JP6070332B2 - Method for producing carbon fiber reinforced composite material - Google Patents

Method for producing carbon fiber reinforced composite material Download PDF

Info

Publication number
JP6070332B2
JP6070332B2 JP2013062035A JP2013062035A JP6070332B2 JP 6070332 B2 JP6070332 B2 JP 6070332B2 JP 2013062035 A JP2013062035 A JP 2013062035A JP 2013062035 A JP2013062035 A JP 2013062035A JP 6070332 B2 JP6070332 B2 JP 6070332B2
Authority
JP
Japan
Prior art keywords
carbide
carbon fiber
carbon
silicon
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013062035A
Other languages
Japanese (ja)
Other versions
JP2014185066A (en
Inventor
佐藤 裕
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013062035A priority Critical patent/JP6070332B2/en
Publication of JP2014185066A publication Critical patent/JP2014185066A/en
Application granted granted Critical
Publication of JP6070332B2 publication Critical patent/JP6070332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素繊維強化複合材料の製造方法及び炭素繊維強化複合材料に関する。   The present invention relates to a method for producing a carbon fiber reinforced composite material and a carbon fiber reinforced composite material.

耐摩耗性材料として、アルミナ、炭化ケイ素、窒化ケイ素などの構造用セラミックスが鉄などの金属材料より優れた耐摩耗性を有する。しかしながら、このようなセラミックス材料は、靱性が低く衝撃に弱い欠点がある。セラミックスの靱性を改善し、耐衝撃性を高める材料として繊維強化セラミックスの開発が進められてきた。   As wear-resistant materials, structural ceramics such as alumina, silicon carbide, and silicon nitride have better wear resistance than metal materials such as iron. However, such a ceramic material has a drawback of low toughness and weakness to impact. Development of fiber reinforced ceramics has been promoted as a material for improving the toughness of ceramics and improving impact resistance.

一般的なセラミックスの製造方法である、成形体を焼結する手法では焼結に伴い収縮が起こるが、繊維を複合化した場合、繊維が収縮を妨げるため、緻密化させることが困難であり、割れ等が起こり、健全な焼結体を得ることが困難である。このため、繊維を2次元方向に配向させたホットプレスや繊維のプリフォームにCVIによりセラミックスを浸透させる方法などが開発されてきたが、得られる形状や厚みが制限されてしまい、プロセス自体が高コストであるなどの問題があった。また、繊維には、炭化ケイ素、アルミナなどのセラミックス繊維が用いた場合、繊維自体が高価であるなどの問題があった。   In the method of sintering a molded body, which is a general ceramic manufacturing method, shrinkage occurs with sintering, but when fibers are combined, the fibers prevent shrinkage, and it is difficult to densify, Cracks and the like occur and it is difficult to obtain a sound sintered body. For this reason, hot presses in which fibers are oriented in a two-dimensional direction and methods for infiltrating ceramics into fiber preforms by CVI have been developed. However, the shape and thickness obtained are limited, and the process itself is high. There was a problem such as cost. Further, when ceramic fibers such as silicon carbide and alumina are used for the fibers, there is a problem that the fibers themselves are expensive.

これを解決するためには、安価な繊維を用いて、低コストかつ形状の自由度の高いプロセスで繊維強化複合材料を製造する技術が必要である。炭素繊維は、セラミックス繊維より安価であり、剛性も高く材料の耐衝撃性を高めるために有効である。
また、炭素繊維強化材料として、高い耐摩耗性を得るためには、マトリックスにセラミックスを用いることが有効であり、安価な製造プロセスにより炭素繊維強化セラミックスを得る手法として、反応焼結炭化ケイ素の手法を用いることができる。
このため、炭素繊維とマトリックスとなる炭素からなる成形体にシリコンを溶融含浸させて、炭素とシリコンを反応させることにより、炭化ケイ素を生成させることで、炭素繊維強化炭化ケイ素複合材料を得る手法が特許文献1などで開示されている。
In order to solve this, a technique for manufacturing a fiber-reinforced composite material by using a low-cost fiber and a process with a low cost and a high degree of freedom in shape is necessary. Carbon fiber is cheaper than ceramic fiber, has high rigidity, and is effective for enhancing the impact resistance of the material.
In order to obtain high wear resistance as a carbon fiber reinforced material, it is effective to use ceramics for the matrix, and as a method for obtaining carbon fiber reinforced ceramics by an inexpensive manufacturing process, a reaction sintered silicon carbide method is used. Can be used.
For this reason, there is a technique for obtaining a carbon fiber reinforced silicon carbide composite material by melt-impregnating silicon into a carbon fiber and matrix carbon and reacting carbon and silicon to generate silicon carbide. This is disclosed in Patent Document 1 and the like.

しかし、前記炭素繊維強化炭化ケイ素複合材料を得る手法の技術的課題としては、まず、(1)炭素繊維とシリコンの反応により炭素繊維が脆くなるという問題がある。即ち、高い耐摩耗性と耐衝撃性を得るためには、シリコンを溶融含浸させて、炭素とシリコンを反応させる際、炭素繊維以外のマトリックスとなる炭素分とシリコンを効率良く反応させて炭化ケイ素を生成させることが必要であるが、炭素繊維とシリコンの反応も同時に進むため、繊維が炭化ケイ素となって脆くなり、高い耐衝撃性が得られなくなる等の問題がある。   However, as a technical problem of the method for obtaining the carbon fiber reinforced silicon carbide composite material, first, there is a problem that (1) the carbon fiber becomes brittle due to the reaction between the carbon fiber and silicon. That is, in order to obtain high wear resistance and impact resistance, when silicon is melted and impregnated and carbon and silicon are reacted, carbon that forms a matrix other than carbon fiber and silicon are efficiently reacted to form silicon carbide. However, since the reaction between the carbon fiber and silicon proceeds at the same time, there is a problem that the fiber becomes silicon carbide and becomes brittle, and high impact resistance cannot be obtained.

これに対しては、炭素繊維をグラファイト化された炭素から成る2層以上のシェルにより表面をコーキングすることにより、炭素のケイ素化に際し、シリコンが炭素繊維にまで侵入することを防止する発明の記載がある(特許文献1)。   On the other hand, the description of the invention which prevents the silicon from penetrating into the carbon fiber at the time of siliconization of carbon by coking the surface of the carbon fiber with two or more shells made of graphitized carbon. (Patent Document 1).

次に、(2)炭素繊維とマトリックスとなる炭素が均一に分散し、局所的に組成あるいは密度が偏ることなく均質な材料を作成することが必要である。特に、ディスクブレーキのディスクのような大面積で比較的肉厚という特定の形状においては、組成等が不均一になりやすく強度低下を引き起こす原因となる問題がある。
これに対しては、炭化ケイ素粉と炭素繊維と炭素粉にゲル化能を有する有機物を添加し、得られたスラリーをゲルキャスト成型と加圧又は減圧成型を併用し成型体を作成し、その後、焼成とシリコン含浸により均質緻密で高強度の炭素繊維強化シリコン含浸炭化ケイ素セラミックスを製造する発明の記載がある(特許文献2)。
Next, (2) it is necessary to create a homogeneous material in which carbon fibers and carbon as a matrix are uniformly dispersed and the composition or density is not locally biased. In particular, in a specific shape such as a disc brake disc having a large area and a relatively thick wall, there is a problem that the composition tends to be non-uniform and causes a decrease in strength.
For this, silicon carbide powder, carbon fiber, and carbon powder are added with an organic substance having a gelling ability, and the resulting slurry is used in combination with gel cast molding and pressure or reduced pressure molding to form a molded body. In addition, there is a description of an invention for producing a carbon fiber reinforced silicon-impregnated silicon carbide ceramic that is homogeneous, dense and high strength by firing and silicon impregnation (Patent Document 2).

更に、(3)炭素繊維と熱処理により炭化した炭素からなる成形体にシリコンを溶融・含浸する際に、浸透したシリコンが炭素と接触して反応することで、炭化ケイ素の生成が十分に促進されることが重要である。
マトリックスの炭素を効率良くケイ素と反応させるためには、マトリックスの組織を制御することが重要であり、より微細な部分に溶融ケイ素が浸透する構造にすることが必要である。マトリックスの構造を制御する方法としては、マトリックスに粒子を添加して、マトリックスの構造を制御することが有効と考えられる。
例えば、特許文献2の記載では、成型体の作成に用いられる炭化ケイ素粉の粒径は、サブミクロン(平均粒径で0.8μm程度)である。しかしながら、炭化ケイ素粉の粒径がサブミクロンの場合は、マトリックスの炭素中に微細な粒子が点在しているだけの構造となるため、マトリックスの組織を大きく変えることができないため、マトリックスでの炭素とシリコンの反応を制御することは困難である。
Furthermore, (3) when silicon is melted and impregnated into a molded body made of carbon fiber and carbon carbonized by heat treatment, the infiltrated silicon contacts and reacts with the carbon, thereby sufficiently promoting the formation of silicon carbide. It is very important to.
In order to efficiently react the carbon of the matrix with silicon, it is important to control the structure of the matrix, and it is necessary to have a structure in which molten silicon penetrates into a finer portion. As a method for controlling the matrix structure, it is considered effective to control the matrix structure by adding particles to the matrix.
For example, in the description of Patent Document 2, the particle size of silicon carbide powder used for forming a molded body is submicron (average particle size is about 0.8 μm). However, when the particle size of the silicon carbide powder is submicron, the structure of the matrix is only scattered by fine particles in the carbon of the matrix, so the matrix structure cannot be changed greatly. It is difficult to control the reaction between carbon and silicon.

特許4226100号公報Japanese Patent No. 4226100 特開2010−254541号公報JP 2010-254541 A

炭素繊維強化炭化ケイ素系複合材料において、マトリックスとなる炭素とシリコンの反応を制御して、耐摩耗性、耐衝撃性に優れた材料を得ることは、従来の技術では困難であった。   In a carbon fiber reinforced silicon carbide based composite material, it has been difficult to obtain a material excellent in wear resistance and impact resistance by controlling the reaction between carbon and silicon as a matrix.

本発明の目的は、耐摩耗性、耐衝撃性に優れた炭素繊維強化複合材料の製造方法及び炭素繊維強化複合材料を提供することである。   The objective of this invention is providing the manufacturing method of a carbon fiber reinforced composite material excellent in abrasion resistance and impact resistance, and a carbon fiber reinforced composite material.

本発明の要旨は、以下の通りである。
(1) 原料となる炭素繊維とマトリックス材料を、混合、成し、成体を熱処理した後に、溶融シリコンをマトリックスに含浸させて製造する炭素繊維強化複合材料の製造方法であって、
前記マトリックス材料は、合成樹脂、ピッチ、タールのうちいずれか1種以上と、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化クロム、炭化モリブデン、および炭化タングステンのうちいずれか1種以上の炭化物粉体と、からなり、
前記炭化物粉体は、平均粒径30〜200μmであり、
前記炭化物粉体を、前記マトリックス材料の合計に対し10〜60体積%とし、前記原料となる炭素繊維と前記マトリックス材料を混合、成して、成体を成型する工程と、
前記成体を500〜2000℃に熱処理する工程と、
前記熱処理により得られた成形体を、更に熱処理することにより、前記成形体に溶融シリコンを含浸させる工程を実施することを特徴とする炭素繊維強化複合材料の製造方法。
(2) 前記炭化物粉体が炭化ケイ素粉体であることを特徴とする(1)に記載の炭素繊維強化複合材料の製造方法。
(3) 前記原料となる炭素繊維が繊維束を形成しており、繊維長が2〜20mmであることを特徴とする(1)又は(2)に記載の炭素繊維強化複合材料の製造方法。
(4) 前記炭素繊維強化複合材料の全体に対し、前記炭素繊維を10〜50体積%含むことを特徴とする(1)乃至(3)のいずれか1つに記載の炭素繊維強化複合材料の製造方法。
The gist of the present invention is as follows.
(1) carbon fiber and matrix materials as a raw material, mixing, forming and shape, after heat treatment of the formed shape member, a method of producing a carbon fiber-reinforced composite material to produce a molten silicon is impregnated into the matrix,
The matrix material includes at least one of synthetic resin, pitch, and tar, silicon carbide, boron carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, and tungsten carbide. And one or more carbide powders,
The carbide powder has an average particle size of 30 to 200 μm ,
The carbide powder, the total of the matrix material to be 10 to 60 vol%, the carbon fibers and the matrix material to be the raw material mixture, and forming the shape, a step of molding the formed shape body,
A step of heat-treating the formed shaped body 500 to 2000 ° C.,
A method for producing a carbon fiber reinforced composite material, wherein the molded body obtained by the heat treatment is further heat treated to impregnate the molded body with molten silicon.
(2) The method for producing a carbon fiber-reinforced composite material according to (1), wherein the carbide powder is a silicon carbide powder.
(3) The method for producing a carbon fiber-reinforced composite material according to (1) or (2), wherein the carbon fiber as the raw material forms a fiber bundle and has a fiber length of 2 to 20 mm.
(4) The carbon fiber reinforced composite material according to any one of (1) to (3) , wherein the carbon fiber is included in an amount of 10 to 50% by volume with respect to the entire carbon fiber reinforced composite material. Production method.

本発明により、耐摩耗性、耐衝撃性に優れた炭素繊維強化複合材料の製造方法及び炭素繊維強化複合材料を提供することができる。   According to the present invention, it is possible to provide a method for producing a carbon fiber reinforced composite material excellent in wear resistance and impact resistance, and a carbon fiber reinforced composite material.

本発明者らは、炭素繊維強化複合材料において、マトリックス中に平均粒径30〜200μmの炭化物粉体を添加することにより、マトリックスの組織を微細化し、マトリックス中で炭素とシリコンが反応して炭化珪素が生成する反応が促進され、耐摩耗性および耐衝撃性を改善できることを新たに見出した。 In the carbon fiber reinforced composite material, the inventors refined the matrix structure by adding carbide powder having an average particle size of 30 to 200 μm in the matrix, and carbon and silicon reacted in the matrix and carbonized. It has been newly found that the reaction of forming silicon is promoted and the wear resistance and impact resistance can be improved.

炭素繊維強化複合材料は、炭素繊維と炭素源となる熱硬化性樹脂、熱可塑性樹脂、ピッチなどを混合、成形し、炭素繊維と熱処理により炭化した炭素からなる成形体にシリコンを溶融・含浸して作製する。炭素源の樹脂等を炭化する工程でマトリックスとなる炭素に空隙が生じ、この空隙に溶融シリコンが毛細管現象により浸透し、浸透したシリコンが炭素と接触して反応することで、炭化ケイ素を生成する。シリコンと炭素の反応は、両者が接触した部分で起こり、拡散により炭化ケイ素への反応が進んでいく。したがって、マトリックスは少なくとも炭素、シリコン、炭化ケイ素からなり、炭化ケイ素を主体とする。   Carbon fiber reinforced composite materials are made by mixing and molding carbon fiber and carbon source thermosetting resin, thermoplastic resin, pitch, etc., and melting and impregnating silicon into a carbon fiber and carbonized carbon by heat treatment. To make. In the process of carbonizing the carbon source resin, voids are created in the carbon that is the matrix, molten silicon penetrates into the voids by capillary action, and the penetrated silicon contacts and reacts with the carbon to produce silicon carbide. . The reaction between silicon and carbon occurs at the part where both contact, and the reaction to silicon carbide proceeds by diffusion. Therefore, the matrix is composed of at least carbon, silicon, and silicon carbide, and is mainly composed of silicon carbide.

しかしながら、一般に炭素源の樹脂等を炭化した際に形成される空隙は、100μm〜数百μmの幅を有し、空隙によって分断される炭素部分が数百μmのサイズで存在する組織となる。このような組織の場合、炭素が浸透してきたケイ素と接触して炭化ケイ素を生成する反応は、空隙の周囲に限られ、炭素部分の内部は反応せずに炭素のまま残存してしまう。このような組織の場合、マトリックスでの炭化ケイ素の生成率を高めることが困難であり、耐摩耗性の高い材料を得ることができない。   However, in general, the void formed when carbon source resin or the like is carbonized has a width of 100 μm to several hundred μm, and has a structure in which a carbon portion divided by the void exists in a size of several hundred μm. In the case of such a structure, the reaction for forming silicon carbide by contacting with silicon into which carbon has permeated is limited to the periphery of the void, and the inside of the carbon portion does not react and remains as carbon. In such a structure, it is difficult to increase the production rate of silicon carbide in the matrix, and a material with high wear resistance cannot be obtained.

これを解決する方法として、マトリックスとなる炭素源に平均粒径30〜200μmの炭化物粉体を添加することで、炭化後の組織は微細化し、微細な空隙と微細な炭素部分からなるマトリックスを形成することができることを見出し本発明に至った。炭素源となる熱硬化性樹脂、熱可塑性樹脂、ピッチなどに平均粒径30〜200μmの炭化物粉体を添加した場合、この粒子を中心として空隙が発生するため、100μm以下の微細な空隙が多数形成され、炭素とシリコンとの反応箇所が増え、空隙で分断される炭素部分のサイズも小さくなり、炭素部分の内部まで炭化ケイ素を生成することができ、耐摩耗性、耐衝撃性を大幅に向上させることが可能となる。 As a method to solve this, by adding carbide powder having an average particle size of 30 to 200 μm to the carbon source to be the matrix, the structure after carbonization is refined to form a matrix composed of fine voids and fine carbon parts. The present invention has been found out to be possible. When carbide powder having an average particle size of 30 to 200 μm is added to a thermosetting resin, thermoplastic resin, pitch, or the like as a carbon source, voids are generated around these particles, so there are many fine voids of 100 μm or less. As a result, the number of carbon and silicon reaction sites increases, the size of the carbon part separated by voids decreases, and silicon carbide can be generated up to the inside of the carbon part, greatly improving wear resistance and impact resistance. It becomes possible to improve.

添加する粒子は、平均粒径30〜200μmの粒状の炭化物粒子を用いる。平均粒径が30μmより小さい粒子を添加した場合、添加粒子はマトリックスの炭素部分に存在しても、炭素部分に小さな粒子が点在している構造となり、樹脂を炭化する際に微細な空隙を生じる基点とならないため、炭素部分のサイズを変える効果がなく、組織を微細化することができない。平均粒径が200μmより大きい粒子を添加した場合、同体積の粒子を添加してもマトリックス中に存在する粒子の数が少なくなり、組織を微細化する効果が得られなくなる。また、200μmより大きい粒子では、粒子自体が破壊基点となり、強度等の特性を低下させてしまうため、望ましくない。平均粒径30〜200μmの粒子を添加した場合に、マトリックス中に微細な組織が形成され、炭化ケイ素の生成率を高める効果が得られ好ましい。平均粒径55〜110μmの粒状の炭化物粒子を用いると、炭素繊維強化複合材料の密度がより緻密になり、耐摩耗性、耐衝撃性がより向上し、更に好ましい。 As the particles to be added, granular carbide particles having an average particle diameter of 30 to 200 μm are used. When particles having an average particle size of less than 30 μm are added, even if the added particles are present in the carbon portion of the matrix, the particles have a structure where small particles are scattered in the carbon portion, and fine voids are formed when the resin is carbonized. Since it does not become a base point to be generated, there is no effect of changing the size of the carbon portion, and the structure cannot be refined. When particles having an average particle size larger than 200 μm are added, the number of particles present in the matrix decreases even if particles having the same volume are added, and the effect of refining the structure cannot be obtained. On the other hand, particles larger than 200 μm are not desirable because the particles themselves serve as fracture base points and deteriorate characteristics such as strength. When particles having an average particle size of 30 to 200 μm are added, a fine structure is formed in the matrix, and the effect of increasing the production rate of silicon carbide is obtained. Use of granular carbide particles having an average particle size of 55 to 110 μm is more preferable because the density of the carbon fiber reinforced composite material becomes denser and wear resistance and impact resistance are further improved.

平均粒径30〜200μmの炭化物粒子は、マトリックスの10〜60体積%の量を添加することにより、マトリックスを微細化する効果が得られ好ましい。10体積%より少ない場合、マトリックスの微細化が十分に起こらず、緻密な材料を得ることができない。60体積%より多く粒子を添加した場合、炭素源となる樹脂等の量が少なくなるため、炭素繊維とマトリックスの結合が不十分となり、シリコン含浸の際にクラックが発生するなどの問題が生じ、健全な材料を得ることができない。炭化物粒子は、マトリックスの40〜60体積%の量を添加すると、炭素繊維強化複合材料の密度がより緻密になり、耐摩耗性、耐衝撃性がより向上し、更に好ましい。 Carbide particles having an average particle size of 30 to 200 μm are preferable because an effect of refining the matrix can be obtained by adding an amount of 10 to 60% by volume of the matrix. When the amount is less than 10% by volume, the matrix is not sufficiently refined and a dense material cannot be obtained. If more particles than 60% by volume are added, the amount of resin as a carbon source is reduced, resulting in insufficient bonding between the carbon fibers and the matrix, causing problems such as cracking during silicon impregnation, Can't get sound material. When the carbide particles are added in an amount of 40 to 60% by volume of the matrix, the density of the carbon fiber reinforced composite material becomes more dense, and the wear resistance and impact resistance are further improved, which is further preferable.

添加する炭化物粉体として酸化物や窒化物を添加した場合、溶融シリコンとの濡れ性が悪いため、溶融シリコンの浸透が妨げられてしまい、材料全体に均一にシリコンを浸透させることが困難である。炭化物は全般に溶融シリコンとの濡れ性が酸化物や窒化物より良いため、添加する粒子は炭化物を用いることが望ましい。添加する炭化物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化クロム、炭化モリブデン、炭化タングステンなどを用いることができる。また、炭化ケイ素、炭化ホウ素などの高硬度の粒子を用いることが望ましいが、シリコンとの濡れ性が良い炭化ケイ素を用いることが更に望ましい。   When oxide or nitride is added as a carbide powder to be added, the wettability with molten silicon is poor, so that the penetration of molten silicon is hindered, and it is difficult to uniformly infiltrate silicon throughout the material. . Since carbides generally have better wettability with molten silicon than oxides and nitrides, it is desirable to use carbides as the added particles. As the carbide to be added, silicon carbide, boron carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, tungsten carbide, or the like can be used. In addition, it is desirable to use particles of high hardness such as silicon carbide and boron carbide, but it is more desirable to use silicon carbide having good wettability with silicon.

炭素繊維の含有量は、炭素繊維強化複合材料全体の10〜50体積%が望ましい。10体積%より少ない場合、繊維による強化の効果が得られず、耐衝撃性に優れた材料を得ることができない。50体積%より多い場合、マトリックスに対する繊維の量が多くなるため、成形することが困難となるため、望ましくない。   The carbon fiber content is desirably 10 to 50% by volume of the entire carbon fiber reinforced composite material. When the amount is less than 10% by volume, the effect of reinforcement by fibers cannot be obtained, and a material excellent in impact resistance cannot be obtained. If the volume is more than 50% by volume, the amount of fibers with respect to the matrix is increased, which makes it difficult to mold, which is not desirable.

炭素繊維は、繊維束のものを用いることが望ましい。炭素繊維は束ねず、1本ずつバラけた状態で添加しても、炭素繊維単体は、数μm〜十数μmで単体としての強度は高くないため、束にした状態で用いることにより繊維が破断し難くなるため、繊維強化による靱性向上の効果を得ることができる。用いる繊維束の本数は、100〜10000本であることが望ましい。繊維束が100本より少ない場合、繊維が破断しやすいため、炭素繊維による十分な強化効果を得ることができない。10000本を超える繊維束の場合、繊維束のサイズが大きくなりすぎるため、マトリックスと結合していない繊維束内部の繊維が摩耗等の際に脱落しやすいため、耐摩耗性の高い材料を得ることができない。耐摩耗性、耐衝撃性の高い複合材料を得るためには、繊維束が1000〜8000本の繊維束を用いることが望ましく、更に特性の優れた材料を得るためには3000〜6000本の繊維束を用いることが最も望ましい。   It is desirable to use carbon fiber bundles. Even if carbon fibers are not bundled and added in a state of being separated one by one, the carbon fiber alone is several μm to several tens of μm and the strength as a single unit is not high, so the fiber breaks when used in a bundle Therefore, the effect of improving toughness by fiber reinforcement can be obtained. The number of fiber bundles used is desirably 100 to 10,000. When the number of fiber bundles is less than 100, the fibers are easily broken, so that a sufficient reinforcing effect by the carbon fibers cannot be obtained. In the case of a fiber bundle exceeding 10,000, the size of the fiber bundle becomes too large, and the fibers inside the fiber bundle that are not bonded to the matrix easily fall off during wear, etc., so that a material with high wear resistance is obtained. I can't. In order to obtain a composite material having high wear resistance and impact resistance, it is desirable to use a fiber bundle having 1000 to 8000 fiber bundles, and 3000 to 6000 fibers in order to obtain a material having further excellent characteristics. Most preferably, a bundle is used.

繊維長が1〜20mmの長さの炭素繊維を用いることが望ましい。1mmより短い繊維では、強化効果が低く、耐衝撃性の高い材料を得ることができない。繊維束が20mm以上の繊維を用いると、マトリックスとなる炭素含有原料、添加粒子と混合した際に繊維束が解けやすく、繊維束としての強化効果が得られなくなるとともに、樹脂等と均一に混合することが困難となる。このため、炭素繊維は繊維長が1〜20mmのものを用いることが望ましく、均一な組織を有し、耐摩耗性、耐衝撃性の高い複合材料を得るためには繊維長が2〜10mmの繊維を用いることが最も望ましい。   It is desirable to use carbon fibers having a fiber length of 1 to 20 mm. With fibers shorter than 1 mm, a reinforcing effect is low and a material having high impact resistance cannot be obtained. When fibers having a fiber bundle of 20 mm or more are used, the fiber bundle is easily unraveled when mixed with the carbon-containing raw material and additive particles that form the matrix, and the reinforcing effect as the fiber bundle cannot be obtained, and the resin bundle is uniformly mixed. It becomes difficult. For this reason, it is desirable to use carbon fibers having a fiber length of 1 to 20 mm. In order to obtain a composite material having a uniform structure and high wear resistance and impact resistance, the fiber length is 2 to 10 mm. Most preferably, fibers are used.

炭素繊維強化複合材料を得る方法は、炭素繊維と添加粒子と炭素源となる炭素含有原料を混合、成形したものを熱処理して得られた成形体にシリコンを含浸させる方法を用いる。炭素源の炭素含有原料としては、合成樹脂である熱硬化性樹脂や熱可塑性樹脂を用いることができる。熱硬化性樹脂としては、フェノール樹脂など、熱可塑性樹脂としてはエポキシ樹脂などを用いることができる。また、合成樹脂の他にピッチ、タール等を用いることができる。特に熱処理により炭化した際、炭素分が残る量(残炭率)が高いフェノール樹脂を用いることが望ましい。   As a method for obtaining a carbon fiber reinforced composite material, a method of impregnating silicon into a molded body obtained by heat-treating a mixture of carbon fiber, additive particles, and a carbon-containing raw material serving as a carbon source and molding the resultant is used. As the carbon-containing raw material of the carbon source, a thermosetting resin or a thermoplastic resin that is a synthetic resin can be used. As the thermosetting resin, a phenol resin or the like can be used, and as the thermoplastic resin, an epoxy resin or the like can be used. In addition to synthetic resin, pitch, tar and the like can be used. In particular, it is desirable to use a phenol resin having a high carbon content (residual carbon ratio) when carbonized by heat treatment.

添加粒子をマトリックス中に均一に分散させるために、炭素源となる炭素含有原料と添加粒子を混合した後、炭素繊維と混合することが望ましい。特に繊維束状の炭素繊維を用いる場合、炭素含有原料、添加粒子と混合する際、繊維束がほどけてしまうと強化繊維としての効果が得られなくなる。このため、炭素含有原料と添加粒子を予め混合し、添加粒子が均一に分散するように混合してから、繊維束が保つように炭素繊維を混合することが望ましい。また、炭素繊維には、繊維束を予めエポキシ樹脂、フェノール樹脂等で固定するサイジング処理を施したものを用いることが望ましい。   In order to uniformly disperse the additive particles in the matrix, it is desirable to mix the carbon-containing raw material serving as the carbon source and the additive particles, and then mix with the carbon fibers. In particular, when a fiber bundle-like carbon fiber is used, the effect as a reinforcing fiber cannot be obtained if the fiber bundle is unwound when mixed with the carbon-containing raw material and additive particles. For this reason, it is desirable that the carbon-containing raw material and the additive particles are mixed in advance and mixed so that the additive particles are uniformly dispersed, and then the carbon fibers are mixed so that the fiber bundle is maintained. Further, it is desirable to use carbon fibers that have been subjected to a sizing treatment in which a fiber bundle is fixed in advance with an epoxy resin, a phenol resin, or the like.

次に炭素繊維、炭素含有原料、添加粒子を混合したものを所望の形状に成形する。成形はプレス成形等を用いることができる。炭素含有原料にフェノール樹脂等の熱硬化性樹脂を用いる場合、成形の際に加熱することで、樹脂が一旦溶融した後に硬化するため、繊維間などの隙間に樹脂が充填され緻密な成形体を得ることができる。   Next, a mixture of carbon fiber, carbon-containing raw material, and additive particles is formed into a desired shape. For the molding, press molding or the like can be used. When a thermosetting resin such as a phenol resin is used as the carbon-containing raw material, the resin is cured after being melted by heating at the time of molding. Can be obtained.

得られた成形体は、炭化処理と呼ばれる熱処理をすることにより炭素含有原料を分解させて炭素に変換する。炭素含有原料が完全に分解していない場合、シリコンを含浸する際、分解成分が揮発したり、溶融シリコンの浸透を阻害して、健全な材料を得ることができなくなるため、炭素含有原料を完全に分解して炭素化することが望ましい。炭化処理は、600〜2000℃で行うことが望ましい。600℃より低い温度では、炭素含有原料が完全に分解しない可能性があるため望ましくない。また、2000℃より高い温度で処理した場合、炭素がグラファイト化し、シリコンと反応して炭化ケイ素を生成する反応が進みにくくなるため、2000℃以下の温度で熱処理することが望ましい。また、炭化処理は、酸化雰囲気中で行った場合、炭素含有原料および炭素繊維の酸化、燃焼による損耗が起こるため、アルゴン等の不活性ガス雰囲気中あるいは真空中で行うことが望ましい。   The obtained molded body is subjected to a heat treatment called carbonization treatment to decompose the carbon-containing raw material and convert it into carbon. If the carbon-containing raw material is not completely decomposed, when impregnating silicon, the decomposition components volatilize or the penetration of molten silicon is inhibited, making it impossible to obtain a healthy material. It is desirable to decompose and carbonize. The carbonization treatment is desirably performed at 600 to 2000 ° C. A temperature lower than 600 ° C. is undesirable because the carbon-containing raw material may not be completely decomposed. Further, when the treatment is performed at a temperature higher than 2000 ° C., carbon is graphitized, and the reaction of generating silicon carbide by reacting with silicon is difficult to proceed. Therefore, it is desirable to perform heat treatment at a temperature of 2000 ° C. or less. In addition, when the carbonization treatment is performed in an oxidizing atmosphere, the carbon-containing raw material and the carbon fiber are oxidized and worn out due to combustion. Therefore, the carbonizing treatment is preferably performed in an inert gas atmosphere such as argon or in a vacuum.

炭化処理後の成形体をシリコンの融点以上の温度で溶融シリコンを含浸させ、炭素繊維強化複合材料を得る。溶融シリコンの含浸は、炭素分の酸化が起こらないように、アルゴン等の不活性ガス雰囲気中あるいは真空中で行うことが望ましいが、成形体の細部へシリコンを浸透させるためには、真空中で処理を行うことが最も望ましい。   The carbonized body is impregnated with molten silicon at a temperature equal to or higher than the melting point of silicon to obtain a carbon fiber reinforced composite material. The impregnation of the molten silicon is preferably performed in an inert gas atmosphere such as argon or in vacuum so as not to oxidize the carbon content. However, in order to infiltrate silicon into the details of the molded body, it is preferable to perform in vacuum. It is most desirable to perform processing.

溶融シリコン含浸後のマトリックス中の炭化ケイ素が50〜95体積%になることが望ましい。マトリックス中の炭化ケイ素が50体積%より少ない場合、未反応の炭素含有原料に由来する炭素およびシリコンが残存しており、耐摩耗性、耐衝撃性が低下してしまう。また、マトリックス中の炭化ケイ素が95体積%より多くなるように反応を進めることは、それ自体が困難であるが、95体積%より多くする場合、溶融シリコンとの反応温度を上げたり、溶融シリコンとの反応時間を長時間で行うことになる。この場合、溶融シリコンとの反応は、炭素繊維まで及び、炭素繊維が炭化ケイ素となってしまうため、脆性破壊し易くなってしまい、耐衝撃性の高い材料を得ることができなくなるため、好ましくない。   The silicon carbide in the matrix after impregnation with molten silicon is desirably 50 to 95% by volume. When the silicon carbide in the matrix is less than 50% by volume, carbon and silicon derived from the unreacted carbon-containing raw material remain, and wear resistance and impact resistance are lowered. In addition, it is difficult to proceed the reaction so that the silicon carbide in the matrix is more than 95% by volume, but when it is more than 95% by volume, the reaction temperature with the molten silicon is increased, or the molten silicon is increased. And the reaction time is long. In this case, the reaction with molten silicon extends to the carbon fibers, and the carbon fibers become silicon carbide, so that brittle fracture is likely to occur, and a material having high impact resistance cannot be obtained. .

以上の方法により、本発明のマトリックスが微細な組織を有し、耐摩耗性および耐衝撃性において優れた炭素繊維強化複合材料を得ることが可能となる。   By the above method, it becomes possible to obtain a carbon fiber reinforced composite material in which the matrix of the present invention has a fine structure and is excellent in wear resistance and impact resistance.

以下に、本発明の実施例および比較例を示す。
(実施例1)
マトリックス中の炭化ケイ素粒子の粒径を変更する試験を行った。
残炭率59%の粉末状フェノール樹脂と粒径の異なる炭化ケイ素粒子と繊維長6mm、繊維束6000本のピッチ系炭素繊維を表1の配合で混合し、50×50×10mmに160℃で加熱成形した成形体を作製した。得られた成形体をアルゴン中1000℃で熱処理し、フェノール樹脂を炭化した後、真空中1600℃でシリコンを含浸した炭素繊維強化炭化ケイ素複合材料を作製した。得られた材料の密度をアルキメデス法により測定した。
本発明による材料は、密度が2.4g/cm以上の緻密な材料が得られた(表1)。
マトリックスに平均粒径57μm、106μmの炭化ケイ素粉体を配合したサンプルは、シリコン含浸後の密度が高かった。
Examples of the present invention and comparative examples are shown below.
Example 1
A test was performed to change the particle size of the silicon carbide particles in the matrix.
Powdered phenolic resin with a residual carbon ratio of 59%, silicon carbide particles with different particle sizes, fiber length of 6 mm, and pitch-based carbon fibers of 6000 fiber bundles were mixed in the composition shown in Table 1, and 50 × 50 × 10 mm at 160 ° C. A heat-molded compact was produced. The obtained molded body was heat-treated at 1000 ° C. in argon to carbonize the phenol resin, and then a carbon fiber reinforced silicon carbide composite material impregnated with silicon at 1600 ° C. in a vacuum was produced. The density of the obtained material was measured by Archimedes method.
As the material according to the present invention, a dense material having a density of 2.4 g / cm 3 or more was obtained (Table 1).
A sample in which silicon carbide powder having an average particle size of 57 μm and 106 μm was mixed in a matrix had a high density after silicon impregnation.

得られたサンプルのマトリックス中の炭化ケイ素含有量は、X線回折の回折ピーク強度から算出した。また、高温での耐摩耗性については、800℃に加熱したS45C(φ100×15mm)のディスクを1000rpmで回転させ、10×10×20mmに加工したサンプルの10×10mm面を490Nの押し力で10min間押し付けて試験し、摩擦係数、摩耗量を測定した。耐衝撃性については、70kgの錘を載せた幅20mm、厚み10mmの衝突治具を用い、これを4.5m高さから落下させ、20°の角度で衝突するように設置したサンプルに衝突させ、損傷が発生するかどうかで耐衝撃性を評価した。   The silicon carbide content in the matrix of the obtained sample was calculated from the diffraction peak intensity of X-ray diffraction. In addition, with regard to wear resistance at high temperatures, a S45C (φ100 × 15 mm) disk heated to 800 ° C. is rotated at 1000 rpm, and a 10 × 10 mm surface of a sample processed to 10 × 10 × 20 mm is pressed with 490 N. The test was conducted by pressing for 10 minutes, and the friction coefficient and the wear amount were measured. For impact resistance, a 20 mm wide and 10 mm thick collision jig on which a 70 kg weight was placed was dropped from a height of 4.5 m and collided with a sample installed to collide at an angle of 20 °. The impact resistance was evaluated based on whether damage occurred.

Figure 0006070332
Figure 0006070332

(実施例2)
マトリックス中の炭化ケイ素粒子の含有量を変更する試験を行った。
残炭率59%の粉末状フェノール樹脂と平均粒径57μmの炭化ケイ素粒子と繊維長6mm、繊維束6000本のピッチ系炭素繊維を表2の配合で混合し、50×50×10mmに160℃で加熱成形した成形体を作製した。得られた成形体をアルゴン中1000℃で熱処理し、フェノール樹脂を炭化した後、真空中1600℃でシリコンを含浸した炭素繊維強化炭化ケイ素複合材料を作製した。表2に得られた炭素繊維強化炭化ケイ素複合材料を示す。得られた材料の密度をアルキメデス法により測定した。
(Example 2)
A test was conducted to change the content of silicon carbide particles in the matrix.
Powdered phenol resin with a residual carbon ratio of 59%, silicon carbide particles with an average particle size of 57 μm, fiber length of 6 mm, and pitch-based carbon fibers of 6000 fiber bundles were mixed in the composition shown in Table 2 and mixed at 50 ° C. to 50 × 10 mm at 160 ° C. A molded body heat-molded with was produced. The obtained molded body was heat-treated at 1000 ° C. in argon to carbonize the phenol resin, and then a carbon fiber reinforced silicon carbide composite material impregnated with silicon at 1600 ° C. in a vacuum was produced. Table 2 shows the obtained carbon fiber reinforced silicon carbide composite materials. The density of the obtained material was measured by Archimedes method.

本発明による材料は、密度が2.4g/cm以上の緻密な材料が得られた。マトリックスに42.9〜60体積%を配合したサンプルは、シリコン含浸後の密度が高かった。
また、本発明の範囲より炭化ケイ素添加量の多いNo.18のサンプルでは割れが発生し、健全な材料を得ることができなかった。
As the material according to the present invention, a dense material having a density of 2.4 g / cm 3 or more was obtained. The sample which mix | blended 42.9-60 volume% with the matrix had a high density after a silicon impregnation.
Further, No. 1 having a larger silicon carbide addition amount than the scope of the present invention. In the 18 samples, cracks occurred and a sound material could not be obtained.

Figure 0006070332
Figure 0006070332

(実施例3)
マトリックス中の添加剤の種類を変更する試験を行った。
残炭率59%の粉末状フェノール樹脂と平均粒径30μmの各種炭化物粒子と繊維長6mm、繊維束6000本のピッチ系炭素繊維を表3の配合で混合し、50×50×10mmに160℃で加熱成形した成形体を作製した。得られた成形体をアルゴン中1000℃で熱処理し、フェノール樹脂を炭化した後、真空中1600℃でシリコンを含浸した炭素繊維強化炭化ケイ素複合材料を作製した。得られた材料の密度をアルキメデス法により測定した。結果を表3に示す。
(Example 3)
Tests were performed to change the type of additive in the matrix.
Powdered phenolic resin with a residual carbon ratio of 59%, various carbide particles with an average particle size of 30 μm, fiber length of 6 mm, and pitch-based carbon fiber of 6000 fiber bundles were mixed in the composition shown in Table 3 and mixed at 50 × 50 × 10 mm at 160 ° C. A molded body heat-molded with was produced. The obtained molded body was heat-treated at 1000 ° C. in argon to carbonize the phenol resin, and then a carbon fiber reinforced silicon carbide composite material impregnated with silicon at 1600 ° C. in a vacuum was produced. The density of the obtained material was measured by Archimedes method. The results are shown in Table 3.

本発明による炭化物を添加した材料は、相対密度(TD)が84%以上の材料が得られた。一方、窒化ケイ素を添加したNo.28のサンプルではSiが内部に十分に浸透せず、相対密度(TD)が70%以下の材料しか得られなかった。   The material to which the carbide according to the present invention was added had a relative density (TD) of 84% or more. On the other hand, no. In 28 samples, Si did not sufficiently penetrate into the interior, and only a material having a relative density (TD) of 70% or less was obtained.

Figure 0006070332
Figure 0006070332

(実施例4)
マトリックス中の炭素繊維の含有量を変更する試験を行った。
残炭率59%の粉末状フェノール樹脂と平均粒径57μmの炭化ケイ素粒子と繊維長6mm、繊維束6000本のピッチ系炭素繊維を表4の配合で混合し、50×50×10mmに160℃で加熱成形した成形体を作製した。得られた成形体をアルゴン中1000℃で熱処理し、フェノール樹脂を炭化した後、真空中1600℃でシリコンを含浸した炭素繊維強化炭化ケイ素複合材料を作製した。得られた材料の密度をアルキメデス法により測定した。また、70kgの錘を載せた幅20mm、厚み10mmの衝突治具を用い、これを4.5m高さから落下させ、20°の角度で衝突するように設置したサンプルに衝突させる落重衝撃試験により、損傷が発生するかどうかで耐衝撃性を評価した。
その結果、炭素繊維を添加していないNo.29のサンプルでは衝撃による割れが発生した。本発明によるサンプルでも炭素繊維の添加量が5体積%のサンプルでは微小クラックが発生したが、炭素繊維添加量10〜50体積%のサンプルでは大きな損傷は見られず、55体積%以上のサンプルでは炭素繊維の束に剥離が見られた。
Example 4
A test was conducted to change the carbon fiber content in the matrix.
Powdered phenolic resin with a residual carbon ratio of 59%, silicon carbide particles with an average particle size of 57 μm, fiber length of 6 mm, and pitch-based carbon fibers of 6000 fiber bundles were mixed in the formulation shown in Table 4, and the temperature was 50 × 50 × 10 mm at 160 ° C. A molded body heat-molded with was produced. The obtained molded body was heat-treated at 1000 ° C. in argon to carbonize the phenol resin, and then a carbon fiber reinforced silicon carbide composite material impregnated with silicon at 1600 ° C. in a vacuum was produced. The density of the obtained material was measured by Archimedes method. In addition, a drop weight impact test is performed in which a collision jig having a width of 20 mm and a thickness of 10 mm on which a 70 kg weight is placed is dropped from a height of 4.5 m and collides with a sample installed so as to collide at an angle of 20 °. The impact resistance was evaluated by whether or not damage occurred.
As a result, no. In sample 29, cracking due to impact occurred. Even in the sample according to the present invention, microcracks were generated in the sample having the carbon fiber addition amount of 5% by volume, but no significant damage was observed in the sample having the carbon fiber addition amount of 10-50% by volume, and in the sample having 55% by volume or more. Peeling was observed on the carbon fiber bundle.

Figure 0006070332
Figure 0006070332

耐摩耗性、耐衝撃性に優れた炭素繊維強化複合材料の製造に利用することができる。
It can be used for producing a carbon fiber reinforced composite material having excellent wear resistance and impact resistance.

Claims (4)

原料となる炭素繊維とマトリックス材料を、混合、成し、成体を熱処理した後に、溶融シリコンをマトリックスに含浸させて製造する炭素繊維強化複合材料の製造方法であって、
前記マトリックス材料は、合成樹脂、ピッチ、タールのうちいずれか1種以上と、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化クロム、炭化モリブデン、および炭化タングステンのうちいずれか1種以上の炭化物粉体と、からなり、
前記炭化物粉体は、平均粒径30〜200μmであり、
前記炭化物粉体を、前記マトリックス材料の合計に対し10〜60体積%とし、前記原料となる炭素繊維と前記マトリックス材料を混合、成して、成体を成型する工程と、
前記成体を500〜2000℃に熱処理する工程と、
前記熱処理により得られた成形体を、更に熱処理することにより、前記成形体に溶融シリコンを含浸させる工程を実施することを特徴とする炭素繊維強化複合材料の製造方法。
Carbon fiber and matrix materials as a raw material, mixing, forming and shape, after heat treatment of the formed shape member, a method of producing a carbon fiber-reinforced composite material to produce a molten silicon is impregnated into the matrix,
The matrix material includes at least one of synthetic resin, pitch, and tar, silicon carbide, boron carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, and tungsten carbide. And one or more carbide powders,
The carbide powder has an average particle size of 30 to 200 μm ,
The carbide powder, the total of the matrix material to be 10 to 60 vol%, the carbon fibers and the matrix material to be the raw material mixture, and forming the shape, a step of molding the formed shape body,
A step of heat-treating the formed shaped body 500 to 2000 ° C.,
A method for producing a carbon fiber reinforced composite material, wherein the molded body obtained by the heat treatment is further heat treated to impregnate the molded body with molten silicon.
前記炭化物粉体が炭化ケイ素粉体であることを特徴とする請求項1に記載の炭素繊維強化複合材料の製造方法。   The method for producing a carbon fiber reinforced composite material according to claim 1, wherein the carbide powder is a silicon carbide powder. 前記原料となる炭素繊維が繊維束を形成しており、繊維長が2〜20mmであることを特徴とする請求項1又は請求項2に記載の炭素繊維強化複合材料の製造方法。 The method for producing a carbon fiber-reinforced composite material according to claim 1 or 2, wherein the carbon fiber as the raw material forms a fiber bundle and has a fiber length of 2 to 20 mm. 前記炭素繊維強化複合材料の全体に対し、前記炭素繊維を10〜50体積%含むことを特徴とする請求項1乃至請求項3のいずれか1項に記載の炭素繊維強化複合材料の製造方法。 The method for producing a carbon fiber reinforced composite material according to any one of claims 1 to 3 , wherein the carbon fiber is contained in an amount of 10 to 50% by volume with respect to the entire carbon fiber reinforced composite material.
JP2013062035A 2013-03-25 2013-03-25 Method for producing carbon fiber reinforced composite material Active JP6070332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062035A JP6070332B2 (en) 2013-03-25 2013-03-25 Method for producing carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062035A JP6070332B2 (en) 2013-03-25 2013-03-25 Method for producing carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2014185066A JP2014185066A (en) 2014-10-02
JP6070332B2 true JP6070332B2 (en) 2017-02-01

Family

ID=51832988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062035A Active JP6070332B2 (en) 2013-03-25 2013-03-25 Method for producing carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6070332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530632A1 (en) * 2018-02-23 2019-08-28 Sepitec Foundation Method for producing a cmc-component
KR102057304B1 (en) 2019-02-11 2019-12-18 국방과학연구소 Carbon material comprising carbide coating layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107864A (en) * 1986-10-27 1988-05-12 株式会社豊田中央研究所 Silicon carbide base composite ceramics
US5164268A (en) * 1990-03-09 1992-11-17 The Dow Chemical Company Oriented coextruded barrier films of polyvinylidene chloride copolymers
DE10310945A1 (en) * 2003-03-13 2004-10-07 Sgl Carbon Ag Fiber-reinforced ceramic material
JP2010254541A (en) * 2009-04-02 2010-11-11 Covalent Materials Corp Production method for carbon fiber-reinforced silicon-impregnated silicon carbide ceramic and ceramic produced by the production method
JP5344476B2 (en) * 2009-08-24 2013-11-20 独立行政法人物質・材料研究機構 Carbon fiber-containing ceramic slurry, porous body, and carbon fiber reinforced ceramic composite material

Also Published As

Publication number Publication date
JP2014185066A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
KR100346256B1 (en) Fibre-reinforced composite ceramics and method of producing the same
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US6878331B2 (en) Manufacture of carbon composites by hot pressing
JP5093060B2 (en) Carbon fiber reinforced silicon carbide composite and method for producing the same
US7011785B2 (en) Process for producing hollow bodies comprising fiber-reinforced ceramic materials
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP5944618B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
US7011786B2 (en) Process for producing shaped bodies comprising fiber-reinforced ceramic materials
CN112592194A (en) C/HfC-ZrC-SiC superhigh temperature ceramic matrix composite and preparation method thereof
JP2011011922A (en) Carbon/silicon carbide system composite material
JP6070332B2 (en) Method for producing carbon fiber reinforced composite material
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
KR100689636B1 (en) Fabrication of carbon fiber-silicon carbide composites by melt infiltration process of metal silicon
US8906289B2 (en) Method for manufacturing friction disks with ceramic materials with improved friction layer
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP5522797B2 (en) Carbon fiber reinforced silicon carbide ceramics and method for producing the same
Rocha et al. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures
JP6286865B2 (en) Wear resistant parts
KR102258338B1 (en) Fabrication Method of Carbon Composite
JPH11292647A (en) Carbon fiber-reinforced material and its production
JP2006027973A (en) Reflecting mirror and production method therefor
Raunija et al. Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite
JP6982401B2 (en) Manufacturing method of carbon short fiber reinforced composite material
JP5093639B2 (en) Method for producing carbon / ceramic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350