JPH11292646A - Carbon-based sliding member and its production - Google Patents

Carbon-based sliding member and its production

Info

Publication number
JPH11292646A
JPH11292646A JP10099479A JP9947998A JPH11292646A JP H11292646 A JPH11292646 A JP H11292646A JP 10099479 A JP10099479 A JP 10099479A JP 9947998 A JP9947998 A JP 9947998A JP H11292646 A JPH11292646 A JP H11292646A
Authority
JP
Japan
Prior art keywords
carbon
sliding member
carbon fiber
composite material
based sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099479A
Other languages
Japanese (ja)
Inventor
Mitsunobu Nikaido
光信 二階堂
Yoshio Inoue
良男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP10099479A priority Critical patent/JPH11292646A/en
Publication of JPH11292646A publication Critical patent/JPH11292646A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon-based member capable of stably exhibiting abrasion characteristics by forming a member containing ceramics comprising a carbon fiber-reinforced carbon composite material and silicon carbide or silicon nitride at a specific ratio, each formed of a continuous phase, leaving carbon fiber in uneroded state and having a specific whole porosity. SOLUTION: This carbon-based member comprises 50-90 wt.% carbon fiber- reinforced carbon composite material and 50-10 wt.% ceramics comprising silicon carbide or silicon nitride and has <=18 wt.% whole porosity. The carbon- based member is obtained by carbonizing a preform comprising a carbon fiber and a carbonaceous matrix or depositing carbon onto a preform of carbon fiber by chemical vapor depositing method to prepare carbon fiber-reinforced carbon composite material, impregnating an organosilicon compound into the composite material and heat-treating the impregnated material in an inert gas atmosphere. In the carbon fiber-reinforced carbon composite material, a volume ratio of carbon fiber is preferably about 20-50 based on total volumes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素系摺動部材及
びその製造方法に関し、詳しくは、炭素繊維強化炭素複
合材料(以下、「C/Cコンポジット」と称す)とセラ
ミックスとからなり、航空機、レース用車両及び鉄道車
両等のブレーキディスク及びパッドの材料として特に好
適に用いられる炭素系摺動部材及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based sliding member and a method for manufacturing the same, and more particularly, to an aircraft made of carbon fiber reinforced carbon composite material (hereinafter referred to as "C / C composite") and ceramics. The present invention relates to a carbon-based sliding member particularly preferably used as a material for a brake disk and a pad of a racing vehicle, a railway vehicle, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、宇宙用部材の材料等として開発さ
れてきたC/Cコンポジットが、航空機、レース用車両
及び鉄道車両等のディスクブレーキ装置の摺動部材とし
て多く使用されている。このC/Cコンポジットは熱容
量が大きく、軽量で、耐熱性に優れているので、軽量化
が要求される航空機用に特に適した摺動部材といえる。
一方、最近になって、炭化珪素及び窒化珪素等のセラミ
ックス(以下「非酸化珪素セラミックス」と称す)のマ
トリックスとセラミックス繊維とからなるセラミックス
繊維強化セラミックス(特開平9-157050号公報)、及び
C/Cコンポジットとセラミックスとからなる複合材料
を、摺動部材の素材として用いることが検討されてお
り、後者の複合材料として、C/Cコンポジットに非酸
化珪素セラミックスを分散添加したものや、SiOガス
雰囲気中で熱処理して、C/Cコンポジットの一部又は
全部を炭化珪素に転化させたもの(特開平5-59350 号公
報)等が提案されている。
2. Description of the Related Art In recent years, C / C composites, which have been developed as materials for space members, have been widely used as sliding members for disc brake devices in aircraft, racing vehicles, railway vehicles and the like. Since the C / C composite has a large heat capacity, is lightweight, and has excellent heat resistance, it can be said that the C / C composite is a sliding member particularly suitable for an aircraft requiring light weight.
On the other hand, recently, ceramic fiber reinforced ceramics (Japanese Patent Laid-Open No. 9-57050) comprising a matrix of ceramics such as silicon carbide and silicon nitride (hereinafter referred to as “non-silicon oxide ceramics”) and ceramic fibers, and C Use of a composite material composed of a C / C composite and ceramics as a material for a sliding member has been studied. As the latter composite material, a non-silicon oxide ceramics dispersed and added to a C / C composite, or a SiO gas There has been proposed, for example, one in which part or all of a C / C composite is converted into silicon carbide by heat treatment in an atmosphere (Japanese Patent Laid-Open No. 5-59350).

【0003】[0003]

【発明が解決しようとする課題】しかし、C/Cコンポ
ジットを摺動部材として用いたディスクブレーキは、温
度により摩擦係数が変化し易く、摩耗量も比較的多いと
いう欠点がある。また、C/Cコンポジットは炭素材で
あり、空気中で高温にさらされると酸化するので、摩擦
面以外の面に酸化防止剤を塗布する必要があるが、その
効果も十分とはいえなかった。
However, a disc brake using a C / C composite as a sliding member has disadvantages in that the friction coefficient tends to change with temperature and the amount of wear is relatively large. In addition, the C / C composite is a carbon material and oxidizes when exposed to high temperatures in the air. Therefore, it is necessary to apply an antioxidant to a surface other than the friction surface, but the effect is not sufficient. .

【0004】一方、前記セラミックスマトリックスの複
合材料は、摩耗量が少なく、摩擦係数が高いことから摺
動部材として適しているが、セラミックスマトリックス
は硬くて機械加工が困難であり、ブレーキディスク等の
複雑な形状に加工するには、工数と費用とがかかりすぎ
て実用的でないという問題があった。
[0004] On the other hand, the ceramic matrix composite material is suitable for a sliding member because it has a small amount of wear and a high coefficient of friction. However, the ceramic matrix is hard and difficult to machine, and a complicated material such as a brake disk is required. There is a problem that it takes too much man-hour and cost to process into a complicated shape and is not practical.

【0005】また、C/Cコンポジットとセラミックス
とからなる複合材料は、セラミックス相が分散相である
ため、摺動部材として使用すると、表面に出たセラミッ
クス相が剥離してグルービングが生じ、摩耗量が増え、
強度も低下するという欠点がある。さらに、C/Cコン
ポジットの一部又は全部を炭化珪素に転化させた複合材
料からなる摺動部材は、表面と内部とで成分比が変わ
り、使用するに従って摩擦性能が変動するため摺動部材
としては問題があり、また、加工性もよくなかった。
[0005] Further, in a composite material comprising a C / C composite and ceramics, since the ceramic phase is a dispersed phase, when used as a sliding member, the ceramic phase exposed on the surface is peeled off, grooving occurs, and the amount of wear is reduced. Increased,
There is a disadvantage that the strength is also reduced. Furthermore, a sliding member made of a composite material in which part or all of the C / C composite is converted into silicon carbide has a component ratio that changes between the surface and the inside, and the friction performance fluctuates as it is used. Had a problem and the workability was not good.

【0006】本発明は、前記問題点を解決するものであ
り、摩擦特性を安定的に発揮できるとともに、耐酸化
性、耐摩耗性、耐衝撃性、耐熱衝撃性、引張強度特性、
及び圧縮強度特性に優れ、機械加工も容易な炭素系摺動
部材及びその製造方法を提供することを目的とする。
[0006] The present invention solves the above-mentioned problems, and can stably exhibit frictional characteristics, as well as oxidation resistance, abrasion resistance, impact resistance, thermal shock resistance, tensile strength characteristics, and the like.
Another object of the present invention is to provide a carbon-based sliding member having excellent compressive strength characteristics and easy machining, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明に係る炭素系摺動
部材は、C/Cコンポジットを50〜90重量%、炭化珪素
又は窒化珪素の少なくとも一方からなるセラミックスを
50〜10重量%含み、前記C/Cコンポジット及びセラミ
ックスがそれぞれ連続相を形成し、炭素繊維が非侵食状
態で残存しているとともに、全気孔率が18%以下である
ことを特徴としている(請求項1)。前記の炭素系摺動
部材によれば、C/Cコンポジットと非酸化珪素セラミ
ックスとの比率が前記の範囲であるので、非酸化珪素セ
ラミックスが薄い連続相を形成し易くなり、その比率が
10重量%以上である点と相まって、非酸化珪素セラミッ
クスの特性である耐酸化性や耐摩耗性が効果的に発現す
るとともに、摩擦特性を安定的に発揮することができ
る。また、全気孔率を18%以下にしているので、非酸化
珪素セラミックスの連続相が剥離するのが抑制される。
このため、この剥離に起因して摩耗量が増加するのを防
止するとともに、圧縮強度が低下するのを防止すること
ができる。さらに、C/Cコンポジットの比率が50重量
%以上であるので、耐衝撃性に優れるとともに、略C/
Cコンポジット並の機械加工性を確保することができ
る。前記の炭素系摺動部材の内部組織は、実質的に炭素
繊維の周りを炭素相が覆っており、この炭素相の内部隙
間及び周囲を非酸化珪素セラミックスが覆っている状態
になっている。また、炭素繊維が非酸化珪素セラミック
スに侵食されることなく残存している。このため、炭素
繊維の特性である耐衝撃性及び引張強度をさらに良好に
発揮することができる。また、炭素相に由来して機械加
工性も良好であり、この機械加工性は、非酸化珪素セラ
ミックス相の厚みが薄いほど効果的に向上することが確
認されている。また、炭素相がクッションとなって耐熱
衝撃性も良好である。
According to the present invention, there is provided a carbon-based sliding member comprising a ceramic comprising 50 to 90% by weight of a C / C composite and at least one of silicon carbide and silicon nitride.
50 to 10% by weight, wherein the C / C composite and the ceramic form a continuous phase, the carbon fibers remain in a non-eroded state, and the total porosity is 18% or less. Claim 1). According to the carbon-based sliding member, since the ratio of the C / C composite to the non-silicon oxide ceramic is within the above range, the non-silicon oxide ceramic easily forms a thin continuous phase.
When combined with the content of 10% by weight or more, oxidation resistance and wear resistance, which are characteristics of the non-silicon oxide ceramics, can be effectively exhibited, and friction characteristics can be stably exhibited. In addition, since the total porosity is 18% or less, peeling of the continuous phase of the non-silicon oxide ceramic is suppressed.
For this reason, it is possible to prevent the amount of wear from increasing due to the peeling and to prevent the compressive strength from decreasing. Furthermore, since the ratio of the C / C composite is 50% by weight or more, it is excellent in impact resistance and substantially C / C
Machinability equivalent to that of C composite can be ensured. In the internal structure of the carbon-based sliding member, the carbon phase substantially covers the periphery of the carbon fiber, and the internal gap and the periphery of the carbon phase are covered with non-silicon oxide ceramics. Further, the carbon fibers remain without being eroded by the non-silicon oxide ceramics. For this reason, the impact resistance and tensile strength, which are the characteristics of carbon fibers, can be exhibited more favorably. In addition, the machinability is good due to the carbon phase, and it has been confirmed that the machinability is more effectively improved as the thickness of the non-silicon oxide ceramic phase is smaller. Further, the carbon phase serves as a cushion, and the thermal shock resistance is also good.

【0008】本発明に係る炭素系摺動部材の製造方法
は、請求項1記載の炭素系摺動部材の製造方法であっ
て、炭素繊維と炭素質マトリックスとからなるプリフォ
ームを炭化させるか、又は炭素繊維のプリフォームに化
学的気相蒸着法(以下、「CVD法」と称す)により炭
素を沈積させて、C/Cコンポジットを作製し、このC
/Cコンポジットに非酸化珪素セラミックスを生成させ
ることを特徴としている(請求項2)。この炭素系摺動
部材の製造方法によれば、C/Cコンポジットと、非酸
化珪素セラミックスとがそれぞれ連続相を形成し、実質
的に炭素繊維が炭素相に覆われ、また、非侵食状態で残
存している炭素系摺動部材を容易かつ確実に得ることが
できるとともに、非酸化珪素セラミックス相の厚みを薄
くすることができる。また、非酸化珪素セラミックスが
表面相に偏在するのを防止することもできる。
[0008] The method for manufacturing a carbon-based sliding member according to the present invention is the method for manufacturing a carbon-based sliding member according to claim 1, wherein the preform comprising carbon fiber and carbonaceous matrix is carbonized. Alternatively, carbon is deposited on a carbon fiber preform by a chemical vapor deposition method (hereinafter, referred to as a “CVD method”) to produce a C / C composite.
A non-silicon oxide ceramic is produced in the / C composite (claim 2). According to this method of manufacturing a carbon-based sliding member, the C / C composite and the non-silicon oxide ceramic form a continuous phase, respectively, and the carbon fibers are substantially covered with the carbon phase. The remaining carbon-based sliding member can be easily and reliably obtained, and the thickness of the non-silicon oxide ceramic phase can be reduced. It is also possible to prevent non-silicon oxide ceramics from being unevenly distributed in the surface phase.

【0009】請求項2記載の炭素系摺動部材の製造方法
は、前記C/Cコンポジットに有機珪素化合物を含浸さ
せ、不活性ガス又は窒素ガス雰囲気中で熱処理を行うこ
とにより非酸化珪素セラミックスを生成させるものであ
ってもよい(請求項3)。前記の製造方法によれば、品
質の安定した炭素系摺動部材を得ることができる。
According to a second aspect of the present invention, in the method of manufacturing a carbon-based sliding member, the C / C composite is impregnated with an organosilicon compound, and heat-treated in an inert gas or nitrogen gas atmosphere to produce a non-silicon oxide ceramic. It may be generated (claim 3). According to the above manufacturing method, a carbon-based sliding member having stable quality can be obtained.

【0010】請求項2記載の炭素系摺動部材の製造方法
は、前記C/Cコンポジットを作製した後、当該C/C
コンポジットに樹脂若しくはピッチを含浸させて炭化さ
せる工程、又は化学的気相蒸着法により炭素を沈積させ
る工程と、非酸化珪素セラミックスを生成させる工程と
を少なくとも1回行うものであってもよい(請求項
4)。前記の製造方法によれば、前記樹脂若しくはピッ
チの炭化、又は炭素の沈積によって、炭素系摺動部材の
ブランクとしての中間体が緻密化し、全気孔率18%以下
の炭素系摺動部材が容易に得られる。また、緻密化によ
り、空孔比率及び空孔の大きさがより小さくなるので、
非酸化珪素セラミックス相の厚みをさらに薄くすること
ができる。
According to a second aspect of the present invention, in the method for manufacturing a carbon-based sliding member, the C / C composite is manufactured and then the C / C composite is manufactured.
The step of impregnating the composite with resin or pitch to carbonize it, or the step of depositing carbon by chemical vapor deposition and the step of producing non-silicon oxide ceramics may be performed at least once. Item 4). According to the above manufacturing method, the carbonized sliding member having a total porosity of 18% or less is easily formed by carbonizing the resin or pitch or depositing carbon, thereby densifying the intermediate as a blank for the carbon-based sliding member. Is obtained. In addition, since the density and the size of the pores become smaller due to the densification,
The thickness of the non-silicon oxide ceramic phase can be further reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳述する。本発明に係る炭素系摺動部材は、以下のよ
うにして製造する。まず、炭素繊維と炭素質マトリック
スとからC/Cコンポジットを作製する。炭素繊維は、
PAN(ポリアクリロニトリル)系、ピッチ系及びレー
ヨン系等の原料、長繊維及び短繊維等の形状並びに織
布、不織布及びチョップドファイバー等の形態等により
多くの種類があるが、摺動部材の用途に応じて適宜選択
する。また、炭化前の耐炎繊維等の中間繊維、他の繊維
との混紡品及び混合品等も使用できる。なお、実験結果
から、摺動部材用途には、不織布が好ましいことが判っ
ている。
Embodiments of the present invention will be described below in detail. The carbon-based sliding member according to the present invention is manufactured as follows. First, a C / C composite is prepared from a carbon fiber and a carbonaceous matrix. Carbon fiber is
There are many types of materials such as PAN (polyacrylonitrile) -based, pitch-based and rayon-based materials, shapes of long fibers and short fibers, and shapes of woven fabrics, non-woven fabrics, chopped fibers, and the like. It is appropriately selected according to the situation. Intermediate fibers such as flame-resistant fibers before carbonization, and blended or mixed products with other fibers can also be used. From the experimental results, it has been found that a nonwoven fabric is preferable for sliding member applications.

【0012】C/Cコンポジットを作製する方法は、前
記炭素繊維のプリフォームに、CVD法により炭素を沈
積させる方法と、炭素繊維を炭素質マトリックスととも
にプリフォーム化した後に炭化させる方法の、2つの方
法がある。前者のCVD法により炭素を沈積させる方法
は、マトリックスとなる原料ガス(メタンやプロパンガ
ス等)とキャリヤーガスとを、一定の温度に保持した前
記炭素繊維のプリフォーム内に導入し、その空孔部の内
面で化学反応させて炭素を析出させるものである。後者
の炭素質マトリックスを使用する方法は、フェノール樹
脂、フラン樹脂及びポリイミド樹脂等の熱硬化性樹脂、
並びにコールタールピッチ及び石油系ピッチ等のピッチ
類等の種々の炭素質マトリックスの中から、摺動部材の
用途に応じて炭素質マトリックスを選択し、これを炭素
繊維に含浸させて硬化及び炭化させる。炭素質マトリッ
クスの含浸は、非酸化珪素セラミックスの含浸と比較し
て、摩擦特性に及ぼす効果は少ない。また、その中に炭
素粉及び黒鉛粉等の粉体を混ぜ込んでもよい。成形は、
ホットプレス成形及びハンドレイアップ等各種の手法を
使用することができ、成形時にいくつかのプリフォーム
を積み上げて、一体化してもよい。
There are two methods for producing a C / C composite: a method in which carbon is deposited on the carbon fiber preform by a CVD method, and a method in which carbon fiber is preformed with a carbonaceous matrix and then carbonized. There is a way. In the former method of depositing carbon by the CVD method, a raw material gas (such as methane or propane gas) serving as a matrix and a carrier gas are introduced into a preform of the carbon fiber maintained at a constant temperature, and the pores thereof are formed. The carbon is deposited by a chemical reaction on the inner surface of the part. The latter method using a carbonaceous matrix is a thermosetting resin such as a phenol resin, a furan resin and a polyimide resin,
From among various carbonaceous matrices such as pitches such as coal tar pitch and petroleum pitch, a carbonaceous matrix is selected according to the use of the sliding member, and the carbon fiber is impregnated into carbon fibers to be cured and carbonized. . Impregnation with a carbonaceous matrix has less effect on friction properties than impregnation with non-silicon oxide ceramics. Powders such as carbon powder and graphite powder may be mixed therein. Molding is
Various techniques such as hot press molding and hand lay-up can be used, and several preforms may be stacked and integrated at the time of molding.

【0013】本発明に係るC/Cコンポジットでは、炭
素繊維と炭素質マトリックスとの比率は限定されず、使
用する炭素繊維の種類(PAN系、ピッチ系等)及び形
態(織布、不織布、チョップドファイバー等)、炭素質
マトリックスの材質(樹脂系、ピッチ系、CVD系
等)、並びに要求される摩擦特性等を考慮して好適な比
率に設定されるが、例えば、プリフォームの作り易さ及
び摺動部材の性能保持の観点から、炭素繊維の比率を20
〜50体積比(全体に対して)程度に設定するのが好まし
い。
In the C / C composite according to the present invention, the ratio between the carbon fiber and the carbonaceous matrix is not limited, and the type (PAN type, pitch type, etc.) and form (woven cloth, non-woven cloth, chopped) of the carbon fiber to be used. Fiber, etc.), the material of the carbonaceous matrix (resin-based, pitch-based, CVD-based, etc.) and the required ratio are set in consideration of the required frictional characteristics and the like. From the viewpoint of maintaining the performance of the sliding member, the ratio of carbon fiber
It is preferable to set to about 50 volume ratio (to the whole).

【0014】本発明の炭素系摺動部材は、C/Cコンポ
ジットの製造方法、空孔部の割合(空孔比率)、空孔の
大きさ及び均一性、並びに非酸化珪素セラミックスの生
成に寄与しない閉気孔の比率がどのくらいであるか等に
よって、最終的な非酸化珪素セラミックスの比率が決定
し、当該炭素系摺動部材の性能が決定する。ゆえに、閉
気孔が少なく、細かい孔が均一に存在するように、原料
及び製造方法の組み合わせを選択する。空孔比率は、前
記C/Cコンポジットに、フラン樹脂等の熱硬化性樹脂
若しくはコールタールピッチ等のピッチ類を含浸させ、
又はCVD法で炭素を沈積させることにより、調節する
ことができる。何れの方法でも摩擦特性に及ぼす影響は
少ない。
The carbon-based sliding member of the present invention contributes to the method of manufacturing a C / C composite, the ratio of voids (void ratio), the size and uniformity of voids, and the production of non-silicon oxide ceramics. The final ratio of the non-silicon oxide ceramics is determined by the ratio of the closed pores that are not used, and the like, and the performance of the carbon-based sliding member is determined. Therefore, the combination of the raw material and the production method is selected so that the number of closed pores is small and fine pores are uniformly present. The porosity is obtained by impregnating the C / C composite with a thermosetting resin such as furan resin or pitches such as coal tar pitch.
Alternatively, it can be adjusted by depositing carbon by a CVD method. Either method has little effect on the friction characteristics.

【0015】次に、前記C/Cコンポジットの空孔部及
び表面相に非酸化珪素セラミックスを生成させるが、そ
の方法は、ポリシラザン及びポリカルボシラン等の有機
珪素化合物を溶媒に溶かしたものを、C/Cコンポジッ
トに含浸させた後に、アルゴン等の不活性ガス又は窒素
ガス雰囲気中で、温度700 ℃以上で焼成し、非酸化珪素
セラミックスを反応生成させるものであり、アルゴンガ
スの場合には炭化珪素が、窒素ガスの場合には窒化珪素
がそれぞれ生成される。通常は、この含浸及び焼成の操
作を数回繰り返して非酸化珪素セラミックスを生成させ
るが、前記操作を繰り返す回数は、要求される非酸化珪
素セラミックスの重量%と、最終密度とにより決定す
る。さらに、炭化珪素の歩留を上げる目的で不融化処理
を行ってもよい。不融化処理を行った場合、不純物とし
て酸化珪素が生成するが、量的に少なければ問題はな
い。その他、製造方法及び原料に起因する、炭素及び水
素等の副生成物、並びに不純物が混在することがある
が、混在しても極少量であり、問題はない。また、C/
Cコンポジットに、CVD法により非酸化珪素セラミッ
クスを沈積させる方法もあるが、表面のCVD相を除去
するのにかなりの手間を要し、また奥まで沈積させるの
に時間がかかる。
Next, non-silicon oxide ceramics are formed in the pores and the surface phase of the C / C composite. The method includes the steps of: dissolving an organic silicon compound such as polysilazane and polycarbosilane in a solvent; After impregnating the C / C composite, it is fired at a temperature of 700 ° C. or more in an atmosphere of an inert gas such as argon or a nitrogen gas to generate non-silicon oxide ceramics by reaction. When silicon is nitrogen gas, silicon nitride is generated. Usually, this operation of impregnation and firing is repeated several times to produce a non-silicon oxide ceramic. The number of repetitions of the operation is determined by the required weight% of the non-silicon oxide ceramic and the final density. Further, infusibility treatment may be performed for the purpose of increasing the yield of silicon carbide. When the infusibilization treatment is performed, silicon oxide is generated as an impurity, but there is no problem if the amount is small. In addition, by-products such as carbon and hydrogen and impurities may be mixed due to the production method and raw materials, but even if mixed, the amount is very small and there is no problem. Also, C /
There is also a method of depositing non-silicon oxide ceramics on the C composite by the CVD method, but it takes considerable time and effort to remove the CVD phase on the surface, and it takes time to deposit it deeply.

【0016】前記の炭素系摺動部材は、C/Cコンポジ
ット50〜90重量%と非酸化珪素セラミックス50〜10重量
%とからなるものであるのが好ましい。両者の比率が前
記の範囲内にある場合には、非酸化珪素セラミックスが
薄い連続相を形成し易くなり、非酸化珪素セラミックス
の比率が10重量%以上である点と相まって、耐酸化性及
び摩擦特性が向上する。また、C/Cコンポジットの比
率が50重量%以上であると、機械加工性及び耐衝撃性が
良好である。そして、前記の範囲内で、摩擦材料の用途
等に応じて好適な比率を選択すればよい。
The carbon-based sliding member is preferably composed of 50 to 90% by weight of a C / C composite and 50 to 10% by weight of a non-silicon oxide ceramic. When the ratio between the two is within the above range, the non-silicon oxide ceramics easily forms a thin continuous phase, and in combination with the fact that the ratio of the non-silicon oxide ceramics is 10% by weight or more, the oxidation resistance and the friction resistance are improved. The characteristics are improved. When the ratio of the C / C composite is 50% by weight or more, the machinability and the impact resistance are good. Then, within the above range, a suitable ratio may be selected according to the use of the friction material and the like.

【0017】以上の構成の炭素系摺動部材の製造方法
は、前記非酸化珪素セラミックスを生成させた後、樹脂
若しくはピッチ類を含浸させて炭化させる工程、又はC
VD法により炭素を沈積させる工程を複数回行ってもよ
く、非酸化珪素セラミックスを生成させる工程をさらに
追加してもよい。また、前記C/Cコンポジットを作製
した後、樹脂若しくはピッチを含浸させて炭化させる工
程又はCVD法により炭素を沈積させる工程と、非酸化
珪素セラミックスを生成させる工程とを、この順にて複
数回繰り返してもよい。何れにおいても、炭素系摺動部
材のブランクとしての中間体が緻密化して空孔比率及び
空孔の大きさが小さくなるので、非酸化珪素セラミック
スの連続相が効果的に薄くなって、炭素系摺動部材の機
械加工性及び耐衝撃性がさらに向上する。
In the method of manufacturing a carbon-based sliding member having the above structure, the non-silicon oxide ceramic is formed and then impregnated with a resin or pitch to carbonize the ceramic.
The step of depositing carbon by the VD method may be performed a plurality of times, and a step of forming a non-silicon oxide ceramic may be further added. After the C / C composite is produced, a step of impregnating resin or pitch to carbonize or depositing carbon by a CVD method and a step of producing a non-silicon oxide ceramic are repeated plural times in this order. You may. In any case, the intermediate as a blank of the carbon-based sliding member is densified and the porosity and the size of the vacancy are reduced, so that the continuous phase of the non-silicon oxide ceramic is effectively thinned, and The machinability and impact resistance of the sliding member are further improved.

【0018】また、前記樹脂又はピッチの含浸工程等を
行わずに、前記非酸化珪素セラミックス生成工程のみで
全気孔率18%以下の炭素系摺動部材を得るには、前記非
酸化珪素セラミックス生成工程を何回も繰り返さねばな
らず、結果的に非酸化珪素セラミックスの連続相が厚く
なるが、前記樹脂又はピッチの含浸工程等を行って炭素
系摺動部材の中間体を緻密化させると、全気孔率18%以
下の炭素系摺動部材が容易に得られる。炭素系摺動部材
の全気孔率については、これが18%を超える場合には、
両成分が連続相を形成していても、摺動試験を行うと、
非酸化珪素セラミックスが剥離してグルービングを起こ
すため、摩耗量が極度に増大する。しかし、全気孔率が
18%以下である場合には、グルービングが生じず、摩耗
量もC/Cコンポジット単独である場合より少なくな
る。なお、全気孔率は各成分の真密度(測定法はJIS
による)と、重量比とから算出する。
In order to obtain a carbon-based sliding member having a total porosity of 18% or less only by the non-silicon oxide ceramic forming step without performing the resin or pitch impregnating step, etc. The process must be repeated many times, and as a result the continuous phase of the non-silicon oxide ceramics becomes thicker, but when the intermediate of the carbon-based sliding member is densified by performing the resin or pitch impregnation step or the like, A carbon-based sliding member having a total porosity of 18% or less can be easily obtained. Regarding the total porosity of the carbon-based sliding member, if this exceeds 18%,
Even if both components form a continuous phase, when a sliding test is performed,
Since the non-silicon oxide ceramic peels off and causes grooving, the wear amount is extremely increased. However, the total porosity is
When it is 18% or less, grooving does not occur, and the amount of wear is smaller than when the C / C composite is used alone. In addition, the total porosity is the true density of each component (measurement method is JIS
) And the weight ratio.

【0019】[0019]

【実施例】以下に、実施例をあげて本発明を具体的に説
明するが、本発明は実施例に限定されるものではない。 [実施例1]直径7μmのPAN(ポリアクリロニトリ
ル)系炭素繊維(東レ(株) T300)の6000本束を長さ
25mmにカットしたものと、レーヨンの有機繊維とを重量
比90:10の割合で混合し、これをカード機により目付30
0g/m2 の不織布にした。この不織布について積層及びパ
ンチングを繰り返して目付10kg/m2 の高目付不織布に
し、これにその重量の2倍量のフェノール樹脂液(昭和
高分子 BRL-2854)を含浸させて乾燥し、さらに熱板プ
レスで170 ℃の条件で20mmに硬化成形して、その後190
℃及び210 ℃でそれぞれ3時間、後硬化を実施した。こ
のようにして得られた成形体を、不活性雰囲気中で、30
0 ℃までは10℃/Hr、300 〜600 ℃は5 ℃/Hr 、600 ℃
以上は20℃/Hr の昇温速度で、1000℃まで昇温して炭化
させた。炭化後の嵩密度は0.95g/cm3 であった。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples. Example 1 A length of 6000 bundles of PAN (polyacrylonitrile) -based carbon fiber (Toray T300) having a diameter of 7 μm was measured.
The cut into 25 mm and the organic fiber of rayon were mixed at a weight ratio of 90:10, and this was mixed with a basis weight of 30 using a card machine.
A non-woven fabric of 0 g / m 2 was obtained. This non-woven fabric is repeatedly laminated and punched to make a high-weight non-woven fabric with a basis weight of 10 kg / m 2 , impregnated with a phenol resin solution (Showa BRL-2854) twice as much as the weight of the non-woven fabric, dried, and further heated. Hardened to 20mm at 170 ° C with a press and then 190
Post-curing was carried out at 300C and 210C for 3 hours each. The molded body thus obtained is placed in an inert atmosphere for 30 minutes.
10 ° C / Hr up to 0 ° C, 5 ° C / Hr for 300 to 600 ° C, 600 ° C
The above was carried out at a heating rate of 20 ° C./Hr and carbonized by raising the temperature to 1000 ° C. The bulk density after carbonization was 0.95 g / cm 3 .

【0020】さらに、このサンプルを黒鉛化炉に入れて
2500℃までの黒鉛化処理を行なった後、ポリカルボシラ
ン(日本カーボン ニプシ タイプS)のキシレン溶液
を含浸させて180 ℃で硬化処理を施し、Arガス雰囲気中
で、300 ℃までは20℃/Hr 、300 〜700 ℃は5 ℃/Hr 、
700 ℃以上は20℃/Hr の昇温速度で、1400℃まで昇温し
て炭化珪素を生成させた。さらに、含浸、硬化及び炭化
珪素生成の工程を4 回繰り返して炭素/セラミックス複
合材料を得た。
Further, this sample was put in a graphitization furnace.
After graphitizing up to 2500 ° C, impregnating with xylene solution of polycarbosilane (Nihon Carbon Npsi Type S) and curing at 180 ° C. Hr, 300-700 ° C is 5 ° C / Hr,
Above 700 ° C, the temperature was raised to 1400 ° C at a rate of 20 ° C / Hr to produce silicon carbide. Further, the steps of impregnation, curing and silicon carbide generation were repeated four times to obtain a carbon / ceramic composite material.

【0021】次に、前記炭素/セラミックス複合材料に
軟化点120 ℃のコールタールピッチを含浸させ、これを
300 ℃までは50℃/Hr 、300 ℃以上は前記と同じ条件で
1000℃まで昇温して炭化させ、さらにピッチ含浸及び炭
化の工程を繰り返して1500℃で焼成を行い、密度2.1 の
炭素系摺動部材を得た。この炭素系摺動部材の炭化珪素
の含有量は45重量%で、気孔率は11%であった。
Next, the carbon / ceramic composite material is impregnated with a coal tar pitch having a softening point of 120 ° C.
Up to 300 ° C, 50 ° C / Hr, above 300 ° C under the same conditions as above
The temperature was raised to 1000 ° C. to carbonize, and the steps of pitch impregnation and carbonization were repeated and fired at 1500 ° C. to obtain a carbon-based sliding member having a density of 2.1. The carbon-based sliding member had a silicon carbide content of 45% by weight and a porosity of 11%.

【0022】[実施例2]実施例1の密度0.95g/cm3
サンプルに、軟化点120 ℃のコールタールピッチを含浸
させて、これを不活性雰囲気中で、300 ℃までは50℃/H
r 、300 ℃以上は前記と同じ条件で1000℃まで昇温して
炭化させ、さらに黒鉛化炉で2500℃までの黒鉛化処理を
行なって嵩密度1.25g/cm3 のサンプルを得た。このサン
プルについて、実施例1と同様に、ポリカルボシラン含
浸、硬化及び炭化珪素生成を2回行い、再度、ピッチ含
浸及び炭化の工程を2回繰り返し、1500℃で焼成を行っ
た。さらに、ポリカルボシラン含浸、硬化及び炭化珪素
生成を行って、密度1.76g/cm 3 の炭素系摺動部材を得
た。この炭素系摺動部材の炭化珪素の含有量は20重量%
で、気孔率は18%であった。
Example 2 Density of Example 1 0.95 g / cmThree of
Sample impregnated with coal tar pitch with softening point 120 ° C
Then, in the inert atmosphere, up to 300 ℃ 50 ℃ / H
r, above 300 ° C, raise the temperature to 1000 ° C under the same conditions as above.
Carbonized and further graphitized to 2500 ° C in a graphitizing furnace
1.25 g / cmThree Sample was obtained. This sun
About pull, similarly to Example 1, polycarbosilane containing
Immersion, hardening and silicon carbide generation are performed twice, and the pitch
Repeat the immersion and carbonization process twice, firing at 1500 ℃
Was. In addition, polycarbosilane impregnation, hardening and silicon carbide
Perform the generation, density 1.76g / cm Three Of carbon-based sliding members
Was. The carbon-based sliding member contains 20% by weight of silicon carbide.
And the porosity was 18%.

【0023】[実施例3]実施例1の炭化後の0.95g/cm
3 のサンプルについて、ピッチ含浸及び炭化の工程を3
回繰り返し行い、さらに黒鉛化炉で2500℃までの黒鉛化
処理を行った。このときの嵩密度は1.57g/cm3 であっ
た。その後、ポリカルボシラン含浸、硬化及び窒素雰囲
気中での窒化珪素化処理を行い、密度1.78g/cm3 の炭素
系摺動部材を得た。この炭素系摺動部材の窒化珪素の含
有量は10重量%で、他に炭化珪素が2重量%入ってお
り、気孔率は15%であった。
Example 3 0.95 g / cm after carbonization in Example 1
Pitch impregnation and carbonization steps were performed on three samples.
This was repeated several times, and further graphitization treatment was performed up to 2500 ° C. in a graphitization furnace. The bulk density at this time was 1.57 g / cm 3 . Thereafter, polycarbosilane impregnation, curing and silicon nitride treatment in a nitrogen atmosphere were performed to obtain a carbon-based sliding member having a density of 1.78 g / cm 3 . The carbon-based sliding member had a silicon nitride content of 10% by weight, 2% by weight of silicon carbide, and a porosity of 15%.

【0024】[比較例1]実施例2の途中工程のピッチ
含浸、黒鉛化処理後の嵩密度1.25g/cm3 のサンプルに、
金属珪素を含浸させ、1800℃で基材の炭素材と反応させ
て炭素系摺動部材を得た。この炭素系摺動部材の密度は
2.1g/cm3で、炭化珪素の含有量は58重量%、気孔率は15
%であった。
Comparative Example 1 A sample having a bulk density of 1.25 g / cm 3 after pitch impregnation and graphitization in the middle of Example 2 was prepared.
Metallic silicon was impregnated and reacted at 1800 ° C. with the carbon material of the base material to obtain a carbon-based sliding member. The density of this carbon-based sliding member is
2.1 g / cm 3 , silicon carbide content of 58% by weight, porosity of 15
%Met.

【0025】[比較例2]実施例3の黒鉛化処理後の嵩
密度1.57g/cm3 のサンプルに、炭素のCVD処理を行
い、密度1.75g/cm3 のC/ Cコンポジットの炭素系摺動
部材を得た。この炭素系摺動部材より炭化珪素は検出さ
れず、気孔率は12%であった。
[Comparative Example 2] The sample having a bulk density of 1.57 g / cm 3 after the graphitization treatment of Example 3 was subjected to CVD treatment with carbon to obtain a carbon-based slide of a C / C composite having a density of 1.75 g / cm 3. A moving member was obtained. No silicon carbide was detected from this carbon-based sliding member, and the porosity was 12%.

【0026】[比較例3]実施例1のサンプルで、途中
工程のポリカルボシランを含浸後、炭化珪素生成工程を
終えた段階でサンプルを取り出し、炭素系摺動部材を得
た。この炭素系摺動部材の密度は1.90g/cm3 、炭化珪素
の含有量は50重量%で、気孔率は22%であった。
Comparative Example 3 The sample of Example 1 was impregnated with polycarbosilane in the middle of the process, and was taken out at the stage where the silicon carbide forming process was completed, to obtain a carbon-based sliding member. The density of the carbon-based sliding member was 1.90 g / cm 3 , the content of silicon carbide was 50% by weight, and the porosity was 22%.

【0027】[評価試験]前記の6種類のサンプルにつ
いて以下の(1) 〜(4) の評価試験を行った。この評価試
験の結果を表1に示す。 (1) 一辺が5mmの立方体を作り、昇温速度5℃/min、エ
アー流量200ml/min の条件で、熱天秤試験を行って重量
減が5%を超えるときの温度を測定した。 (2) 外径150mm 、内径110mm 、厚み10mmのリング状の板
を加工するときの加工時間を測定した。 (3) 前記のリング状の板に加工し、コンクリートの地面
の上に3mの高さから落下させ、割れを調べた。 (4) 非酸化珪素セラミックスと炭素との界面を偏光顕微
鏡で観察し、珪素の炭素繊維に対する侵食の有無を調べ
た。
[Evaluation Test] The following six types of samples were subjected to the following evaluation tests (1) to (4). Table 1 shows the results of this evaluation test. (1) A cube having a side of 5 mm was formed, and a thermobalance test was performed under the conditions of a heating rate of 5 ° C./min and an air flow rate of 200 ml / min, and the temperature when the weight loss exceeded 5% was measured. (2) The processing time when processing a ring-shaped plate having an outer diameter of 150 mm, an inner diameter of 110 mm and a thickness of 10 mm was measured. (3) The ring-shaped plate was processed and dropped on a concrete ground from a height of 3 m to check for cracks. (4) The interface between the non-silicon oxide ceramic and carbon was observed with a polarizing microscope, and the presence or absence of erosion of silicon on carbon fibers was examined.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示す評価試験結果より、比較例2の
C/Cコンポジットは耐酸化性が劣るのに対し、他の実
施例及び比較例の酸化温度は高く、耐酸化性が良好であ
ることが判った。また、金属珪素を含浸させて反応焼結
させた、炭化珪素の比率が高い比較例1は、加工性が悪
く、加工された板は落下試験で割れたのに対し、他の実
施例及び比較例は加工性がよく、加工された板は落下試
験でも端が少し欠けた程度で、衝撃に強いことが明らか
になった。
From the evaluation test results shown in Table 1, the C / C composite of Comparative Example 2 is inferior in oxidation resistance, whereas the other Examples and Comparative Examples have high oxidation temperatures and good oxidation resistance. It turns out. Comparative Example 1 in which the ratio of silicon carbide, which was impregnated with metal silicon and reacted and sintered, had a high ratio of silicon carbide, was poor in workability, and the processed plate was broken in a drop test. In the example, the workability was good, and it was found that the processed plate had a little chipped edge in the drop test, and was strong in impact.

【0030】次に、前記の6種類のサンプルを機械加工
し、外径約150mm のステーター2枚と、外径約130mm の
ローターとを作成し、ダイナモテストを実施した。な
お、比較例1のサンプルは加工性が悪いので、事前に機
械加工した後、炭化珪素生成を実施し、再度手直しをす
ることによりテスト材を得た。試験は、押しつけ圧力45
KPa 、速度30〜150km/s の範囲5段階で実施し、繰り返
し50回の停止試験をした後に摩耗量を測定した。この結
果を表2に示す。さらに、実施例2、比較例1及び比較
例2については、ダイナモテストにより得られた瞬間摩
擦係数の変化を、図1のグラフに示す。
Next, the six types of samples were machined to prepare two stators having an outer diameter of about 150 mm and a rotor having an outer diameter of about 130 mm, and a dynamo test was performed. Since the sample of Comparative Example 1 was poor in workability, it was machined in advance, silicon carbide was generated, and the work was performed again to obtain a test material. The test is pressing pressure 45
The test was carried out in five steps in the range of KPa and a speed of 30 to 150 km / s, and the amount of abrasion was measured after repeated 50 stop tests. Table 2 shows the results. Further, for Example 2, Comparative Example 1, and Comparative Example 2, changes in the instantaneous friction coefficient obtained by the dynamo test are shown in the graph of FIG.

【0031】[0031]

【表2】 [Table 2]

【0032】以上の結果より、比較例1は強度特性と瞬
間摩擦係数とが、比較例2は摩擦係数が、比較例3は耐
摩耗性が、実施例と比較して劣ることが明らかになり、
本発明の炭素系摺動材料は、摺動部材として良好な摩擦
特性、機械加工性、耐衝撃性及び耐酸化性を有している
ことが明らかになった。
From the above results, it is clear that Comparative Example 1 is inferior in strength characteristics and instantaneous friction coefficient, Comparative Example 2 is inferior in friction coefficient, Comparative Example 3 is inferior in abrasion resistance, and inferior to Examples. ,
It has been clarified that the carbon-based sliding material of the present invention has good friction characteristics, machinability, impact resistance and oxidation resistance as a sliding member.

【0033】図2に、偏光顕微鏡により本発明の炭素系
摺動部材を観察した結果を示す。図2に示すように、本
発明の炭素系摺動部材の内部組織は、実質的に炭素繊維
1の周りを炭素相2が覆っており、炭素相2の内部隙間
及び周囲を非酸化珪素セラミックス相3が覆った状態と
なっている。また、炭素繊維1が、非酸化珪素セラミッ
クス相3により侵食されずに残存している。従って、炭
素繊維1の特性である耐衝撃性及び引張強度を良好に発
揮することができる。また、耐熱衝撃性も、炭素相2が
クッションとなって良好に発揮することができる。な
お、非酸化珪素セラミックス相3内には、島状に空孔4
が分布している。
FIG. 2 shows the result of observing the carbon-based sliding member of the present invention with a polarizing microscope. As shown in FIG. 2, the internal structure of the carbon-based sliding member of the present invention is such that the carbon phase 2 covers substantially the periphery of the carbon fiber 1, and the internal gap and the periphery of the carbon phase 2 are non-silicon oxide ceramics. Phase 3 is now covered. Further, the carbon fiber 1 remains without being eroded by the non-silicon oxide ceramic phase 3. Therefore, the impact resistance and tensile strength, which are the characteristics of the carbon fiber 1, can be favorably exhibited. In addition, the thermal shock resistance can be favorably exhibited by the carbon phase 2 serving as a cushion. The non-silicon oxide ceramic phase 3 has island-shaped holes 4.
Are distributed.

【0034】以上のように、前記炭素系摺動部材は、C
/Cコンポジットの空孔比率、空孔の大きさと均一性及
び開気孔率が好適であるので、非酸化珪素セラミックス
は、上述のように、炭素繊維を侵食することなく、炭素
相の狭い隙間に侵入した状態で、さらにはC/Cコンポ
ジットの表面相を層状に薄く覆った状態で、薄い連続相
を形成し、その比率が好適なものとなっている。従っ
て、炭素材料及びセラミックスの特性をバランスよく発
揮することができ、耐衝撃性、耐熱衝撃性、耐酸化性、
耐摩耗性、摩擦特性、引張強度特性、圧縮強度特性、及
び機械加工性等の諸特性を良好に発揮することができ
る。
As described above, the carbon-based sliding member is made of C
Since the porosity, the size and uniformity of the vacancies, and the open porosity of the / C composite are suitable, the non-silicon oxide ceramics are not eroded to the carbon fibers, and are inserted into the narrow gaps of the carbon phase, as described above. A thin continuous phase is formed in the state of penetration and further in a state where the surface phase of the C / C composite is thinly covered in a layered manner, and the ratio thereof is suitable. Therefore, the properties of carbon materials and ceramics can be exhibited in a well-balanced manner, and the impact resistance, thermal shock resistance, oxidation resistance,
Various properties such as abrasion resistance, friction properties, tensile strength properties, compressive strength properties, and machinability can be exhibited well.

【0035】[0035]

【発明の効果】以上のように構成された本発明は、以下
の効果を奏する。請求項1記載の炭素系摺動部材によれ
ば、C/Cコンポジットと非酸化珪素セラミックスとの
比率が、非酸化珪素セラミックスが薄い連続相を形成し
易い比率となっており、しかも、その比率が10重量%以
上であるので、非酸化珪素セラミックスの特性である耐
酸化性及び耐摩耗性が効果的に発現するとともに、摩擦
特性を安定的に発揮することができる。特に耐摩耗性
は、全気孔率を18%以下にして、非酸化珪素セラミック
スの連続相が剥離するのを抑制していることと相まっ
て、向上している。また、この剥離に起因して圧縮強度
が低下するのも防止されている。そして、C/Cコンポ
ジットの比率が50重量%以上であるので、耐衝撃性が良
好であるともに、機械加工性もほぼC/Cコンポジット
並になっている。従って、ローター・ステーター方式及
びディスク・パッド方式等の長い穴加工を含んだ複雑な
形状にも加工できる。さらに、炭素繊維が非酸化珪素セ
ラミックスに侵食されることなく残存しているので、炭
素繊維の特性である耐衝撃性及び引張強度をさらに良好
に発揮することができる。また、炭素相がクッションと
なって耐熱衝撃性も良好となる。従って、本発明の炭素
系摺動部材は、高速、高負荷条件で使用される、航空
機、レース用車両及び鉄道車両のブレーキディスク及び
パッド等に適用することができる。
The present invention configured as described above has the following effects. According to the carbon-based sliding member of the first aspect, the ratio between the C / C composite and the non-silicon oxide ceramic is such that the non-silicon oxide ceramic easily forms a thin continuous phase. Is 10% by weight or more, the oxidation resistance and the wear resistance, which are the characteristics of the non-silicon oxide ceramics, can be effectively exhibited, and the friction characteristics can be stably exhibited. In particular, the wear resistance is improved in combination with the fact that the total porosity is set to 18% or less and the continuous phase of the non-silicon oxide ceramic is suppressed from peeling. In addition, a decrease in compressive strength due to the separation is prevented. Since the ratio of the C / C composite is 50% by weight or more, the impact resistance is good and the machinability is almost equal to that of the C / C composite. Therefore, it is possible to machine a complicated shape including long hole machining such as a rotor-stator system and a disk pad system. Furthermore, since the carbon fibers remain without being eroded by the non-silicon oxide ceramics, the impact resistance and the tensile strength, which are the characteristics of the carbon fibers, can be further exhibited. In addition, the carbon phase serves as a cushion, and the thermal shock resistance is also improved. Therefore, the carbon-based sliding member of the present invention can be applied to brake discs, pads, and the like of aircraft, racing vehicles, and railway vehicles used under high-speed, high-load conditions.

【0036】請求項2記載の炭素系摺動部材の製造方法
によれば、C/Cコンポジットと、非酸化珪素セラミッ
クスとがそれぞれ連続相を形成し、実質的に炭素繊維が
炭素相に覆われ、また、非侵食状態で残存している炭素
系摺動部材を容易かつ確実に得ることができるととも
に、非酸化珪素セラミックス相の厚みを薄くすることが
できる。また、非酸化珪素セラミックスが表面相に偏在
するのを防止することもできるので、使用に伴って摩擦
係数が変化するおそれがなく、摩擦特性をより安定的に
発揮することができる。
According to the method for manufacturing a carbon-based sliding member according to the second aspect, the C / C composite and the non-silicon oxide ceramic each form a continuous phase, and the carbon fibers are substantially covered with the carbon phase. Further, the carbon-based sliding member remaining in a non-eroded state can be easily and reliably obtained, and the thickness of the non-silicon oxide ceramic phase can be reduced. In addition, since the non-silicon oxide ceramics can be prevented from being unevenly distributed in the surface phase, there is no possibility that the friction coefficient changes with use, and the friction characteristics can be more stably exhibited.

【0037】請求項3記載の炭素系摺動部材の製造方法
によれば、品質の安定した炭素系摺動部材を得ることが
できる。
According to the method for manufacturing a carbon-based sliding member according to the third aspect, a carbon-based sliding member having stable quality can be obtained.

【0038】請求項4記載の炭素系摺動部材の製造方法
によれば、樹脂若しくはピッチの炭化、又は炭素の沈積
によって、中間体が緻密化し、全気孔率18%以下の炭素
系摺動部材が容易に得られる。また、緻密化により、空
孔比率及び空孔の大きさが小さくなるので、非酸化珪素
セラミックス相の厚みをさらに薄くすることができる。
したがって、機械加工性がより効果的に向上する。
According to the method for manufacturing a carbon-based sliding member according to the fourth aspect, the intermediate is densified by carbonization of the resin or pitch or the deposition of carbon, and the carbon-based sliding member having a total porosity of 18% or less. Can be easily obtained. In addition, the densification reduces the porosity and the size of the vacancies, so that the thickness of the non-silicon oxide ceramic phase can be further reduced.
Therefore, the machinability is more effectively improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例の瞬間摩擦係数の変化を示す
グラフ図である。
FIG. 1 is a graph showing changes in the instantaneous friction coefficient of an example and a comparative example.

【図2】本発明の炭素系摺動部材を偏光顕微鏡で観察し
た結果を示す概略図である。
FIG. 2 is a schematic diagram showing the results of observing the carbon-based sliding member of the present invention with a polarizing microscope.

【符号の説明】[Explanation of symbols]

1 炭素繊維 2 炭素相 3 非酸化珪素セラミックス相 4 空孔 Reference Signs List 1 carbon fiber 2 carbon phase 3 non-silicon oxide ceramic phase 4 vacancy

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化炭素複合材料を50〜90重量
%、炭化珪素又は窒化珪素の少なくとも一方からなるセ
ラミックスを50〜10重量%含み、前記炭素繊維強化炭素
複合材及びセラミックスがそれぞれ連続相を形成し、炭
素繊維が非侵食状態で残存しているとともに、全気孔率
が18%以下である炭素系摺動部材。
1. A carbon fiber reinforced carbon composite material containing 50 to 90% by weight and a ceramic comprising at least one of silicon carbide and silicon nitride of 50 to 10% by weight. A carbon-based sliding member having carbon fibers remaining in a non-eroded state and having a total porosity of 18% or less.
【請求項2】請求項1記載の炭素系摺動部材の製造方法
であって、 炭素繊維と炭素質マトリックスとからなるプリフォーム
を炭化させるか、又は炭素繊維のプリフォームに化学的
気相蒸着法により炭素を沈積させて、炭素繊維強化炭素
複合材料を作製し、この炭素繊維強化炭素複合材料に前
記セラミックスを生成させることを特徴とする炭素系摺
動部材の製造方法。
2. The method for producing a carbon-based sliding member according to claim 1, wherein a preform comprising carbon fibers and a carbonaceous matrix is carbonized, or chemical vapor deposition is performed on the carbon fiber preform. A method for producing a carbon-based sliding member, comprising: depositing carbon by a method to produce a carbon fiber reinforced carbon composite material; and forming the ceramic in the carbon fiber reinforced carbon composite material.
【請求項3】前記炭素繊維強化炭素複合材料に有機珪素
化合物を含浸させ、不活性ガス又は窒素ガス雰囲気中で
熱処理を行うことにより、前記セラミックスを生成させ
る請求項2記載の炭素系摺動部材の製造方法。
3. The carbon-based sliding member according to claim 2, wherein said carbon fiber reinforced carbon composite material is impregnated with an organic silicon compound and heat-treated in an inert gas or nitrogen gas atmosphere to produce said ceramics. Manufacturing method.
【請求項4】前記炭素繊維強化炭素複合材料を作製した
後、当該炭素繊維強化炭素複合材料に樹脂若しくはピッ
チを含浸させて炭化させる工程、又は化学的気相蒸着法
により炭素を沈積させる工程と、前記セラミックスを生
成させる工程とを少なくとも1回行う請求項2記載の炭
素系摺動部材の製造方法。
And a step of impregnating the carbon fiber reinforced carbon composite material with a resin or pitch and carbonizing the carbon fiber reinforced carbon composite material, or depositing carbon by a chemical vapor deposition method. 3. The method for producing a carbon-based sliding member according to claim 2, wherein the step of forming the ceramic is performed at least once.
JP10099479A 1998-04-10 1998-04-10 Carbon-based sliding member and its production Pending JPH11292646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099479A JPH11292646A (en) 1998-04-10 1998-04-10 Carbon-based sliding member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099479A JPH11292646A (en) 1998-04-10 1998-04-10 Carbon-based sliding member and its production

Publications (1)

Publication Number Publication Date
JPH11292646A true JPH11292646A (en) 1999-10-26

Family

ID=14248456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099479A Pending JPH11292646A (en) 1998-04-10 1998-04-10 Carbon-based sliding member and its production

Country Status (1)

Country Link
JP (1) JPH11292646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201185A (en) * 2001-12-31 2003-07-15 Sgl Carbon Ag Fiber-reinforced ceramic composite
US20150299053A1 (en) * 2012-11-26 2015-10-22 Toyo Tanso Co., Ltd. Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP2017001912A (en) * 2015-06-10 2017-01-05 株式会社Ihiエアロスペース Method for producing silicon carbide based composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201185A (en) * 2001-12-31 2003-07-15 Sgl Carbon Ag Fiber-reinforced ceramic composite
JP4535362B2 (en) * 2001-12-31 2010-09-01 エスジーエル・カーボン・アクチエンゲゼルシヤフト Fiber reinforced ceramic composite material
US20150299053A1 (en) * 2012-11-26 2015-10-22 Toyo Tanso Co., Ltd. Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP2017001912A (en) * 2015-06-10 2017-01-05 株式会社Ihiエアロスペース Method for producing silicon carbide based composite

Similar Documents

Publication Publication Date Title
US7374709B2 (en) Method of making carbon/ceramic matrix composites
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
US9353816B2 (en) Low cost, high density aircraft friction materials utilizing low fiber volume nonwoven preforms with pitch densification
US6355206B1 (en) Sic-C/C composite material, uses thereof, and method for producing the same
US7575799B2 (en) Carbon fiber containing ceramic particles
US7998376B2 (en) Method for reducing variability in friction performance
US20080090064A1 (en) Carbon-carbon friction material with improved wear life
US7927523B2 (en) Densification of C-C composites with pitches followed by CVI/CVD
US20040105969A1 (en) Manufacture of carbon composites by hot pressing
CN104507676B (en) Shaped composite material
JPH11292662A (en) Fiber composite material and its use
US20110111123A1 (en) Increased area weight segments with pitch densification to produce lower cost and higher density aircraft friction materials
US20050271876A1 (en) Method for producing carbon-carbon brake material with improved initial friction coefficient or &#39;bite&#39;
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
JP2000081062A (en) Brake member
JP4374339B2 (en) Brake member manufacturing method
CN109095929B (en) Preparation method of carbon-ceramic brake disc
JPH11292646A (en) Carbon-based sliding member and its production
JPH11292647A (en) Carbon fiber-reinforced material and its production
JP2000052461A (en) Kiln tool excellent in processability
JP5052803B2 (en) Composite brake and method of manufacturing the same
CN112266258B (en) Carbon-ceramic material and preparation method and application thereof
JP2000288916A (en) Jig for polishing treatment
JPH11335182A (en) Material for brake comprising carbon fiber-reinforced carbon composite material
JP2005162601A (en) Fiber-composite material and application of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013