JP4973917B2 - Carbon material manufacturing method - Google Patents

Carbon material manufacturing method Download PDF

Info

Publication number
JP4973917B2
JP4973917B2 JP2006215235A JP2006215235A JP4973917B2 JP 4973917 B2 JP4973917 B2 JP 4973917B2 JP 2006215235 A JP2006215235 A JP 2006215235A JP 2006215235 A JP2006215235 A JP 2006215235A JP 4973917 B2 JP4973917 B2 JP 4973917B2
Authority
JP
Japan
Prior art keywords
resin
molding
weight
carbon
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006215235A
Other languages
Japanese (ja)
Other versions
JP2008037709A (en
Inventor
卓志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2006215235A priority Critical patent/JP4973917B2/en
Publication of JP2008037709A publication Critical patent/JP2008037709A/en
Application granted granted Critical
Publication of JP4973917B2 publication Critical patent/JP4973917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、射出成形、射出圧縮成形あるいはトランスファ成形によって作製した成形体を焼成する炭素材料の製造方法に関し、特に、焼成時に発生する膨れや割れなどの現象を抑止した炭素材料の製造方法に関する。   The present invention relates to a method for producing a carbon material for firing a molded body produced by injection molding, injection compression molding or transfer molding, and more particularly to a method for producing a carbon material that suppresses phenomena such as blistering and cracking that occur during firing.

更に、目標とする最終製品形状に近似した炭素材料を製造することができ、例えば、異形、複雑形状の炭素材料を製造する際にも、後処理的に機械加工する部分を極力少なくできる炭素材料の製造方法に関する。   Furthermore, it is possible to produce a carbon material that approximates the target final product shape. For example, when producing a carbon material having an irregular shape or a complicated shape, the carbon material that can reduce the number of parts to be machined in post-processing as much as possible. It relates to the manufacturing method.

炭素材料は、非酸化性雰囲気において優れた耐熱性や高温強度を有し、また導電性、熱伝導性および化学的安定性も高く、各種工業材料として広く使用されている。この炭素材料は、従来からコークス粉末などの炭素質粉末を骨材として、ピッチやタールなどの結合材を配合して加熱混練し、混練物を粉砕した原料粉を押出成形や冷間静水圧による等方加圧成形などにより成形し、成形体を焼成し、さらにピッチ含浸、再焼成を繰り返し、必要に応じ黒鉛化することにより製造されている。   Carbon materials have excellent heat resistance and high temperature strength in a non-oxidizing atmosphere, and have high conductivity, thermal conductivity, and chemical stability, and are widely used as various industrial materials. Conventionally, this carbon material is made of carbonaceous powder such as coke powder, combined with a binder such as pitch and tar, heated and kneaded, and the raw material powder obtained by pulverizing the kneaded product is extruded or subjected to cold isostatic pressure. It is manufactured by molding by isotropic pressure molding, etc., firing the molded body, repeating pitch impregnation and refiring, and graphitizing as necessary.

この製造プロセスにおいて、特に焼成過程では主に結合材に由来する多量の揮発性ガスが発生し、発生したガスが成形体から円滑に揮散、排出されないと、膨れなどの変形や割れが生じ易い。そのため、焼成過程における昇温速度を極めて緩やかに加熱する必要があり、通常、焼成サイクルは1ヶ月以上もの長期間を要している。また、立体形状の最終製品を得るためにはブロック状の炭素材から所望の形状に機械加工するので、高価なものとなるなどの難点がある。   In this manufacturing process, particularly in the firing process, a large amount of volatile gas mainly derived from the binder is generated, and deformation and cracking such as swelling are likely to occur unless the generated gas is smoothly volatilized and discharged from the molded body. For this reason, it is necessary to heat the heating rate very slowly in the firing process, and the firing cycle usually requires a long period of one month or more. Further, in order to obtain a final product having a three-dimensional shape, machining is performed from a block-shaped carbon material to a desired shape, and thus there is a difficulty in that it becomes expensive.

一方、黒鉛などの炭素粉末と比較的炭化率の高い熱硬化性樹脂を結合材として混合、混練した後、乾燥、粉砕して成形粉とし、この成形粉を所望形状に成形した成形体を焼成、炭化する方法がある。   On the other hand, carbon powder such as graphite and a thermosetting resin with a relatively high carbonization rate are mixed and kneaded as a binder, then dried and pulverized to form a molded powder, and a molded body obtained by molding the molded powder into a desired shape is fired. There is a method to carbonize.

そして、成形法として、比較的に複雑形状の成形体を作製することのできる射出成形法が有用されている。例えば、特許文献1には炭素微粉末と熱硬化性樹脂を混合する際に、高い機械的エネルギーを加えてメカノケミカル現象により炭素微粉末の粒子表面に樹脂が高度に結合したペースト状組成物を得、この組成物を注型成形または射出成形して、焼成する製造方法が開示されている。   As a molding method, an injection molding method capable of producing a molded body having a relatively complicated shape is useful. For example, Patent Document 1 discloses a paste-like composition in which a resin is highly bonded to the particle surface of carbon fine powder due to a mechanochemical phenomenon by adding high mechanical energy when carbon fine powder and a thermosetting resin are mixed. A manufacturing method is disclosed in which the composition is cast or injection molded and fired.

しかし、成形時にペースト状組成物の流動性が重要であり、特に射出成形では流動性を高く保持する必要があるため熱硬化性樹脂量が多くならざるを得ない。例えば、上記特許文献1では、炭素粉末の平均粒径が100μm以下の微粉末であることもあって、結合材である熱硬化性樹脂量も多くなり、特に肉厚の厚い炭素製品では焼成時に膨れや割れが生じ易く、肉厚の厚い炭素製品を製造することは困難である。   However, the fluidity of the paste-like composition is important at the time of molding, and the amount of thermosetting resin is inevitably increased because it is necessary to maintain high fluidity particularly in injection molding. For example, in Patent Document 1, the carbon powder has an average particle size of 100 μm or less, and the amount of thermosetting resin as a binder increases. Swelling and cracking are likely to occur, and it is difficult to produce a thick carbon product.

そこで、特許文献2では炭素粉末100重量部にベンジリックエーテル型フェノール樹脂10〜50重量部を添加混練し、この混練物を射出成形または押出成形して成形体をつくり、これを非酸化性雰囲気下、600℃以上の温度で熱処理する炭素成形体の製造法が提案されている。   Therefore, in Patent Document 2, 10 to 50 parts by weight of a benzylic ether type phenol resin is added to and kneaded with 100 parts by weight of carbon powder, and this kneaded product is injection molded or extruded to form a molded body, which is made into a non-oxidizing atmosphere. A method for producing a carbon molded body that is heat-treated at a temperature of 600 ° C. or higher has been proposed.

特許文献2は樹脂の添加量が少なくても流動性のよい混練物が得られるベンジリックエーテル型フェノール樹脂を使用するもので、射出成形により複雑形状の成形体を効率よく作製できるとするものであるが、ベンジリックエーテル型フェノール樹脂は離形性が悪いので離形剤を添加する必要があり、更に、焼成炭化時に発生する揮発性ガスが通常のフェノール樹脂に比べて多い難点もあり、肉厚成形体を製造することが困難である。   Patent Document 2 uses a benzylic ether type phenolic resin that can obtain a kneaded material having good fluidity even if the amount of resin added is small, and it is said that a molded body having a complicated shape can be efficiently produced by injection molding. However, benzylic ether type phenolic resins have poor mold releasability, so it is necessary to add a mold release agent. Furthermore, there is a problem that the amount of volatile gas generated during firing carbonization is larger than that of ordinary phenolic resins. It is difficult to produce a thick molded body.

特許文献3にはメソカーボン粉末と有機バインダーとの均一混合物を加熱し、射出成形するメソカーボン粉末成形体の製造方法が開示されている。しかし、使用するメソカーボン粉末の粒径が1〜80μmと小さく、成形時の流動性を改善するために可塑剤を配合するので、焼成過程で発生するガス量も多くなりカーボン焼結体の密度や強度が低くなる欠点がある。   Patent Document 3 discloses a method for producing a mesocarbon powder molded body in which a uniform mixture of mesocarbon powder and an organic binder is heated and injection molded. However, since the mesocarbon powder used has a small particle size of 1 to 80 μm and a plasticizer is added to improve the fluidity during molding, the amount of gas generated during the firing process increases, and the density of the carbon sintered body There is a drawback that the strength is lowered.

また、特許文献4にはオルト位結合/パラ位結合存在比が3以上のノボラック系フェノール樹脂50〜95質量%と、炭素質材料50〜5質量%とを主成分とする樹脂組成物を射出成形した成形体を炭化焼成したアモルファスカーボン成形体が開示されているが、炭素質材料の粒径が100μm以下の微粉を用いるので、樹脂組成物の樹脂量比が高く、焼成時に発生するガス量が多くなる難点がある。
特開昭59−195515号公報 特開平01−115869号公報 特開平08−113668号公報 特開2004−131527号公報
Patent Document 4 injects a resin composition mainly composed of 50 to 95% by mass of a novolac phenol resin having an ortho bond / para bond abundance ratio of 3 or more and 50 to 5% by mass of a carbonaceous material. An amorphous carbon molded body obtained by carbonizing and firing a molded body is disclosed, but since a fine powder having a carbonaceous material particle size of 100 μm or less is used, the resin amount ratio of the resin composition is high, and the amount of gas generated during firing There are many difficulties.
JP 59-195515 A Japanese Patent Laid-Open No. 01-115869 Japanese Patent Laid-Open No. 08-113668 JP 2004-131527 A

そこで、発明者は上記の問題を解決すべく射出成形材料である樹脂組成物について種々検討を行い、炭素粉末とバインダーである熱硬化性樹脂とを混合した樹脂組成物を射出成形などした成形体は、その表層面に樹脂分がリッチな層が形成され、この樹脂リッチ層が焼成炭化時に緻密な炭素層となって、樹脂成分の分解炭化時に発生するガスの排出が阻害されることを見出した。   Therefore, the inventor conducted various studies on the resin composition that is an injection molding material in order to solve the above problems, and a molded body obtained by injection molding or the like of a resin composition in which carbon powder and a thermosetting resin that is a binder are mixed. Found that a resin-rich layer is formed on the surface layer, and this resin-rich layer becomes a dense carbon layer during firing carbonization, which inhibits the emission of gas generated during decomposition carbonization of the resin component. It was.

この傾向は、炭素粉末の平均粒子径が小さく、熱硬化性樹脂の混合量比が大きく、また成形体の肉厚が厚い場合に顕著となり、熱硬化性樹脂から発生する揮発性の分解ガスの排出が円滑に進まず、焼成炭化時に膨れや割れが発生することとなる。更に、成形体の焼成時には炭素粉末と熱硬化性樹脂の結合力が低下するので、分解ガスの圧力に耐えきれず、膨れや割れの発生が助長されることになる。   This tendency becomes prominent when the average particle size of the carbon powder is small, the mixing ratio of the thermosetting resin is large, and the thickness of the molded body is thick, and the volatile decomposition gas generated from the thermosetting resin The discharge does not proceed smoothly and blisters and cracks occur during firing carbonization. Furthermore, since the bonding force between the carbon powder and the thermosetting resin is reduced when the molded body is fired, it cannot withstand the pressure of the decomposition gas, and the occurrence of swelling and cracking is promoted.

そして、本発明者は比較的大きな粒子径の炭素粉末を使用し、常法により熱硬化性樹脂を混合する際に樹脂組成物の流動性および離形性を向上させるための成形助剤を加え、更に、成形体の表層面に形成された樹脂リッチ層を除去すると成形体の焼成炭化時に膨れや割れの現象が防止され、後処理的に目的形状に機械加工が殆ど不要となる程度のニアネットシェイプの炭素材料が得られることを確認した。   The inventor uses a carbon powder having a relatively large particle size, and adds a molding aid for improving the fluidity and mold release of the resin composition when mixing the thermosetting resin by a conventional method. Furthermore, the removal of the resin-rich layer formed on the surface of the molded body prevents the phenomenon of blistering and cracking during firing and carbonization of the molded body, and the nearness is such that machining to the target shape is almost unnecessary in post-processing. It was confirmed that a net-shaped carbon material was obtained.

すなわち、本発明はこれらの知見に基づいて完成したもので、その目的は射出成形などによって作製した成形体を焼成する炭素材料の製造方法において、焼成時に発生する膨れや割れなどの現象を抑止して焼成時間の短縮化を可能とし、更に、目的とする最終製品形状に近い炭素材料の製造方法を提供することを目的とする。   That is, the present invention has been completed based on these findings, and its purpose is to suppress phenomena such as blistering and cracking that occur during firing in a method for producing a carbon material for firing a molded body produced by injection molding or the like. An object of the present invention is to provide a method for producing a carbon material close to the intended final product shape.

上記目的を達成するための本発明に係る炭素材料の製造方法は、平均粒子径が0.2〜2mmの炭素粉末100重量部、残炭率が40%以上の熱硬化性樹脂10〜40重量部、残炭率が10%以下の成形助剤0.1〜5重量部の量比からなる原料を混合し、乾燥、粉砕した成形粉を、射出成形、射出圧縮成形あるいはトランスファ成形により成形し、得られた成形体の表層面の一部を除去して成形体の表層面に形成される樹脂リッチ層を取り除いて、成形体の気体透過係数を1.0〜5.0×10−10mol・mm−2・s−1・MPa−1に調整した後、180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを構成上の特徴とする。 In order to achieve the above object, the method for producing a carbon material according to the present invention comprises 100 parts by weight of carbon powder having an average particle diameter of 0.2 to 2 mm and a thermosetting resin of 10 to 40 weights with a residual carbon ratio of 40% or more. Part, the raw material consisting of 0.1 to 5 parts by weight of a molding aid with a residual carbon ratio of 10% or less, mixed and dried, pulverized molding powder is formed by injection molding, injection compression molding or transfer molding Then, by removing a part of the surface layer surface of the obtained molded body and removing the resin rich layer formed on the surface layer surface of the molded body, the gas permeability coefficient of the molded body is 1.0 to 5.0 × 10 −10. After adjusting to mol · mm −2 · s −1 · MPa −1 , curing treatment is performed at a temperature of 180 to 280 ° C., and then baking treatment is performed at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. Features.

本発明によれば、粒子径の大きな炭素粉末を用い、熱硬化性樹脂および成形助剤を特定の量比に混合した樹脂組成物からなる成形粉を射出成形、射出圧縮成形、トランスファ成形などにより成形した成形体の表層面に形成された樹脂リッチ層を除去して、成形体の気体透過係数を所定の範囲にすることにより、焼成時に発生する熱硬化性樹脂の熱分解ガスを効果的に排出、揮散除去することができる。その結果、焼成時間を短くしても膨れや割れの発生の少ない炭素材料を、効率よく、高い生産性で製造することが可能となる。   According to the present invention, a carbon powder having a large particle size is used, and a molding powder comprising a resin composition in which a thermosetting resin and a molding aid are mixed in a specific quantity ratio is obtained by injection molding, injection compression molding, transfer molding, or the like. By removing the resin-rich layer formed on the surface layer of the molded body and setting the gas permeability coefficient of the molded body to a predetermined range, the pyrolysis gas of the thermosetting resin generated during firing is effectively reduced. Emission and volatilization can be removed. As a result, it becomes possible to manufacture a carbon material with less blistering and cracking efficiently and with high productivity even if the firing time is shortened.

このようにして製造された炭素材料は曲げ強度が15MPa以上、固有抵抗が0.5Ω・m以下、熱伝導率が30W/mK以上の特性を備え、帯電防止材、電磁波シールド材、摺動部材、放熱基盤、遠赤外線放射体、調理器用発熱体を含む各種発熱体、金属蒸着用ルツボなどの広い用途分野で使用することができる。   The carbon material thus produced has characteristics such as a bending strength of 15 MPa or more, a specific resistance of 0.5 Ω · m or less, and a thermal conductivity of 30 W / mK or more, an antistatic material, an electromagnetic shielding material, and a sliding member. It can be used in a wide range of fields such as heat dissipating bases, far-infrared radiators, various heating elements including heating elements for cooking appliances, crucibles for metal deposition.

原料となる炭素粉末には各種の炭素質粉末が用いられるが、黒鉛化度の高い黒鉛粉末が射出時の流動性が高く、ノズル詰まりやショートショットが少ないので、成形性の観点から人造黒鉛粉末や天然黒鉛粉末が好適である。   Various carbonaceous powders are used as the raw material carbon powder, but graphite powder with a high degree of graphitization has high fluidity during injection, and there is little nozzle clogging or short shot. And natural graphite powder are preferred.

炭素粉末の粒度は平均粒子径が0.2〜2mm、好ましくは0.4〜2mmの粒径範囲のものが使用される。平均粒子径が0.2mmを下回ると成形粉の流動性が低下するので成形性が悪化し、成形性を維持するために相対的に樹脂量を増やすと成形体の表層面に形成される樹脂リッチ層が厚くなり、また成形体の焼成時に発生するガス量も増大し、膨れや割れ発生の原因となる。また、平均粒子径が2mmを越えると成形体の気体透過係数が大きくなるので焼成処理はし易くはなるが、炭素材料の強度が低下し、また射出成形時に詰まりが生じ易くなる。   The carbon powder having a mean particle size of 0.2 to 2 mm, preferably 0.4 to 2 mm, is used. If the average particle diameter is less than 0.2 mm, the fluidity of the molding powder is reduced, so that the moldability is deteriorated. If the resin amount is relatively increased in order to maintain the moldability, the resin formed on the surface of the molded body The rich layer becomes thick, and the amount of gas generated when the molded body is fired increases, which causes blistering and cracking. On the other hand, if the average particle diameter exceeds 2 mm, the gas permeability coefficient of the molded body increases, so that the firing process is easy, but the strength of the carbon material is reduced, and clogging easily occurs during injection molding.

炭素粉末のバインダーとなる熱硬化性樹脂は常用される残炭率が40%以上のフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、フラン樹脂、不飽和ポリエステル樹脂などが用いられ、成形性や価格面からフェノール樹脂あるいはエポキシ樹脂が好適である。   The thermosetting resin used as the binder for carbon powder is phenol resin, epoxy resin, polyimide resin, furan resin, unsaturated polyester resin, etc. with a residual carbon ratio of 40% or more, which is commonly used. Resins or epoxy resins are preferred.

本発明においては、原料として常用される上記の炭素粉末および熱硬化性樹脂の他に、成形時の流動性、成形性および離形性を向上させるため残炭率が10%以下の成形助剤を添加することが必須の要件である。なお、残炭率は、磁製ルツボに樹脂サンプルを入れ、135℃で1時間加熱、さらに250℃で5時間加熱後、磁製ルツボに蓋をして非酸化性雰囲気中でさらに1000℃で30分間加熱し、1000℃で30分間加熱後のサンプルの重量を、磁製ルツボに投入した樹脂サンプルの重量で除することにより測定される。
残炭率(%)=(1000℃で30分間加熱後のサンプルの重量)/(磁製ルツボに投入した樹脂サンプルの重量)×100
In the present invention, in addition to the above-mentioned carbon powder and thermosetting resin that are commonly used as raw materials, a molding aid having a residual carbon ratio of 10% or less in order to improve fluidity, moldability and mold release during molding. Is an essential requirement. Residual charcoal ratio was determined by placing a resin sample in a magnetic crucible, heating at 135 ° C. for 1 hour, further heating at 250 ° C. for 5 hours, then covering the magnetic crucible and further in a non-oxidizing atmosphere at 1000 ° C. It is measured by heating for 30 minutes and dividing the weight of the sample after heating for 30 minutes at 1000 ° C. by the weight of the resin sample put in the porcelain crucible.
Residual carbon ratio (%) = (weight of sample after heating at 1000 ° C. for 30 minutes) / (weight of resin sample put in porcelain crucible) × 100

成形助剤としては、ステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックス、有機リン酸エステル、架橋ポリオレフィンなどの化合物、もしくは、これらの2種以上の混合物である有機物が好適に例示される。   As the molding aid, stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, organic phosphate ester, cross-linked polyolefin and the like, or an organic substance that is a mixture of two or more of these are preferably exemplified. The

これらの原料の混合量比は、上記の炭素粉末100重量部、熱硬化性樹脂10〜40重量部、成形助剤0.1〜5重量部の割合に設定する。熱硬化性樹脂の混合量比が10重量部未満では混合した樹脂組成物である原料の流動性が低く、成形性が悪化し、一方、40重量部を上回ると成形性は良好であるが、成形体表層面に形成される樹脂リッチ層が厚くなり、また焼成時に樹脂分解ガスの発生量も多くなり、炭素材料の膨れや割れ発生の原因となる。   The mixing ratio of these raw materials is set to a ratio of 100 parts by weight of the carbon powder, 10 to 40 parts by weight of the thermosetting resin, and 0.1 to 5 parts by weight of the molding aid. When the mixing amount ratio of the thermosetting resin is less than 10 parts by weight, the fluidity of the raw material that is the mixed resin composition is low, and the moldability is deteriorated, whereas when it exceeds 40 parts by weight, the moldability is good. The resin-rich layer formed on the surface of the molded body becomes thick, and the amount of resin decomposition gas generated during firing increases, which causes the carbon material to swell and crack.

また、添加する成形助剤の混合量比が0.1重量部を下回ると混合原料の流動性が低下してショートショットになり易く、離形性も悪化する。しかし、混合量比が5重量部を越えると焼成時に成形助剤から発生する分解成分が多いため発生ガス量が多くなり、焼成時に膨れや割れが発生し易くなる。   On the other hand, when the mixing amount ratio of the molding aid to be added is less than 0.1 parts by weight, the fluidity of the mixed raw material is lowered, and a short shot is likely to occur, and the releasability is deteriorated. However, when the mixing ratio exceeds 5 parts by weight, the amount of generated gas increases because many decomposition components are generated from the molding aid during firing, and blistering and cracking are likely to occur during firing.

なお、これらの原料系において焼成助剤を添加することが好ましく、焼成助剤は熱硬化性樹脂を焼成して樹脂成分が分解炭化される前に、分解されて樹脂成分の炭化に伴って発生するガスの流出路を形成してガスの揮散放出を容易にするために機能する。焼成助剤としては、セルロース繊維、レーヨン繊維、アクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などが例示される。   In addition, it is preferable to add a firing aid in these raw material systems. The firing aid is decomposed and generated along with the carbonization of the resin component before the resin component is decomposed and carbonized by firing the thermosetting resin. It functions to facilitate gas volatilization and emission by forming a gas outflow passage. Examples of the baking aid include cellulose fiber, rayon fiber, acrylic resin, polystyrene resin, corn starch, and walnut powder.

なお、焼成助剤の添加量は上記の混合原料、すなわち、炭素粉末100重量部、熱硬化性樹脂10〜40重量部、成形助剤0.5〜1重量部の混合量比に対して、0〜10重量部の量比で添加する。なお、焼成助剤は焼成時に膨れや割れが発生しない場合には添加不要であるが、添加量比が10重量部を越えると炭素材料の物性が不均一化し、強度も低下することとなる。   In addition, the addition amount of the firing aid is the above mixed raw material, that is, the mixing amount ratio of carbon powder 100 parts by weight, thermosetting resin 10 to 40 parts by weight, and molding aid 0.5 to 1 part by weight. It is added in an amount ratio of 0 to 10 parts by weight. Note that the firing aid is not required to be added if no blistering or cracking occurs during firing, but if the added amount ratio exceeds 10 parts by weight, the physical properties of the carbon material become non-uniform and the strength also decreases.

熱硬化性樹脂は適宜な有機溶剤に溶解して樹脂溶液とした後、炭素粉末、熱硬化性樹脂および成形助剤、更に必要に応じ焼成助剤を上記の重量比となるように混合する。混合はニーダー、加圧型ニーダー、2軸スクリュー混練機など適宜な混練機で十分に混練し、混練物は真空乾燥や風乾などにより乾燥して有機溶剤分を除去した後、粉砕して成形粉を調製する。   The thermosetting resin is dissolved in an appropriate organic solvent to form a resin solution, and then carbon powder, the thermosetting resin, a molding aid, and, if necessary, a firing aid are mixed so as to have the above weight ratio. Mixing is carried out with an appropriate kneader such as a kneader, pressure type kneader, or twin screw kneader. The kneaded product is dried by vacuum drying or air drying to remove the organic solvent, and then pulverized to obtain a molding powder. Prepare.

成形粉は5mm以下の粒状に粉砕することが好ましく、成形法は生産性の高い射出法が好ましく、射出成形、射出圧縮成形、トランスファ成形などの成形法が適用される。   The molding powder is preferably pulverized into particles of 5 mm or less, and the molding method is preferably an injection method with high productivity, and molding methods such as injection molding, injection compression molding, and transfer molding are applied.

このようにして得られた成形体には表層面に樹脂分のリッチな層が形成され、この樹脂リッチ層は焼成処理時に炭化して組織が緻密なカーボン層(ガラス状カーボン層)に転化する。したがって、成形体の表層面に形成したこのカーボン層により硬化処理および焼成処理、特に焼成処理時に樹脂成分の炭化に伴って発生する樹脂の分解ガスの透過が妨げられ、炭素材料の膨れや割れの原因となる。そこで、本発明においては成形体の表層面の一部を除去して樹脂リッチ層を取り除くことによりガスの揮散を円滑に行うものであり、成形体表面の樹脂リッチ層を除去することが必須の要件となる。   In the molded body thus obtained, a resin-rich layer is formed on the surface, and this resin-rich layer is carbonized during the firing process and converted into a dense carbon layer (glassy carbon layer). . Therefore, the carbon layer formed on the surface of the molded body prevents the permeation of the decomposition gas of the resin generated along with the carbonization of the resin component during the curing process and the baking process, particularly the baking process, and causes the carbon material to expand and crack. Cause. Therefore, in the present invention, gas is smoothly removed by removing a part of the surface of the molded body to remove the resin rich layer, and it is essential to remove the resin rich layer on the surface of the molded body. It becomes a requirement.

樹脂リッチ層の除去量は炭素粉末の平均粒子径や原料の成分、組成などにより異なるが、除去後の成形体の気体透過係数が1.0〜5.0×10−10mol・mm−2・s−1・MPa−1の範囲になるように除去することが必要である。気体透過係数が1.0×10−10mol・mm−2・s−1・MPa−1未満ではガスの透過、揮散が十分でなく、一方、気体透過係数が5.0×10−10mol・mm−2・s−1・MPa−1を上回る程度にまで表層面を除去してもガスの透過、揮散させる効果に顕著な差がないからである。 The removal amount of the resin-rich layer varies depending on the average particle size of carbon powder, raw material components, composition, etc., but the gas permeability coefficient of the molded product after removal is 1.0 to 5.0 × 10 −10 mol · mm −2. -It is necessary to remove so that it may become the range of s < -1 > * MPa- 1 . If the gas permeability coefficient is less than 1.0 × 10 −10 mol · mm −2 · s −1 · MPa −1 , gas permeation and volatilization are not sufficient, while the gas permeability coefficient is 5.0 × 10 −10 mol. This is because there is no significant difference in the effect of gas permeation and volatilization even if the surface layer is removed to a degree exceeding mm −2 · s −1 · MPa −1 .

なお、気体透過係数の測定は下記の方法による。
JIS K7126のA法(差圧法)に準拠して、下記の方法で測定。
厚さ5mmの成形体を片面から1mm厚さになるように切削加工し、もう片面の成形面の表層面を除去して、74φ×1tサイズの試験片を用いた。透過面の直径を55mm、ガス種はヘリウムガス、低圧側容積15cm3 差圧0.2MPaの条件で、低圧側の排気バルブを閉じて60分後からさらに60分経過後の低圧側の圧力変化(室温25℃)から求めた。
The gas permeability coefficient is measured by the following method.
Measured by the following method in accordance with JIS K7126 method A (differential pressure method).
A molded body having a thickness of 5 mm was cut from one side to a thickness of 1 mm, the surface layer of the molding surface on the other side was removed, and a 74φ × 1 t size test piece was used. Pressure change on the low pressure side after 60 minutes from closing the exhaust valve on the low pressure side under the conditions that the diameter of the permeation surface is 55 mm, the gas type is helium gas, and the low pressure side volume is 15 cm 3 and the differential pressure is 0.2 MPa. (Room temperature 25 ° C.)

樹脂リッチ層の除去量は、成形体の作製条件、成形体の大きさ、硬化処理、焼成処理などの条件にもよるが、通常、表層面を10μm以上、好適には40〜50μm程度除去すればよく、また、樹脂リッチ層の除去はサンドペーパーやサンドブラストなどによる研磨や研削による方法、あるいはバーナーなどで表面樹脂層を焼き飛ばすなどの方法で行うことができる。   The removal amount of the resin-rich layer depends on conditions such as the production conditions of the molded body, the size of the molded body, the curing process, and the baking process, but usually the surface layer is removed by 10 μm or more, preferably about 40 to 50 μm. The resin-rich layer can be removed by polishing or grinding using sand paper or sand blasting, or by burning off the surface resin layer with a burner or the like.

成形体の表層面に形成された樹脂リッチ層を除去して、所定の気体透過係数に調整した後、常法により180〜280℃の温度に加熱して樹脂成分を硬化処理し、次いで、不活性ガスや窒素ガスなどの非酸化性雰囲気下で800℃以上の温度に加熱して樹脂成分を焼成処理して炭化し、更に、用途目的によっては3000℃程度の温度にまで加熱処理して黒鉛化することにより炭素材料が製造される。   After removing the resin-rich layer formed on the surface of the molded body and adjusting to a predetermined gas permeability coefficient, the resin component is cured by heating to a temperature of 180 to 280 ° C. by a conventional method. In a non-oxidizing atmosphere such as active gas or nitrogen gas, the resin component is heated and carbonized by heating to a temperature of 800 ° C. or higher. Further, depending on the purpose of use, it may be heated to a temperature of about 3000 ° C. A carbon material is manufactured by converting.

この製造方法により、曲げ強度が15MPa以上、固有抵抗が0.5Ω・m以下、熱伝導率が30W/mK以上の特性を備えた炭素材料を効率よく、高い生産性で製造することが可能となる。   With this manufacturing method, it is possible to efficiently and efficiently produce a carbon material having characteristics of a bending strength of 15 MPa or more, a specific resistance of 0.5 Ω · m or less, and a thermal conductivity of 30 W / mK or more. Become.

そして、これらの炭素材料は、帯電防止材、電磁波シールド材、摺動部材、放熱基盤、遠赤外線放射体、調理器用発熱体を含む各種発熱体、金属蒸着用ルツボなどの広い用途分野で使用することができる。   These carbon materials are used in a wide range of application fields such as antistatic materials, electromagnetic shielding materials, sliding members, heat dissipation bases, far-infrared radiators, various heating elements including heating elements for cookers, and crucibles for metal deposition. be able to.

以下、本発明の実施例を比較例と対比して具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例1〜3、比較例1〜7
炭素粉末としては人造黒鉛を粉砕して粒度調整した平均粒子径の異なる人造黒鉛粉末を用い、熱硬化性樹脂には残炭率55%のフェノール樹脂(群栄化学工業 (株) 製、PSM−2222)を用い、アセトンに樹脂固形分が50wt%となるように溶解して樹脂溶液を調製した。この際、フェノール樹脂の硬化剤であるヘキサミンを樹脂固形分に対して10%加えた。また、成形助剤にはステアリン酸を用いて樹脂溶液に加え、60分間撹拌して樹脂溶液に完全相溶させた。
Examples 1-3, Comparative Examples 1-7
As the carbon powder, artificial graphite powder having an average particle size adjusted by pulverizing artificial graphite and having a different average particle diameter was used, and a phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., PSM-) having a residual carbon ratio of 55% was used as the thermosetting resin. 2222), a resin solution was prepared by dissolving in acetone so that the resin solid content was 50 wt%. At this time, 10% of hexamine, which is a curing agent for the phenol resin, was added to the resin solid content. Further, stearic acid was used as a molding aid and added to the resin solution, and the mixture was stirred for 60 minutes to be completely compatible with the resin solution.

これらの人造黒鉛粉末、フェノール樹脂溶液およびステアリン酸の原料系において、各成分の重量比を変えて混合し、2軸ニーダーで60分間混練して混合原料を作製した。次いで、室温で風乾してアセトンおよび揮発性成分を除去した後、粒径3mm以下に粉砕して成形粉を得た。   In these raw material systems of artificial graphite powder, phenol resin solution, and stearic acid, the components were mixed at different weight ratios, and kneaded for 60 minutes with a biaxial kneader to prepare a mixed raw material. Next, after air-drying at room temperature to remove acetone and volatile components, the powder was pulverized to a particle size of 3 mm or less to obtain a molding powder.

実施例4〜5、比較例8
焼成助剤としてセルロース製の微小極細繊維を用い、上記の人造黒鉛粉末、フェノール樹脂溶液およびステアリン酸からなる原料系に混合重量部を変えて添加混合し、次いで、実施例3と同じ方法で成形粉を作製した。
Examples 4 to 5 and Comparative Example 8
Using ultrafine fibers made of cellulose as a baking aid, adding and mixing the raw material system consisting of the above artificial graphite powder, phenol resin solution and stearic acid while changing the mixing parts by weight, and then molding in the same manner as in Example 3 Powder was prepared.

これらの成形粉を、150t汎用型の射出成形機を用いて、150×150×5tmmの平板1枚取りの射出成形を行った。なお、射出条件は、シリンダ温度90℃、金型温度170℃、射出圧力および速度は成形粉の原料組成に合わせて最適条件を選択した。   These molding powders were injection-molded with a single plate of 150 × 150 × 5 tmm using a 150-t general-purpose injection molding machine. The injection conditions were a cylinder temperature of 90 ° C., a mold temperature of 170 ° C., and the injection pressure and speed were selected according to the raw material composition of the molding powder.

得られた成形体の表層面を1000番の紙ヤスリで研削して、表層面に形成された樹脂リッチ層の一部を研削除去して気体透過係数の異なる成形体を作製した。   The surface layer surface of the obtained molded body was ground with a # 1000 paper file, and a part of the resin rich layer formed on the surface layer surface was removed by grinding to produce molded bodies having different gas permeability coefficients.

次いで、250℃の温度で5時間加熱して硬化処理した後、一旦常温に戻し、窒素雰囲気中で1000℃の温度で5時間加熱して焼成処理して、炭素材料を製造した。これらの製造条件を表1に示した。   Next, after curing by heating at a temperature of 250 ° C. for 5 hours, the temperature was once returned to room temperature, followed by baking at a temperature of 1000 ° C. for 5 hours in a nitrogen atmosphere to produce a carbon material. These production conditions are shown in Table 1.

Figure 0004973917
Figure 0004973917

これらの炭素材料について、下記の方法で嵩比重、曲げ強度、固有抵抗および熱伝導率などを測定し、得られた結果を表2に示した。   About these carbon materials, bulk specific gravity, bending strength, specific resistance, thermal conductivity, etc. were measured by the following method, and the obtained results are shown in Table 2.

(1)嵩比重 ;
アルキメデス法により、試料の乾燥重量および水中での重量を測定(室温25℃)し求めた。
(1) Bulk specific gravity;
The dry weight of the sample and the weight in water were measured (at room temperature of 25 ° C.) by the Archimedes method.

(2)曲げ強度(MPa) ;
JIS K7203により、試験片サイズ90×10×5t(mm)、支点間距離80mm、クロスヘッドスピード0.5mm/分の条件で3点曲げ試験を行った。
(2) Bending strength (MPa);
A three-point bending test was performed according to JIS K7203 under the conditions of a test piece size of 90 × 10 × 5 t (mm), a fulcrum distance of 80 mm, and a crosshead speed of 0.5 mm / min.

(3)固有抵抗 (Ω.m);
JIS R7202の電圧降下法により、試験片サイズ90×10×5t(mm)の長手方向に直流電流0.5Aを流して、端子間距離67mmの電圧降下を測定(室温25℃)して算出した。
(3) Specific resistance (Ω.m);
Calculated by measuring the voltage drop at a terminal distance of 67 mm (room temperature 25 ° C.) by passing a direct current of 0.5 A in the longitudinal direction of the test piece size 90 × 10 × 5 t (mm) by the voltage drop method of JIS R7202. .

(4)熱伝導率(W.m−1.K−1) ;
レーザーフラッシュ法により測定した。測定装置は真空理工株式会社製TC−7000型を用い、試験片サイズ10φ×2t(mm)に所定エネルギーのレーザー光を当て、試験片の温度変化およびレーザー光と投射面の裏面の温度変化より、比熱容量および厚さ方向の熱拡散率を測定し、熱伝導率=比熱容量×熱拡散率×密度より算出した。
(4) Thermal conductivity (Wm −1 .K −1 );
Measured by laser flash method. TC-7000 type manufactured by Vacuum Riko Co., Ltd. is used as a measuring device. A laser beam with a predetermined energy is applied to a test piece size 10φ × 2t (mm), and the temperature change of the test piece and the temperature change of the laser light and the back surface of the projection surface The specific heat capacity and the thermal diffusivity in the thickness direction were measured and calculated from thermal conductivity = specific heat capacity × thermal diffusivity × density.

Figure 0004973917
Figure 0004973917

実施例1〜5では、いずれの場合も成形性が良く、また表面樹脂リッチ層を除去することにより、焼成中に発生するガスの透過が良いために、焼成後のものは、膨れ又は割れが発生せず、曲げ強度も黒鉛材料として使用できるものであった。   In Examples 1 to 5, the moldability is good in any case, and by removing the surface resin-rich layer, gas permeation generated during firing is good. It did not occur and the bending strength could be used as a graphite material.

比較例1では、黒鉛粉粒径が小さいために成形材料の流動性が悪く、射出成形時に金型に充填ができなかった。比較例2では、黒鉛粉粒径が大きいためにスプール径やゲートの構造を大きくすることにより射出成形は可能であったが、焼成後の成形体は強度が低く、黒鉛材料として使用できるものではなかった。   In Comparative Example 1, since the graphite powder particle size was small, the flowability of the molding material was poor, and the mold could not be filled during injection molding. In Comparative Example 2, since the graphite powder particle size was large, injection molding was possible by increasing the spool diameter and the gate structure, but the fired molded article had low strength and could be used as a graphite material. There wasn't.

比較例3では、樹脂量が少ないために成形粉の流動性が悪く、成形体に顕著なウェルドラインが見られた。また、焼成中にウェルドラインのところで破壊が起こり成形体が割れてしまい、その他の部分でも曲げ強度が低くなった。比較例4では、樹脂量が多いため、成形粉の流動性が良く、成形性は良かったが、樹脂分解によるガス発生量が多く、焼成中に多数の膨れが発生した。   In Comparative Example 3, since the resin amount was small, the fluidity of the molding powder was poor, and a remarkable weld line was observed in the molded product. In addition, breakage occurred at the weld line during firing, and the molded body was cracked, and the bending strength was lowered in other portions. In Comparative Example 4, since the amount of resin was large, the flowability of the molding powder was good and the moldability was good. However, the amount of gas generated by the resin decomposition was large, and many blisters occurred during firing.

比較例5では、成形助剤量を増やしたことにより、成形材料の流動性は良くなったものの、成形助剤が成形体の表層に浮き出て膜を形成してしまい、成形時に発生するガスの排出ができずに射出成形体が膨れてしまった。比較例6では、成形助剤を添加しなかったために成形粉の流動性が悪く、ショート成形が多発した。また得られる成形体には顕著なウェルドラインが見られた。   In Comparative Example 5, although the flowability of the molding material was improved by increasing the amount of the molding aid, the molding aid floated on the surface layer of the molded body to form a film, and the gas generated during molding The injection molded body swelled without being discharged. In Comparative Example 6, since no molding aid was added, the fluidity of the molding powder was poor, and short molding occurred frequently. Further, remarkable weld lines were observed in the obtained molded body.

比較例7では、実施例3と同条件で射出成形を行った射出成形体に、表面層の除去を行わずに焼成を行ったところ、気体透過係数が小さいため焼成中に発生したガス抜けが悪く、焼成中に多数の膨れが発生した。比較例8では、焼成助剤量を増やして成形を行った。成形は問題なく行うことができたが、焼成助剤の分散が均一にできず、焼成時に焼成助剤が分解したときにできる気孔が不均一になるために、局部的に強度が低下し、焼成時にヒビが入ってしまった。   In Comparative Example 7, the injection molded body that was injection molded under the same conditions as in Example 3 was fired without removing the surface layer. Unfortunately, numerous blisters occurred during firing. In Comparative Example 8, molding was performed by increasing the amount of the firing aid. Molding could be performed without problems, but the dispersion of the firing aid could not be made uniform, and the pores formed when the firing aid was decomposed during firing became non-uniform, resulting in a local decrease in strength, Cracks entered during firing.

Claims (3)

平均粒子径が0.2〜2mmの炭素粉末100重量部、残炭率が40%以上の熱硬化性樹脂10〜40重量部、残炭率が10%以下の成形助剤0.1〜5重量部の量比からなる原料を混合し、乾燥、粉砕した成形粉を、射出成形、射出圧縮成形あるいはトランスファ成形により成形し、得られた成形体の表層面の一部を除去して成形体の表層面に形成される樹脂リッチ層を取り除いて、成形体の気体透過係数を1.0〜5.0×10−10mol・mm−2・s−1・MPa−1に調整した後、180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを特徴とする炭素材料の製造方法。 100 parts by weight of carbon powder having an average particle size of 0.2 to 2 mm, 10 to 40 parts by weight of thermosetting resin having a residual carbon ratio of 40% or more, and molding aid 0.1 to 5 having a residual carbon ratio of 10% or less. Molded powder obtained by mixing raw materials with a weight ratio of parts by weight, drying and pulverizing is molded by injection molding, injection compression molding or transfer molding, and a part of the surface layer surface of the resulting molded body is removed. After removing the resin-rich layer formed on the surface layer, the gas permeability coefficient of the molded body was adjusted to 1.0 to 5.0 × 10 −10 mol · mm −2 · s −1 · MPa −1 , A method for producing a carbon material, characterized by performing a curing treatment at a temperature of 180 to 280 ° C and then performing a baking treatment at a temperature of 800 ° C or higher in a non-oxidizing atmosphere. 成形助剤がステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックス、有機リン酸エステル、架橋ポリオレフィンなどの化合物、もしくは、これらの2種以上の混合物である請求項1記載の炭素材料の製造方法。   2. The carbon material according to claim 1, wherein the molding aid is a compound such as stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, organic phosphate ester, cross-linked polyolefin, or a mixture of two or more thereof. Production method. 原料に、セルロース繊維、レーヨン繊維、アクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などの焼成助剤を0〜10重量部添加する請求項1記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 1, wherein 0 to 10 parts by weight of a baking aid such as cellulose fiber, rayon fiber, acrylic resin, polystyrene resin, corn starch or walnut powder is added to the raw material.
JP2006215235A 2006-08-08 2006-08-08 Carbon material manufacturing method Expired - Fee Related JP4973917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215235A JP4973917B2 (en) 2006-08-08 2006-08-08 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215235A JP4973917B2 (en) 2006-08-08 2006-08-08 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2008037709A JP2008037709A (en) 2008-02-21
JP4973917B2 true JP4973917B2 (en) 2012-07-11

Family

ID=39173160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215235A Expired - Fee Related JP4973917B2 (en) 2006-08-08 2006-08-08 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP4973917B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157378B (en) * 2019-06-24 2022-05-17 吕梁学院 Walnut shell biomass C/Fe3O4Preparation method of/Cu microwave absorbing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162612A (en) * 1986-01-10 1987-07-18 Showa Denko Kk Production of isotropic carbon material having low thermal expansion
JPH08113668A (en) * 1994-10-14 1996-05-07 Osaka Gas Co Ltd Production of mesocarbon powder molding and production of carbon sinter
JPH10130055A (en) * 1996-10-24 1998-05-19 Tokyo Electron Ltd Production of electrode plate for plasma treatment device
JPH10291813A (en) * 1997-04-16 1998-11-04 Tokai Carbon Co Ltd Electrode plate for plasma etching
JP2003321554A (en) * 2002-04-26 2003-11-14 Polymatech Co Ltd Heat-conductive molding and method for producing the same

Also Published As

Publication number Publication date
JP2008037709A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4734674B2 (en) Low CTE isotropic graphite
CN108290353B (en) Forming tool for molten metal or glass
US20060154800A1 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
JP5120748B2 (en) Method for producing carbon molding material
JP5041312B2 (en) Carbon material manufacturing method
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JP4973917B2 (en) Carbon material manufacturing method
JP5057260B2 (en) Method for producing separator material for fuel cell
JP2010173876A (en) Method for producing carbon material
JP2009249195A (en) Method for producing carbon molded product
US10646916B2 (en) Composition and method to form displacements for use in metal casting
JPS632913B2 (en)
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JP2009242176A (en) Carbonaceous structure and its forming process
JPS6253473B2 (en)
JP2000331690A (en) Manufacture of separator for fuel cell
CN116425548B (en) Adhesive jet printing silicon carbide ceramic composite material based on particle-size distribution powder and preparation method thereof
JPH1190579A (en) Heat-shock resistant graphite die, and its manufacture
KR20210065254A (en) Porous carbon and fabrication for the same
JP2022178233A (en) Porous carbon-based material and production method of porous carbon-based material
JPH0159969B2 (en)
JP2000319067A (en) Carbon/graphite composite molding
JPS60112609A (en) Preparation of rigid molded article of carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees