JPH11292647A - Carbon fiber-reinforced material and its production - Google Patents

Carbon fiber-reinforced material and its production

Info

Publication number
JPH11292647A
JPH11292647A JP10099480A JP9948098A JPH11292647A JP H11292647 A JPH11292647 A JP H11292647A JP 10099480 A JP10099480 A JP 10099480A JP 9948098 A JP9948098 A JP 9948098A JP H11292647 A JPH11292647 A JP H11292647A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
carbon
fiber reinforced
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099480A
Other languages
Japanese (ja)
Inventor
Mitsunobu Nikaido
光信 二階堂
Yoshio Inoue
良男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP10099480A priority Critical patent/JPH11292647A/en
Publication of JPH11292647A publication Critical patent/JPH11292647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon fiber-reinforced material capable of exhibiting, in good balance, characteristics which a composite material and ceramics have by forming the material into a material in which ceramics comprising a carbon fiber-reinforced carbon composite material and silicon carbide or silicon nitride are each formed of a continuous phase and carbon fiber remains in uneroded state. SOLUTION: This carbon fiber-reinforced material preferably comprises 50-90 wt.% carbon fiber-reinforced carbon composite material and 50-10 wt.% ceramics comprising silicon carbide or silicon nitride. This carbon fiber- reinforced material is obtained by carbonizing a preform comprising a carbon fiber and a carbonaceous matrix or depositing carbon onto a preform of carbon fiber by chemical vapor depositing method to prepare carbon fiber-reinforced carbon composite material, impregnating an organosilicon compound into the composite material and heat-treating the impregnated material in an inert gas atmosphere or producing ceramics by chemical deposition method. In the carbon fiber-reinforced carbon composite material, a volume ratio of carbon fiber is preferably about 20-50 based on total volumes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素繊維強化複合材
料及びその製造方法に関し、詳しくは、炭素繊維強化炭
素複合材料(以下「C/Cコンポジット」と称す)とセ
ラミックスとからなり、レース車両、鉄道車両及び航空
機等のブレーキ材料、並びに航空宇宙用部材の材料等と
して特に好適に用いられる炭素繊維強化複合材料及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced composite material and a method for producing the same, and more particularly, to a race vehicle comprising a carbon fiber reinforced carbon composite material (hereinafter referred to as "C / C composite") and ceramics. The present invention relates to a carbon fiber reinforced composite material that is particularly preferably used as a brake material for railway vehicles and aircraft, a material for aerospace members, and a method for producing the same.

【0002】[0002]

【従来の技術】C/Cコンポジットと、炭化珪素及び窒
化珪素等のセラミックスとからなり、前記ブレーキ材料
等に使用される複合材料については、C/Cコンポジッ
トに由来する引張強度特性、耐衝撃性、耐熱衝撃性、及
び耐薬品性と、セラミックスに由来する圧縮強度特性、
耐酸化性、及び耐摩耗性等、C/Cコンポジットとセラ
ミックスの双方の特性が要求される。この複合材料の製
造方法としては、(1) 炭化珪素粉末及び窒化珪素粉末の
少なくとも一方と炭素粉末とを混合し、これを炭素繊維
に含浸させて焼結する方法、(2) C/Cコンポジットの
表面相及び空孔部に金属珪素を含浸し、反応焼結により
前記表面相及び空孔部に炭化珪素及び窒化珪素の少なく
とも一方を生成する方法が一般に採用されている。
2. Description of the Related Art Composite materials composed of a C / C composite and ceramics such as silicon carbide and silicon nitride, and used for the brake material and the like, have tensile strength characteristics and impact resistance derived from the C / C composite. , Thermal shock resistance, and chemical resistance, and compressive strength characteristics derived from ceramics,
The properties of both C / C composite and ceramics such as oxidation resistance and wear resistance are required. (1) a method of mixing at least one of a silicon carbide powder and a silicon nitride powder with a carbon powder, impregnating the carbon fiber with the mixture, and sintering the mixture; and (2) a C / C composite. In general, a method of impregnating metallic silicon into the surface phase and the pores of the above and producing at least one of silicon carbide and silicon nitride in the surface phase and the pores by reaction sintering is generally adopted.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記(1) の
製造方法では、セラミックスが分散相となるので、特に
圧縮強度の面でセラミックスの特性を十分に発揮できな
いとともに、ブレーキ材料として使用した場合に、表面
に現れたセラミックス相が剥離してグルービングが生
じ、摩耗量が増えるという問題があった。前記(2) の製
造方法では、表面相にセラミックスが偏在し、組織の均
質性に問題があるとともに、C/Cコンポジットを構成
する炭素繊維が、金属シリコンと反応して侵食され、か
つセラミックスの相が厚くなり易いので、C/Cコンポ
ジットの特性である耐衝撃性を十分に発揮できないとい
う問題があった。さらに、前記セラミックスの相が厚く
なることに起因して、機械加工性が悪いという問題もあ
った。
However, in the production method of (1), since the ceramic is a dispersed phase, the characteristics of the ceramic cannot be sufficiently exhibited, particularly in terms of compressive strength, and when the ceramic is used as a brake material. In addition, there has been a problem that the ceramic phase appearing on the surface is peeled off, grooving occurs, and the amount of wear increases. In the manufacturing method (2), ceramics are unevenly distributed in the surface phase, and there is a problem in the homogeneity of the structure. In addition, the carbon fibers constituting the C / C composite are eroded by reacting with metallic silicon, and Since the phase tends to be thick, there is a problem that the impact resistance, which is a characteristic of the C / C composite, cannot be sufficiently exhibited. Further, there is a problem that the machinability is poor due to the thickening of the ceramic phase.

【0004】本発明は、前記問題点を解決するものであ
り、C/Cコンポジットの有する耐衝撃性、耐熱衝撃
性、耐薬品性、引張強度特性及び機械加工性と、セラミ
ックスの有する耐酸化性、圧縮強度特性及び耐摩耗性と
をバランスよく発揮できる炭素繊維強化複合材料及びそ
の製造方法を提供することを目的とする。
[0004] The present invention solves the above-mentioned problems, and the impact resistance, thermal shock resistance, chemical resistance, tensile strength characteristics and machinability of the C / C composite, and the oxidation resistance of the ceramics It is an object of the present invention to provide a carbon fiber reinforced composite material capable of exhibiting a good balance of compressive strength characteristics and wear resistance, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の炭素繊維強化複
合材料は、C/Cコンポジットに、炭化珪素及び窒化珪
素の少なくとも一方からなるセラミックスを生成してい
るとともに、前記C/Cコンポジット及びセラミックス
がそれぞれ連続相を形成し、炭素繊維が非侵食状態で残
存していることを特徴としている(請求項1)。この炭
素繊維強化複合材料の内部組織は、実質的に炭素繊維の
まわりを炭素相が覆っており、この炭素相の内部隙間及
び周囲を前記セラミックスが覆った状態になっている。
また、炭素繊維が非侵食状態で残存している。このた
め、炭素繊維の特性である耐衝撃性及び引張強度を良好
に発揮することができる。また、炭素繊維が非侵食状態
であるので、セラミックス相が巨大化されるのが防止さ
れ、炭素相の特性である機械加工性も良好に発揮でき
る。この機械加工性は、セラミックス相の厚みが薄いほ
ど効果的に向上することが確認されている。しかも、炭
素相がクッションとなって耐熱衝撃性も良好となる。さ
らに、セラミックスが連続相になっているので、その特
性が十分に発現され、セラミックス相がC/Cコンポジ
ットから剥離しにくくなることと相まって、圧縮強度、
耐酸化性及び耐摩耗性が向上している。
According to the carbon fiber reinforced composite material of the present invention, a ceramic comprising at least one of silicon carbide and silicon nitride is formed in a C / C composite, and the C / C composite and the ceramic are formed. Each form a continuous phase, and the carbon fibers remain in a non-eroded state (claim 1). The internal structure of the carbon fiber reinforced composite material is such that the carbon phase substantially covers the periphery of the carbon fiber, and the ceramics cover the internal gap and the periphery of the carbon phase.
Further, the carbon fibers remain in a non-eroded state. For this reason, the impact resistance and tensile strength which are the characteristics of carbon fiber can be exhibited well. Further, since the carbon fiber is in a non-eroded state, the ceramic phase is prevented from being enlarged, and the machinability, which is a characteristic of the carbon phase, can be exhibited well. It has been confirmed that the machinability is more effectively improved as the thickness of the ceramic phase is smaller. In addition, the carbon phase serves as a cushion, and the thermal shock resistance is improved. Furthermore, since the ceramic is a continuous phase, its properties are sufficiently exhibited, and the ceramic phase is hardly peeled off from the C / C composite.
Oxidation resistance and abrasion resistance are improved.

【0006】前記炭素繊維強化複合材料は、C/Cコン
ポジットを50〜90重量%、前記セラミックスを50〜10重
量%含むものであるのが好ましい(請求項2)。C/C
コンポジットとセラミックスとの比率が前記の範囲内に
ある場合には、セラミックスが薄い連続相を形成し易く
なり、機械加工性がさらに向上する。また、セラミック
スの比率が10重量%以上であるので、耐酸化性がさらに
向上し、C/Cコンポジットの比率が50重量%以上であ
るので、機械加工性及び耐衝撃性がより効果的に向上す
る。
The carbon fiber reinforced composite material preferably contains 50 to 90% by weight of a C / C composite and 50 to 10% by weight of the ceramic (claim 2). C / C
When the ratio of the composite to the ceramic is within the above range, the ceramic easily forms a thin continuous phase, and the machinability is further improved. In addition, since the ratio of ceramics is 10% by weight or more, oxidation resistance is further improved, and the ratio of C / C composite is 50% by weight or more, so that machinability and impact resistance are more effectively improved. I do.

【0007】この発明の炭素繊維強化複合材料の製造方
法は、請求項1記載の炭素繊維強化複合材料の製造方法
であって、炭素繊維と炭素質マトリックスとからなるプ
リフォームを炭化させるか、又は炭素繊維のプリフォー
ムに化学的気相蒸着法(以下「CVD法」と称する)に
より炭素を沈積させて、C/Cコンポジットを作製し、
このC/Cコンポジットに前記セラミックスを生成させ
ることを特徴としている(請求項3)。この製造方法に
よれば、C/Cコンポジットと、炭化珪素及び窒化珪素
の少なくとも一方からなるセラミックスとがそれぞれ連
続相を形成し、炭素繊維が炭素相に覆われて非侵食状態
で残存している炭素繊維強化複合材料を容易かつ確実に
得ることができるとともに、セラミックス相の厚みを薄
くすることができる。また、セラミックスが表面相に偏
在するのを防止することもできる。
The method for producing a carbon fiber reinforced composite material according to the present invention is the method for producing a carbon fiber reinforced composite material according to claim 1, wherein the preform comprising carbon fibers and a carbonaceous matrix is carbonized or Carbon is deposited on a carbon fiber preform by a chemical vapor deposition method (hereinafter referred to as “CVD method”) to produce a C / C composite,
The ceramics is formed in the C / C composite (claim 3). According to this manufacturing method, the C / C composite and the ceramic comprising at least one of silicon carbide and silicon nitride form continuous phases, respectively, and the carbon fibers are covered with the carbon phase and remain in a non-eroded state. The carbon fiber reinforced composite material can be easily and reliably obtained, and the thickness of the ceramic phase can be reduced. It is also possible to prevent ceramics from being unevenly distributed in the surface phase.

【0008】前記炭素繊維強化複合材料の製造方法は、
前記C/Cコンポジットに有機珪素化合物を含浸させ、
不活性ガス又は窒素ガス雰囲気中で熱処理を行うことに
より、前記セラミックスを生成させるものであってもよ
い(請求項4)。この製造方法によれば、品質の安定し
た炭素繊維強化複合材料を得ることができる。
[0008] The method for producing the carbon fiber reinforced composite material is as follows.
Impregnating the C / C composite with an organosilicon compound,
The ceramics may be formed by performing a heat treatment in an inert gas or nitrogen gas atmosphere (claim 4). According to this manufacturing method, a carbon fiber reinforced composite material having stable quality can be obtained.

【0009】前記炭素繊維強化複合材料の製造方法は、
前記C/Cコンポジットに、CVD法により前記セラミ
ックスを生成させるものであってもよい(請求項5)。
この製造方法によれば、均一かつ厚みの薄いセラミック
ス相を形成することができる。
[0009] The method for producing the carbon fiber reinforced composite material is as follows.
The ceramics may be generated in the C / C composite by a CVD method.
According to this manufacturing method, a uniform and thin ceramic phase can be formed.

【0010】前記炭素繊維強化複合材料の製造方法は、
前記C/Cコンポジットを作製した後、当該C/Cコン
ポジットに樹脂若しくはピッチを含浸させて炭化させる
工程、又は化学的気相蒸着法により炭素を沈積させる工
程と、前記セラミックスを生成させる工程とを少なくと
も1回行うものであってもよい(請求項6)。この製造
方法においては、前記樹脂若しくはピッチの炭化、又は
炭素の沈積によって、炭素繊維強化複合材料のブランク
としての中間体が緻密化して空孔比率及び空孔の大きさ
が小さくなるので、セラミックス相の厚みをさらに薄く
することができる。
[0010] The method for producing the carbon fiber reinforced composite material is as follows.
After preparing the C / C composite, a step of impregnating the C / C composite with a resin or pitch to carbonize the carbon / carbon composite, or a step of depositing carbon by a chemical vapor deposition method, and a step of generating the ceramics It may be performed at least once (claim 6). In this production method, the carbonization of the resin or pitch, or the deposition of carbon, densifies the intermediate as a blank of the carbon fiber reinforced composite material, and reduces the porosity and the size of the porosity. Can be further reduced in thickness.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳述する。本発明の炭素繊維強化複合材料は、C/C
コンポジットと、炭化珪素及び窒化珪素の何れか一方又
は双方とからなる複合材料であり、以下のようにして製
造される。まず、炭素繊維と炭素質マトリックスとから
C/Cコンポジットを作る。前記炭素繊維は、PAN
(ポリアクリロニトリル)系、ピッチ系及びレーヨン系
等の原料、長繊維及び短繊維等の形状、並びに織布、不
織布及びチョップドファイバー等の形態等により多くの
種類があるが、用途に応じて適宜選択する。また、炭化
前の耐炎繊維等の中間繊維、繊維の混紡品及び混合品等
も使用することができる。
Embodiments of the present invention will be described below in detail. The carbon fiber reinforced composite material of the present invention has a C / C
A composite material composed of a composite and one or both of silicon carbide and silicon nitride, and is manufactured as follows. First, a C / C composite is made from carbon fibers and a carbonaceous matrix. The carbon fiber is PAN
There are many types such as (polyacrylonitrile) -based, pitch-based and rayon-based raw materials, shapes such as long fibers and short fibers, and forms such as woven fabrics, non-woven fabrics and chopped fibers. I do. Intermediate fibers such as flame-resistant fibers before carbonization, and blended and mixed products of fibers can also be used.

【0012】C/Cコンポジットを作る方法は、前記炭
素繊維のプリフォームに、CVD法により炭素を沈積さ
せる方法と、炭素繊維を炭素質マトリックスとともにプ
リフォーム化した後に炭化する方法の、2つの方法があ
る。前者のCVD法により炭素を沈積させる方法は、マ
トリックスとなる原料ガス(メタン、プロパンガス等)
とキャリヤーガス(水素ガス等)とを、一定の温度に保
持した前記炭素繊維のプリフォーム内に導入し、その空
孔部の内面で化学反応させて炭素を析出させるものであ
る。後者の炭素質マトリックスを使用する方法は、フェ
ノール樹脂、フラン樹脂及びポリイミド樹脂等の熱硬化
性樹脂、並びにコールタールピッチ及び石油系ピッチ等
のピッチ類等、用途に応じて種々のマトリックスを選択
する。なお、このマトリックス中に炭素粉、黒鉛粉及び
セラミックス粉等の粉体を混ぜ込んでもよい。そして、
前記炭素繊維をこのマトリックスとともに成形して炭化
する。その後、より高温で熱処理をしたり、黒鉛化処理
をしたりしてもよい。成形は、ホットプレス成形及びハ
ンドレイアップ等各種の手法を使用することができ、成
形時にいくつかのプリフォームを積み上げて、一体化し
てもよい。
[0012] There are two methods for producing a C / C composite: a method of depositing carbon on the carbon fiber preform by a CVD method and a method of carbonizing after preforming carbon fiber with a carbonaceous matrix. There is. The former method of depositing carbon by the CVD method uses a raw material gas (methane, propane gas, etc.) serving as a matrix.
And a carrier gas (hydrogen gas or the like) are introduced into the carbon fiber preform maintained at a constant temperature, and are chemically reacted on the inner surface of the pores to precipitate carbon. The latter method using a carbonaceous matrix selects various matrices depending on the application, such as thermosetting resins such as phenolic resin, furan resin and polyimide resin, and pitches such as coal tar pitch and petroleum pitch. . Note that powder such as carbon powder, graphite powder, and ceramic powder may be mixed into the matrix. And
The carbon fiber is formed and carbonized together with the matrix. Thereafter, a heat treatment at a higher temperature or a graphitization treatment may be performed. Various techniques such as hot press molding and hand lay-up can be used for molding, and several preforms may be stacked and integrated at the time of molding.

【0013】本発明に係るC/Cコンポジットでは、炭
素繊維と炭素との比率は限定されず、使用する炭素繊維
の種類(PAN系、ピッチ系等)、形態(織布、不織
布、チョップドファイバー等)、マトリックスの材質
(樹脂系、ピッチ系、CVD系等)又は用途等に応じて
適切な比率に設定されるが、例えば、プリフォームの造
り易さ及び複合材料の性能保持の観点から、炭素繊維の
比率を20〜50体積比(全体に対して)程度に設定するの
が好ましい。
In the C / C composite according to the present invention, the ratio of carbon fiber to carbon is not limited, and the type (PAN type, pitch type, etc.) and form (woven fabric, non-woven fabric, chopped fiber, etc.) of the carbon fiber used. ), The ratio is set appropriately according to the material of the matrix (resin-based, pitch-based, CVD-based, etc.) or application. For example, from the viewpoint of easy preform production and performance retention of the composite material, carbon It is preferable to set the fiber ratio to about 20 to 50 volume ratio (to the whole).

【0014】本発明の炭素繊維強化複合材料は、C/C
コンポジットの製造方法、空孔部の割合(空孔比率)、
孔の大きさ及び均一性、並びにセラミックスの生成に寄
与しない閉気孔の比率がどのくらいであるか等によっ
て、最終的なセラミックスの比率が決定し、当該複合材
料の性能が決定する。ゆえに、閉気孔が少なく、細かい
孔が均一に存在するように、原料及び製造方法の組み合
わせを選択する。空孔比率は、前記C/Cコンポジット
に、コールタールピッチ等のピッチ類若しくはフラン樹
脂等の熱硬化性樹脂を含浸させ、又はCVD法で炭素を
沈積させることにより、調節することができる。
The carbon fiber reinforced composite material of the present invention has a C / C
The method of manufacturing the composite, the ratio of the voids (void ratio),
The final ceramic ratio is determined by the size and uniformity of the pores, and the ratio of closed pores that do not contribute to the formation of ceramics, and the performance of the composite material is determined. Therefore, the combination of the raw material and the production method is selected so that the number of closed pores is small and fine pores are uniformly present. The porosity can be adjusted by impregnating the C / C composite with pitches such as coal tar pitch or a thermosetting resin such as furan resin, or by depositing carbon by a CVD method.

【0015】次に、前記C/Cコンポジットの空孔部及
び表面相に、場合によっては空孔部のみにセラミックス
を生成させるが、その方法は2つある。第1の方法は、
ポリシラザン、ポリカルボシラン等の有機珪素化合物を
溶媒に溶かしたものを、C/Cコンポジットに含浸させ
た後に、アルゴン又は窒素ガス雰囲気中で、温度700℃
以上で焼成し、セラミックスを反応生成させる方法であ
り、アルゴンガスの場合には炭化珪素が、窒素ガスの場
合には窒化珪素がそれぞれ生成される。通常は、この含
浸及び焼成の操作を数回繰り返してセラミックスを生成
させるが、前記操作を繰り返す回数は、要求されるセラ
ミックスの重量%と、最終密度とにより決定する。ま
た、前記有機珪素化合物を溶媒に溶かした含浸液に、セ
ラミックスの微粉、ウィスカーを混ぜて、含浸処理をし
てもよい。さらに、炭化珪素の歩留を上げる目的で不融
化処理を行ってもよい。不融化処理を行った場合、不純
物として酸化珪素が生成するが、量的に少なければ問題
はない。
Next, ceramics are formed only in the voids and the surface phase of the C / C composite, and in some cases, only in the voids. There are two methods. The first method is
A solution obtained by dissolving an organic silicon compound such as polysilazane or polycarbosilane in a solvent is impregnated into a C / C composite, and then, at a temperature of 700 ° C. in an argon or nitrogen gas atmosphere.
This is the method of firing and reacting ceramics to produce silicon carbide in the case of argon gas and silicon nitride in the case of nitrogen gas. Normally, the operation of impregnation and firing is repeated several times to produce a ceramic, and the number of times the operation is repeated is determined by the required weight% of the ceramic and the final density. Alternatively, impregnation may be performed by mixing fine powder of ceramics and whiskers with an impregnating liquid in which the organic silicon compound is dissolved in a solvent. Further, infusibility treatment may be performed for the purpose of increasing the yield of silicon carbide. When the infusibilization treatment is performed, silicon oxide is generated as an impurity, but there is no problem if the amount is small.

【0016】第2の方法は、CVD法である。空孔の内
部まで沈積する場合は、CVI法ともいう。この方法
は、ガスとして、炭化珪素の場合はCH3 SiCl3
は (CH3)2 SiCl2 とH2 との混合物、窒化珪素の
場合はSiCl4 とNH3 との混合物等を使用し、これ
を一定の温度に保持したC/Cコンポジット内に導入
し、化学反応させてセラミックスを沈積させるものであ
る。前記の2つの方法でセラミックスを生成させた場
合、製造方法及び原料に起因して、炭素、遊離珪素等の
副生成物及び不純物が混在することがあるが、少量であ
れば問題ない。
The second method is a CVD method. When depositing to the inside of the hole, it is also referred to as CVI method. This method uses, as a gas, a mixture of CH 3 SiCl 3 or (CH 3 ) 2 SiCl 2 and H 2 in the case of silicon carbide, and a mixture of SiCl 4 and NH 3 in the case of silicon nitride. Is introduced into a C / C composite maintained at a constant temperature, and chemically reacted to deposit ceramics. When ceramics are produced by the above two methods, by-products such as carbon and free silicon and impurities may be mixed depending on the production method and raw materials, but there is no problem if the amount is small.

【0017】前記のセラミックスの生成後、さらに、フ
ラン樹脂等の熱硬化性樹脂又はコールタールピッチ等の
ピッチ類を含浸させて炭化する工程を1回以上行い、再
度、セラミックスを生成させてもよい。前記第1の方法
のみで密度1.8g/cm3を超える実用上好ましい炭素繊維強
化複合材料を得るためには、有機珪素化合物含浸を何回
も繰り返さなければならず、セラミックスの連続相が厚
くなるが、前記の樹脂又はピッチ等の含浸工程を行った
後に、セラミックスを生成させると、密度1.8g/cm3を超
える炭素繊維強化複合材料が容易に得られる。
After the formation of the ceramics, a step of impregnating with a thermosetting resin such as a furan resin or pitches such as coal tar pitch and carbonizing may be performed one or more times, and the ceramics may be formed again. . In order to obtain a practically preferable carbon fiber reinforced composite material having a density exceeding 1.8 g / cm 3 only by the first method, the organic silicon compound impregnation must be repeated many times, and the continuous phase of the ceramic becomes thick. However, when ceramics are formed after the above-described impregnation step of resin or pitch, a carbon fiber reinforced composite material having a density exceeding 1.8 g / cm 3 can be easily obtained.

【0018】前記の炭素繊維強化複合材料は、C/Cコ
ンポジット50〜90重量%とセラミックス50〜10重量%と
からなるものであるのが好ましい。両者の比率が前記の
範囲内にある場合には、セラミックスが薄い連続相を形
成し易くなる。また、セラミックスの比率が10重量%以
上であると、耐酸化性がさらに向上し、C/Cコンポジ
ットの比率が50重量%以上であると、機械加工性及び耐
衝撃性がより効果的に向上する。
The carbon fiber reinforced composite material is preferably composed of 50 to 90% by weight of a C / C composite and 50 to 10% by weight of a ceramic. When the ratio between the two is within the above range, the ceramics can easily form a thin continuous phase. When the ratio of the ceramics is 10% by weight or more, the oxidation resistance is further improved, and when the ratio of the C / C composite is 50% by weight or more, the machinability and impact resistance are more effectively improved. I do.

【0019】以上の構成の炭素繊維強化複合材料の製造
方法は、前記C/Cコンポジットを作製した後、樹脂若
しくはピッチを含浸させて炭化させる工程又は化学的気
相蒸着法により炭素を沈積させる工程を1回以上行った
後、前記セラミックスを生成させる工程を複数回行って
もよく、また、前記C/Cコンポジットを作製した後、
樹脂若しくはピッチを含浸させて炭化させる工程又は化
学的気相蒸着法により炭素を沈積させる工程と、前記セ
ラミックスを生成させる工程とを、この順にて複数回繰
り返してもよく、何れにおいても、炭素繊維強化複合材
料のブランクとしての中間体が緻密化して空孔比率及び
空孔の大きさが小さくなるので、セラミックスの連続相
が効果的に薄くなって、炭素繊維強化複合材料の機械加
工性及び耐衝撃性等の性能がさらに向上する。
The method for producing the carbon fiber reinforced composite material having the above-described structure includes a step of preparing the C / C composite, impregnating the resin or pitch with carbon, or depositing carbon by a chemical vapor deposition method. May be performed more than once, and then the step of forming the ceramic may be performed more than once. Also, after forming the C / C composite,
The step of impregnating resin or pitch to carbonize or the step of depositing carbon by chemical vapor deposition and the step of producing the ceramic may be repeated a plurality of times in this order, and in any case, the carbon fiber Since the intermediate as the blank of the reinforced composite material is densified and the pore ratio and the size of the pores are reduced, the continuous phase of the ceramic is effectively thinned, and the machinability and the resistance of the carbon fiber reinforced composite material are improved. The performance such as impact properties is further improved.

【0020】[0020]

【実施例】以下に、実施例をあげて本発明を具体的に説
明するが、本発明は実施例に限定されるものではない。 [実施例1]直径7μmのPAN系炭素繊維(東レ
(株)T300 )の6000本束を長さ25mmにカットしたもの
と、レーヨンの有機繊維とを重量比90:10で混合し、こ
れをカード機にて目付300g/m2 の不織布にした。この不
織布について積層及びパンチングを繰り返して目付10kg
/m2 の高目付不織布にし、これにフェノール樹脂液(昭
和高分子(株)BRL-2854)を不織布重量の2倍量含浸さ
せて乾燥後、熱板プレスで170 ℃の条件で20mmに硬化成
形し、さらに190 ℃、210 ℃でそれぞれ3時間、後硬化
を実施した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples. [Example 1] 6000 bundles of PAN-based carbon fibers (T300, manufactured by Toray Industries, Inc.) having a diameter of 7 µm, and cut to a length of 25 mm, and an organic fiber of rayon were mixed at a weight ratio of 90:10. It was formed into a nonwoven fabric with a basis weight of 300 g / m 2 using a card machine. Repeated lamination and punching for this non-woven fabric, weight 10kg
/ the high basis weight nonwoven m 2, which in the cured phenolic resin solution (Showa Kobunshi (Ltd.) BRL-2854) and dried impregnated twice the amount of the nonwoven weight, to 20mm under conditions of 170 ° C. In the hot plate press It was molded and post-cured at 190 ° C. and 210 ° C. for 3 hours each.

【0021】このようにして得たプリフォームを、不活
性ガス雰囲気中で、300 ℃までは10℃/Hr 、300 〜600
℃は5 ℃/Hr 、600 ℃以上は20℃/Hr の昇温速度で1000
℃まで昇温し、炭化して、C/Cコンポジットを得た。
炭化後の嵩密度は0.95g/cm3であった。その後、これを
黒鉛化炉に入れて2500℃までの黒鉛化処理を行ない、ポ
リカルボシラン(日本カーボン(株) ニプシ タイプ
S)のキシレン溶液を含浸後、180 ℃で硬化処理を施
し、Arガス雰囲気中で、300 ℃までは20℃/Hr 、300 〜
700 ℃は5 ℃/Hr 、700 ℃以上は20℃/Hr の昇温速度で
1400℃まで昇温して、C/Cコンポジット中に炭化珪素
を生成させた。さらに、含浸、硬化及び炭化珪素生成の
工程を4 回繰り返し、C/Cコンポジットの内部及び表
面相に炭化珪素を生成した炭素繊維強化複合材料を得
た。この炭素繊維強化複合材料の嵩密度は1.90g/cm3
で、炭化珪素の含有量は50重量%であった。
The preform thus obtained is subjected to 10 ° C./Hr, 300 to 600 ° C. in an inert gas atmosphere up to 300 ° C.
℃ is 5 ℃ / Hr, 600 ℃ and above is 20 ℃ / Hr at a heating rate of 1000
C., and carbonized to obtain a C / C composite.
The bulk density after carbonization was 0.95 g / cm 3 . After that, it is placed in a graphitization furnace and graphitized to 2500 ° C, impregnated with a xylene solution of polycarbosilane (Nippi Carbon Co., Ltd., Nippi Type S), cured at 180 ° C, and treated with Ar gas. 20 ° C / Hr up to 300 ° C in atmosphere, 300 ~
700 ° C at a heating rate of 5 ° C / Hr, 700 ° C and above at a heating rate of 20 ° C / Hr
The temperature was raised to 1400 ° C. to generate silicon carbide in the C / C composite. Further, the steps of impregnation, hardening and silicon carbide generation were repeated four times to obtain a carbon fiber reinforced composite material in which silicon carbide was generated inside and in the surface phase of the C / C composite. The bulk density of this carbon fiber reinforced composite material is 1.90 g / cm 3
The content of silicon carbide was 50% by weight.

【0022】[実施例2]実施例1の嵩密度0.95g/cm3
のC/Cコンポジットに、軟化点120 ℃のコールタール
ピッチを含浸させ、不活性ガス雰囲気中で、300 ℃まで
は50℃/Hr 、300℃以上は実施例1と同じ条件で1000℃
まで昇温して炭化し、さらにこれを黒鉛化炉に入れて25
00℃までの黒鉛化処理を行ない、嵩密度1.25g/cm3 のC
/Cコンポジットを得た。このC/Cコンポジットにつ
いて実施例1と同様のポリカルボシラン含浸、硬化、炭
化珪素生成の工程を3回行い、さらに、前記のピッチ含
浸、炭化の工程を2回繰り返して、1500℃で焼成を行っ
た。その後、ポリカルボシラン含浸、硬化、炭化珪素生
成を行って、嵩密度1.90g/cm3 の炭素繊維強化複合材料
を得た。この炭素繊維強化複合材料の炭化珪素の含有量
は25重量%であった。
Example 2 The bulk density of Example 1 was 0.95 g / cm 3.
C / C composite is impregnated with coal tar pitch having a softening point of 120 ° C., and in an inert gas atmosphere, up to 300 ° C. at 50 ° C./Hr, and above 300 ° C. under the same conditions as in Example 1 at 1000 ° C.
And carbonized by heating to 25%
Graphitized to 00 ° C, bulk density 1.25g / cm 3 C
/ C composite was obtained. This C / C composite was subjected to the same steps of polycarbosilane impregnation, curing, and silicon carbide generation as in Example 1 three times, and the above-described pitch impregnation and carbonization steps were repeated twice, and calcined at 1500 ° C. went. Thereafter, polycarbosilane impregnation, curing, and silicon carbide generation were performed to obtain a carbon fiber reinforced composite material having a bulk density of 1.90 g / cm 3 . The content of silicon carbide in this carbon fiber reinforced composite material was 25% by weight.

【0023】[実施例3]実施例1の炭化後の0.95g/cm
3 のC/Cコンポジットに、ピッチ含浸、炭化の工程を
3回繰り返し行い、さらにこれを黒鉛化炉に入れて、25
00℃までの黒鉛化処理を行った。このときの嵩密度は1.
57g/cm3 であった。その後、ポリカルボシラン含浸、硬
化、炭化珪素生成を行い、嵩密度1.78g/cm3 の炭素繊維
強化複合材料を得た。この炭素繊維強化複合材料の炭化
珪素の含有量は12重量%であった。
Example 3 0.95 g / cm after carbonization in Example 1
3 of C / C composite, pitch impregnation, repeated three times the carbonization step, further put in a graphitization furnace, 25
Graphitization treatment was performed up to 00 ° C. The bulk density at this time is 1.
It was 57 g / cm 3 . Thereafter, polycarbosilane impregnation, curing, and silicon carbide generation were performed to obtain a carbon fiber reinforced composite material having a bulk density of 1.78 g / cm 3 . The content of silicon carbide in the carbon fiber reinforced composite material was 12% by weight.

【0024】[実施例4]実施例3の黒鉛化処理後の嵩
密度1.57g/cm3 のC/Cコンポジットに、ポリカルボシ
ラン含浸、硬化、窒素雰囲気中での窒化珪素生成反応を
行い、嵩密度1.78g/cm3 の炭素繊維強化複合材料を得
た。この炭素繊維強化複合材料の窒化珪素の含有量は10
重量%で、他に炭化珪素が2重量%入っていた。
Example 4 The C / C composite having a bulk density of 1.57 g / cm 3 after the graphitization treatment of Example 3 was subjected to polycarbosilane impregnation, curing, and a silicon nitride generation reaction in a nitrogen atmosphere. A carbon fiber reinforced composite material having a bulk density of 1.78 g / cm 3 was obtained. This carbon fiber reinforced composite material has a silicon nitride content of 10
2% by weight of silicon carbide.

【0025】[実施例5]実施例3の黒鉛化処理後の嵩
密度1.57g/cm3 のC/Cコンポジットに、炭化珪素のC
VD処理を行い、嵩密度1.75g/cm3 の炭素繊維強化複合
材料を得た。この炭素繊維強化複合材料の炭化珪素の含
有量は10重量%であった。
Example 5 The C / C composite having a bulk density of 1.57 g / cm 3 after the graphitization treatment of Example 3
VD treatment was performed to obtain a carbon fiber reinforced composite material having a bulk density of 1.75 g / cm 3 . The content of silicon carbide in the carbon fiber reinforced composite material was 10% by weight.

【0026】[比較例1]実施例2の途中工程のピッチ
含浸、黒鉛化処理後の嵩密度1.25g/cm3 のC/Cコンポ
ジットに、金属珪素を含浸させ、1800℃で反応させて炭
素繊維強化複合材料を得た。この炭素繊維強化複合材料
の嵩密度は2.1g/cm3で、炭化珪素の含有量は58重量%で
あった。
Comparative Example 1 A C / C composite having a bulk density of 1.25 g / cm 3 after the pitch impregnation and graphitization treatment in the middle of Example 2 was impregnated with metallic silicon and reacted at 1800 ° C. A fiber reinforced composite material was obtained. The bulk density of this carbon fiber reinforced composite material was 2.1 g / cm 3 , and the content of silicon carbide was 58% by weight.

【0027】[比較例2]実施例3の黒鉛化処理後の嵩
密度1.57g/cm3 のC/Cコンポジットに炭素のCVD処
理を行い、嵩密度1.75g/cm3 のC/Cコンポジットを得
た。このC/Cコンポジットより炭化珪素は検出されな
かった。
[Comparative Example 2] The C / C composite having a bulk density of 1.57 g / cm 3 after the graphitization treatment of Example 3 was subjected to CVD treatment with carbon to obtain a C / C composite having a bulk density of 1.75 g / cm 3. Obtained. No silicon carbide was detected from this C / C composite.

【0028】[評価試験]前記の7種類のサンプルにつ
いて以下の(1) 〜(4) の評価試験を行った。この評価試
験の結果を表1に示す。 (1) 一辺が5mm の立方体を作り、昇温速度5 ℃/min、エ
アー流量200ml/min の条件で、熱天秤試験を行って重量
減が5 %を超えるときの温度を測定した。 (2) 外径150mm 、内径110mm 、厚み10mmのリング状の板
を加工するときの加工時間を測定した。 (3) 前記のリング状の板を、コンクリートの地面の上に
3mの高さから落下させ、割れの有無を調べた。 (4) 炭化珪素と炭素の界面を偏光顕微鏡で観察し、珪素
の炭素繊維に対する侵食の有無を調べた。
[Evaluation Tests] The following seven types of samples were subjected to the following evaluation tests (1) to (4). Table 1 shows the results of this evaluation test. (1) A cube having a side of 5 mm was formed, and a thermobalance test was performed under conditions of a heating rate of 5 ° C./min and an air flow rate of 200 ml / min, and the temperature at which the weight loss exceeded 5% was measured. (2) The processing time when processing a ring-shaped plate having an outer diameter of 150 mm, an inner diameter of 110 mm and a thickness of 10 mm was measured. (3) The ring-shaped plate was dropped on a concrete ground from a height of 3 m to check for cracks. (4) The interface between silicon carbide and carbon was observed with a polarizing microscope to determine whether silicon had eroded the carbon fibers.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示す評価試験結果より、比較例1も
含め炭素繊維強化複合材料は酸化温度が高く、耐酸化性
があるのに対し、比較例2のC/Cコンポジットは、耐
酸化性に劣ることが判った。また、炭化珪素の比率が高
い比較例1の材料に比べ、本発明の材料は加工性が良
く、落下試験結果でも端部が少し欠けた程度で、衝撃に
強いことが明らかになった。
From the evaluation test results shown in Table 1, the carbon fiber reinforced composite material including Comparative Example 1 has a high oxidation temperature and has oxidation resistance, whereas the C / C composite of Comparative Example 2 has oxidation resistance. Turned out to be inferior. In addition, compared to the material of Comparative Example 1 in which the ratio of silicon carbide was high, the material of the present invention had good workability, and the drop test showed that the edge was slightly chipped, and the material was resistant to impact.

【0031】図1は、本発明の炭素繊維強化複合材料の
炭化珪素と炭素との界面を、偏光顕微鏡で観察した結果
を示す概略図である。図1に示すように、本発明の炭素
繊維強化複合材料は、実質的に炭素繊維1のまわりを炭
素相2が覆っており、この炭素相2の内部隙間及び周囲
をセラミックス相3が覆った状態となっている。また、
炭素繊維1は、セラミックス相3により侵食されずに残
存している。従って、炭素繊維の特性である耐衝撃性及
び引張強度を良好に発揮することができる。また、耐熱
衝撃性も炭素相2がクッションとなって良好に発揮する
ことができる。なお、セラミックス相3内には、島状
に、空孔4が存在している。
FIG. 1 is a schematic diagram showing the result of observing the interface between silicon carbide and carbon of the carbon fiber reinforced composite material of the present invention with a polarizing microscope. As shown in FIG. 1, in the carbon fiber reinforced composite material of the present invention, a carbon phase 2 substantially covers a carbon fiber 1, and a ceramic phase 3 covers an inner gap and a periphery of the carbon phase 2. It is in a state. Also,
The carbon fiber 1 remains without being eroded by the ceramic phase 3. Therefore, impact resistance and tensile strength, which are characteristics of carbon fibers, can be exhibited well. In addition, the thermal shock resistance can be favorably exhibited by the carbon phase 2 serving as a cushion. It should be noted that holes 4 are present in the ceramic phase 3 in an island shape.

【0032】以上のように、前記炭素繊維強化複合材料
は、C/Cコンポジットの空孔比率、空孔の大きさと均
一性及び開気孔率が好適であるので、セラミックスは、
上述のように、炭素繊維を侵食することなく、炭素相の
狭い隙間に侵入した状態で、さらにはC/Cコンポジッ
トの表面相を層状に薄く覆った状態で、薄い連続相を形
成し、その比率が好適なものとなっている。従って、炭
素材料及びセラミックスの特性をバランスよく発揮する
ことができ、耐衝撃性、耐熱衝撃性、耐酸化性、耐摩耗
性、耐薬品性、機械強度特性、及び機械加工性等の諸特
性を良好に発揮することができる。
As described above, since the carbon fiber reinforced composite material has a suitable porosity, size and uniformity of porosity and open porosity of the C / C composite, ceramics
As described above, a thin continuous phase is formed without penetrating the carbon fiber, in a state of penetrating into the narrow gaps of the carbon phase, and further, in a state of thinly covering the surface phase of the C / C composite in layers. The ratio is favorable. Therefore, the properties of carbon materials and ceramics can be exhibited in a well-balanced manner, and various properties such as impact resistance, thermal shock resistance, oxidation resistance, abrasion resistance, chemical resistance, mechanical strength properties, and machinability are obtained. It can be exhibited well.

【0033】[0033]

【発明の効果】以上のように構成された本発明は、以下
の効果を奏する。請求項1記載の炭素繊維強化複合材料
によれば、炭素繊維が非侵食状態で残存しているので、
炭素繊維の特性である耐衝撃性及び引張強度を良好に発
揮することができるとともに、炭素相がクッションとな
って耐熱衝撃性も良好に発揮することができる。さら
に、セラミックスが連続相になっているので、その特性
が十分に発現され、セラミックス相が剥離しにくくなる
ことと相まって、特に、圧縮強度、耐酸化性及び耐摩耗
性が向上している。しかも、機械加工性がほぼC/Cコ
ンポジット並に向上し、複雑な形状にも加工できる。従
って、本発明の炭素繊維強化複合材料は、航空宇宙用部
材の材料、耐熱用途のローラー及びブレーキ材料等の用
途に適する。
The present invention configured as described above has the following effects. According to the carbon fiber reinforced composite material according to claim 1, since the carbon fibers remain in a non-eroded state,
The impact resistance and the tensile strength, which are the characteristics of the carbon fiber, can be favorably exhibited, and the carbon phase serves as a cushion, so that the thermal shock resistance can be favorably exhibited. Furthermore, since the ceramic is in a continuous phase, its properties are sufficiently exhibited, and the ceramic phase is hardly peeled off, and in particular, the compressive strength, oxidation resistance and wear resistance are improved. In addition, the machinability is improved to substantially the same level as a C / C composite, and a complicated shape can be processed. Therefore, the carbon fiber reinforced composite material of the present invention is suitable for applications such as materials for aerospace members, rollers and brake materials for heat resistance applications, and the like.

【0034】請求項2記載の炭素繊維強化複合材料によ
れば、C/Cコンポジットを50〜90重量%、炭化珪素及
び窒化珪素の少なくとも一方からなるセラミックスを50
〜10重量%含むので、セラミックスが薄い連続相を形成
し易くなり、機械加工性がさらに向上する。特に、セラ
ミックスの比率が10重量%以上であるので、耐酸化性が
さらに向上し、C/Cコンポジットの比率が50重量%以
上であるので、機械加工性及び耐衝撃性がより効果的に
向上する。
According to the carbon fiber reinforced composite material of the second aspect, the C / C composite is 50 to 90% by weight, and the ceramic comprising at least one of silicon carbide and silicon nitride is 50% by weight.
Since it contains about 10% by weight, the ceramics can easily form a thin continuous phase, and the machinability is further improved. In particular, since the ratio of ceramics is 10% by weight or more, oxidation resistance is further improved, and the ratio of C / C composite is 50% by weight or more, so that machinability and impact resistance are more effectively improved. I do.

【0035】請求項3記載の炭素繊維強化複合材料の製
造方法によれば、請求項1記載の炭素繊維強化複合材料
を容易かつ確実に得ることができる。また、セラミック
スの連続相の厚みを薄くすることができるので、その機
械加工性をより効果的に向上させることができる。さら
に、セラミックスが表面相に偏在するのを防止すること
ができるので、均質な炭素繊維強化複合材料を得ること
ができる。
According to the method for producing a carbon fiber reinforced composite material according to the third aspect, the carbon fiber reinforced composite material according to the first aspect can be obtained easily and reliably. In addition, since the thickness of the ceramic continuous phase can be reduced, its machinability can be more effectively improved. Further, since the ceramics can be prevented from being unevenly distributed in the surface phase, a homogeneous carbon fiber reinforced composite material can be obtained.

【0036】請求項4記載の炭素繊維強化複合材料の製
造方法によれば、品質の安定した炭素繊維強化複合材料
を得ることができる。
According to the method for producing a carbon fiber reinforced composite material according to the fourth aspect, a carbon fiber reinforced composite material having stable quality can be obtained.

【0037】請求項5記載の炭素繊維強化複合材料の製
造方法によれば、均一で薄いセラミックス相が形成さ
れ、炭素繊維強化複合材料の機械加工性及び耐衝撃性等
の性能がより効果的に向上する。
According to the method for producing a carbon fiber reinforced composite material according to the fifth aspect, a uniform and thin ceramic phase is formed, and the performance such as the machinability and impact resistance of the carbon fiber reinforced composite material is more effectively improved. improves.

【0038】請求項6記載の炭素繊維強化複合材料の製
造方法によれば、中間体が緻密化して空孔比率及び空孔
の大きさが小さくなるので、形成されるセラミックスの
連続相がさらに薄くなって、炭素繊維強化複合材料の機
械加工性及び耐衝撃性等の性能がより効果的に向上す
る。
According to the method of manufacturing a carbon fiber reinforced composite material according to the sixth aspect, the intermediate body is densified and the porosity and the size of the porosity are reduced, so that the continuous phase of the formed ceramic is further thinned. As a result, the performance such as the machinability and impact resistance of the carbon fiber reinforced composite material is more effectively improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭素繊維強化複合材料を偏光顕微鏡で
観察した結果を示す概略図である。
FIG. 1 is a schematic view showing the results of observing a carbon fiber reinforced composite material of the present invention with a polarizing microscope.

【符号の説明】[Explanation of symbols]

1 炭素繊維 2 炭素相 3 炭化珪素及び窒化珪素の少なくとも一方からなるセ
ラミックス 4 空孔
DESCRIPTION OF SYMBOLS 1 Carbon fiber 2 Carbon phase 3 Ceramics consisting of at least one of silicon carbide and silicon nitride 4 Vacancies

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化炭素複合材料に、炭化珪素及
び窒化珪素の少なくとも一方からなるセラミックスを生
成しているとともに、前記炭素繊維強化炭素複合材料及
びセラミックスがそれぞれ連続相を形成し、炭素繊維が
非侵食状態で残存していることを特徴とする炭素繊維強
化複合材料。
1. A carbon fiber reinforced carbon composite material, wherein a ceramic comprising at least one of silicon carbide and silicon nitride is produced, and the carbon fiber reinforced carbon composite material and the ceramic form a continuous phase, respectively. Carbon fiber reinforced composite material, characterized by remaining in a non-eroded state.
【請求項2】前記炭素繊維強化炭素複合材料を50〜90重
量%、前記セラミックスを50〜10重量%含む請求項1記
載の炭素繊維強化複合材料。
2. The carbon fiber reinforced composite material according to claim 1, comprising 50 to 90% by weight of the carbon fiber reinforced carbon composite material and 50 to 10% by weight of the ceramic.
【請求項3】請求項1記載の炭素繊維強化複合材料の製
造方法であって、 炭素繊維と炭素質マトリックスとからなるプリフォーム
を炭化させるか、又は炭素繊維のプリフォームに化学的
気相蒸着法により炭素を沈積させて、炭素繊維強化炭素
複合材料を作製し、この炭素繊維強化炭素複合材料に前
記セラミックスを生成させることを特徴とする炭素繊維
強化複合材料の製造方法。
3. The method for producing a carbon fiber reinforced composite material according to claim 1, wherein a preform comprising carbon fibers and a carbonaceous matrix is carbonized, or a chemical vapor deposition is performed on the carbon fiber preform. A method for producing a carbon fiber reinforced composite material, comprising: depositing carbon by a method to produce a carbon fiber reinforced carbon composite material; and forming the ceramic in the carbon fiber reinforced carbon composite material.
【請求項4】前記炭素繊維強化炭素複合材料に有機珪素
化合物を含浸させ、不活性ガス又は窒素ガス雰囲気中で
熱処理を行うことにより、前記セラミックスを生成させ
る請求項3記載の炭素繊維強化複合材料の製造方法。
4. The carbon fiber reinforced composite material according to claim 3, wherein said carbon fiber reinforced carbon composite material is impregnated with an organosilicon compound and heat-treated in an inert gas or nitrogen gas atmosphere to produce said ceramics. Manufacturing method.
【請求項5】前記炭素繊維強化炭素複合材料に、化学的
気相蒸着法により前記セラミックスを生成させる請求項
3記載の炭素繊維強化複合材料の製造方法。
5. The method for producing a carbon fiber reinforced composite material according to claim 3, wherein said ceramics is formed on said carbon fiber reinforced carbon composite material by a chemical vapor deposition method.
【請求項6】前記炭素繊維強化炭素複合材料を作製した
後、当該炭素繊維強化炭素複合材料に樹脂若しくはピッ
チを含浸させて炭化させる工程、又は化学的気相蒸着法
により炭素を沈積させる工程と、前記セラミックスを生
成させる工程とを少なくとも1回行う請求項3記載の炭
素繊維強化複合材料の製造方法。
6. A step of impregnating the carbon fiber reinforced carbon composite material with a resin or pitch and carbonizing the carbon fiber reinforced carbon composite material after producing the carbon fiber reinforced carbon composite material, or depositing carbon by a chemical vapor deposition method. The method for producing a carbon fiber reinforced composite material according to claim 3, wherein the step of producing the ceramic is performed at least once.
JP10099480A 1998-04-10 1998-04-10 Carbon fiber-reinforced material and its production Pending JPH11292647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099480A JPH11292647A (en) 1998-04-10 1998-04-10 Carbon fiber-reinforced material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099480A JPH11292647A (en) 1998-04-10 1998-04-10 Carbon fiber-reinforced material and its production

Publications (1)

Publication Number Publication Date
JPH11292647A true JPH11292647A (en) 1999-10-26

Family

ID=14248485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099480A Pending JPH11292647A (en) 1998-04-10 1998-04-10 Carbon fiber-reinforced material and its production

Country Status (1)

Country Link
JP (1) JPH11292647A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661342A (en) * 2012-04-28 2012-09-12 中南大学 Producing method for carbon fiber reinforced ceramic matrix automobile brake pad
KR101225992B1 (en) * 2012-11-14 2013-01-28 국방과학연구소 Refractory composite for gas leak prevention
CN104150939A (en) * 2014-07-24 2014-11-19 西北工业大学 Preparation method of electrophoretic deposition CNTs (carbon nano tubes) reinforced ceramic matrix composite material
US20150299053A1 (en) * 2012-11-26 2015-10-22 Toyo Tanso Co., Ltd. Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP2017001912A (en) * 2015-06-10 2017-01-05 株式会社Ihiエアロスペース Method for producing silicon carbide based composite
CN115180954A (en) * 2022-07-08 2022-10-14 西安航空制动科技有限公司 Preparation method of carbon-based composite material brake pad

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661342A (en) * 2012-04-28 2012-09-12 中南大学 Producing method for carbon fiber reinforced ceramic matrix automobile brake pad
KR101225992B1 (en) * 2012-11-14 2013-01-28 국방과학연구소 Refractory composite for gas leak prevention
US20150299053A1 (en) * 2012-11-26 2015-10-22 Toyo Tanso Co., Ltd. Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
CN104150939A (en) * 2014-07-24 2014-11-19 西北工业大学 Preparation method of electrophoretic deposition CNTs (carbon nano tubes) reinforced ceramic matrix composite material
JP2017001912A (en) * 2015-06-10 2017-01-05 株式会社Ihiエアロスペース Method for producing silicon carbide based composite
CN115180954A (en) * 2022-07-08 2022-10-14 西安航空制动科技有限公司 Preparation method of carbon-based composite material brake pad

Similar Documents

Publication Publication Date Title
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
KR100624094B1 (en) The method of producing carbon fiber reinforced ceramic matrix composites
US7799375B2 (en) Process for the manufacturing of dense silicon carbide
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
US7374709B2 (en) Method of making carbon/ceramic matrix composites
EP0394463B1 (en) Carbide fibers with high strength and high modulus of elasticity and polymer composition used for their production
JPH11292662A (en) Fiber composite material and its use
CA2151949A1 (en) Process for producing articles of carbon-silicon carbide composite material and carbon-silicon carbide composite material
JP5944618B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
US6447893B2 (en) Fibrous composite material and process for producing the same
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP2735151B2 (en) Method for producing fiber-reinforced silicon carbide composite ceramics molded body
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH11292647A (en) Carbon fiber-reinforced material and its production
CN109095929B (en) Preparation method of carbon-ceramic brake disc
WO2020032067A1 (en) Crystalline silicon carbide fiber and method for manufacturing same, and ceramic composite substrate
JPH0355430B2 (en)
JPH01188468A (en) Carbon fiber-reinforced carbon composite material and its production
JPH11292646A (en) Carbon-based sliding member and its production
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JP3494533B2 (en) Method for producing oxidation resistant C / C composite
CN112266258B (en) Carbon-ceramic material and preparation method and application thereof
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JPH09207236A (en) Highly impregnating three dimensional textile, and carbon fiber reinforced composite material and ceramic composite material which use the textile

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013