部で熱分解による収縮挙動の差に起因する歪みや内部応力が生じ、炭素繊維強化炭素基材における反りやクラックの発生につながることが判明した。   As described above, when the density distribution width in the carbon fiber molded body is increased, in the subsequent carbonization firing, distortion and internal stress due to the difference in shrinkage behavior due to thermal decomposition between the surface and the inside of the carbon fiber molded body or the upper and lower portions. It was found that this leads to warpage and cracks in the carbon fiber reinforced carbon substrate.

そこで、本発明者らは、炭素繊維成形体中における樹脂の流動性を制限する手段について鋭意検討したところ、樹脂粉末の造粒物を用いることで、樹脂を炭素繊維成形体中に一様に分布させることができ、大型で厚さのある炭素繊維成形体を炭化焼成しても反りやクラックの発生を抑えることができることを見出し、本発明を完成するに至った。
即ち、本発明は、シリコンとの反応性が異なる複数種の炭素繊維と、炭素粉末及び黒鉛粉末の少なくとも1種と、樹脂粉末の造粒物とを含有する炭素繊維成形体を炭化焼成して得られる炭素繊維強化炭素基材の一部を炭化ケイ素化した炭素繊維強化炭化ケイ素複合材料であって、炭素繊維成形体が、1.5体積%以上5.5体積%以下の炭素粉末及び黒鉛粉末の少なくとも1種を含有し且つ30%以上40%以下の空隙率を有することを特徴とする炭素繊維強化炭化ケイ素複合材料である。
Therefore, the present inventors diligently studied the means for limiting the fluidity of the resin in the carbon fiber molded body, and by using a granulated product of the resin powder, the resin is uniformly distributed in the carbon fiber molded body. It has been found that even if a large and thick carbon fiber molded body can be distributed and carbonized and fired, the occurrence of warpage and cracks can be suppressed, and the present invention has been completed.
That is, the present invention carbonizes and calcinates a carbon fiber molded body containing a plurality of types of carbon fibers having different reactivity with silicon, at least one of carbon powder and graphite powder, and a granulated product of resin powder. Carbon powder reinforced silicon carbide composite material obtained by siliconizing a part of the obtained carbon fiber reinforced carbon substrate, wherein the carbon fiber molded body has a carbon powder of 1.5 volume% or more and 5.5 volume% or less and graphite A carbon fiber-reinforced silicon carbide composite material containing at least one kind of powder and having a porosity of 30% to 40%.

本発明によれば、光学センサー部材等に適した一様な物性を有する炭素繊維強化炭化ケイ素複合材料およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carbon fiber reinforced silicon carbide composite material which has the uniform physical property suitable for an optical sensor member etc., and its manufacturing method can be provided.

実施の形態1.
本発明では、軽量・高精度光学センサー部材に適した素材として、以下の(1)〜(4)に示す条件を満たすものを考える。
(1)比強度、比剛性が高く破壊靭性値が高い素材であること。
(2)従来の炭素繊維強化炭化ケイ素複合材料よりも物性にばらつきがなく、均質であること。
(3)製造プロセスが簡単で、形状加工性が優れていること。
(4)汎用設備による製造が可能で、素材の加工性が優れていること。
Embodiment 1 FIG.
In the present invention, materials that satisfy the conditions shown in the following (1) to (4) are considered as materials suitable for a lightweight and high-precision optical sensor member.
(1) A material having high specific strength and specific rigidity and high fracture toughness.
(2) The physical properties are more uniform and uniform than the conventional carbon fiber reinforced silicon carbide composite material.
(3) The manufacturing process is simple and the shape workability is excellent.
(4) Manufacture with general-purpose equipment is possible, and the workability of the material is excellent.

本発明は、軽量・高精度光学センサー部材に要求される諸特性を得るために、炭素繊維強化炭化ケイ素複合材料における構成要素の組み合わせ、配合比率の制御、製造プロセスの改善とともに、SiC比率を高め、物性を均質化することを実現したものである。以下に、実施の形態を説明する。   In order to obtain various characteristics required for lightweight and high-precision optical sensor members, the present invention increases the SiC ratio as well as the combination of constituent elements in the carbon fiber reinforced silicon carbide composite material, the control of the blending ratio, and the improvement of the manufacturing process. This realizes the homogenization of physical properties. Embodiments will be described below.

図1は、実施の形態1による繊維強化炭化ケイ素複合材料の製造方法のフローを示す図であり、実質的に炭化ケイ素からなるマトリックスに強化用の炭素繊維が分散された炭素繊維強化炭化ケイ素複合材料で軽量・高精度光学センサー部材を構成する工程を示している。   FIG. 1 is a diagram showing a flow of a method for producing a fiber-reinforced silicon carbide composite material according to Embodiment 1, and a carbon fiber-reinforced silicon carbide composite in which reinforcing carbon fibers are dispersed in a matrix substantially made of silicon carbide. The process which comprises a lightweight and highly accurate optical sensor member with a material is shown.

先ず、図1(a)に示す工程では、シリコンとの反応性が異なる2種類の炭素繊維であるピッチ系炭素繊維1とPAN(ポリアクリロニトリル)系炭素繊維2、黒鉛粉末3および樹脂粉末の造粒物4を特定重量比で混合し、ミキサーに装填して均一に混合させて混合体5を得る。図1(b)に示す工程では、均一に混合された混合体5を成形型に充填し、加熱加圧して一定の形に成形した後、型から取り出し、シリコンとの反応性が異なる2種類の炭素繊維1,2によるハイブリッド炭素繊維、樹脂バインダーおよび黒鉛粉末3からなる炭素繊維成形体6を得る。   First, in the process shown in FIG. 1 (a), pitch-based carbon fiber 1, PAN (polyacrylonitrile) -based carbon fiber 2, graphite powder 3 and resin powder, which are two types of carbon fibers having different reactivity with silicon, are prepared. Granules 4 are mixed at a specific weight ratio, loaded into a mixer and mixed uniformly to obtain a mixture 5. In the step shown in FIG. 1 (b), the uniformly mixed mixture 5 is filled in a mold, formed into a certain shape by heating and pressurization, then taken out from the mold, and two types having different reactivity with silicon. A carbon fiber molded body 6 made of the hybrid carbon fiber 1, carbon fiber 1, resin binder, and graphite powder 3 is obtained.

この(a)および(b)に示す工程では、炭素繊維成形体6中に含有される黒鉛粉末3の量が1.5体積%以上5.5体積%以下となるように且つ炭素繊維成形体6の空隙率が30%以上40%以下となるように、出発原料の混合割合および成形圧力を設定する必要がある。
炭素繊維成形体6中に含有される黒鉛粉末3の量を1.5体積%以上5.5体積%以下と規定する理由は、黒鉛粉末3の量が1.5体積%未満である場合、炭素繊維及び樹脂の流動性が悪くなり分散が不均一になるためである。一方、黒鉛粉末3の量が5.5体積%を超える場合、シリコン含浸時の反応が過剰となり、クラックが発生しやくすなるためである。また、炭素繊維成形体6の空隙率を30%以上40%以下と規定する理由は、空隙率が30%未満である場合、シリコン含浸経路が不十分なためシリコン含浸不良によりケイ化反応不良となるためである。一方、空隙率が40%を超える場合、ケイ化される炭素が不足するためシリコンが多く残り特性が不良となるためである。
In the steps shown in (a) and (b), the amount of the graphite powder 3 contained in the carbon fiber molded body 6 is 1.5 volume% or more and 5.5 volume% or less, and the carbon fiber molded body. It is necessary to set the mixing ratio of the starting materials and the molding pressure so that the porosity of 6 is 30% or more and 40% or less.
The reason why the amount of the graphite powder 3 contained in the carbon fiber molded body 6 is defined as 1.5 volume% or more and 5.5 volume% or less is that when the amount of the graphite powder 3 is less than 1.5 volume%, This is because the flowability of the carbon fibers and the resin deteriorates and the dispersion becomes nonuniform. On the other hand, when the amount of the graphite powder 3 exceeds 5.5% by volume, the reaction during silicon impregnation becomes excessive and cracks are easily generated. In addition, the reason why the porosity of the carbon fiber molded body 6 is defined as 30% or more and 40% or less is that when the porosity is less than 30%, the silicon impregnation route is insufficient and the silicidation reaction is poor due to insufficient silicon impregnation. Because it becomes. On the other hand, when the porosity exceeds 40%, the carbon to be silicified is insufficient, so that a large amount of silicon remains and the characteristics become poor.

次に、図1(c)に示す工程に進む。この工程では、炭素繊維成形体6を真空或いは不活性雰囲気中で加熱して樹脂バインダー成分を炭化し、炭素繊維強化炭素基材7を得る。   Next, the process proceeds to the step shown in FIG. In this step, the carbon fiber molded body 6 is heated in a vacuum or an inert atmosphere to carbonize the resin binder component, and the carbon fiber reinforced carbon base material 7 is obtained.

図1(d)の工程では、炭素繊維強化炭素基材7を軽量・高精度光学センサー部材の形状に切削加工して軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭素基材8を得る。   In the process of FIG. 1 (d), the carbon fiber reinforced carbon substrate 7 obtained by cutting the carbon fiber reinforced carbon substrate 7 into the shape of a lightweight / high precision optical sensor member and processing it into the shape of a lightweight / high precision optical sensor member. Get 8.

この後、図1(e)の工程に進み、真空中で熔融金属シリコンを軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭素基材8に含浸させて炭化ケイ素化処理を施し、軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭化ケイ素複合材料9を得る。   Thereafter, the process proceeds to the step shown in FIG. 1 (e), and a silicon carbide treatment is performed by impregnating molten metal silicon into a carbon fiber reinforced carbon base material 8 processed into the shape of a lightweight and high-precision optical sensor member in a vacuum. The carbon fiber reinforced silicon carbide composite material 9 processed into the shape of a lightweight and high-precision optical sensor member is obtained.

最後に、図1(e)の工程では、炭素繊維1,2、炭化ケイ素を主体とした少量の炭素とシリコンを含むマトリックスからなる軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭化ケイ素複合材料9に対して詳細寸法仕上げ加工を施すことにより、軽量・高精度光学センサー部材10が得られる。   Finally, in the process of FIG. 1 (e), carbon fibers 1 and 2 and carbon fiber reinforced processed into the shape of a lightweight, high-precision optical sensor member consisting of a matrix containing silicon and a small amount of carbon mainly composed of silicon carbide. By subjecting the silicon carbide composite material 9 to a detailed dimension finishing process, a lightweight and high-precision optical sensor member 10 is obtained.

本実施の形態1において、出発原料としてピッチ系炭素繊維1とPAN系炭素繊維2とを混ぜる理由は、ピッチ系炭素繊維1はシリコンと反応し難いが、PAN系炭素繊維2はピッチ系炭素繊維よりもシリコンと反応し易いので、この反応性の差を利用して炭素繊維部分もSiC化させてSiCの生成比率を高めるためである。ピッチ系炭素繊維1とPAN系炭素繊維2との混合割合は、重量比で3:1〜1:5とすることが好ましい。   In the first embodiment, the reason why the pitch-based carbon fiber 1 and the PAN-based carbon fiber 2 are mixed as starting materials is that the pitch-based carbon fiber 1 hardly reacts with silicon, but the PAN-based carbon fiber 2 is a pitch-based carbon fiber. This is because the carbon fiber portion is also made into SiC by utilizing this difference in reactivity, so that the production ratio of SiC is increased. The mixing ratio of the pitch-based carbon fiber 1 and the PAN-based carbon fiber 2 is preferably 3: 1 to 1: 5 by weight ratio.

炭素繊維としてピッチ系炭素繊維1だけを使用した場合、SiC化を促進さるためには、シリコンの含浸温度を高くし、さらに反応時間を長くする必要がある。しかし、シリコンの溶融含浸は減圧下で行うので、含浸温度を上げたり、反応時間を長くすると、シリコンが気化し易くなり、気化・消失により炭素繊維強化炭化ケイ素複合材料9に多量のボイドが発生する。このボイドは、強度低下の原因となり、好ましくない。また、シリコンが気化されると、処理設備内部に多くのシリコンが付着したり、シリコンとの反応によって設備内部の劣化、排気ラインへのシリコン蒸気の引き込み等の影響がある。そのため、高温での含浸や長時間処理は実際上困難である。一方、炭素繊維としてPAN系炭素繊維2だけを使用した場合、容易に脆化し、所望の材料強度を得ることができない。   When only the pitch-based carbon fiber 1 is used as the carbon fiber, it is necessary to increase the impregnation temperature of silicon and further increase the reaction time in order to promote SiC conversion. However, since silicon melt impregnation is performed under reduced pressure, if the impregnation temperature is increased or the reaction time is increased, silicon is easily vaporized, and a large amount of voids are generated in the carbon fiber reinforced silicon carbide composite material 9 due to vaporization / disappearance. To do. This void is not preferable because it causes a decrease in strength. In addition, when silicon is vaporized, a large amount of silicon adheres to the inside of the processing equipment, and there is an influence such as deterioration inside the equipment due to reaction with silicon and drawing of silicon vapor into the exhaust line. Therefore, impregnation at high temperature and long-time treatment are practically difficult. On the other hand, when only the PAN-based carbon fiber 2 is used as the carbon fiber, it becomes easily brittle and a desired material strength cannot be obtained.

また、出発原料として黒鉛粉末3(炭素粉末でもよい)を使用する理由は、黒鉛粉末3(炭素粉末でもよい)を炭素マトリックスとして予め添加し、炭化焼成時の収縮の影響を低減するためである。炭素マトリックスの生成において樹脂バインダーだけを用いて炭素化して炭素マトリックスを生成する場合、樹脂の含有率を多くする必要がある。樹脂の含有率が多くなると炭化焼成時の樹脂の炭化に伴う分解収縮の影響が大きくなり、クラックの発生が起こり易くなる。そのため、大型の炭素繊維成形体6の炭化焼成が実際上困難となり、大型の炭素繊維強化炭素基材7を得ることができない。   The reason for using graphite powder 3 (or carbon powder) as a starting material is that graphite powder 3 (or carbon powder) may be added in advance as a carbon matrix to reduce the influence of shrinkage during carbonization firing. . In the production of a carbon matrix, when a carbon matrix is produced by carbonization using only a resin binder, it is necessary to increase the resin content. When the resin content increases, the influence of decomposition shrinkage accompanying the carbonization of the resin during the carbonization firing increases, and cracks are likely to occur. Therefore, carbonization firing of the large carbon fiber molded body 6 becomes practically difficult, and the large carbon fiber reinforced carbon base material 7 cannot be obtained.

また、出発原料として樹脂粉末の造粒物4を使用する理由は、混合体5を加熱加圧成形する時に樹脂の流動を制限し、樹脂の偏在をなくすためである。また、樹脂粉末を造粒して平均粒径を大きくすることで、流動性が改善され、他の出発原料との混合を均一化することができるという効果を奏する。更に、樹脂粉末の造粒物4を使用することで、混合体5の流動性や嵩密度が高まり、混合体5の成形型への充填を均一化し、充填効率を向上させることができる。それにより、混合体5の充填後の嵩が小さくなるため、加熱加圧成形時の表面と内部との温度勾配が小さくなり、同じ厚さの炭素繊維成形体6の調製において内外部の温度差を低減できるという効果も奏する。樹脂粉末としては、熱硬化性を有するものであれば特に限定されるものではないが、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、塩化ビニル樹脂などが挙げられる。また、樹脂粉末には、1μm以上10μm以下の平均粒径を有するものを使用することが好ましい。   Moreover, the reason for using the granulated product 4 of the resin powder as a starting material is to limit the flow of the resin and eliminate the uneven distribution of the resin when the mixture 5 is heated and pressed. Further, by granulating the resin powder and increasing the average particle size, the fluidity is improved, and the mixing with other starting materials can be made uniform. Furthermore, by using the granulated product 4 of the resin powder, the fluidity and bulk density of the mixture 5 can be increased, the filling of the mixture 5 into the mold can be made uniform, and the filling efficiency can be improved. Thereby, since the bulk after filling of the mixture 5 is reduced, the temperature gradient between the surface and the inside at the time of heat and pressure molding is reduced, and the temperature difference between the inside and outside in the preparation of the carbon fiber molded body 6 having the same thickness. There is also an effect that can be reduced. The resin powder is not particularly limited as long as it has thermosetting properties, and examples thereof include phenol resin, polyimide resin, epoxy resin, and vinyl chloride resin. Moreover, it is preferable to use what has an average particle diameter of 1 micrometer or more and 10 micrometers or less for resin powder.

樹脂粉末の造粒物4を用いることによって加熱加圧成形時に樹脂の流動が制限され、樹脂の偏在がなくなる理由は、造粒プロセスにおいて樹脂粉末に熱が一旦掛かることで、樹脂の加熱硬化時の挙動に変化が生じたためであると考えられる。つまり、熱が掛かっていない新しい樹脂を加熱加圧成形する場合、樹脂は融点で溶けて粘度が低下し流動性を生じるが、熱を一旦掛けて冷却した樹脂を加熱加圧成形する場合、樹脂が溶融し難くなる上に、溶融した場合の粘度もより高くなるため、流動し難いと考えられる。なお、このような樹脂粉末の造粒物4を使用しても、加熱加圧成形時における成形性は十分に確保することができる。樹脂粉末の造粒プロセスとしては、スプレードライ法などが挙げられる。   By using the granulated product 4 of the resin powder, the flow of the resin is limited at the time of heat and pressure molding, and the uneven distribution of the resin is eliminated because the resin powder is heated once in the granulation process, and the resin is heated and cured. This is thought to be due to a change in the behavior of. In other words, when a new resin that is not heated is heat-pressed and molded, the resin melts at the melting point and the viscosity decreases and fluidity is produced. In addition to being difficult to melt, the viscosity when melted is also considered to be difficult to flow. Even if such a granulated product 4 of resin powder is used, the moldability at the time of heat and pressure molding can be sufficiently ensured. Examples of the granulation process of the resin powder include a spray drying method.

実施の形態1によれば、炭素繊維強化炭化ケイ素複合材料9を製造するための炭素繊維成形体6の調製プロセスにおいて、2種類の炭素繊維であるピッチ系炭素繊維1およびPAN系炭素繊維2と、黒鉛粉末3と樹脂粉末の造粒物4との混合体5を用いているため、混合体5の流動性や各原料の均一分散性が改善され、混合体5を成形型に容易に均一充填可能することができる。また、このような混合体5では、加熱加圧成形時に樹脂の溶融・流動を制限することができ、結果として、密度分布幅の非常に小さい炭素繊維強化炭素基材7が得られる。更に、このような混合体5では、加熱圧縮成形時の圧縮量が少なくて済むため、成型用の治具をよりコンパクトにすることが可能となる。こうして得られる炭素繊維強化炭素基材7にシリコンを溶融含浸させ、炭素繊維1,2の一部をシリコンと反応させずに残し、残りの炭素質部分をシリコンと反応させることでSiC化を促進し、焼結SiC並みの優れた強度、剛性を有し且つSiC比率の高い組織を有する炭素繊維強化炭化ケイ素複合材料が得られる。この炭素繊維1,2の部分的な炭化ケイ素化は、炭素繊維1,2、黒鉛粉末3、樹脂粉末の造粒物4の配合比率等により制御可能である。実施の形態1による炭素繊維強化炭化ケイ素複合材料は、物性が均質化されているため、軽量・高精度光学センサー部材として有用である。   According to the first embodiment, in the preparation process of the carbon fiber molded body 6 for producing the carbon fiber reinforced silicon carbide composite material 9, two types of carbon fibers, pitch-based carbon fiber 1 and PAN-based carbon fiber 2, Since the mixture 5 of the graphite powder 3 and the granulated product 4 of the resin powder is used, the fluidity of the mixture 5 and the uniform dispersibility of each raw material are improved, and the mixture 5 can be easily and uniformly formed into a mold. Can be filled. Moreover, in such a mixture 5, the melting / flowing of the resin can be restricted at the time of heat and pressure molding, and as a result, the carbon fiber reinforced carbon substrate 7 having a very small density distribution width is obtained. Furthermore, in such a mixture 5, since the amount of compression at the time of heat compression molding is small, the molding jig can be made more compact. The carbon fiber reinforced carbon base material 7 thus obtained is melt impregnated with silicon, leaving a part of the carbon fibers 1 and 2 unreacted with silicon, and reacting the remaining carbonaceous part with silicon to promote SiC conversion. In addition, a carbon fiber reinforced silicon carbide composite material having an excellent strength and rigidity comparable to sintered SiC and a structure having a high SiC ratio can be obtained. This partial siliconization of the carbon fibers 1 and 2 can be controlled by the blending ratio of the carbon fibers 1 and 2, the graphite powder 3, and the granulated product 4 of the resin powder. The carbon fiber reinforced silicon carbide composite material according to Embodiment 1 is useful as a lightweight and high-precision optical sensor member because the physical properties are homogenized.

実施の形態2.
本実施の形態2は、実施の形態1における炭素繊維成形体6の構成要素として用いる樹脂粉末の造粒物4の平均粒径を5μm以上800μm以下と規定した点に特徴がある。
樹脂粉末の造粒物4の平均粒径を5μm以上800μm以下に規定する理由は、樹脂粉末の造粒物4の平均粒径が800μmを超える場合、混合体5中に占めるバインダーとしての樹脂の接触面積が不足し、炭素繊維成形体6を調製できなくなることがあるためである。一方、樹脂粉末の造粒物4の平均粒径が5μm未満である場合、混合体5の嵩密度も従来原料と変わらず、流動性があまり改善されず、混合体5を成形型に均一に充填することが難しくなることがあるためである。樹脂粉末の造粒物4の平均粒径は、より好ましくは10μm以上200μm以下である。
Embodiment 2. FIG.
The second embodiment is characterized in that the average particle size of the granulated product 4 of the resin powder used as a constituent element of the carbon fiber molded body 6 in the first embodiment is defined as 5 μm or more and 800 μm or less.
The reason why the average particle size of the granulated product 4 of the resin powder is specified to be 5 μm or more and 800 μm or less is that when the average particle size of the granulated product 4 of the resin powder exceeds 800 μm, the resin as a binder in the mixture 5 This is because the contact area is insufficient and the carbon fiber molded body 6 may not be prepared. On the other hand, when the average particle size of the granulated product 4 of the resin powder is less than 5 μm, the bulk density of the mixture 5 is also the same as that of the conventional raw material, the fluidity is not improved so much, and the mixture 5 is uniformly formed in the mold. This is because it may be difficult to fill. The average particle diameter of the granulated product 4 of the resin powder is more preferably 10 μm or more and 200 μm or less.

実施の形態2によれば、炭素繊維成形体6中に炭素繊維1,2が均質に分散し、さらに、炭素繊維成形体6の調製工程において樹脂の流動や偏在がより発生し難くなるため、より均質な炭素繊維成形体6が得られる。その結果、変形やクラックを発生させることなく、大型で厚さのある炭素繊維強化炭素基材7の調製が可能となり、物性が均質化された大型で厚さのある炭素繊維強化炭化ケイ素複合材料9を得ることができる。   According to the second embodiment, the carbon fibers 1 and 2 are uniformly dispersed in the carbon fiber molded body 6, and further, the resin flow and uneven distribution are less likely to occur in the preparation process of the carbon fiber molded body 6. A more uniform carbon fiber molded body 6 is obtained. As a result, a large and thick carbon fiber reinforced carbon base material 7 can be prepared without causing deformation and cracks, and a large and thick carbon fiber reinforced silicon carbide composite material with uniform physical properties. 9 can be obtained.

実施の形態3.
本実施の形態3は、実施の形態1における炭素繊維成形体6の構成要素として用いるピッチ系炭素繊維1の平均繊維長を1mm以下とし、PAN系炭素繊維2の平均繊維長を0.5mm以下とし、黒鉛粉末3の平均粒径を100μm以下と規定した点に特徴がある。
ピッチ系炭素繊維1の平均繊維長を1mm以下、PAN系炭素繊維2の平均繊維長を0.5mm以下、黒鉛粉末3の平均粒径を100μm以下と規定する理由は、ピッチ系炭素繊維1の平均繊維長が1mmを超えるか、PAN系炭素繊維の平均繊維長が0.5mmを超えるか、または黒鉛粉末3の平均粒径が100μmを超える場合、炭素繊維成形体6において炭素繊維1,2の均一な分散が得られ難くなり、結果として、等方性の材料物性を有する炭素繊維強化炭化ケイ素複合材料9が得られないことがあるためである。ピッチ系炭素繊維1の平均繊維長は、より好ましくは100μm以上500μm以下であり、PAN系炭素繊維2の平均繊維長は、より好ましくは20μm以上200μm以下であり、黒鉛粉末3の平均粒径は、より好ましくは5μm以上50μm以下である。
Embodiment 3 FIG.
In Embodiment 3, the average fiber length of pitch-based carbon fiber 1 used as a component of carbon fiber molded body 6 in Embodiment 1 is 1 mm or less, and the average fiber length of PAN-based carbon fiber 2 is 0.5 mm or less. And the average particle size of the graphite powder 3 is defined as 100 μm or less.
The reason why the average fiber length of the pitch-based carbon fiber 1 is 1 mm or less, the average fiber length of the PAN-based carbon fiber 2 is 0.5 mm or less, and the average particle size of the graphite powder 3 is 100 μm or less is that of the pitch-based carbon fiber 1. When the average fiber length exceeds 1 mm, the average fiber length of the PAN-based carbon fiber exceeds 0.5 mm, or the average particle diameter of the graphite powder 3 exceeds 100 μm, the carbon fibers 1 and 2 in the carbon fiber molded body 6 This is because it is difficult to obtain a uniform dispersion of carbon fiber reinforced silicon carbide composite material 9 having isotropic material properties as a result. The average fiber length of the pitch-based carbon fiber 1 is more preferably 100 μm or more and 500 μm or less, the average fiber length of the PAN-based carbon fiber 2 is more preferably 20 μm or more and 200 μm or less, and the average particle diameter of the graphite powder 3 is More preferably, it is 5 μm or more and 50 μm or less.

実施の形態3によれば、炭素繊維成形体6において炭素繊維1,2が均質に分散するようになり、炭化ケイ素化工程でシリコンとPAN系炭素繊維2との反応が好ましい程度に促進され、炭素繊維強化炭化ケイ素複合材料9におけるSiC比率が適度に増大するとともに、SiC組織を均一に分散させる効果がある。その結果、炭素繊維強化炭化ケイ素複合材料9は、異方性の物性を示さず、等方性の物性になり、機械的強度・剛性が向上する。   According to the third embodiment, the carbon fibers 1 and 2 are uniformly dispersed in the carbon fiber molded body 6, and the reaction between silicon and the PAN-based carbon fiber 2 is promoted to a preferable level in the silicon carbide step. The SiC ratio in the carbon fiber reinforced silicon carbide composite material 9 is increased moderately, and the SiC structure is uniformly dispersed. As a result, the carbon fiber reinforced silicon carbide composite material 9 does not exhibit anisotropic physical properties, has isotropic physical properties, and improves mechanical strength and rigidity.

実施の形態4.
本実施の形態4は、実施の形態1における炭素繊維成形体6中に含有されるピッチ系炭素繊維1とPAN系炭素繊維2との合計量を15体積%以上40体積%以下と規定した点に特徴がある。
炭素繊維1,2の体積含有率を上記範囲内とする理由は、シリコンとの反応性が異なる2種類の炭素繊維であるピッチ系炭素繊維1とPAN系炭素繊維2との合計量が15体積%未満である場合、シリコンを溶融含浸させる前の炭素繊維強化炭素基材7におけるマトリックス炭素および炭素繊維1,2の分散性が悪くなる上に、炭素繊維1,2の量そのものが不足し、シリコンの溶融含浸によるSiC反応が不十分となることがあるためである。マトリックス炭素および炭素繊維1,2の分散性が悪くなったり、SiC反応が不十分となると、得られる炭素繊維強化炭化ケイ素複合材料9中に多くの未反応シリコンが内在してしまうばかりか、反応せずに残る炭素繊維1,2の量が少ないものとなってしまい、十分な機械的強度、剛性が得られなかったり、熱膨張係数が大きくなることがある。一方、ピッチ系炭素繊維1とPAN系炭素繊維2との合計が40体積%を超える場合、炭素繊維1,2を均質分散させるのが困難になるため、物性に異方性が生じてしまう上に、シリコンを溶融含浸させ難くなることがある。
Embodiment 4 FIG.
In the fourth embodiment, the total amount of the pitch-based carbon fiber 1 and the PAN-based carbon fiber 2 contained in the carbon fiber molded body 6 in the first embodiment is defined as 15% by volume or more and 40% by volume or less. There is a feature.
The reason why the volume content of the carbon fibers 1 and 2 is within the above range is that the total amount of the pitch-based carbon fiber 1 and the PAN-based carbon fiber 2 which are two types of carbon fibers having different reactivity with silicon is 15 volumes. When the amount is less than%, the dispersibility of the matrix carbon and the carbon fibers 1 and 2 in the carbon fiber reinforced carbon base material 7 before melt impregnation with silicon is deteriorated, and the amount of the carbon fibers 1 and 2 is insufficient. This is because the SiC reaction due to silicon melt impregnation may be insufficient. When the dispersibility of the matrix carbon and the carbon fibers 1 and 2 is deteriorated or the SiC reaction is insufficient, not only a large amount of unreacted silicon is contained in the obtained carbon fiber reinforced silicon carbide composite material 9 but also the reaction. The amount of carbon fibers 1 and 2 that remain without being reduced may be small, and sufficient mechanical strength and rigidity may not be obtained, or the thermal expansion coefficient may be increased. On the other hand, when the sum of the pitch-based carbon fiber 1 and the PAN-based carbon fiber 2 exceeds 40% by volume, it becomes difficult to uniformly disperse the carbon fibers 1 and 2, which causes anisotropy in physical properties. In addition, it may be difficult to melt and impregnate silicon.

実施の形態4によれば、炭素繊維強化炭化ケイ素複合材料からなる最終製品としての軽量・高精度光学センサー部材において、等方性の物性を有し、曲げ強度、破壊靭性値等において従来の製品よりも優れた特性が得られ、実用に適した軽量・高精度光学センサー部材を得ることができる。   According to the fourth embodiment, a lightweight and high-precision optical sensor member as a final product made of a carbon fiber reinforced silicon carbide composite material has isotropic physical properties and has a conventional product in terms of bending strength, fracture toughness, etc. Therefore, it is possible to obtain a light-weight and high-precision optical sensor member suitable for practical use.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。
<実施例1>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が約2μmのフェーノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を10μmにしたものを用いた。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
<Example 1>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. As the granulated product of the resin powder, a phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle diameter of about 2 μm and granulated to have an average particle diameter of 10 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で56:117:12.4:99の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約31.5体積%の炭素繊維および約2体積%の黒鉛粉末を含有し、約38.5%の空隙率を有するものであった。   A granulated product of these pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder in a weight ratio of 56: 117: 12.4: 99 so as to form a uniform mixture using a V-type mixer. Mixed. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 31.5% by volume of carbon fiber and about 2% by volume of graphite powder, and had a porosity of about 38.5%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.80g/cm3以上0.84g/cm3以下であった。従来のプロセスによる炭素繊維強化炭素基材の密度分布は0.75g/cm3以上0.88g/cm3以下であることから、実施例1の基材では密度分布が改善されてより均一化されたことが明らかである。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. The density distribution of the carbon fiber reinforced carbon substrate was evaluated was 0.80 g / cm 3 or more 0.84 g / cm 3 or less. Since the density distribution of the carbon fiber reinforced carbon substrate according to the conventional process is less 0.75 g / cm 3 or more 0.88 g / cm 3, is more uniform is improved density distribution at the substrate of Example 1 It is clear that

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、炭素繊維強化炭化ケイ素複合材料のボイドはシリコンの含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。また、この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は340GPaとなり、従来の炭素繊維強化炭化ケイ素複合材料とヤング率は同等であり、さらに物性の異方性はなく、等方性の物性であった。これらの結果を表1にまとめて示した。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, the matrix carbon and the PAN-based carbon fiber were almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber was hardly reacted. It was confirmed. Moreover, the voids of the carbon fiber reinforced silicon carbide composite material were almost completely filled with silicon impregnation, and the voids were 1% or less. Moreover, when the characteristics of this carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 340 GPa, the Young's modulus was equivalent to that of the conventional carbon fiber reinforced silicon carbide composite material, and there was no physical property anisotropy, etc. It was an isotropic physical property. These results are summarized in Table 1.

<実施例2>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を10μmにしたものを用いた。
<Example 2>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Moreover, as a granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 10 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で50:121:31:108の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約32体積%の炭素繊維および約5体積%の黒鉛粉末を含有し、約32%の空隙率を有するものであった。   These granulated products of pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder are mixed at a weight ratio of 50: 121: 31: 108 using a V-type mixer so as to form a uniform mixture. It was. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 32% by volume of carbon fiber and about 5% by volume of graphite powder, and had a porosity of about 32%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.89g/cm3以上0.93g/cm3以下であった。従来のプロセスによる炭素繊維強化炭素基材の密度分布は0.75g/cm3以上0.88g/cm3以下であることから、実施例2の基材では密度分布が改善されてより均一化されたことが明らかである。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. When the density distribution of this carbon fiber reinforced carbon substrate was evaluated, it was 0.89 g / cm 3 or more and 0.93 g / cm 3 or less. Since the density distribution of the carbon fiber reinforced carbon substrate according to the conventional process is less 0.75 g / cm 3 or more 0.88 g / cm 3, is more uniform is improved density distribution at the substrate of Example 2 It is clear that

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、炭素繊維強化炭化ケイ素複合材料のボイドはシリコンの含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。また、この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は330GPaとなり、従来の炭素繊維強化炭化ケイ素複合材料とヤング率は同等であり、さらに物性の異方性はなく、等方性の物性であった。これらの結果を表1にまとめて示した。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, the matrix carbon and the PAN-based carbon fiber were almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber was hardly reacted. It was confirmed. Moreover, the voids of the carbon fiber reinforced silicon carbide composite material were almost completely filled with silicon impregnation, and the voids were 1% or less. Further, when the characteristics of this carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 330 GPa, the Young's modulus was equivalent to that of the conventional carbon fiber reinforced silicon carbide composite material, and there was no physical property anisotropy, etc. It was an isotropic physical property. These results are summarized in Table 1.

<実施例3>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Example 3>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で55:109:25:97の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および約4体積%の黒鉛粉末を含有し、約38.5%の空隙率を有するものであった。   These granulated products of pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder are mixed at a weight ratio of 55: 109: 25: 97 using a V-type mixer so as to form a uniform mixture. It was. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and about 4% by volume of graphite powder, and had a porosity of about 38.5%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.82g/cm3以上0.84g/cm3以下であった。従来のプロセスによる炭素繊維強化炭素基材の密度分布は0.75g/cm3以上0.88g/cm3以下であることから、実施例3の基材では密度分布が改善されてより均一化されたことが明らかである。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. The density distribution of the carbon fiber reinforced carbon substrate was evaluated was 0.82 g / cm 3 or more 0.84 g / cm 3 or less. Since the density distribution of the carbon fiber reinforced carbon substrate according to the conventional process is less 0.75 g / cm 3 or more 0.88 g / cm 3, is more uniform is improved density distribution at the substrate of Example 3 It is clear that

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、炭素繊維強化炭化ケイ素複合材料のボイドはシリコンの含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。また、この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は355GPaとなり、従来の炭素繊維強化炭化ケイ素複合材料とヤング率は同等であり、さらに物性の異方性はなく、等方性の物性であった。これらの結果を表1にまとめて示した。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, the matrix carbon and the PAN-based carbon fiber were almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber was hardly reacted. It was confirmed. Moreover, the voids of the carbon fiber reinforced silicon carbide composite material were almost completely filled with silicon impregnation, and the voids were 1% or less. Moreover, when the characteristics of this carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 355 GPa, the Young's modulus was equivalent to that of the conventional carbon fiber reinforced silicon carbide composite material, and there was no physical property anisotropy, etc. It was an isotropic physical property. These results are summarized in Table 1.

<実施例4>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を500μmにしたものを用いた。
<Example 4>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Further, as the granulated product of the resin powder, a phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and granulated to have an average particle size of 500 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で55:115:26:97の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および約4体積%の黒鉛粉末を含有し、約39.5%の空隙率を有するものであった。   These granulated products of pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder are mixed at a weight ratio of 55: 115: 26: 97 using a V-type mixer so as to form a uniform mixture. It was. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and about 4% by volume of graphite powder, and had a porosity of about 39.5%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.82g/cm3以上0.84g/cm3以下であった。従来のプロセスによる炭素繊維強化炭素基材の密度分布は0.75g/cm3以上0.88g/cm3以下であることから、実施例4の基材では密度分布が改善されてより均一化されたことが明らかである。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. The density distribution of the carbon fiber reinforced carbon substrate was evaluated was 0.82 g / cm 3 or more 0.84 g / cm 3 or less. Since the density distribution of the carbon fiber reinforced carbon substrate according to the conventional process is less 0.75 g / cm 3 or more 0.88 g / cm 3, is more uniform is improved density distribution at the substrate of Example 4 It is clear that

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、炭素繊維強化炭化ケイ素複合材料のボイドはシリコンの含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。また、この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は340GPaとなり、従来の炭素繊維強化炭化ケイ素複合材料とヤング率は同等であり、さらに物性の異方性はなく、等方性の物性であった。これらの結果を表1にまとめて示した。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, the matrix carbon and the PAN-based carbon fiber were almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber was hardly reacted. It was confirmed. Moreover, the voids of the carbon fiber reinforced silicon carbide composite material were almost completely filled with silicon impregnation, and the voids were 1% or less. Moreover, when the characteristics of this carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 340 GPa, the Young's modulus was equivalent to that of the conventional carbon fiber reinforced silicon carbide composite material, and there was no physical property anisotropy, etc. It was an isotropic physical property. These results are summarized in Table 1.

<比較例1>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を10μmにしたものを用いた。
<Comparative Example 1>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Moreover, as a granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 10 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で54:111:145:6.3の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および約1%の黒鉛粉末を含有し、約28%の空隙率を有するものであった。   A granulated product of these pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder in a weight ratio of 54: 111: 145: 6.3 so as to form a uniform mixture using a V-type mixer. Mixed. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and about 1% of graphite powder, and had a porosity of about 28%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材を解析したところ、炭素化により発生したクラックが認められた。   Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. When this carbon fiber reinforced carbon substrate was analyzed, cracks generated by carbonization were recognized.

このように、樹脂の充填率を高め、炭素繊維基材の空隙率を28%と小さくすると、上記結果のように炭化焼成時に樹脂の熱分解による収縮の影響により炭素繊維強化炭素基材にクラックが発生した。このため、炭素繊維強化炭素基材の空隙率を30%未満とすることは、好ましくないことが確認された。   As described above, when the filling rate of the resin is increased and the porosity of the carbon fiber base material is reduced to 28%, the carbon fiber reinforced carbon base material is cracked due to the shrinkage due to thermal decomposition of the resin during the carbonization firing as described above. There has occurred. For this reason, it was confirmed that it is not preferable to make the porosity of the carbon fiber reinforced carbon base material less than 30%.

<比較例2>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Comparative Example 2>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で61.9:103.7:30.9:81.3の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および約5体積%の黒鉛粉末を含有し、約42%の空隙率を有するものであった。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder granulated product are uniformly used in a weight ratio of 61.9: 103.7: 30.9: 81.3 using a V-type mixer. The mixture was mixed to form a mixture. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and about 5% by volume of graphite powder, and had a porosity of about 42%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.82g/cm3以上0.84g/cm3以下であった。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. The density distribution of the carbon fiber reinforced carbon substrate was evaluated was 0.82 g / cm 3 or more 0.84 g / cm 3 or less.

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、炭素繊維強化炭化ケイ素複合材料中には反応せずに残ったSiが多く存在していることが確認された。この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は260GPaであった。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, the matrix carbon and the PAN-based carbon fiber were almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber was hardly reacted. It was confirmed. Further, it was confirmed that a large amount of Si remained without reacting in the carbon fiber reinforced silicon carbide composite material. When the characteristics of this carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 260 GPa.

このように、炭素繊維基材の空隙率を42%と大きくすると、上記結果のようにSiC化反応が不十分となり、炭素繊維強化炭化ケイ素複合材料中に未反応のシリコンが多く存在するため、強度、剛性が低くなった。このため、炭素繊維強化炭素基材の空隙率を40%超とすることは、好ましくないことが確認された。   Thus, when the porosity of the carbon fiber base is increased to 42%, the SiC conversion reaction becomes insufficient as in the above result, and a large amount of unreacted silicon exists in the carbon fiber reinforced silicon carbide composite material. Strength and rigidity were lowered. For this reason, it was confirmed that it is not preferable to set the porosity of the carbon fiber reinforced carbon base material to more than 40%.

<比較例3>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Comparative Example 3>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Milled fiber) and graphite powder having an average particle size of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.) were used. Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で61.9:103.7:37.1:84.8の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および約6体積%の黒鉛粉末を含有し、約40%の空隙率を有するものであった。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder and resin powder granulated product are uniformly mixed using a V-type mixer in a weight ratio of 61.9: 103.7: 37.1: 84.8. The mixture was mixed to form a mixture. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and about 6% by volume of graphite powder, and had a porosity of about 40%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。   Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material.

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、シリコンの含浸によるSiC化で発生したクラックが認められた。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, cracks generated by SiC formation by silicon impregnation were observed.

このように、炭素繊維成形体の空隙率を40%としても、黒鉛粉末を6体積%と多くした場合は、上記結果のように、SiC化反応による体積膨張で炭素繊維強化炭化ケイ素複合材料にクラックが発生した。このため、炭素繊維成形体における炭素粉末の配合割合を6体積%超とすることは、好ましくないことが確認された。   Thus, even when the porosity of the carbon fiber molded body is 40%, when the graphite powder is increased to 6% by volume, the carbon fiber reinforced silicon carbide composite material is obtained by volume expansion due to the SiC conversion reaction as shown above. A crack occurred. For this reason, it was confirmed that it is not preferable that the blending ratio of the carbon powder in the carbon fiber molded body exceeds 6% by volume.

<比較例4>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Comparative example 4>
Pitch-based carbon fibers have an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and PAN-based carbon fibers have an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.). Of milled fiber). Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらピッチ系炭素繊維、PAN系炭素繊維および樹脂粉末の造粒物を重量比で61.9:103.7:141.4の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維を含有し、約30%の空隙率を有するものであった。   These granulated products of pitch-based carbon fiber, PAN-based carbon fiber, and resin powder are mixed at a weight ratio of 61.9: 103.7: 141.4 using a V-type mixer so as to form a uniform mixture. I let you. Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and had a porosity of about 30%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.79g/cm3以上0.85g/cm3以下であった。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. When the density distribution of this carbon fiber reinforced carbon substrate was evaluated, it was 0.79 g / cm 3 or more and 0.85 g / cm 3 or less.

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素の一部がシリコンと反応せずに残っており、SiC化反応が不十分であった。この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は250GPaであった。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, a part of the matrix carbon remained without reacting with silicon, and the SiC conversion reaction was insufficient. When the characteristics of the carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 250 GPa.

このように、炭素繊維成形体の空隙率を30%としても、黒鉛粉末の添加をしなかった場合は、炭素マトリックスが多くなり、上記結果のように、炭素繊維強化炭化ケイ素複合材料で未反応のマトリックス炭素が発生し、SiC化反応が不十分となる。このため、炭素繊維成形体に黒鉛粉末を配合しないことは、好ましくないことが確認された。   Thus, even when the porosity of the carbon fiber molded body is set to 30%, if the graphite powder is not added, the carbon matrix increases, and as shown in the above results, the carbon fiber reinforced silicon carbide composite material is unreacted. Matrix carbon is generated, and the SiC conversion reaction becomes insufficient. For this reason, it was confirmed that it is not preferable not to mix graphite powder with the carbon fiber molded body.

<比較例5>
PAN系炭素繊維としては、平均繊維長さが130μmのもの(東レ株式会社製MLD−300のミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Comparative Example 5>
The PAN-based carbon fiber has an average fiber length of 130 μm (MLD-300 milled fiber manufactured by Toray Industries, Inc.), and the graphite powder has an average particle size of 30 μm (graphite manufactured by Wako Pure Chemical Industries, Ltd.). Powder) was used. Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらPAN系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で155.5:6.2:120.2の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および1体積%の黒鉛粉末を含有し、約35%の空隙率を有するものであった。   These granulated products of PAN-based carbon fiber, graphite powder, and resin powder were mixed at a weight ratio of 155.5: 6.2: 120.2 using a V-type mixer so as to form a uniform mixture. . Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and 1% by volume of graphite powder, and had a porosity of about 35%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。   Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material.

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、シリコンの含浸によるSiC化で発生したクラックが認められた。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. When the obtained carbon fiber reinforced silicon carbide composite material was analyzed, cracks generated by SiC formation by silicon impregnation were observed.

このように、炭素繊維成形体にピッチ系炭素繊維を配合せずPAN系炭素繊維だけを配合した場合、上記結果のように、SiC化反応による体積膨張で炭素繊維強化炭化ケイ素複合材料にクラックが発生した。このため、炭素繊維成形体に炭素繊維としてPAN系炭素繊維だけを配合することは、好ましくないことが確認された。   As described above, when only the PAN-based carbon fiber is blended without blending the pitch-based carbon fiber into the carbon fiber molded body, the carbon fiber-reinforced silicon carbide composite material is cracked by the volume expansion due to the SiC conversion reaction as shown above. Occurred. For this reason, it was confirmed that it is not preferable to blend only PAN-based carbon fibers as carbon fibers in the carbon fiber molded body.

<比較例6>
ピッチ系炭素繊維としては、平均繊維長さが200μmのもの(三菱化学株式会社製K7351Mのミルドファイバー)、黒鉛粉末としては、平均粒径が30μmのもの(和光純薬工業株式会社製の黒鉛粉末)を用いた。また、樹脂粉末の造粒物としては、平均粒径が2μmのフェノール樹脂粉末(群栄化学工業株式会社製PG652)を造粒して平均粒径を100μmにしたものを用いた。
<Comparative Example 6>
The pitch-based carbon fiber has an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation), and the graphite powder has an average particle diameter of 30 μm (graphite powder manufactured by Wako Pure Chemical Industries, Ltd.). ) Was used. Moreover, as the granulated product of the resin powder, a granulated phenol resin powder (PG652 manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 2 μm and having an average particle size of 100 μm was used.

これらピッチ系炭素繊維、黒鉛粉末および樹脂粉末の造粒物を重量比で185.6:24.7:109.6の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、混合体を金型に移し、プレスで加熱加圧して一定の形状に成形した。これにより、炭素繊維、黒鉛粉末および樹脂粉末の造粒物からなる炭素繊維成形体を得た。この炭素繊維成形体は、約30体積%の炭素繊維および4体積%の黒鉛粉末を含有し、約35%の空隙率を有するものであった。   These granulated products of pitch-based carbon fiber, graphite powder and resin powder were mixed at a weight ratio of 185.6: 24.7: 109.6 using a V-type mixer so as to form a uniform mixture. . Thereafter, the mixture was transferred to a mold and heated and pressed with a press to form a fixed shape. This obtained the carbon fiber molded object which consists of a granulated material of carbon fiber, graphite powder, and resin powder. This carbon fiber molded body contained about 30% by volume of carbon fiber and 4% by volume of graphite powder, and had a porosity of about 35%.

次に、この炭素繊維成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化して炭素繊維強化炭素基材を得た。この炭素繊維強化炭素基材の密度分布を評価したところ、0.92g/cm3以上0.94g/cm3以下であった。 Next, this carbon fiber molded body was carbonized by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon) to obtain a carbon fiber reinforced carbon base material. When the density distribution of this carbon fiber reinforced carbon substrate was evaluated, it was 0.92 g / cm 3 or more and 0.94 g / cm 3 or less.

続いて、炭素繊維強化炭素基材を真空中で1700℃に加熱し、金属シリコンを溶融させて含浸することにより炭化ケイ素化し、炭素繊維強化炭化ケイ素複合材料を得た。得られた炭素繊維強化炭化ケイ素複合材料を解析したところ、マトリックス炭素と黒鉛粉末は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないで残っており、さらに炭素繊維が成形面内に配向していることが確認された。この炭素繊維強化炭化ケイ素複合材料の特性を評価したところ、ヤング率は240GPaであった。   Subsequently, the carbon fiber reinforced carbon substrate was heated to 1700 ° C. in a vacuum to melt and impregnate metal silicon to form silicon carbide to obtain a carbon fiber reinforced silicon carbide composite material. Analysis of the obtained carbon fiber reinforced silicon carbide composite material revealed that the matrix carbon and graphite powder almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber remained almost unreacted. Further, it was confirmed that the carbon fibers were oriented in the molding surface. When the characteristics of the carbon fiber reinforced silicon carbide composite material were evaluated, the Young's modulus was 240 GPa.

このように、炭素繊維成形体にPAN系炭素繊維を配合せずピッチ系炭素繊維だけを配合した場合、上記結果のように炭素繊維が成形面内に配向し、物性に異方性が生じる。このため、炭素繊維成形体に炭素繊維としてピッチ系炭素繊維だけを配合することは、好ましくないことが確認された。   Thus, when only a pitch type carbon fiber is mix | blended with a carbon fiber molded object without mix | blending a PAN type | system | group carbon fiber, a carbon fiber orientates in a molding surface like the said result, and anisotropy arises in a physical property. For this reason, it was confirmed that it is not preferable to mix only pitch-based carbon fibers as carbon fibers in the carbon fiber molded body.

Figure 2009274889
Figure 2009274889

実施の形態1による繊維強化炭化ケイ素複合材料の製造方法のフローを示す図である。3 is a diagram showing a flow of a method for manufacturing a fiber-reinforced silicon carbide composite material according to Embodiment 1. FIG.

符号の説明Explanation of symbols

1 ピッチ系炭素繊維、2 PAN系炭素繊維、3 黒鉛粉末、4 樹脂粉末の造粒物、5 混合体、6 炭素繊維成形体、7 炭素繊維強化炭素基材、8 軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭素基材、9 軽量・高精度光学センサー部材の形状に加工された炭素繊維強化炭化ケイ素複合材料、10 軽量・高精度光学センサー部材。   1 Pitch-based carbon fiber, 2 PAN-based carbon fiber, 3 Graphite powder, 4 Granulated product of resin powder, 5 Mixture, 6 Carbon fiber molded body, 7 Carbon fiber reinforced carbon base material, 8 Light weight and high precision optical sensor member 9. Carbon fiber reinforced carbon base material processed into the shape of 9, carbon fiber reinforced silicon carbide composite material processed into the shape of a light weight / high precision optical sensor member, 10 light weight / high precision optical sensor member.

Claims (5)

シリコンとの反応性が異なる複数種の炭素繊維と、炭素粉末及び黒鉛粉末の少なくとも1種と、樹脂粉末の造粒物とを含有する炭素繊維成形体を炭化焼成して得られる炭素繊維強化炭素基材の一部を炭化ケイ素化した炭素繊維強化炭化ケイ素複合材料であって、
炭素繊維成形体が、1.5体積%以上5.5体積%以下の炭素粉末及び黒鉛粉末の少なくとも1種を含有し且つ30%以上40%以下の空隙率を有することを特徴とする炭素繊維強化炭化ケイ素複合材料。
Carbon fiber reinforced carbon obtained by carbonizing and firing a carbon fiber molded body containing a plurality of types of carbon fibers having different reactivity with silicon, at least one of carbon powder and graphite powder, and a granulated product of resin powder A carbon fiber reinforced silicon carbide composite material in which a part of a substrate is siliconized,
A carbon fiber, wherein the carbon fiber molded body contains at least one of carbon powder and graphite powder of 1.5% by volume to 5.5% by volume and has a porosity of 30% to 40%. Reinforced silicon carbide composite material.
前記樹脂粉末の造粒物が、5μm以上800μm以下の平均粒径を有するものであることを特徴とする請求項1に記載の炭素繊維強化炭化ケイ素複合材料。   The carbon fiber-reinforced silicon carbide composite material according to claim 1, wherein the granulated product of the resin powder has an average particle size of 5 µm or more and 800 µm or less. 前記炭素繊維が、ピッチ系炭素繊維およびPAN系炭素繊維であることを特徴とする請求項1または2に記載の炭素繊維強化炭化ケイ素複合材料。   The carbon fiber reinforced silicon carbide composite material according to claim 1 or 2, wherein the carbon fibers are pitch-based carbon fibers and PAN-based carbon fibers. 前記ピッチ系炭素繊維が1mm以下の平均繊維長を有するものであり、前記PAN系炭素繊維が0.5mm以下の平均繊維長を有するものであり、且つ前記炭素粉末および黒鉛粉末が100μm以下の平均粒径を有するものであることを特徴とする請求項3に記載の炭素繊維強化炭化ケイ素複合材料。   The pitch-based carbon fiber has an average fiber length of 1 mm or less, the PAN-based carbon fiber has an average fiber length of 0.5 mm or less, and the carbon powder and graphite powder have an average of 100 μm or less. The carbon fiber reinforced silicon carbide composite material according to claim 3, which has a particle size. シリコンとの反応性が異なる複数種の炭素繊維と、炭素粉末および黒鉛粉末の少なくとも1種と、樹脂粉末の造粒物とを混合した後、この混合体を加熱加圧成形して炭素繊維成形体を調製する第一工程と、炭素繊維成形体を炭化焼成して炭素繊維強化炭素基材を調製する第二工程と、シリコンの溶融含浸により炭素繊維強化炭素基材を炭化ケイ素化して炭素繊維強化炭化ケイ素複合材料を調製する第三工程とを備えることを特徴とする炭素繊維強化炭化ケイ素複合材料の製造方法であって、
第一工程において得られる炭素繊維成形体が、1.5体積%以上5.5体積%以下の炭素粉末及び黒鉛粉末の少なくとも1種を含有し且つ30%以上40%以下の空隙率を有するように原料の混合割合および成形圧力を設定することを特徴とする炭素繊維強化炭化ケイ素複合材料の製造方法。
After mixing a plurality of types of carbon fibers having different reactivity with silicon, at least one of carbon powder and graphite powder, and a granulated product of resin powder, this mixture is heated and pressed to form carbon fibers. A first step of preparing the body, a second step of carbonizing and firing the carbon fiber molded body to prepare a carbon fiber reinforced carbon base material, and carbon fiber by siliconizing the carbon fiber reinforced carbon base material by melt impregnation of silicon. A third step of preparing a reinforced silicon carbide composite material, and a method for producing a carbon fiber reinforced silicon carbide composite material,
The carbon fiber molded body obtained in the first step contains at least one of carbon powder and graphite powder of 1.5 volume% or more and 5.5 volume% or less and has a porosity of 30% or more and 40% or less. A method for producing a carbon fiber reinforced silicon carbide composite material, characterized in that a mixing ratio of raw materials and a molding pressure are set.
JP2008125640A 2008-05-13 2008-05-13 Carbon fiber reinforced silicon carbide composite material and method for producing the same Active JP5068218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125640A JP5068218B2 (en) 2008-05-13 2008-05-13 Carbon fiber reinforced silicon carbide composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125640A JP5068218B2 (en) 2008-05-13 2008-05-13 Carbon fiber reinforced silicon carbide composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009274889A true JP2009274889A (en) 2009-11-26
JP5068218B2 JP5068218B2 (en) 2012-11-07

Family

ID=41440658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125640A Active JP5068218B2 (en) 2008-05-13 2008-05-13 Carbon fiber reinforced silicon carbide composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5068218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237569A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 PART COMPOSED OF C/SiC AND METHOD OF PRODUCING PART COMPOSED OF C/SiC
JP2016222728A (en) * 2016-10-03 2016-12-28 ロート製薬株式会社 Ophthalmic composition for silicone hydrogel contact lenses
TWI567046B (en) * 2014-08-22 2017-01-21 三菱電機股份有限公司 Method for producing carbon fiber reinforced silicon carbide molded body
CN113059869A (en) * 2021-03-25 2021-07-02 沈阳航空航天大学 Glass fiber laminated plate with pre-buried carbon powder reinforced medium and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849815A (en) * 1994-08-05 1996-02-20 Mitsubishi Heavy Ind Ltd Manufacture of silicon carbide ceramic sleeve for fuel injection nozzle
JP2001106917A (en) * 1999-10-07 2001-04-17 Ngk Insulators Ltd Spherical granulated wax containing resin, preparing method therefor, ceramic molded article, and manufacturing method therefor
JP2001139282A (en) * 1999-11-10 2001-05-22 Furukawa Co Ltd Boom unhoused state warning device
JP2006027973A (en) * 2004-07-20 2006-02-02 Mitsubishi Electric Corp Reflecting mirror and production method therefor
JP2006290670A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Fiber reinforced silicon carbide composite material, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849815A (en) * 1994-08-05 1996-02-20 Mitsubishi Heavy Ind Ltd Manufacture of silicon carbide ceramic sleeve for fuel injection nozzle
JP2001106917A (en) * 1999-10-07 2001-04-17 Ngk Insulators Ltd Spherical granulated wax containing resin, preparing method therefor, ceramic molded article, and manufacturing method therefor
JP2001139282A (en) * 1999-11-10 2001-05-22 Furukawa Co Ltd Boom unhoused state warning device
JP2006027973A (en) * 2004-07-20 2006-02-02 Mitsubishi Electric Corp Reflecting mirror and production method therefor
JP2006290670A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Fiber reinforced silicon carbide composite material, and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237569A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 PART COMPOSED OF C/SiC AND METHOD OF PRODUCING PART COMPOSED OF C/SiC
TWI567046B (en) * 2014-08-22 2017-01-21 三菱電機股份有限公司 Method for producing carbon fiber reinforced silicon carbide molded body
JP2016222728A (en) * 2016-10-03 2016-12-28 ロート製薬株式会社 Ophthalmic composition for silicone hydrogel contact lenses
CN113059869A (en) * 2021-03-25 2021-07-02 沈阳航空航天大学 Glass fiber laminated plate with pre-buried carbon powder reinforced medium and preparation method thereof
CN113059869B (en) * 2021-03-25 2022-11-04 沈阳航空航天大学 Glass fiber laminated plate with pre-buried carbon powder reinforced medium and preparation method thereof

Also Published As

Publication number Publication date
JP5068218B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
US6576076B1 (en) Process for producing fiber-reinforced silicon carbide composites
JP5093060B2 (en) Carbon fiber reinforced silicon carbide composite and method for producing the same
JP5944618B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
US7011786B2 (en) Process for producing shaped bodies comprising fiber-reinforced ceramic materials
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP2003238265A (en) Method of manufacturing hollow body made from fiber- reinforced ceramic material
JP5545014B2 (en) Method for producing carbon fiber-reinforced carbon composite and method for producing carbon fiber-containing silicon carbide composite
CN113666748B (en) Preparation method of graphite material and graphite material
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
EP3124814B1 (en) Ceramic material for brake discs
US8906289B2 (en) Method for manufacturing friction disks with ceramic materials with improved friction layer
KR100689636B1 (en) Fabrication of carbon fiber-silicon carbide composites by melt infiltration process of metal silicon
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
JP4475045B2 (en) Reflector and manufacturing method thereof
Chung Composite material structure and processing
JP3574583B2 (en) Heat radiating material and method of manufacturing the same
JP2007255623A (en) Composite material brake
JP2024015754A (en) Manufacturing method of composite ceramic material
JPH0648833A (en) Short carbon fiber reinforced oxidation resistant carbon composite material and its production
JPH02271963A (en) Production of thermal oxidation-resistant carbon fiber-reinforced carbon composite material
JPH06116034A (en) Silicon carbide-based composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250