JP2006290670A - Fiber reinforced silicon carbide composite material, and method of manufacturing the same - Google Patents

Fiber reinforced silicon carbide composite material, and method of manufacturing the same Download PDF

Info

Publication number
JP2006290670A
JP2006290670A JP2005112348A JP2005112348A JP2006290670A JP 2006290670 A JP2006290670 A JP 2006290670A JP 2005112348 A JP2005112348 A JP 2005112348A JP 2005112348 A JP2005112348 A JP 2005112348A JP 2006290670 A JP2006290670 A JP 2006290670A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
carbon
sic
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005112348A
Other languages
Japanese (ja)
Other versions
JP4647370B2 (en
Inventor
Masasane Kume
将実 久米
Masatomi Okumura
正富 奥村
Takeshi Ozaki
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005112348A priority Critical patent/JP4647370B2/en
Publication of JP2006290670A publication Critical patent/JP2006290670A/en
Application granted granted Critical
Publication of JP4647370B2 publication Critical patent/JP4647370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber reinforced silicon carbide composite material which is manufactured in a simple process without using a special manufacturing apparatus, can shorten a manufacturing process and reduce cost, has strength and toughness similar to those of a sintered SiC in the physical property, and is free from anisotropy. <P>SOLUTION: A carbon fiber reinforced silicon carbide base material is formed by mixing a plurality of kinds of carbon fibers each having different reactivity with silicon, graphite powder and powdery resin and heating and press-forming to form a carbon fiber reinforced base material and carbonizing the carbon fiber reinforced base material and siliconizing the carbon fiber reinforced carbon base material to form the carbon fiber reinforced silicon carbide base material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、宇宙用、地上用の大型望遠鏡や高温用構造部材に適した炭素繊維強化炭化ケイ素複合材料(以下、C/SiC複合材料と適宜称す)及びその製造方法に関するものである。   The present invention relates to a carbon fiber reinforced silicon carbide composite material (hereinafter, appropriately referred to as a C / SiC composite material) suitable for large-scale telescopes for space and ground use and high-temperature structural members, and a method for producing the same.

炭化ケイ素セラミックスは、高温耐食部材用、ヒーター材用、耐摩耗部材用や、さらには研削材、砥石などの用途に幅広く用いられているが、破壊靭性値が低いために高温用構造部材として実用化されていない。   Silicon carbide ceramics are widely used in applications such as high-temperature corrosion-resistant members, heater materials, wear-resistant members, and even abrasives and grindstones, but they are practical as high-temperature structural members because of their low fracture toughness values. It has not been converted.

このため、セラミックスの靭性を向上させることを目的として、繊維状の強化材を複合化させたセラミックス複合材料が提案されている。一般的に、繊維強化炭化ケイ素複合材料は、有機金属ポリマーの含浸、熱分解焼成の繰り返し法、化学蒸着法(CVI法)、シリコン溶融含浸法(反応焼結法)などにより製造されている。   For this reason, for the purpose of improving the toughness of the ceramic, a ceramic composite material in which a fibrous reinforcing material is combined has been proposed. In general, the fiber reinforced silicon carbide composite material is manufactured by impregnation with an organometallic polymer, repeated thermal decomposition firing method, chemical vapor deposition method (CVI method), silicon melt impregnation method (reaction sintering method), or the like.

しかしながら、有機金属ポリマーの含浸、熱分解焼成の繰り返しにより製造する方法では、一回の含浸で密度も強度特性も低いものしか得られない。この方法で強度特性を上げるには、10回程度の含浸・焼成を繰り返して開気孔率を少なくとも10%以内に減少する必要がある。このため、製造期間が長くなって、実用化には大きな問題点がある。   However, in the method of manufacturing by repeated impregnation of organometallic polymer and pyrolysis firing, only those having low density and strength characteristics can be obtained by one impregnation. In order to improve the strength characteristics by this method, it is necessary to reduce the open porosity to at least 10% by repeating impregnation and firing about 10 times. For this reason, a manufacturing period becomes long and there exists a big problem in practical use.

また、化学蒸着法では、1100℃程度の比較的低温で、かつ複雑な形状のものも製造し得るが、充填に数週間という長時間を要する上、使用するガスが有毒であるなどの欠点がある。しかも、当該方法、又は、上述した有機金属ポリマーの含浸、熱分解焼成の繰り返しにより製造する方法のみでは開気孔率が5%以下の複合材料を得ることは非常に困難である。   In addition, chemical vapor deposition can produce a complex shape at a relatively low temperature of about 1100 ° C. However, it takes a long time of several weeks for filling and has disadvantages such as toxic gas used. is there. Moreover, it is very difficult to obtain a composite material having an open porosity of 5% or less only by the method or the method of manufacturing by repeating the impregnation of the above-described organometallic polymer and thermal decomposition firing.

反応焼結法は、反応時間も短く、短期間に緻密な複合材料が製造できるという長所がある。従来のシリコンの溶融含浸法による繊維強化炭化ケイ素系複合材料の製造には、繊維束部分を樹脂からのガラス状炭素で緻密に覆い、シリコンと樹脂からの炭素との体積減少を伴った炭化ケイ素生成反応により生じるポーラスな部分をマトリックスの特定部分のみに生成させ、このポーラスな部分にシリコンの溶融含浸を行うものが提案されている。これにより、繊維強化炭化ケイ素複合材料を、繊維表面にBN等のコーティングを施すことなく、製造することが可能である。   The reaction sintering method has the advantages that the reaction time is short and a dense composite material can be produced in a short time. In the production of fiber reinforced silicon carbide based composite materials by the conventional silicon melt impregnation method, the fiber bundle portion is densely covered with glassy carbon from the resin, and the silicon carbide with volume reduction of silicon and carbon from the resin is involved. There has been proposed a method in which a porous portion generated by a generation reaction is generated only in a specific portion of a matrix and silicon is impregnated with the porous portion. Thereby, it is possible to manufacture the fiber reinforced silicon carbide composite material without coating the fiber surface with BN or the like.

例えば、特許文献1には、上述したシリコンの溶融含浸法による繊維強化炭化ケイ素系複合材料の製造方法が開示されている。この方法を簡単に説明すると、先ずシリコン粉末と炭素源としての樹脂と繊維からなるプリプレグを製作し成形するか、或いは、樹脂を含んだ繊維のプリプレグ、シリコン粉末及び樹脂を含んだプリプレグを交互に積層して成形する。   For example, Patent Document 1 discloses a method for producing a fiber-reinforced silicon carbide composite material by the above-described silicon melt impregnation method. Briefly explaining this method, first, a prepreg made of silicon powder and a resin and a fiber as a carbon source is manufactured and molded, or a fiber prepreg containing resin, and a prepreg containing silicon powder and resin are alternately used. Laminate and mold.

次に、不活性雰囲気下で900〜1350℃程度の温度で炭素化する。続いて、得られた複合材料に樹脂を含浸し、再び不活性雰囲気下で900〜1350℃程度の温度で炭素化する。この樹脂含浸及び炭素化処理を繰り返した後、真空或いは不活性雰囲気下で1300℃以上の温度で反応焼結する。   Next, carbonization is performed at a temperature of about 900 to 1350 ° C. in an inert atmosphere. Subsequently, the obtained composite material is impregnated with resin, and again carbonized at a temperature of about 900 to 1350 ° C. in an inert atmosphere. After repeating this resin impregnation and carbonization treatment, reaction sintering is performed at a temperature of 1300 ° C. or higher in a vacuum or an inert atmosphere.

この後、最終的に真空或いは不活性雰囲気下において1300〜1800℃程度の温度でシリコンを溶融含浸する。これにより、繊維強化炭化ケイ素複合体を得る。このようにして得られた複合材料は、非線形な破壊挙動を示し緻密質であるとされる。   Thereafter, silicon is finally melt impregnated at a temperature of about 1300 to 1800 ° C. in a vacuum or an inert atmosphere. Thereby, a fiber reinforced silicon carbide composite is obtained. The composite material thus obtained is considered to be dense with non-linear fracture behavior.

特開2000−313676号公報JP 2000-313676 A

従来のC/SiC複合材料の製造方法では、強化繊維としての炭素繊維に連続繊維を用いてプリプレグを作製し、それを積層して成形している。このため、強化繊維の配向の影響によりC/SiC複合材料の材料物性に異方性が生じてしまい、この成形体を各種構造部材に適応する際に構造設計が複雑になり汎用性が低かった。   In the conventional method for producing a C / SiC composite material, a prepreg is produced by using continuous fibers as carbon fibers as reinforcing fibers, and these are laminated and molded. For this reason, anisotropy occurs in the material properties of the C / SiC composite material due to the effect of the orientation of the reinforcing fibers, and the structural design becomes complicated when this molded body is applied to various structural members, resulting in low versatility. .

また、C/SiC複合材料の製造プロセスは、樹脂を含浸及び炭素化(900〜1350℃)を繰り返した後、さらに真空或いは不活性雰囲気下で1300℃以上の温度で反応焼結し、最終的には真空或いは不活性雰囲気下において1300〜1800℃程度の温度でシリコンを溶融含浸して製造するものであった。このため、製造プロセスが比較的長く、製造に長期間を要する。さらに、炭素化や反応焼結において1300℃以上の温度で処理をする必要があり、焼成炉としてかなり特別な仕様の設備が必要である。このため、製造コストがかさむという課題があった。   In addition, the C / SiC composite material is manufactured by repeatedly impregnating and carbonizing the resin (900 to 1350 ° C.), and further subjecting it to reactive sintering at a temperature of 1300 ° C. or higher in a vacuum or an inert atmosphere. Was manufactured by melt impregnation of silicon at a temperature of about 1300 to 1800 ° C. in a vacuum or an inert atmosphere. For this reason, a manufacturing process is comparatively long and requires a long time for manufacture. Furthermore, it is necessary to perform the treatment at a temperature of 1300 ° C. or higher in carbonization or reaction sintering, and equipment with a very special specification is required as a firing furnace. For this reason, there existed a subject that manufacturing cost increased.

さらに、従来のC/SiC複合材料の材料物性では、炭素繊維及び炭素マトリックス含有率が高く、これにより焼結SiCと比較して強度や剛性が低いという課題があった。   Furthermore, the material properties of the conventional C / SiC composite material have a problem that the carbon fiber and carbon matrix content is high, thereby lowering the strength and rigidity compared to sintered SiC.

この発明は、上記のような課題を解決するためになされたもので、特殊な製造設備を使用しない簡素なプロセスで、製造工程の短縮化、コスト低減を可能とし、材料物性も焼結SiC並みの強度、剛性を有し、かつ異方性のない繊維強化炭化ケイ素複合材料及びその製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems. It is a simple process that does not use any special manufacturing equipment, and can shorten the manufacturing process and reduce the cost. It aims at obtaining the fiber reinforced silicon carbide composite material which has the intensity | strength and rigidity of this, and there is no anisotropy, and its manufacturing method.

この発明に係る繊維強化炭化ケイ素複合材料は、シリコンとの反応性が異なる複数種類の炭素繊維と黒鉛粉末とを含有し、含有した炭素繊維の一部を炭化ケイ素化したものである。   The fiber-reinforced silicon carbide composite material according to the present invention contains a plurality of types of carbon fibers having different reactivity with silicon and graphite powder, and a part of the contained carbon fibers is siliconized.

この発明によれば、シリコンとの反応性が異なる複数種類の炭素繊維と黒鉛粉末とを含有し、含有した炭素繊維の一部を炭化ケイ素化したので、シリコンとの反応性の異なる種類の炭素繊維及び炭素マトリックスの組み合わせや配合比率を制御することにより、含有した炭素繊維の一部をシリコンと反応させず残し、残りの炭素質部分をシリコンと反応させて炭化ケイ素化させることが可能となる。これにより、SiC化を促進させることができ、SiC比率の高い組織が得られる。この結果、焼結SiC並みの優れた強度、剛性を有した炭素繊維強化炭化ケイ素基材が製造可能になり、耐熱構造部材への適応性を向上させることができる。   According to the present invention, the carbon fiber containing a plurality of types of carbon fibers having different reactivity with silicon and graphite powder, and a part of the contained carbon fibers are siliconized, so that the types of carbon having different reactivity with silicon are obtained. By controlling the combination and blending ratio of the fibers and the carbon matrix, it becomes possible to leave part of the contained carbon fibers without reacting with silicon and react the remaining carbonaceous parts with silicon to form silicon carbide. . Thereby, SiC-ization can be accelerated | stimulated and a structure | tissue with a high SiC ratio is obtained. As a result, it becomes possible to manufacture a carbon fiber reinforced silicon carbide base material having excellent strength and rigidity comparable to sintered SiC, and the adaptability to a heat-resistant structural member can be improved.

また、この発明では、炭素繊維基材の成形において、シリコンとの反応性が異なる複数種類の炭素短繊維と黒鉛粉末と粉末樹脂の混合体を低圧力で加熱し成形しているため、従来のセラミック等の成形時のような高圧力は必要としない。これにより、内部の炭素繊維が配向せずにランダムに内在するために等方性の物性が得られるという効果がある。   Further, in the present invention, in the molding of the carbon fiber base material, a mixture of a plurality of types of carbon short fibers having different reactivity with silicon, graphite powder and powder resin is heated and molded at a low pressure. There is no need for high pressure as in the molding of ceramics. Thereby, there is an effect that isotropic physical properties can be obtained because the internal carbon fibers are randomly oriented without being oriented.

さらに、炭素繊維基材の緻密化処理が不要でありピッチ或いは樹脂含浸プロセスを実施しないため、含浸設備は不要である。さらに、反応焼結プロセスを必要とせず、炭化処理も800℃程度の温度で十分であり、特殊な炭化焼成炉を必要とせず、汎用的な焼成炉で製造が可能であり、製造納期、製造コストが従来より大幅に低減可能となる。   Further, since the densification treatment of the carbon fiber substrate is unnecessary and the pitch or resin impregnation process is not performed, no impregnation equipment is required. Furthermore, the reaction sintering process is not required, and the carbonization treatment is sufficient at a temperature of about 800 ° C., no special carbonization firing furnace is required, and it can be manufactured in a general-purpose firing furnace. Cost can be greatly reduced compared to the prior art.

実施の形態1.
本発明では、耐熱構造部材に適した素材として以下の(1)〜(4)に示す条件を満たすものを考える。
(1)比強度、比剛性が高く破壊靭性値が高い素材であること。
(2)従来のC/SiC材のような物性に異方性がなく、等方性であること。
(3)製造プロセスが簡単で、形状製造性が優れていること。
(4)汎用設備による製造が可能で、素材の加工性が優れていること。
Embodiment 1 FIG.
In the present invention, materials that satisfy the conditions shown in the following (1) to (4) are considered as materials suitable for heat-resistant structural members.
(1) A material having high specific strength and specific rigidity and high fracture toughness.
(2) There is no anisotropy in the physical properties as in conventional C / SiC materials and is isotropic.
(3) The manufacturing process is simple and the shape manufacturability is excellent.
(4) It can be manufactured with general-purpose equipment and has excellent material processability.

本発明は、上記耐熱構造部材に要求される諸特性を得るために、炭素繊維強化炭化ケイ素(以下、C/SiCと称する)複合材料における構成要素の組み合わせ、配合比率の制御、製造プロセスの改善とともに、SiC比率を高め、物性を等方性化することを実現したものである。以下に、実施の形態を説明する。   In order to obtain various properties required for the above heat-resistant structural member, the present invention provides a combination of components in a carbon fiber reinforced silicon carbide (hereinafter referred to as C / SiC) composite material, control of the mixing ratio, and improvement of the manufacturing process. In addition, the SiC ratio is increased and the physical properties are made isotropic. Embodiments will be described below.

図1は、この発明の実施の形態1による繊維強化炭化ケイ素複合材料の製造方法を示す図であり、実質的に炭化ケイ素からなるマトリックスに強化用の炭素繊維が分散されたC/SiC複合材料で耐熱構造材を構成する工程を示している。先ず、図1(a)に示す工程では、シリコンとの反応性の異なる2種類の炭素繊維であるピッチ系炭素繊維とPAN(PolyAcryloNitrile)系炭素繊維との各短繊維1,2、黒鉛粉末3、及び、粉末樹脂4を特定重量比で混合し、ミキサーに装填して均一に混合させて混合体5を得る。   FIG. 1 is a diagram showing a method for manufacturing a fiber-reinforced silicon carbide composite material according to Embodiment 1 of the present invention, and is a C / SiC composite material in which reinforcing carbon fibers are dispersed in a matrix substantially made of silicon carbide. Shows a process of forming a heat-resistant structural material. First, in the process shown in FIG. 1 (a), each short fiber 1, 2 of a pitch-based carbon fiber and a PAN (PolyAcryloNitrile) -based carbon fiber, which are two types of carbon fibers having different reactivity with silicon, graphite powder 3 , And powder resin 4 are mixed at a specific weight ratio, loaded into a mixer and mixed uniformly to obtain mixture 5.

図1(b)に示す工程では、均一に混合された混合体5を成形型に移し、加熱、加圧して一定の形に成型する。この後、型から取り出し、2種の異なる炭素繊維1,2によるハイブリッド炭素繊維、樹脂バインダー及び黒鉛粉末3からなる炭素繊維成形体(炭素繊維基材)6を得る。次に、図1(c)に示す工程に進む。この工程では、炭素繊維成形体6を真空或いは不活性雰囲気中で加熱して樹脂バインダー成分を炭化し、炭素繊維強化炭素(以下、C/Cと称する)複合材料によるC/C成形体7を得る。   In the step shown in FIG. 1 (b), the uniformly mixed mixture 5 is transferred to a mold and heated and pressurized to be molded into a fixed shape. Then, it removes from a type | mold and the carbon fiber molded object (carbon fiber base material) 6 which consists of the hybrid carbon fiber by 2 types of different carbon fibers 1 and 2, the resin binder, and the graphite powder 3 is obtained. Next, the process proceeds to the step shown in FIG. In this step, the carbon fiber molded body 6 is heated in a vacuum or an inert atmosphere to carbonize the resin binder component, and a C / C molded body 7 made of a carbon fiber reinforced carbon (hereinafter referred to as C / C) composite material is formed. obtain.

図1(d)の工程では、C/C成形体7を耐熱構造部材の形状に切削加工して耐熱構造部材8を得る。この後、図1(e)の工程に進み、耐熱構造部材8に真空中で熔融金属シリコンを含浸させて炭化ケイ素(C/SiC)化処理を施し、C/SiC成形体9を得る。最後に、図1(e)の工程では、炭素繊維1,2、SiCを主体とした少量の炭素とシリコンを含むマトリックスからなる耐熱構造部材C/SiC成形体9に対して詳細寸法仕上げ加工を施すことにより、C/SiC複合材料の耐熱構造部材10が得られる。   In the step of FIG. 1D, the C / C molded body 7 is cut into the shape of the heat-resistant structural member to obtain the heat-resistant structural member 8. Thereafter, the process proceeds to the step shown in FIG. 1 (e), and the heat-resistant structural member 8 is impregnated with molten metal silicon in a vacuum and subjected to silicon carbide (C / SiC) treatment to obtain a C / SiC molded body 9. Finally, in the process of FIG. 1 (e), detailed dimensional finishing is performed on the heat-resistant structural member C / SiC molded body 9 made of a matrix including carbon fibers 1 and 2 and a small amount of carbon mainly composed of SiC and silicon. By applying, the heat-resistant structural member 10 of a C / SiC composite material is obtained.

なお、本実施の形態1において、出発原材料としてピッチ系炭素繊維の短繊維1とPAN系炭素繊維の短繊維2とを混ぜる理由は、ピッチ系炭素繊維はシリコンと反応し難いが、PAN系炭素繊維はピッチ系炭素繊維よりシリコンと反応し易いので、この反応性の差を利用して炭素繊維部分もSiC化反応させてSiCの生成比率を高めるためである。   In the first embodiment, pitch carbon fiber short fiber 1 and PAN carbon fiber short fiber 2 are mixed as starting raw materials because pitch carbon fiber hardly reacts with silicon, but PAN carbon. This is because the fiber reacts more easily with silicon than the pitch-based carbon fiber, and this difference in reactivity is used to cause the carbon fiber portion to undergo a SiC reaction to increase the production ratio of SiC.

また、黒鉛粉末を添加する理由は、炭素マトリックスの生成において樹脂だけを用いて炭素化して炭素マトリックスを生成すると、炭素マトリックスが炭素繊維成形体中に凝集し偏在してしまうためである。このように、黒鉛粉末3を添加して炭素マトリクスの凝集による偏在を改善することにより、シリコンとの反応性が改善されてSiCの生成比率を高めることが可能となる。   The reason why graphite powder is added is that if the carbon matrix is produced by carbonization using only a resin in the production of the carbon matrix, the carbon matrix is aggregated and unevenly distributed in the carbon fiber molded body. Thus, by adding the graphite powder 3 and improving the uneven distribution due to the aggregation of the carbon matrix, the reactivity with silicon is improved, and the production ratio of SiC can be increased.

ピッチ系炭素繊維だけを使用した場合、SiC化を促進さるためには、シリコン含浸温度を高くし、さらに反応時間を長くする必要がある。しかし、シリコン含浸処理は減圧下で行うので、温度を上げたり、処理時間を長くすると、シリコンが気化し易くなり、気化・消失により基材に多量のボイドが発生する。   When only pitch-based carbon fibers are used, it is necessary to increase the silicon impregnation temperature and further increase the reaction time in order to promote SiC conversion. However, since the silicon impregnation treatment is performed under reduced pressure, if the temperature is increased or the treatment time is lengthened, silicon is easily vaporized, and a large amount of voids are generated in the substrate due to vaporization / disappearance.

このボイドは、強度低下の原因となり、好ましくない。また、シリコンが気化されると、処理設備内部に多くのシリコンが付着したり、シリコンとの反応によって設備内部の劣化、排気ラインへのシリコン蒸気の引き込み等の影響がある。それ故、高温での含浸処理や長時間処理は実際上困難である。   This void is not preferable because it causes a decrease in strength. In addition, when silicon is vaporized, a large amount of silicon adheres to the inside of the processing equipment, and there is an influence such as deterioration inside the equipment due to reaction with silicon and drawing of silicon vapor into the exhaust line. Therefore, impregnation treatment at high temperature and long-time treatment are practically difficult.

一方、PAN系炭素繊維だけを使用して作成した場合、容易に脆化し、所望の材料強度を得ることができない。   On the other hand, when it is made using only PAN-based carbon fibers, it easily becomes brittle and a desired material strength cannot be obtained.

さらに、ピッチ系炭素繊維及びPAN系炭素繊維のみを使用し、黒鉛粉末を使用しない場合、粉末樹脂の使用量を多くする必要があり、炭素化により生成した炭素マトリックスが凝集するためにSiC化され難い。この条件でSiC化を促進させるためには、シリコン含浸温度を高くし反応時間を長くする必要があり好ましくない。   Furthermore, when only pitch-based carbon fibers and PAN-based carbon fibers are used and graphite powder is not used, it is necessary to increase the amount of powder resin used, and the carbon matrix produced by carbonization is agglomerated to form SiC. hard. In order to promote the formation of SiC under these conditions, it is necessary to increase the silicon impregnation temperature and extend the reaction time, which is not preferable.

以上のように、この実施の形態1によれば、耐熱構造部材に用いられるC/SiC複合材料の製造出発原材料としての炭素繊維基材の成形プロセスにおいて、ピッチ系とPAN系の2種の短炭素繊維1,2と黒鉛粉末3と粉末樹脂4とを混合し成形した炭素繊維成形体6を、さらに炭素化したC/C成形体7を得ることを特徴とする。このような原材料の使用により、C/SiC複合材料において、高強度、高剛性、などの優れた特性が得られる効果がある。これにより、汎用性の高い高性能な複合材料の耐熱構造部材が製造可能になる。   As described above, according to the first embodiment, in the forming process of the carbon fiber base material as the starting raw material for the production of the C / SiC composite material used for the heat-resistant structural member, two short types of pitch type and PAN type are used. The carbon fiber molded body 6 obtained by mixing and molding the carbon fibers 1 and 2, the graphite powder 3, and the powder resin 4 is further carbonized to obtain a C / C molded body 7. By using such raw materials, there is an effect that excellent properties such as high strength and high rigidity can be obtained in the C / SiC composite material. As a result, a high-performance composite material heat-resistant structural member having high versatility can be manufactured.

実施の形態2.
本実施の形態2は、上記実施の形態1で説明した複合材料の耐熱構造部材において、炭素繊維基材の構成要素として用いるピッチ系炭素繊維の平均繊維長を1mm以下とし、PAN系炭素繊維の平均繊維長を0.5mm以下、黒鉛粉末の粒度を100μm以下と規定したことを特徴とするものである。
Embodiment 2. FIG.
In the heat resistant structural member of the composite material described in the first embodiment, the second embodiment has an average fiber length of pitch-based carbon fibers used as a component of the carbon fiber base material of 1 mm or less, and the PAN-based carbon fiber. The average fiber length is defined as 0.5 mm or less, and the particle size of the graphite powder is defined as 100 μm or less.

ピッチ系炭素繊維の平均繊維長が1mmを超えるか、又はPAN系炭素繊維の平均繊維長が0.5mmを超え、さらに黒鉛粉末の粒径が100μmを超える場合、C/SiC成形体において、炭素繊維の均一な分散が得られにくくなり、等方性の材料物性が得られない場合があるという問題が生じる。   When the average fiber length of the pitch-based carbon fiber exceeds 1 mm, or the average fiber length of the PAN-based carbon fiber exceeds 0.5 mm and the particle size of the graphite powder exceeds 100 μm, There is a problem that uniform dispersion of fibers is difficult to obtain, and isotropic material properties may not be obtained.

そこで、本実施の形態2では、炭素繊維基材の構成要素として用いるピッチ系炭素繊維の平均繊維長を1mm以下、PAN系炭素繊維の平均繊維長を0.5mm以下、黒鉛粉末の粒径を100μm以下と規定する。これにより、上記基材において炭素繊維が均質に分散するようになり、炭化ケイ素化工程でシリコンとPAN系炭素繊維との反応が、好ましい程度に促進され、C/SiC成形体におけるSiC比率が適度に増大するとともに、SiC組織を均一に分散させる効果がある。その結果、C/SiC成形体は、異方性の物性を示さず、等方性の物性になり、機械的強度・剛性が向上する。   Therefore, in the second embodiment, the average fiber length of the pitch-based carbon fibers used as the constituent elements of the carbon fiber substrate is 1 mm or less, the average fiber length of the PAN-based carbon fibers is 0.5 mm or less, and the particle diameter of the graphite powder is It is defined as 100 μm or less. As a result, the carbon fibers are uniformly dispersed in the base material, the reaction between silicon and the PAN-based carbon fibers is promoted to a preferable level in the silicon carbide step, and the SiC ratio in the C / SiC molded body is moderate. And the effect of uniformly dispersing the SiC structure. As a result, the C / SiC molded article does not exhibit anisotropic physical properties, has isotropic physical properties, and improves mechanical strength and rigidity.

実施の形態3.
本実施の形態3では、上記実施の形態1又は上記実施の形態2において、炭素繊維基材における炭素繊維の体積含有率を15%以上40%以下とし、さらに炭素繊維基材における空隙率を30%〜40%と規定したものである。
Embodiment 3 FIG.
In the present third embodiment, the volume content of the carbon fiber in the carbon fiber substrate is 15% or more and 40% or less in the first embodiment or the second embodiment, and the porosity in the carbon fiber substrate is 30. % To 40%.

つまり、本実施の形態3は、耐熱構造部材として実用可能な諸特性を得るために、炭素繊維の体積含有率を上記範囲内とするものである。炭素繊維基材におけるピッチ系及びPAN系の2種類の炭素繊維による総計体積含有率が15%未満であると、シリコン含浸前のC/C基材が、マトリックスと炭素繊維との分散性及び含有量が不十分となる。このため、金属シリコン含浸によるSiC反応が不十分となり、多くの未反応シリコンが内在してしまい、さらに反応後の炭素繊維含有量が少ないものとなってしまう。   That is, in the third embodiment, the volume content of the carbon fiber is within the above range in order to obtain various characteristics that are practical as a heat-resistant structural member. When the total volume content of the two types of carbon fibers of pitch and PAN in the carbon fiber substrate is less than 15%, the C / C substrate before the silicon impregnation has the dispersibility and inclusion of the matrix and the carbon fibers. The amount is insufficient. For this reason, SiC reaction by metal silicon impregnation becomes inadequate, a lot of unreacted silicon is inherent, and the carbon fiber content after reaction becomes small.

その結果、十分な機械的強度、剛性が得られなかったり、熱膨張係数が大きくなるという問題が生じる場合がある。また、炭素繊維の体積含有率が40%を超える場合は、繊維を均質分散させるのが困難になるため、物性に異方性が生じてしまい、シリコン含浸がしにくいという問題がある。   As a result, there may be a problem that sufficient mechanical strength and rigidity cannot be obtained or the thermal expansion coefficient becomes large. Further, when the volume content of the carbon fiber exceeds 40%, it becomes difficult to uniformly disperse the fiber, so that anisotropy occurs in the physical properties and there is a problem that silicon impregnation is difficult.

そこで、本実施の形態3では、炭素繊維基材における炭素繊維の体積含有率を上述のような適切な範囲に規定することにより、最終製品としてのC/SiC複合材料の耐熱構造部材において、等方性の物性を有し、曲げ強度、破壊靭性値などにおいて従来より優れた特性が得られ、実用に適した耐熱構造部材を得ることができる。特に、優れた機械的強度、剛性が得られる効果がある。   Therefore, in Embodiment 3, by defining the volume content of carbon fiber in the carbon fiber base material within the appropriate range as described above, in the heat-resistant structural member of the C / SiC composite material as the final product, etc. It has isotropic physical properties, and superior characteristics in terms of bending strength, fracture toughness and the like can be obtained, and a heat-resistant structural member suitable for practical use can be obtained. In particular, there is an effect of obtaining excellent mechanical strength and rigidity.

以下に、本発明の実施例について説明する。
実施例1.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Examples of the present invention will be described below.
Example 1.
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で56:117:99:12.4の比率で混合し、V型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移しプレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。この成形体に含まれる炭素繊維の体積含有率は約31.5%であり、黒鉛粉末の体積含有率は約2%であった。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powder resin are mixed at a weight ratio of 56: 117: 99: 12.4, and mixed using a V-type mixer to form a uniform mixture. I let you. Thereafter, the mixture was transferred to a mold and pressed with a press to be molded into a certain shape. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin. The volume content of the carbon fibers contained in this molded body was about 31.5%, and the volume content of the graphite powder was about 2%.

次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。このC/Cの成形体の空隙率は約38.5%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱し、金属シリコンを熔融させて含浸することによりC/SiC化した。   Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of this C / C molded body was about 38.5%. Subsequently, the formed C / C shaped body was heated to 1700 ° C. in a vacuum, and metallic silicon was melted and impregnated to form C / SiC.

こうして得られた、C/SiC複合材料成形体を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、C/SiC複合材料成形体のボイドはシリコン含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。   When the C / SiC composite material molded body thus obtained was analyzed, the matrix carbon and the PAN-based carbon fiber almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber almost reacted. Not confirmed. Moreover, the void of the C / SiC composite material molded body was almost completely filled with silicon impregnation, and the void was 1% or less.

この複合材料成形体の特性を評価したところ、図2に表で示すような値となり、従来のC/SiC複合材料より、約3倍の強度、1.5倍以上のヤング率、1.5倍以上の破壊靭性値になり、さらに物性の異方性が解消されて、等方性の物性であった。   When the characteristics of the composite material molded body were evaluated, the values shown in the table of FIG. 2 were obtained. The strength was about 3 times that of the conventional C / SiC composite material, the Young's modulus was 1.5 times higher, The fracture toughness value was doubled or more, and the anisotropy of the physical properties was eliminated, resulting in isotropic physical properties.

実施例2.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Example 2
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で61.9:119.2:106:31の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powder resin are mixed at a weight ratio of 61.9: 119.2: 106: 31 using a V-type mixer so as to form a uniform mixture. It was. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約33%であり、黒鉛粉末の体積含有率は約5%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。このC/Cの成形体の空隙率は、約32%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱し、金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 33%, and the volume content of the graphite powder was about 5%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of this C / C molded body was about 32%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum, and metallic silicon was melted and impregnated to form C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、C/SiC複合材料成形体のボイドは、シリコン含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。   When the C / SiC composite material molded body thus obtained was analyzed, the matrix carbon and the PAN-based carbon fiber almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber almost reacted. Not confirmed. Moreover, the void of the C / SiC composite material molded body was almost completely filled with silicon impregnation, and the void was 1% or less.

この複合材料成形体の特性を評価したところ、図2に表で示すような値となり、強度、ヤング率、破壊靭性値が従来のC/SiC複合材料より改善され、物性が等方性になっていることが確認できた。   When the properties of this composite material compact were evaluated, the values shown in the table in FIG. 2 were obtained, and the strength, Young's modulus, and fracture toughness values were improved from the conventional C / SiC composite material, and the physical properties became isotropic. It was confirmed that

実施例3.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Example 3
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で108.9:55.7:97.2:24.7の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powdered resin are uniformly mixed using a V-type mixer at a weight ratio of 108.9: 55.7: 97.2: 24.7. Were mixed as such. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は約4%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約38.5%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was about 4%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C compact was about 38.5%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、C/SiC複合材料成形体のボイドは、シリコン含浸によってほぼ完全に埋まっており、ボイドは1%以下であった。   When the C / SiC composite material molded body thus obtained was analyzed, the matrix carbon and the PAN-based carbon fiber almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber almost reacted. Not confirmed. Moreover, the void of the C / SiC composite material molded body was almost completely filled with silicon impregnation, and the void was 1% or less.

この複合材料成形体の特性を評価したところ、図2に表で示すような値となり、強度、ヤング率、破壊靭性値が従来のC/SiC複合材料より改善され、物性が等方性になっていることが確認できた。   When the properties of this composite material compact were evaluated, the values shown in the table in FIG. 2 were obtained, and the strength, Young's modulus, and fracture toughness values were improved from the conventional C / SiC composite material, and the physical properties became isotropic. It was confirmed that

比較例1.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 1
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で61.9:103.7:6.2:144.9の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powdered resin are uniformly mixed using a V-type mixer at a weight ratio of 61.9: 103.7: 6.2: 144.9. Were mixed as such. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は約1%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約28%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was about 1%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C molded body was about 28%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、C/SiC成形体にシリコン含浸によるSiC化で発生したクラックが認められた。また、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。   When the C / SiC composite material molded body thus obtained was analyzed, cracks were observed in the C / SiC molded body due to the formation of SiC by silicon impregnation. Further, it was confirmed that the matrix carbon and the PAN-based carbon fiber almost changed to SiC by reacting with the impregnated silicon, but the pitch-based carbon fiber hardly reacted.

比較例1のように、炭素繊維強化炭素基材の空隙率を28%と小さくすると、上記結果のように、C/SiC成形体でSiC化反応による体積膨張でC/SiC成形体にクラックが発生する。このため、炭素繊維強化炭素基材の空隙率を小さくし過ぎることは、好ましくないことが明らかになった。   When the porosity of the carbon fiber reinforced carbon substrate is reduced to 28% as in Comparative Example 1, the C / SiC molded body has cracks due to volume expansion due to the SiC conversion reaction as in the above results. appear. For this reason, it became clear that it is not preferable to make the porosity of the carbon fiber reinforced carbon substrate too small.

比較例2.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 2
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で61.9:103.7:30.9:81.3の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fibers, PAN-based carbon fibers, graphite powder, and powder resin are mixed in a uniform ratio using a V-type mixer in a weight ratio of 61.9: 103.7: 30.9: 81.3. Were mixed as such. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は約5%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約42%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was about 5%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C molded body was about 42%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、マトリックス炭素とPAN系炭素繊維は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないことが確認された。また、C/SiC複合材料成形体には反応し切れなかったSiが多く存在していることが確認された。   When the C / SiC composite material molded body thus obtained was analyzed, the matrix carbon and the PAN-based carbon fiber almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber almost reacted. Not confirmed. Moreover, it was confirmed that there was a lot of Si that could not be reacted in the C / SiC composite material molded body.

比較例2のように炭素繊維強化炭素基材の空隙率を42%と大きくした場合は、上記結果のように、C/SiC成形体でSiC化反応が不十分となり、未反応のシリコンが多く存在する為、強度、剛性が低くなり好ましくないことが明らかになった。   When the porosity of the carbon fiber reinforced carbon substrate is increased to 42% as in Comparative Example 2, the SiC conversion reaction becomes insufficient in the C / SiC molded body as in the above results, and there is a large amount of unreacted silicon. Since it exists, it became clear that strength and rigidity were lowered, which was not preferable.

比較例3.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 3
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で61.9:103.7:37.1:84.8の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powder resin are in a uniform mixture using a V-type mixer at a weight ratio of 61.9: 103.7: 37.1: 84.8. Were mixed as such. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は約6%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約40%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was about 6%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C molded body was about 40%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、C/SiC成形体にシリコン含浸によるSiC化で発生したクラックが認められた。   When the C / SiC composite material molded body thus obtained was analyzed, cracks were observed in the C / SiC molded body due to the formation of SiC by silicon impregnation.

比較例3のように炭素繊維強化炭素基材の空隙率を40%と大きくしても、黒鉛粉末を6%と多くした場合は、上記結果のように、C/SiC成形体でSiC化反応による体積膨張でC/SiC成形体にクラックが発生する。このため、炭素粉末の配合比率を多くし過ぎることは、好ましくないことが明らかになった。   Even if the porosity of the carbon fiber reinforced carbon substrate is increased to 40% as in Comparative Example 3, if the graphite powder is increased to 6%, the SiC conversion reaction is performed on the C / SiC molded body as shown above. Cracks occur in the C / SiC molded body due to the volume expansion caused by the above. For this reason, it became clear that it is not preferable to increase the blending ratio of the carbon powder.

比較例4.
ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用い、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 4
Pitch-based carbon fiber having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) and PAN-based carbon fiber having an average fiber length of 130 μm (MLD-300 manufactured by Toray Industries, Inc.) Of milled fiber). Further, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

ピッチ系炭素繊維、PAN系炭素繊維、黒鉛粉末及び粉末樹脂を重量比でそれぞれ61.9:103.7:0:141.4の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   Pitch-based carbon fiber, PAN-based carbon fiber, graphite powder, and powder resin are each in a weight ratio of 61.9: 103.7: 0: 141.4 so that a uniform mixture is obtained using a V-type mixer. Mixed. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は0%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約30%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was 0%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C compact was about 30%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、マトリックス炭素の一部がシリコンと反応せずに残っており、SiC化反応が不十分であった。   When the C / SiC composite material molded body thus obtained was analyzed, part of the matrix carbon remained without reacting with silicon, and the SiC conversion reaction was insufficient.

比較例4のように炭素繊維強化炭素基材の空隙率を30%とし、黒鉛粉末の添加をしなかった場合は炭素マトリックスが多くなり、上記結果のようにC/SiC成形体で未反応のマトリックス炭素が発生し、SiC化反応が不十分となる。このため、炭素繊維強化炭素基材の空隙率を小さくし、黒鉛粉末を添加しないのは、好ましくないことが明らかになった。   When the porosity of the carbon fiber reinforced carbon substrate is set to 30% as in Comparative Example 4 and the graphite powder is not added, the carbon matrix increases, and the C / SiC molded body is unreacted as in the above results. Matrix carbon is generated and the SiC conversion reaction becomes insufficient. For this reason, it became clear that it is not preferable to reduce the porosity of the carbon fiber reinforced carbon base material and not add graphite powder.

比較例5.
ピッチ系炭素繊維を用いず、PAN系炭素繊維として平均繊維長さが130μmのもの(東レ(株)製MLD−300のミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 5
Pitch-based carbon fibers were not used, and PAN-based carbon fibers having an average fiber length of 130 μm (MLD-300 milled fiber manufactured by Toray Industries, Inc.) were used. In addition, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらPAN系炭素繊維、黒鉛粉末、粉末樹脂を重量比で155.5:6.2:120.2の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These PAN-based carbon fibers, graphite powder, and powder resin were mixed at a weight ratio of 155.5: 6.2: 120.2 using a V-type mixer so as to form a uniform mixture. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は1%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約35%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was 1%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C compact was about 35%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、C/SiC成形体にシリコン含浸によるSiC化で発生したクラックが認められた。   When the C / SiC composite material molded body thus obtained was analyzed, cracks were observed in the C / SiC molded body due to the formation of SiC by silicon impregnation.

比較例5のように、炭素繊維強化炭素基材の炭素繊維にピッチ系炭素繊維を用いず、PAN系炭素繊維だけを用いた場合、上記結果のようにC/SiC成形体でSiC化反応による体積膨張でC/SiC成形体にクラックが発生する。このため、PAN系炭素繊維だけを用いることは、好ましくないことが明らかになった。   As in Comparative Example 5, when the carbon fiber of the carbon fiber reinforced carbon base material is not pitch-based carbon fiber but only PAN-based carbon fiber is used, the C / SiC molded body is subjected to SiC conversion reaction as shown above. Cracks occur in the C / SiC molded body due to volume expansion. For this reason, it became clear that it is not preferable to use only PAN-based carbon fibers.

比較例6.
PAN系炭素繊維を用いず、ピッチ系炭素繊維として平均繊維長さが200μmのもの(三菱化学(株)製K7351Mのミルドファイバー)を用いた。また、黒鉛粉末には和光純薬工業(株)製の黒鉛粉末を用い、さらに粉末樹脂は群栄化学(株)製PG652を使用した。
Comparative Example 6
PAN-based carbon fibers were not used, and pitch-based carbon fibers having an average fiber length of 200 μm (K7351M milled fiber manufactured by Mitsubishi Chemical Corporation) were used. Further, graphite powder manufactured by Wako Pure Chemical Industries, Ltd. was used as the graphite powder, and PG652 manufactured by Gunei Chemical Co., Ltd. was used as the powder resin.

これらピッチ系炭素繊維、黒鉛粉末、粉末樹脂を重量比で185.6:24.7:109.6の比率でV型ミキサーを用いて均一な混合体になるように混合させた。この後、当該混合体を金型に移し、プレスで加圧して一定の形状に成型した。これにより、炭素繊維、黒鉛粉末及び粉末樹脂からなる炭素繊維成形体を得た。   These pitch-based carbon fibers, graphite powder, and powder resin were mixed at a weight ratio of 185.6: 24.7: 109.6 using a V-type mixer so as to form a uniform mixture. Thereafter, the mixture was transferred to a mold and pressed into a fixed shape by pressing. This obtained the carbon fiber molded object which consists of carbon fiber, graphite powder, and powder resin.

この成形体に含まれる炭素繊維の体積含有率は約30%であり、黒鉛粉末の体積含有率は4%であった。次に、この成形体を不活性雰囲気(真空中或いは窒素やアルゴンなどの不活性ガス)中で約800℃まで昇温することにより炭素化してC/C化した。なお、このC/Cの成形体の空隙率は、約35%であった。続いて、作成したC/Cの成形体を真空中で1700℃に加熱することにより金属シリコンを熔融させて含浸しC/SiC化した。   The volume content of the carbon fibers contained in this molded body was about 30%, and the volume content of the graphite powder was 4%. Next, this molded body was carbonized to C / C by raising the temperature to about 800 ° C. in an inert atmosphere (in a vacuum or an inert gas such as nitrogen or argon). The porosity of the C / C compact was about 35%. Subsequently, the formed C / C molded body was heated to 1700 ° C. in a vacuum to melt and impregnate the metal silicon to obtain C / SiC.

こうして得られたC/SiC複合材料成形体を解析したところ、マトリックス炭素と黒鉛粉末は、含浸したシリコンと殆ど反応してSiCに変化していたが、ピッチ系炭素繊維は殆ど反応していないで残っており、さらに炭素繊維が成形面内に配向していることが確認された。   When the C / SiC composite material molded body thus obtained was analyzed, the matrix carbon and the graphite powder almost reacted with the impregnated silicon and changed to SiC, but the pitch-based carbon fiber hardly reacted. It was confirmed that the carbon fibers were oriented in the molding surface.

比較例6のように、炭素繊維強化炭素基材の炭素繊維にPAN系炭素繊維を用いず、ピッチ系炭素繊維だけを用いた場合は、上記結果のように炭素繊維が配向する。このため、C/SiC成形体の物性に異方性が生じるため、好ましくない。   As in Comparative Example 6, when the PAN-based carbon fiber is not used as the carbon fiber of the carbon fiber-reinforced carbon base material and only the pitch-based carbon fiber is used, the carbon fiber is oriented as in the above result. For this reason, since anisotropy arises in the physical property of a C / SiC molded object, it is not preferable.

この発明係る炭素繊維強化炭化ケイ素複合材料は、焼結SiC並みの強度、剛性を有し、かつ異方性のない材料物性を有することから、宇宙用、地上用の大型望遠鏡や高温用構造部材に適用可能である。   The carbon fiber reinforced silicon carbide composite material according to the present invention has the same strength and rigidity as sintered SiC, and has material properties without anisotropy. It is applicable to.

この発明の実施の形態1による繊維強化炭化ケイ素複合材料の製造方法を示す図である。It is a figure which shows the manufacturing method of the fiber reinforced silicon carbide composite material by Embodiment 1 of this invention. この発明の実施例、従来のC/SiC及び比較例の材料物性を示す表である。It is a table | surface which shows the material physical property of the Example of this invention, conventional C / SiC, and a comparative example.

符号の説明Explanation of symbols

1 ピッチ系炭素繊維の短繊維、2 PAN系炭素繊維の短繊維、3 黒鉛粉末、4 粉末樹脂、5 混合体、6 炭素繊維成形体(炭素繊維基材)、7 C/C成形体、8 耐熱構造部材、9 C/SiC成形体、10 C/SiC複合材料の耐熱構造部材。


















1 short fiber of pitch-based carbon fiber, 2 short fiber of PAN-based carbon fiber, 3 graphite powder, 4 powder resin, 5 mixture, 6 carbon fiber molded body (carbon fiber base material), 7 C / C molded body, 8 Heat-resistant structural member, 9 C / SiC molded body, 10 C / SiC composite material heat-resistant structural member.


















Claims (5)

シリコンとの反応性が異なる複数種類の炭素繊維と黒鉛粉末とを含有し、前記含有した炭素繊維の一部を炭化ケイ素化した繊維強化炭化ケイ素複合材料。   A fiber-reinforced silicon carbide composite material containing a plurality of types of carbon fibers having different reactivity with silicon and graphite powder, wherein a part of the carbon fibers contained is siliconized. 炭素繊維は、ピッチ系炭素繊維及びPAN系炭素繊維であることを特徴とする請求項1記載の繊維強化炭化ケイ素複合材料。   The fiber-reinforced silicon carbide composite material according to claim 1, wherein the carbon fibers are pitch-based carbon fibers and PAN-based carbon fibers. ピッチ系炭素繊維の平均繊維長が1mm以下、PAN系炭素繊維の平均繊維長が0.5mm以下、黒鉛粉末の粒度が100μm以下であることを特徴とする請求項2記載の繊維強化炭化ケイ素複合材料。   The fiber-reinforced silicon carbide composite according to claim 2, wherein the average fiber length of the pitch-based carbon fibers is 1 mm or less, the average fiber length of the PAN-based carbon fibers is 0.5 mm or less, and the particle size of the graphite powder is 100 µm or less. material. シリコンとの反応性が異なる複数種の炭素繊維、黒鉛粉末及び粉末樹脂を混合して加熱し加圧成形を施して炭素繊維基材を形成する第1工程と、加熱処理にて前記炭素繊維基材を炭化して炭素繊維強化炭素基材を形成する第2工程と、シリコンの溶融含浸により前記炭素繊維強化炭素基材を炭化ケイ素化して炭素繊維強化炭化ケイ素基材を形成する第3工程とを備えた繊維強化炭化ケイ素複合材料の製造方法。   A first step of mixing a plurality of types of carbon fibers having different reactivity with silicon, graphite powder and powdered resin, heating and pressure forming to form a carbon fiber substrate, and the carbon fiber base by heat treatment A second step of carbonizing the material to form a carbon fiber reinforced carbon base material; and a third step of forming the carbon fiber reinforced silicon carbide base material by siliconizing the carbon fiber reinforced carbon base material by melt impregnation of silicon. A method for producing a fiber-reinforced silicon carbide composite material comprising: 第1工程では、炭素繊維としてピッチ系炭素繊維及びPAN系炭素繊維を含み、炭素繊維体積含有率が15%〜40%、黒鉛粉末の体積含有率が5%以下、空隙率が30%〜40%の炭素繊維基材を形成することを特徴とする請求項4記載の繊維強化炭化ケイ素複合材料の製造方法。



























In the first step, pitch-based carbon fibers and PAN-based carbon fibers are included as carbon fibers, the carbon fiber volume content is 15% to 40%, the volume content of the graphite powder is 5% or less, and the porosity is 30% to 40%. % Carbon fiber base material is formed, The manufacturing method of the fiber reinforced silicon carbide composite material of Claim 4 characterized by the above-mentioned.



























JP2005112348A 2005-04-08 2005-04-08 Fiber-reinforced silicon carbide composite material and method for producing the same Active JP4647370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112348A JP4647370B2 (en) 2005-04-08 2005-04-08 Fiber-reinforced silicon carbide composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112348A JP4647370B2 (en) 2005-04-08 2005-04-08 Fiber-reinforced silicon carbide composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006290670A true JP2006290670A (en) 2006-10-26
JP4647370B2 JP4647370B2 (en) 2011-03-09

Family

ID=37411649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112348A Active JP4647370B2 (en) 2005-04-08 2005-04-08 Fiber-reinforced silicon carbide composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4647370B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274889A (en) * 2008-05-13 2009-11-26 Mitsubishi Electric Corp Carbon fiber-reinforced silicon carbide composite material, and method for producing the same
US7794826B2 (en) 2005-07-05 2010-09-14 Mitsubishi Plastics, Inc. Carbon-fiber-reinforced SiC composite material and slide member
JP2011236077A (en) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Method for producing carbon fiber-reinforced carbon composite and method for producing carbon fiber-containing silicon carbide composite
JP2012153575A (en) * 2011-01-27 2012-08-16 Covalent Materials Corp Carbon fiber-reinforced silicon carbide-based ceramic and method for producing the same
JP2013534502A (en) * 2010-06-25 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア Member manufacturing method and member manufactured by the above method
JP2014518832A (en) * 2011-04-20 2014-08-07 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing ceramic member combined from a plurality of preforms
JP2014224017A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Wear-resistant member
JP2014237569A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 PART COMPOSED OF C/SiC AND METHOD OF PRODUCING PART COMPOSED OF C/SiC
JP2015195702A (en) * 2014-03-27 2015-11-05 三菱電機株式会社 Rotor shaft, manufacturing method of the same, and galvano-scanner using the same
CN105367102A (en) * 2014-08-22 2016-03-02 三菱电机株式会社 Manufacturing method of carbon fiber strengthened silicon carbide moulded body
JP2016044118A (en) * 2014-08-22 2016-04-04 三菱電機株式会社 Method for producing carbon fiber reinforced silicon carbide molded article
WO2018062051A1 (en) * 2016-09-30 2018-04-05 帝人株式会社 Silicon carbide composite sintered body and method for manufacturing same
JP2018188323A (en) * 2017-04-28 2018-11-29 クアーズテック株式会社 Carbon short fiber reinforced composite material and manufacturing method therefor
JP2018199604A (en) * 2017-05-29 2018-12-20 イビデン株式会社 SiC FIBER REINFORCED CERAMIC COMPOSITE AND MANUFACTURING METHOD THEREOF
CN113185327A (en) * 2021-04-28 2021-07-30 大连理工大学 Silicon carbide whisker obtained on surface of carbon fiber reinforced composite material rapidly and efficiently and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976781A (en) * 2012-12-07 2013-03-20 辽宁天泽产业集团机械制造有限公司 Carbon fiber reinforced type silicon carbide based mechanical seal material, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154663A (en) * 1990-10-16 1992-05-27 Tokai Carbon Co Ltd Production of carbon fiber reinforced carbon composite material
JP2003344620A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Reflective mirror and its manufacturing method
JP2004307284A (en) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp Method of manufacturing precursor for carbon fiber reinforced silicon carbide composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154663A (en) * 1990-10-16 1992-05-27 Tokai Carbon Co Ltd Production of carbon fiber reinforced carbon composite material
JP2003344620A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Reflective mirror and its manufacturing method
JP2004307284A (en) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp Method of manufacturing precursor for carbon fiber reinforced silicon carbide composite material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794826B2 (en) 2005-07-05 2010-09-14 Mitsubishi Plastics, Inc. Carbon-fiber-reinforced SiC composite material and slide member
JP2009274889A (en) * 2008-05-13 2009-11-26 Mitsubishi Electric Corp Carbon fiber-reinforced silicon carbide composite material, and method for producing the same
JP2011236077A (en) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Method for producing carbon fiber-reinforced carbon composite and method for producing carbon fiber-containing silicon carbide composite
JP2013534502A (en) * 2010-06-25 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア Member manufacturing method and member manufactured by the above method
JP2012153575A (en) * 2011-01-27 2012-08-16 Covalent Materials Corp Carbon fiber-reinforced silicon carbide-based ceramic and method for producing the same
JP2014518832A (en) * 2011-04-20 2014-08-07 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing ceramic member combined from a plurality of preforms
JP2014224017A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Wear-resistant member
JP2014237569A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 PART COMPOSED OF C/SiC AND METHOD OF PRODUCING PART COMPOSED OF C/SiC
JP2015195702A (en) * 2014-03-27 2015-11-05 三菱電機株式会社 Rotor shaft, manufacturing method of the same, and galvano-scanner using the same
CN105367102A (en) * 2014-08-22 2016-03-02 三菱电机株式会社 Manufacturing method of carbon fiber strengthened silicon carbide moulded body
JP2016044118A (en) * 2014-08-22 2016-04-04 三菱電機株式会社 Method for producing carbon fiber reinforced silicon carbide molded article
KR101768766B1 (en) * 2014-08-22 2017-08-17 미쓰비시덴키 가부시키가이샤 Production method of carbon fiber reinforced silicon carbide molding body
WO2018062051A1 (en) * 2016-09-30 2018-04-05 帝人株式会社 Silicon carbide composite sintered body and method for manufacturing same
JPWO2018062051A1 (en) * 2016-09-30 2019-02-14 帝人株式会社 Silicon carbide composite sintered body and method for producing the same
JP2018188323A (en) * 2017-04-28 2018-11-29 クアーズテック株式会社 Carbon short fiber reinforced composite material and manufacturing method therefor
US10830301B2 (en) 2017-04-28 2020-11-10 Coorstek Kk Short carbon fiber-reinforced composite material and method for producing same
JP2018199604A (en) * 2017-05-29 2018-12-20 イビデン株式会社 SiC FIBER REINFORCED CERAMIC COMPOSITE AND MANUFACTURING METHOD THEREOF
CN113185327A (en) * 2021-04-28 2021-07-30 大连理工大学 Silicon carbide whisker obtained on surface of carbon fiber reinforced composite material rapidly and efficiently and preparation method thereof

Also Published As

Publication number Publication date
JP4647370B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
KR101241775B1 (en) Method for preparing high density fiber reinforced silicon carbide composite materials
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
JP5093060B2 (en) Carbon fiber reinforced silicon carbide composite and method for producing the same
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
JP5944618B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
US7364794B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JP2735151B2 (en) Method for producing fiber-reinforced silicon carbide composite ceramics molded body
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
CN113666748A (en) Preparation method of graphite material and graphite material
KR100689636B1 (en) Fabrication of carbon fiber-silicon carbide composites by melt infiltration process of metal silicon
JP2017001912A (en) Method for producing silicon carbide based composite
JP2879675B1 (en) Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics
Zhu et al. Fabricating 2.5 D SiCf/SiC composite using polycarbosilane/SiC/Al mixture for matrix derivation
JP4475045B2 (en) Reflector and manufacturing method thereof
JP6070332B2 (en) Method for producing carbon fiber reinforced composite material
JPH11292647A (en) Carbon fiber-reinforced material and its production
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
JPH10167832A (en) Production of filament reinforced silicon carbide composition material
JPH02271963A (en) Production of thermal oxidation-resistant carbon fiber-reinforced carbon composite material
JPH02129071A (en) Production of silicon carbide ceramics
JPH0648833A (en) Short carbon fiber reinforced oxidation resistant carbon composite material and its production
JPH06191958A (en) Fiber-reinforced ceramic composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4647370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250