JP5093639B2 - Method for producing carbon / ceramic composite material - Google Patents

Method for producing carbon / ceramic composite material Download PDF

Info

Publication number
JP5093639B2
JP5093639B2 JP2006091068A JP2006091068A JP5093639B2 JP 5093639 B2 JP5093639 B2 JP 5093639B2 JP 2006091068 A JP2006091068 A JP 2006091068A JP 2006091068 A JP2006091068 A JP 2006091068A JP 5093639 B2 JP5093639 B2 JP 5093639B2
Authority
JP
Japan
Prior art keywords
carbon
composite material
pitch
mixing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006091068A
Other languages
Japanese (ja)
Other versions
JP2006306714A (en
Inventor
一太郎 小川
桂子 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006091068A priority Critical patent/JP5093639B2/en
Publication of JP2006306714A publication Critical patent/JP2006306714A/en
Application granted granted Critical
Publication of JP5093639B2 publication Critical patent/JP5093639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冶金やガラス製造等で使用される耐熱、耐酸化性、耐湯溶金属性を有する複合材料の製造技術に関する。更に詳しくは、ピッチと熱硬化性樹脂及びセラミックス粉末を使用して製造された高密度の炭素/セラミックス複合材の製造技術に関する。   The present invention relates to a technique for producing a composite material having heat resistance, oxidation resistance, and molten metal resistance used in metallurgical and glass production. More specifically, the present invention relates to a technique for producing a high-density carbon / ceramic composite material produced using pitch, a thermosetting resin, and ceramic powder.

本発明に関わる炭素/セラミックス複合材は、燃えやすい炭素材料に比べて10倍程度の寿命があり、特に冶金等の溶融金属を扱う部材やガラス瓶製造の部材などの分野において、耐熱性等を有する材料として幅広く使用されている。しかしながら、炭素/セラミックス複合材は一般炭素材に比べると機械加工がしにくく、このため、最終製品の形状まで加工するのに加工費が高コストである点が問題になっている。そこで、最初から最終製品の形状に成形しておけば、その後の機械加工が少なくてすむが、現在の製造法では、高密度の複合材を得るため、焼成前の生成形体を作成する際に150MPa以上の高い圧力をもって型込め、或いはラバープレスで加圧して成形されている。これは炭素原料として軟化・溶融しない生コークス類を用いているため、焼成時の成形体の焼結・緻密化が小さく、焼成前の生成形体の密度を予め高くしておく必要があることによる。   The carbon / ceramic composite material according to the present invention has a life of about 10 times that of a flammable carbon material, and has heat resistance and the like particularly in the field of a member handling a molten metal such as metallurgy or a member for manufacturing a glass bottle. Widely used as a material. However, the carbon / ceramic composite material is difficult to machine as compared with the general carbon material, and therefore, the problem is that the processing cost is high for processing to the shape of the final product. Therefore, if it is molded from the beginning into the shape of the final product, the subsequent machining process can be reduced. However, in the current manufacturing method, in order to obtain a high-density composite material, Molded with a high pressure of 150 MPa or more, or molded by pressing with a rubber press. This is because raw coke that does not soften or melt is used as the carbon raw material, so that the compacted body is not sintered or densified during firing, and the density of the formed body before firing must be increased in advance. .

他方、生コークスとセラミックスとの混合粉末を800℃で予め焼成し、しかる後スラリーにして無加圧で成形し、これを焼成して炭素/セラミックス複合材を製造する技術も知られている(特許文献1参照)。しかしながら、この特許文献1に記載されている成形方法では、混合粉末の炭素原料がスラリー化する前にすでに炭素化されており焼結の駆動力とはなりえず、セラミックス成分が焼結の駆動力となる。これは焼結中の連続相がセラミックスであり、炭素成分は孤立して存在する傾向となる。従って、電気特性等、物性的に本複合材と異なるものである。   On the other hand, a technique is also known in which a mixed powder of raw coke and ceramic is pre-fired at 800 ° C., and then formed into a slurry without pressure and fired to produce a carbon / ceramic composite material ( Patent Document 1). However, in the molding method described in Patent Document 1, the carbon raw material of the mixed powder is already carbonized before being slurried and cannot be a driving force for sintering. It becomes power. This is because the continuous phase during sintering is ceramics, and the carbon component tends to exist in isolation. Therefore, it is different from this composite material in terms of physical properties such as electrical characteristics.

このように、炭素原料として用いられる生コークス類が軟化・溶融しないことに問題があるのであるが、一方、有機物の炭素化過程において、生コークスになる以前のピッチ類は 150〜300℃程度の温度で軟化する。しかし、これをそのまま炭素の前駆体として用いれば、焼成中のピッチの軟化による形の崩れや多量の揮発分発生によって発泡などが発生する。炭素/炭素繊維複合材等のように繊維状物質を主体とする複合材においては、ピッチの軟化や発泡によっても形を保つことが可能であるためピッチを炭素原料とすることが多い。この製品は、多孔質となり、このためピッチ含浸―焼成を繰り返し炭素材の高密度化を図っている。   As described above, there is a problem that raw coke used as a carbon raw material does not soften or melt, but on the other hand, in the carbonization process of organic matter, pitches before becoming raw coke are about 150 to 300 ° C. Softens with temperature. However, if this is used as it is as a precursor of carbon, foaming or the like is generated due to shape loss due to softening of pitch during firing or generation of a large amount of volatile matter. In a composite material mainly composed of a fibrous material such as a carbon / carbon fiber composite material, the pitch can be used as a carbon raw material because the shape can be maintained by softening or foaming the pitch. This product is porous, so pitch impregnation and firing are repeated to increase the density of the carbon material.

また、熱硬化性樹脂とピッチを一部に用いた炭素繊維強化の炭素複合材も見られるが、10MPa以下の成形圧を用い、かつ強化材として短炭素繊維を用いているにもかかわらず、その曲げ強度は50MPa以下であり、本発明による複合材の1/3以下となっている。しかしながら、炭素/セラミックス複合材の製造においては、成形体の形の崩れや発泡等の理由により、ピッチをそのまま炭素原料の主体とすることはなされていない。   In addition, although carbon fiber reinforced carbon composites using a thermosetting resin and pitch in part are also seen, despite using a molding pressure of 10 MPa or less and using short carbon fibers as a reinforcing material, The bending strength is 50 MPa or less, which is 1/3 or less of the composite material according to the present invention. However, in the production of a carbon / ceramic composite material, the pitch is not used as the main component of the carbon raw material as it is due to the collapse of the shape of the molded body or foaming.

以上のように、ピッチを炭素/セラミックス複合材の炭素原料の主成分としてそのまま使用するのが困難であったため、ピッチをさらに熱処理されて得られる生コークス類が炭素原料とされており、150MPaという非常に高い成形圧が必須となっている。また最近、例えば、特許文献2にみられるように、ピッチを不融化処理して炭素原料とすることも提案されいる。しかしこの方法では、ピッチの不融化処理という複雑な工程を要し、また成形する際も50MPa前後の加圧が必要であり、かつ緻密な複合材は得られておらず、スラリー状での自由な成形も不可能である。   As described above, since it was difficult to use pitch as a main component of the carbon raw material of the carbon / ceramic composite material, raw coke obtained by further heat-treating the pitch is used as the carbon raw material, which is 150 MPa. Very high molding pressure is essential. Recently, for example, as seen in Patent Document 2, it has been proposed to infusibilize the pitch to obtain a carbon raw material. However, this method requires a complicated process of infusibilizing the pitch, and also requires a pressure of around 50 MPa when forming, and a dense composite material has not been obtained, so it is free in a slurry state. Molding is impossible.

更に、炭素/セラミックス複合材の製造において、フェノール樹脂等の熱硬化性樹脂を炭素原料とすることも考えられる。熱硬化性樹脂は熱処理による炭素収率が比較的高く、しかも軟化・溶融せずにそのままの形状で炭素材になり得る。しかしながら熱硬化性樹脂は、熱処理時の寸法収縮が極めて大きく、クラックの発生が避けられない。特に肉厚の成形体ではこれが著しく、せいぜい数ミリメートルのものしか得られない。したがって、熱硬化性樹脂をそのまま炭素/セラミックス複合材の炭素原料として用いることはなされていない。   Further, in the production of a carbon / ceramic composite material, it is also conceivable to use a thermosetting resin such as a phenol resin as a carbon raw material. The thermosetting resin has a relatively high carbon yield by heat treatment, and can be a carbon material as it is without being softened or melted. However, thermosetting resins have extremely large dimensional shrinkage during heat treatment, and cracks are unavoidable. This is particularly the case with thick molded bodies, and only a few millimeters can be obtained. Therefore, the thermosetting resin is not used as it is as the carbon raw material of the carbon / ceramic composite material.

例えば、特許文献3に見られるように、炭素系の複合材においてスラリー状として無加圧成形する方法も開示されているが、これはマトリックスが金属であり、従って格段に耐熱性が劣り、炭素/セラミックス複合材の範疇には入らない。   For example, as seen in Patent Document 3, a method of pressureless molding as a slurry in a carbon-based composite material is also disclosed, but this is a matrix is a metal, and therefore heat resistance is significantly inferior. / Not within the category of ceramic composites.

特公平2−7907号公報Japanese Patent Publication No.2-7907 特開2005−8476号公報JP 2005-8476 A 特開2002−69548号公報JP 2002-69548 A

炭素/セラミックス複合材は前述のようにそれなりの利点があり、有効に使用されている。しかしながら、この炭素/セラミックス複合材は、通常は高圧成形により製造されるものであり、従って、自由な形状の物が作りにくく、しかも高硬度のセラミックスを含むため機械加工がし難い難点がある。このため、最終製品の形状まで加工するためには、高コストになってしまうのが現状である。   The carbon / ceramic composite material has some advantages as described above and is used effectively. However, this carbon / ceramic composite material is usually manufactured by high-pressure molding, and therefore, it is difficult to make a free-form product, and since it contains high-hardness ceramics, it is difficult to machine. For this reason, in order to process to the shape of the final product, the current situation is that the cost becomes high.

従って、鋳込みやスリップキャスティング等のように任意の形状のものを成形するには多くの制約があり、しかもコストの高い製品となっていた。更に、前述のように、常圧下で複合材を製造する技術も開示されている。しかし、構造体の一部を構成する複合材を製造する材料においては、金属をマトリックスとするもので、複合材の耐熱性において不十分であった。又、樹脂を使用する製造技術においては、特殊用途に開発されており、非金属性の物質として構造物を形成する複合材とはなっていない。構造体の一部を構成するものは耐熱性や高剛性を要求されるので、高密度のある材料であらねばならない。   Therefore, there are many restrictions on molding a product having an arbitrary shape such as casting or slip casting, and the cost is high. Furthermore, as described above, a technique for producing a composite material under normal pressure is also disclosed. However, a material for manufacturing a composite material that constitutes a part of the structure uses a metal as a matrix, and the heat resistance of the composite material is insufficient. Moreover, in the manufacturing technology using resin, it has been developed for special applications and is not a composite material that forms a structure as a non-metallic substance. What constitutes a part of the structure is required to have heat resistance and high rigidity, and therefore must be a high-density material.

このためどうしても確実にこれらの性質を有する複合材を製造するには高圧を利用するのが一般的である。しかし、このことは前述のとおり、どうしてもそれなりの設備を要することになり高コストになってしまう。本発明の炭素/セラミックス複合材は、硬質炭素を与える熱硬化性樹脂を用いて製造されるため、従来の軟質の炭素/セラミックス複合材に比べて硬質炭素成分を多く含むものである。従って、本発明で製造されたものは硬質の炭素/セラミックス複合材といえるものであり、従来と異なる複合材である。   It is common to use high pressure to produce absolutely reliable composite material having these properties for this. However, as described above, this requires a certain amount of equipment, resulting in high costs. Since the carbon / ceramic composite material of the present invention is manufactured using a thermosetting resin that gives hard carbon, the carbon / ceramic composite material contains more hard carbon components than a conventional soft carbon / ceramic composite material. Therefore, what was manufactured by this invention can be said to be a hard carbon / ceramics composite material, and is a composite material different from the past.

本発明は、前述した技術背景のもとになされたものであり、下記の目的を達成する。本発明の目的は、生成形体を作成する際に加圧することを必要とせず、しかも均一で高密度の炭素/セラミックス複合材の製造技術の提供にある。本発明の他の目的は、低コストで製造できる炭素/セラミックス複合材の製造技術の提供にある。   The present invention has been made based on the above-described technical background, and achieves the following objects. An object of the present invention is to provide a technique for producing a carbon / ceramic composite material that is uniform and has a high density, without requiring pressurization when producing a formed body. Another object of the present invention is to provide a technique for producing a carbon / ceramic composite material that can be produced at low cost.

本発明は、前記目的を達成するために次の手段をとる。本発明は、ピッチを不融化処理などの処理をせずともそのまま、特定の配合比の範囲でもってフェノール樹脂、及びセラミックス粉末と同時に混合・粉砕処理して用いれば、緻密な炭素/セラミックス複合材が製造できることを見出したものである。この方法によれば、生成形体を作成する際に高圧を用いず、スラリーのまま鋳型に流し込み、これを乾燥して生成形体として用いることが可能となる。高圧を用いないため生成形体はポーラスであるが、焼成中に大きな焼結・緻密化が起きるため、焼成後、緻密な炭素/セラミックス複合材が得られる。しかも焼成時の形の崩れや発泡も生じない。   The present invention takes the following means in order to achieve the object. The present invention provides a dense carbon / ceramic composite material if the pitch is mixed and pulverized at the same time as the phenol resin and the ceramic powder within a specific blending ratio range without any infusibilization treatment. It has been found that can be manufactured. According to this method, it is possible to use a high-pressure when forming a generated shape without pouring high pressure into a mold as a slurry, and to dry and use this as a generated shape. Since the high pressure is not used, the generated shape is porous. However, since large sintering and densification occur during firing, a dense carbon / ceramic composite material is obtained after firing. Moreover, there is no shape collapse or foaming during firing.

本発明1の炭素/セラミックス複合材の製造方法は、炭素収率80%以上のピッチ及びノボラック型フェノール樹脂である熱硬化性樹脂粉末を、60:40ないし50:50の範囲で配合し、該配合粉末に更にセラミックス粉末を体積混合比が、70:30ないし50:50の範囲になるように配合、混合し第1混合物とする混合工程と、前記いずれかの混合工程において混合された第1混合物にアルコール類15重量%以下を含む攪拌液を加えて粉砕・混合し、スラリー化し、第2混合物とするスラリー工程と、スラリー化した前記第2混合物を成形し、乾燥して成形する成形工程と、前記成形し、乾燥した第2混合物を所定温度と時間、高温に保持して焼成する工程とからなる。 In the method for producing a carbon / ceramic composite material according to the first aspect of the present invention, a pitch of carbon yield of 80% or more and a thermosetting resin powder that is a novolac type phenol resin are blended in a range of 60:40 to 50:50 , The mixing powder is further mixed with the ceramic powder so that the volume mixing ratio is in the range of 70:30 to 50:50, and mixed to form the first mixture, and the first mixed in the mixing process. Add a stirring liquid containing 15% by weight or less of alcohol to the mixture, crush and mix to make a slurry, a slurry process to form a second mixture, and a molding process to mold the dried second mixture and dry it And a step of firing the molded and dried second mixture at a predetermined temperature and time at a high temperature.

本発明は、基本的には焼結前の生成形体の作成を常圧下において可能とする複合材の製造技術である。本発明によれば高圧を必要としないので鋳型法や射出成形等により生成形体が作成可能なため、量産が可能である。原料粉末の混合・粉砕過程において、ピッチとセラミックス粒子からなる複合粒子が生成されこれが熱硬化性樹脂と混合されることにより、複合粒子が熱硬化性樹脂で被覆される状態となりスラリー化される。この粒子を主成分として複合材生成の処理がなされる。   The present invention is basically a technique for producing a composite material that enables creation of a shaped product before sintering under normal pressure. According to the present invention, since a high pressure is not required, a generated shape can be created by a mold method, injection molding, or the like, and thus mass production is possible. In the mixing and pulverization process of the raw material powder, composite particles composed of pitch and ceramic particles are generated and mixed with the thermosetting resin, whereby the composite particles are coated with the thermosetting resin and slurried. A composite material is generated with these particles as the main component.

[ピッチ]
ピッチはどのような種類であってもよいが、紡糸用ピッチ等、炭素収率が通常のものより高いものを使用するのが好ましい。ピッチ類は150〜300℃の範囲で様々な軟化温度を示すが、本発明ではピッチの軟化温度の問題よりも炭素収率が重要であり、できるだけ炭素収率の高いピッチを用いるのが望ましい。
[pitch]
The pitch may be of any type, but it is preferable to use a pitch having a higher carbon yield than that of a normal pitch such as spinning pitch. Pitches show various softening temperatures in the range of 150 to 300 ° C. In the present invention, the carbon yield is more important than the problem of pitch softening temperature, and it is desirable to use pitches with as high a carbon yield as possible.

[熱硬化性樹脂]
また、熱硬化性樹脂はどのようなものであってもよいが、混合・粉砕処理の媒体として水を用いればコストや取り扱いの面で有利であり、このため熱硬化性樹脂としてはノボラック型フェノール樹脂など粉末状が好ましい。次に、混合・粉砕により生成したスラリーは、鋳型法や射出成形等で金型で成形し、乾燥させる。乾燥後、非酸化雰囲気(不活性ガス等の雰囲気中)で、60〜70℃程度の温度で24時間程度放置すれば成形体中の熱硬化性樹脂が熱硬化を起こし成形体の機械的強度が増すために、その後の取り扱いに有利であるが、この処理は必ずしも必要というわけではない。
[Thermosetting resin]
In addition, any thermosetting resin may be used, but if water is used as a medium for mixing and grinding, it is advantageous in terms of cost and handling. For this reason, novolac type phenol is used as the thermosetting resin. A powder form such as resin is preferred. Next, the slurry produced by mixing and pulverization is molded with a mold by a mold method, injection molding, or the like, and dried. After drying, if left in a non-oxidizing atmosphere (in an inert gas atmosphere) at a temperature of about 60 to 70 ° C. for about 24 hours, the thermosetting resin in the molded body undergoes thermosetting and the mechanical strength of the molded body. This is advantageous for subsequent handling, but this treatment is not always necessary.

[焼成]
一次焼成は、成形体中のピッチ及び樹脂を炭素化させるために行うものであるが、この一次焼成過程は、ピッチ及び樹脂からの揮発分が発生するため、緩やかな昇温が必要である。これは10,000℃、好ましくは1,200℃まで昇温するのが良く、この焼成でピッチ及び樹脂からの揮発分はほぼ出尽くし、ピッチ及び樹脂は炭素のみとなる。次に高温焼成であるが、これは複合するセラミックスの種類にもよる。複合材の耐酸化性向上に点でもっとも多く用いられるSiCとBCとの同時複合の場合は、2,100℃前後である。
[Baking]
The primary firing is performed to carbonize the pitch and the resin in the molded body, but this primary firing process requires a moderate temperature increase because volatile components from the pitch and the resin are generated. The temperature should be raised to 10,000 ° C., preferably 1200 ° C., and the volatile matter from the pitch and resin is almost exhausted by this firing, and the pitch and resin are only carbon. Next, high temperature firing, which depends on the type of ceramics to be combined. In the case of simultaneous composite of SiC and B 4 C, which is most often used for improving the oxidation resistance of the composite material, the temperature is around 2,100 ° C.

本発明は、以上説明したように高圧成形でなくても常圧で鋳込み等の方法により、複雑形状の部品を製造できる材料である。このため、従来施していた機械加工を少なくすることができ、コストを削減することができる。   As described above, the present invention is a material capable of producing a component having a complicated shape by a method such as casting at normal pressure without using high pressure molding. For this reason, machining that has been conventionally performed can be reduced, and the cost can be reduced.

以上詳記したように、本発明の複合材の製造技術は、ピッチと熱硬化性樹脂及びセラミックス粉末を混合させスラリーを作成する。この混合粉末スラリーを加圧することなく成形し、乾燥、一次焼成、二次焼成を行って高密度の炭素/セラミック数複合材とすることができる。また、製造コストが安価になり、更に量産化の可能な複合材となった。   As described in detail above, in the composite material manufacturing technique of the present invention, a pitch is mixed with a thermosetting resin and ceramic powder to create a slurry. The mixed powder slurry can be molded without applying pressure, dried, primary fired, and secondary fired to obtain a high density carbon / ceramic number composite material. In addition, the manufacturing cost is low, and the composite material can be mass-produced.

以下、本発明の実施の形態を次に示す実施例に代えて説明する。   Embodiments of the present invention will be described below in place of the following examples.

紡糸用ピッチ(炭素収率86%)、及びノボラック型フェノール樹脂粉末を、55:45の重量比で配合し、この両混合粉末に、更にSiCとBCのモル比1:1の混合粉末を全体に対して体積比40%になるように加えた。これをボールミルにより水中で72時間粉砕・混合した。その際、市販の界面活性剤1%以下、エチレングリコール5%、及びバインダーとしてポリビニルアルコール2%(いずれも重量比)を添加した。得られたスラリーを80×40×20mmの型枠に入れ、2日間放置して乾燥させた。乾燥後、酸化を防ぐためポリ袋にいれて密封し、60℃で1昼夜放置して成形体中のフェノール樹脂を熱硬化させた。 Spinning pitch (carbon yield: 86%) and novolac type phenol resin powder were blended at a weight ratio of 55:45, and further mixed powder of 1: 1 molar ratio of SiC and B 4 C was added to these mixed powders. Was added at a volume ratio of 40% with respect to the whole. This was pulverized and mixed in water by a ball mill for 72 hours. At that time, 1% or less of a commercially available surfactant, 5% of ethylene glycol, and 2% of polyvinyl alcohol (all by weight) were added as a binder. The obtained slurry was put into an 80 × 40 × 20 mm mold and left to dry for 2 days. After drying, it was sealed in a plastic bag to prevent oxidation, and allowed to stand at 60 ° C. for one day to cure the phenolic resin in the molded body.

しかるのち、アルゴン雰囲気中で、昇温速度1℃/minで1,200℃まで昇温し1時間保持した。一次焼成した成形体はさらに黒鉛化炉にて2,100℃で30分焼成した。昇温速度は10℃/minとした。密閉容器に入れ、75℃で24時間放置したところ、ゲル状の生成物が見られた。これを解して濾過し、乾燥器により乾燥させて粉末を得た。得られた炭素/セラミックス複合材は嵩密度1.8g/cmであった。この1.8g/cmという数字は十分高密度であるが、本実験例では、スラリー作成技術が十分でなくスラリー中に泡がみられた。このため、泡を含まない十分なスラリー作成を行えばさらに高密度の複合材が製造可能であると予測できる。 Thereafter, the temperature was raised to 1,200 ° C. at a rate of temperature rise of 1 ° C./min in an argon atmosphere and held for 1 hour. The primary fired compact was further fired at 2,100 ° C. for 30 minutes in a graphitization furnace. The heating rate was 10 ° C./min. When placed in a closed container and allowed to stand at 75 ° C. for 24 hours, a gel-like product was observed. This was dissolved and filtered, and dried by a drier to obtain a powder. The obtained carbon / ceramic composite material had a bulk density of 1.8 g / cm 3 . This number of 1.8 g / cm 3 is sufficiently high density, but in this experimental example, the slurry preparation technique was not sufficient, and bubbles were observed in the slurry. For this reason, it can be predicted that a higher density composite material can be produced if sufficient slurry preparation without bubbles is performed.

紡糸用ピッチ(炭素収率86%)、及びノボラック型フェノール樹脂粉末を、55:45の重量比で配合し、この混合粉末に更に、SiCとBCのモル比74:26の混合粉末を全体に対して体積比44%になるように加えた。これをボールミルによりエタノールを5〜20重量%を含む水中で96時間粉砕・混合した。得られたスラリーを80×40×20mmの型枠に入れ、乾燥、型抜き後、60℃で6日間放置し、完全に乾燥させた。表1は、原料混合時の水中のエタノール含有量と2,200℃焼結体の気孔率の関係を示したものである。 Spinning pitch (86% carbon yield), and a novolak type phenolic resin powder, 55: formulated at a weight ratio of 45, further to the mixed powder, the mixed powder of the molar ratio 74:26 of SiC and B 4 C It added so that it might become 44% of volume ratio with respect to the whole. This was pulverized and mixed for 96 hours in water containing 5 to 20% by weight of ethanol by a ball mill. The obtained slurry was put in an 80 × 40 × 20 mm mold, dried, and after mold release, left at 60 ° C. for 6 days to be completely dried. Table 1 shows the relationship between the ethanol content in water during raw material mixing and the porosity of the 2,200 ° C. sintered body.

Figure 0005093639
Figure 0005093639

エタノール含有率が増加するとともに焼成体の気孔率は減少している。しかし、焼成体の嵩密度(D)はエタノール含有量にかかわらずほぼ一定である。このことは、粉砕時にエタノールを含有させることにより、焼成体中の気孔が開気孔から閉気孔になること、言い換えると、焼成体中の粒子間の結合をより強固にし焼成体の機械的強度も増大させることができることを推察させる。エタノール含有量が20重量%では、混合時に試料粉末がボール及びミル壁面に固着し、うまく混合できなかった。 As the ethanol content increases, the porosity of the fired body decreases. However, the bulk density (D) of the fired body is almost constant regardless of the ethanol content. This means that the inclusion of ethanol during pulverization changes the pores in the fired body from open pores to closed pores. Infer that it can be increased. When the ethanol content was 20% by weight, the sample powder adhered to the ball and the mill wall during mixing, and mixing was not successful.

原料は実施例1及び2と同じものを用いた。配合比は、ピッチと樹脂の熱処理に伴う減量を考慮して、熱処理後の最終試料におけるセラミックス成分の割合が表2に示すようになるように計算した。かく配合した混合粉末にエタノールを15重量%含む水を加え、実施例2で用いたボールミルにより72時間粉砕した。得られたスラリーを80×40mmの型枠に流し込み、型抜きと乾燥を行ったのち、1,200℃まで仮焼し、しかる後、タンマン炉ににて2,200℃で一時間熱処理した。   The same raw material as in Examples 1 and 2 was used. The blending ratio was calculated so that the proportion of the ceramic component in the final sample after the heat treatment was as shown in Table 2 in consideration of the weight loss accompanying the heat treatment of the pitch and the resin. Water containing 15% by weight of ethanol was added to the mixed powder thus mixed, and pulverized for 72 hours by the ball mill used in Example 2. The obtained slurry was poured into an 80 × 40 mm mold, and after die cutting and drying, calcined to 1,200 ° C., and then heat-treated in a Tamman furnace at 2,200 ° C. for 1 hour.

表2に、嵩密度、開孔率、反発硬度(ショアー硬度)、曲げ強度を示す。尚、曲げ強度は同一試料から(30×5×1.5mm)の5個の試験片を切り出し、それらの測定値の平均を示した。開孔率の測定は水含浸法によった。原料配合時に、ピッチ分が多いと熱処理時に試料のフクレが見られる。これはセラミックス量が少ない試料において顕著であるが、セラミックス量が多い試料ではピッチ量が多くてもフクレは見られなくなる。またピッチ量が多いほど試料の緻密化は大きい傾向がある。カタログにより市販の炭素/セラミックス複合材と比べると、市販の嵩密度2.1〜2.3g/cmと比べて本発明の嵩密度は小さく開孔率が大きい。しかし、曲げ強度は、市販の物が100〜200Mpaに比べて200Mpaを超えるものもあり、遜色がない。 Table 2 shows the bulk density, open area ratio, rebound hardness (Shore hardness), and bending strength. In addition, 5 test pieces (30 * 5 * 1.5mm) were cut out from the same sample, and the bending strength showed the average of those measured values. The porosity was measured by a water impregnation method. When the raw material is blended, if the pitch is large, sample swelling will be observed during heat treatment. This is remarkable in a sample having a small amount of ceramics, but in a sample having a large amount of ceramics, no blister is observed even if the pitch amount is large. In addition, as the pitch amount increases, the sample tends to become denser. Compared with commercially available carbon / ceramic composites according to the catalog, the bulk density of the present invention is small and the open area ratio is large compared with the commercially available bulk density of 2.1 to 2.3 g / cm 3 . However, the bending strength of some commercially available products exceeds 200 Mpa compared to 100 to 200 Mpa, and is not inferior.

Figure 0005093639
Figure 0005093639

Claims (1)

炭素収率80%以上のピッチ及びノボラック型フェノール樹脂である熱硬化性樹脂粉末を、60:40ないし50:50の範囲で配合し、該配合粉末に更にセラミックス粉末を体積混合比が、70:30ないし50:50の範囲になるように配合、混合し第1混合物とする混合工程と、
前記いずれかの混合工程において混合された第1混合物にアルコール類15重量%以下を含む攪拌液を加えて粉砕・混合し、スラリー化し、第2混合物とするスラリー工程と、
スラリー化した前記第2混合物を成形し、乾燥して成形する成形工程と、
前記成形し、乾燥した第2混合物を所定温度と時間、高温に保持して焼成する工程と
からなる炭素/セラミックス複合材の製造方法。
A pitch of carbon yield of 80% or more and a thermosetting resin powder that is a novolac type phenol resin are blended in the range of 60:40 to 50:50 , and ceramic powder is further added to the blended powder in a volume mixing ratio of 70: A mixing step of blending and mixing in a range of 30 to 50:50 to form a first mixture;
A slurry step of adding a stirring liquid containing 15% by weight or less of alcohols to the first mixture mixed in any one of the mixing steps, pulverizing and mixing, and forming a second mixture;
Forming the slurry-formed second mixture, drying and forming,
A method for producing a carbon / ceramic composite material comprising: a step of firing the molded and dried second mixture at a predetermined temperature, a predetermined time, and a high temperature.
JP2006091068A 2005-03-30 2006-03-29 Method for producing carbon / ceramic composite material Expired - Fee Related JP5093639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091068A JP5093639B2 (en) 2005-03-30 2006-03-29 Method for producing carbon / ceramic composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005099468 2005-03-30
JP2005099468 2005-03-30
JP2006091068A JP5093639B2 (en) 2005-03-30 2006-03-29 Method for producing carbon / ceramic composite material

Publications (2)

Publication Number Publication Date
JP2006306714A JP2006306714A (en) 2006-11-09
JP5093639B2 true JP5093639B2 (en) 2012-12-12

Family

ID=37474026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091068A Expired - Fee Related JP5093639B2 (en) 2005-03-30 2006-03-29 Method for producing carbon / ceramic composite material

Country Status (1)

Country Link
JP (1) JP5093639B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218508B1 (en) 2012-01-17 2013-01-03 인하대학교 산학협력단 Ceramic-carbon composites and its process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129256A (en) * 1988-11-08 1990-05-17 Unitika Ltd Composition for forming carbonized product
JPH05306166A (en) * 1991-04-05 1993-11-19 Toyota Motor Corp Carbon composite material
JPH09328364A (en) * 1996-06-05 1997-12-22 Kurosaki Refract Co Ltd Material for molten metal use
JP4353627B2 (en) * 2000-11-22 2009-10-28 花王株式会社 filter

Also Published As

Publication number Publication date
JP2006306714A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
CN101580390B (en) Preparation method of silicon carbide ceramic tubular product
JP2010234445A (en) Fiber reinforced filter for molten metal filtration and method for producing such filter
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
JP2010503605A (en) Low CTE isotropic graphite
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP5093639B2 (en) Method for producing carbon / ceramic composite material
US8668865B2 (en) Ceramic materials containing spherical shaped carbon particles
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP2010173876A (en) Method for producing carbon material
JP5856743B2 (en) Method for producing metal-ceramic composite material
JP4973917B2 (en) Carbon material manufacturing method
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
KR102448377B1 (en) Method for Manufacturing Silicon Carbide Blank and Method for Manufacturing Silicon Carbide and Silicon Carbide Composite Using Silicon Carbide Blank Manufactured by Thereof
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
JP2011136845A (en) Preform and metal-ceramic composite material
KR20220156759A (en) Porous carbon-based material and method for manufacturing porous carbon-based material
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
KR20210065254A (en) Porous carbon and fabrication for the same
JP4394784B2 (en) Silicon carbide sintered body
JPH02129071A (en) Production of silicon carbide ceramics
JPH09208314A (en) Production of carbonaceous material
KR100435006B1 (en) Method for Manufacturing Homogeneous Preform of Reaction-Bonded Silicon Carbide Using the Powders of Multimodal Particle Size Distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees