JPS60112609A - Preparation of rigid molded article of carbon - Google Patents

Preparation of rigid molded article of carbon

Info

Publication number
JPS60112609A
JPS60112609A JP58219203A JP21920383A JPS60112609A JP S60112609 A JPS60112609 A JP S60112609A JP 58219203 A JP58219203 A JP 58219203A JP 21920383 A JP21920383 A JP 21920383A JP S60112609 A JPS60112609 A JP S60112609A
Authority
JP
Japan
Prior art keywords
carbon
mesophase
product
fine
carbonizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58219203A
Other languages
Japanese (ja)
Inventor
Takamasa Kawakubo
川窪 隆昌
Mitsuru Yoshida
充 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58219203A priority Critical patent/JPS60112609A/en
Publication of JPS60112609A publication Critical patent/JPS60112609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To prepare inexpensively a rigid molded article of carbon with high denseness, high strength and complex shape by mixing low polymer of thermosetting resin with fine carbon particles prepd. by carbonizing mesophase, polymerising a molded product and then curing and calcining. CONSTITUTION:Binder (B) comprising monomer, prepolymer, or low polymer constituting a thermosetting resin which is an org, substance resulting high yield of carbon residue after calcination, such as condensation product in the initial stage of condensation of furan resin, is added and dispersed to (A) fine carbon powder contg. carbonized or graphitized fine powdery mesophase. Then, the product is shaped and polymerized and cured, and, thus, a target rigid molded carbon article is obtd. Above described fine powder obtd. by carbonizing the mesophase is one prepd. by heat treating pitch, fractionating the mesophase formed in the pitch matrix by a fractionating process using a solvent, and heat treating and carbonizing the product.

Description

【発明の詳細な説明】 本発明は硬質炭素成形品の製造法に関する。fi7+し
くは、緻密で均質な構造を有し、機械強度の大きい、精
密且つ複雑な形状を有する硬質炭素成形体をa?iSな
方法を用いて安価にしかも本質的に二次加工を要しない
で製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing hard carbon molded articles. fi7+ is a hard carbon molded body having a dense and homogeneous structure, high mechanical strength, and a precise and complex shape. The present invention relates to a manufacturing method using an iS method at low cost and essentially requiring no secondary processing.

従来硬質炭素材は、固相炭化過程を辿る有機物質、゛例
えば、各種の熱硬化性樹脂を成形、硬化したのち、徐々
に昇温させて炭素化させることにより得られていた。固
相炭化反応の場合、有機物の加熱による熱分解によって
生成した揮発成分は固相を通じて逸出する為に、炭素化
物の内部組織には極めて微細なマイクロクランクが存在
することが良く知られている。従って、熱硬化性樹脂の
炭素化の為には加熱によって生成する熱分解揮発成分が
年金することによる、亀裂の発生を防止する手段が講じ
られなければならない。その為には第1に、熱硬化性樹
脂の硬化反応を極めて遅くする必要があり、添加される
硬化剤量は必要最小限の量とし、室温近辺で長時間かけ
て硬化ひずみが発生しない様に硬化を完結せねばならな
い。第2に硬化物を焼成する際にも、熱分解による揮発
成分の生成を抑制すると同時に、生成した揮発成分を徐
々に外部に逸出させ、亀裂の発生を未然に防止する目的
で、極めて緩慢な昇温速度で加熱して炭素化反応を遅く
行わせる必要があった。従来、第1の硬化反応には3〜
8週間の長時間を必要とし、第2の焼成時間も同様に3
〜12週間の長時間を必要としていた。
Conventionally, hard carbon materials have been obtained by molding and curing organic materials that undergo a solid phase carbonization process, such as various thermosetting resins, and then carbonizing them by gradually raising the temperature. In the case of solid-state carbonization reactions, it is well known that extremely fine micro-cranks exist in the internal structure of carbonized materials because volatile components generated by thermal decomposition due to heating of organic materials escape through the solid phase. . Therefore, in order to carbonize a thermosetting resin, it is necessary to take measures to prevent the occurrence of cracks caused by the thermal decomposition volatile components generated by heating. Firstly, it is necessary to make the curing reaction of the thermosetting resin extremely slow, and the amount of curing agent added should be the minimum amount necessary, so that no curing distortion occurs over long periods of time near room temperature. Curing must be completed at Second, when firing the cured product, the firing process is extremely slow, in order to suppress the generation of volatile components due to thermal decomposition, and at the same time, to allow the generated volatile components to gradually escape to the outside and prevent the occurrence of cracks. It was necessary to carry out the carbonization reaction slowly by heating at a certain temperature increase rate. Conventionally, the first curing reaction involves 3-
It requires a long time of 8 weeks, and the second firing time is also 3
It required a long time of ~12 weeks.

従って、上記の製造過程からも明らかな様に、従来の方
法では、製造可能な大きさ、厚さ、形状に制限があり、
大きなもの、厚いもの、形状が複雑なものを製造するこ
とは多大な困難を要するのみならず、一旦炭素化された
ものは、硬さが極めて大きいことから加工性に劣り、複
雑形状の炭素成形体を得ることは事実上、不可能に近か
った。
Therefore, as is clear from the above manufacturing process, conventional methods have limitations on the size, thickness, and shape that can be manufactured.
Not only is it extremely difficult to manufacture large, thick, and complicated shapes, but once carbonized, it is extremely hard and has poor workability, making it difficult to form carbon into complex shapes. Obtaining a body was virtually impossible.

従来の製造においてはかかる欠点がある上に、製造期間
が極めて長いのでその製造コストは極めて高額なものに
なってしまう為に、熱硬化性樹脂を炭素化して得られる
硬質炭素材料が、一般炭素材料と比べて、機械的強度が
大きいこと、等方性であること、不通気性があること、
表面が微視的にも平滑で表面積が小さいこと等の優れた
特徴を有しているにもかかわらず、特殊用途にしかも限
定された状態でしか使用できず工業的には殆ど利用され
ていないのが現状の姿である。
In addition to these drawbacks in conventional manufacturing, the manufacturing period is extremely long and the manufacturing cost is extremely high. Therefore, the hard carbon material obtained by carbonizing thermosetting resin is Compared to other materials, it has greater mechanical strength, isotropy, and impermeability.
Although it has excellent characteristics such as a microscopically smooth surface and a small surface area, it can only be used for special purposes and in a limited state, and is hardly used industrially. This is the current situation.

この様な欠点を解決する為に、熱硬化性樹脂にコークス
微粉末、カーボンブランク等の如き非晶質の炭素微粉末
、或いは、人造黒鉛、天然黒鉛の如き結晶質の炭素微粉
末、或いは、カーボンファイバーの如き繊−状炭素を配
合し、均一に分散、混合した後に成形、硬化させ、炭素
化する方法が考えられている。微粒子骨材を均一に分散
することによって、焼成時の亀裂の発生を熱硬化性樹脂
マトリックスと微粒子骨材との界面で吸収し、亀裂の伝
播を防ごうとするものであるが、発明者らの追試によれ
ば、ある程度、亀裂の発生を防ぐことは可能であったが
、熱硬化性樹脂の硬化反応時間及び炭素化反応時間の大
巾な短縮を行うことは困難であり、熱硬化性樹脂単独の
場合と同様に、急速な反応を行うことによる亀裂が生じ
易く、成形体の大きさ、肉厚、形状のバリエーションに
好ましく対応しゆず、満足する結果は得られなかった。
In order to solve these drawbacks, thermosetting resins are made of amorphous carbon fine powder such as coke fine powder or carbon blank, or crystalline carbon fine powder such as artificial graphite or natural graphite, or A method has been considered in which fibrous carbon such as carbon fiber is blended, uniformly dispersed and mixed, then molded, hardened, and carbonized. By uniformly dispersing the fine-grain aggregate, cracks generated during firing are absorbed at the interface between the thermosetting resin matrix and the fine-grain aggregate, and the propagation of cracks is prevented. According to follow-up tests, it was possible to prevent the occurrence of cracks to some extent, but it was difficult to significantly shorten the curing reaction time and carbonization reaction time of thermosetting resins. As with the case of using resin alone, cracks are likely to occur due to rapid reaction, and it does not respond favorably to variations in size, wall thickness, and shape of the molded product, and satisfactory results were not obtained.

本発明の目的は、上記の欠点を克服し、機械的強度が大
きく、等方性で不通気性であり、表面が平滑で表面積の
小さい硬質炭素材を、従来は製造が困難であった寸法で
ありながら、しかも複雑形状を有する炭素成形体として
、二次加工を必要とすることなしに、迅速に且つ安価に
製造する方法を提供することにある。
The purpose of the present invention is to overcome the above-mentioned drawbacks, and to produce a hard carbon material with high mechanical strength, isotropic impermeability, smooth surface, and small surface area, in dimensions that were conventionally difficult to manufacture. However, it is an object of the present invention to provide a method for manufacturing a carbon molded body having a complicated shape quickly and inexpensively without requiring secondary processing.

本発明者等は、鉛筆芯製造研究の過程で、焼成後高い炭
素残査収率を示す各種有機物素材と、各種炭素微粉末と
の配合物を均一に分散、混合し、成形後、焼成して試作
実験を繰り返す中で、非晶質炭素微粉末である、コーク
ス粉、カーボンブランク等を配合した場合、大きな亀裂
が発生せずに、硬質炭素材が得られるが、微細なりラン
クが生じ易く、硬化、焼成の速度に制限があることを見
い出し、結晶性炭素微粉末である、人造黒鉛、天然黒鉛
を配合した場合、結晶性炭素微粉末が鱗片状の形状を有
し、且つ各々の粒子が成形物内で2次元に配向するので
、微細なりラックの発生防止に寄与し、成形時の寸法安
定性も好ましい結果を得られるが、焼成過程でマトリッ
クスと充填炭素15)体との熱的膨張、収縮率の差に起
因する粒子の配向面に対して直角方向に変形が生じ易く
、焼成物の高度も配合量が増すにつれて下降する欠点が
あることを見い出していた。
In the process of pencil lead manufacturing research, the present inventors uniformly dispersed and mixed various organic materials showing a high carbon residue yield after firing and various carbon fine powders, molded them, and then fired them. Through repeated trial production experiments, we found that when amorphous carbon fine powder such as coke powder or carbon blank is blended, a hard carbon material can be obtained without generating large cracks, but it is easy to produce fine cracks. We discovered that there is a limit to the speed of hardening and firing, and when we blend artificial graphite and natural graphite, which are crystalline carbon fine powders, the crystalline carbon fine powder has a scale-like shape, and each particle has a Since it is two-dimensionally oriented within the molded product, it contributes to the prevention of the occurrence of fine racks and provides favorable dimensional stability during molding.However, during the firing process, thermal expansion of the matrix and the filled carbon body found that deformation tends to occur in the direction perpendicular to the orientation plane of the particles due to the difference in shrinkage rate, and the height of the fired product also decreases as the blending amount increases.

本発明者等は、非晶質炭素微粉末と結晶性微粉末の長所
をそれぞれ合わせ持ち、双方の欠点を排除する特徴を有
する炭素微粉末について、さらに鋭意研究した結果、炭
素微粉末に粘結材として、焼成後高い炭素残査収率を示
す有機物である熱硬化性樹脂のモノマー、プレポリマー
又は低重合体の一種又は二種以上を加え、分散、混合し
、賦形した後に該有機物を重合硬化させ、不活性雰囲気
中で焼成し、硬質炭素成形品を製造する方法において、
炭素微粉末として、メソフェーズを炭素化もしくは黒鉛
化した微粉末を、少なくとも配合されていることを特徴
とする硬質炭素成形品の製造法に想到することによって
上記目的を完成するに至った。即ち、微細粒の球晶体で
あるメソフェーズを炭素化又は黒鉛化した炭素微粉体は
等方性で、比表面積が小さい性質を有し、従ってマド1
ルツクスと充填炭素微粉体との熱的膨張、収縮率の差を
僅少化するので、焼成時の製品の亀裂の発生を格段に防
止することが可能となる。
As a result of further intensive research into carbon fine powder, which has the characteristics of combining the advantages of amorphous carbon fine powder and crystalline fine powder and eliminating the drawbacks of both, the present inventors have discovered that carbon fine powder can be caked into fine carbon powder. As a material, one or more types of thermosetting resin monomers, prepolymers, or low polymers, which are organic substances that exhibit a high carbon residue yield after firing, are added, dispersed, mixed, shaped, and then the organic substance is polymerized. In a method of producing a hard carbon molded article by curing and firing in an inert atmosphere,
The above object has been achieved by devising a method for producing a hard carbon molded article, which is characterized in that at least a fine carbonized or graphitized mesophase powder is blended as the fine carbon powder. In other words, fine carbon powder obtained by carbonizing or graphitizing mesophase, which is a fine spherulite, is isotropic and has a small specific surface area.
Since the difference in thermal expansion and contraction rates between the lux and the filled carbon fine powder is minimized, it is possible to significantly prevent the occurrence of cracks in the product during firing.

本発明に用いる熱硬化性樹脂のモノマーまたは7” L
/ ホ17マーまたは低重合体としてはジビニルベンゼ
ン、メチルビニルケトン、フェノール樹脂初期縮合体、
フラン樹脂初期縮合体、フルフリルアルコール、フルフ
ラール、ビスマレイミド1−リアジン樹脂、ジフェニル
オキサイド、エポキシ樹脂、不飽和ポリエステル樹脂等
があるが、成形加工性、焼成時の形状安定性、炭素化反
応速度等の面から、フラン樹脂初期縮合体、フェノール
樹脂初期縮合体、ビスマレイミドトリアジン樹脂の1種
又は2種以上が好ましく用いられる。
Monomer of thermosetting resin used in the present invention or 7” L
/ As a 17mer or low polymer, divinylbenzene, methyl vinyl ketone, phenolic resin initial condensate,
Furan resin initial condensate, furfuryl alcohol, furfural, bismaleimide 1-riazine resin, diphenyl oxide, epoxy resin, unsaturated polyester resin, etc. are available, but moldability, shape stability during firing, carbonization reaction rate, etc. From this point of view, one or more of a furan resin initial condensate, a phenol resin initial condensate, and a bismaleimide triazine resin are preferably used.

本発明において用いる、メソフェーズを炭素化もしくは
黒鉛化した炭素微粉体はコールタールピンチ又は石油系
ピッチ或いは乾溜ピッチ等のピッチ:Fi350〜45
Q、”Cに熱処理して、ピッチマトリックス中に生成し
た数μから十数μのメソフェーズを溶媒分別法等を用い
てピッチマトリックス中から分離して取り出し、必要に
応じて不活性雰囲気中で200〜45(lで力焼してメ
ソフェーズ中に残存するレジン分を調整して取り出し、
空気又はオゾン或いはその他の酸化性ガスを用いて18
0〜350℃に加熱して安定化処理を施し、800℃以
上、好ましくは1000℃以上に加熱して炭素化処理し
たものを必要に応じて、さらに1800℃以上、好まし
くは2000℃以上に高温化処理を施して黒鉛化処理す
ることによって得られる。粘結剤に配合する炭素化又は
黒鉛化メソフェーズの割合は目的とする硬質炭素成形体
の要求されるスペックにもよるが、配合組成物全体の5
〜70−t%が良く、より好ましくは10〜60訂%が
添加される。添加量が少なすぎると炭素化又は黒鉛化メ
ゾフェーズの効果が発現されず焼成中に亀裂が入り易く
、添加量が多すぎると分散混合中に混入する空気等の脱
気操作が困難になり、また、配合組成物の流動性が低下
するので良好な成形が出来ず、結果として良好な製品が
得られない。本発明において、硬質炭素成形体の硬度、
機械的強度、形状の複雑の度合、表面の平滑性、焼成中
における寸法収縮率或いは配合物の成形性等を考慮して
、必要に応じて他の炭素微粉体を併用することも可能で
ある。但し、炭素化又は黒鉛化メソフェーズの効果が消
滅しない程度の添加量に抑える必要があり、併用する炭
素化又は黒鉛化メソフェーズの炭素微粉末の添加量は二
炭素微粉末全量の50れ%以下、好ましくは40HL%
以下にすることが望ましい。
The carbon fine powder obtained by carbonizing or graphitizing mesophase used in the present invention is pitch such as coal tar pinch, petroleum pitch, or dry distilled pitch: Fi350-45
The mesophase of several microns to tens of microns produced in the pitch matrix by heat treatment to Q, "C" is separated from the pitch matrix using a solvent fractionation method, etc., and if necessary, the mesophase is ~ 45 (l) to adjust the resin remaining in the mesophase and take it out.
18 using air or ozone or other oxidizing gas
After being stabilized by heating to 0 to 350°C, and then carbonized by heating to 800°C or higher, preferably 1000°C or higher, if necessary, further heated to a high temperature of 1800°C or higher, preferably 2000°C or higher. It can be obtained by subjecting it to chemical treatment and graphitization treatment. The proportion of carbonized or graphitized mesophase to be added to the binder depends on the specifications required for the intended hard carbon molded product, but it is
It is good to add 70-t%, more preferably 10-60%. If the amount added is too small, the effect of carbonization or graphitization mesophase will not be expressed and cracks will easily occur during firing, and if the amount added is too large, it will be difficult to degas the air mixed in during dispersion mixing. Furthermore, since the fluidity of the blended composition is reduced, good molding is not possible, and as a result, good products cannot be obtained. In the present invention, the hardness of the hard carbon molded body,
It is also possible to use other carbon fine powders in combination as necessary, taking into account mechanical strength, degree of complexity of shape, surface smoothness, dimensional shrinkage rate during firing, moldability of the compound, etc. . However, it is necessary to keep the amount added to such an extent that the effect of the carbonized or graphitized mesophase does not disappear, and the amount of the carbon fine powder of the carbonized or graphitized mesophase used in combination is 50% or less of the total amount of the two-carbon fine powder. Preferably 40HL%
It is desirable to do the following.

本発明の方法においては、先で熱硬化性樹脂のモノマー
、プレポリマー又は低重合体95〜30wt%、少なく
とも炭素化又は黒鉛化メソフェーズを含む炭素微粉末5
〜70れ%をブレンダー、ミキサー等の配合機を用いて
均一に分散、混合する。
In the method of the present invention, firstly, 95 to 30 wt% of a thermosetting resin monomer, prepolymer or low polymer, and 5% carbon fine powder containing at least a carbonized or graphitized mesophase are used.
~70% of the mixture is uniformly dispersed and mixed using a compounding machine such as a blender or mixer.

この際必要に応じて加熱操作が加−客られたシ、熱硬化
性樹脂の硬化剤が添加さ゛れる。次により均一な分散を
期する為、或いは使用する成形法、成形機の最適条件に
合致させるべく配合物の増粘或いは予備硬化を行わしめ
る目的で、加熱ミキサー、ミキシングロール、加圧ニー
ダ−、コニーダー、回転ボールミル等の混練機を用いる
ことも良い。
At this time, a heating operation is performed as necessary, and a curing agent for the thermosetting resin is added. Next, in order to achieve more uniform dispersion, or to thicken or pre-cure the compound in order to match the optimum conditions of the molding method and molding machine used, heating mixers, mixing rolls, pressure kneaders, It is also good to use a kneader such as a co-kneader or a rotary ball mill.

上記の操作によって得られた成形用組成物は液状物質、
半流動性物質、ペレット状物質、ミート状物質或いは粉
状物質等の状態で得られるが、この際必要に応じて脱気
操作、脱泡操作が加えられる。
The molding composition obtained by the above operation is a liquid substance,
It can be obtained in the form of a semi-fluid substance, pellet-like substance, meat-like substance, powder-like substance, etc., and at this time, a degassing operation and a defoaming operation are added as necessary.

次に成形用組成物は、目的とする製品形状、成形用組成
物の状態によって異なるが、最も適当な成形法を用いて
所望の形状に賦形される。成形方法は、注型、押出成形
、射出成形、真空成形、ミーティングロール成形、圧縮
成形、トラースファー成形等の通常、熱硬化性樹脂の成
形に供される方法を用いることができる。成形操作によ
って賦形された製品は粘結剤である熱硬化性樹脂を、一
般の熱硬化性樹脂の硬化条件と全く同一条件の短時間の
後に固化させて取り出し、賦形物とする。
Next, the molding composition is shaped into a desired shape using the most appropriate molding method, although this varies depending on the intended product shape and the state of the molding composition. As the molding method, methods commonly used for molding thermosetting resins such as casting, extrusion molding, injection molding, vacuum molding, meeting roll molding, compression molding, and trasfer molding can be used. The product shaped by the molding operation is obtained by solidifying the thermosetting resin as a binder for a short period of time under exactly the same curing conditions as general thermosetting resins, and then taking it out to form a shaped product.

前記操作によって得られた賦形物は、必要に応じて50
〜300℃の加熱オーブン中で、さらに不融化処理を施
す。その後に、炭素化炉に入れて、窒素、アルゴン等の
不活性雰囲気中にて、室温から昇温して、800℃以上
好ましくは1000℃以上に加熱して炭素化し、冷却後
製品を取り出して完成品を得る。昇温速度は用いた熱硬
化性樹脂の種類、配合比率によって若干異なるが多くは
肉厚によって定まり、従来の方法よりも焼成時間の大巾
な短縮化を図ることができる。即ち、肉厚が20mm以
下の製品では室温〜600℃間は30〜b 0°C/h、肉厚が20■−を超え200龍程度迄の製
品では室温〜600℃間は20〜b 600℃〜1000℃間は70〜b 高速昇温速度にて亀裂が発生すること無く焼成すること
が可能である。
The excipient obtained by the above operation may be
Further infusibility treatment is performed in a heating oven at ~300°C. After that, the product is placed in a carbonization furnace and heated from room temperature in an inert atmosphere such as nitrogen or argon to a temperature of 800°C or higher, preferably 1000°C or higher to carbonize the product, and after cooling, the product is taken out. Get the finished product. The rate of temperature rise varies slightly depending on the type and blending ratio of the thermosetting resin used, but is mostly determined by the wall thickness, and the firing time can be significantly shortened compared to conventional methods. In other words, for products with a wall thickness of 20 mm or less, the temperature is 30 to 0 °C/h between room temperature and 600 °C, and for products with a wall thickness of more than 20 mm and up to about 200 mm, the temperature is 20 to 600 °C between room temperature and 600 °C. C. to 1000.degree. C., it is possible to perform firing at a high temperature increase rate of 70 to 100° C. without generating cracks.

以上の方法に、本発明は複雑形状の硬質炭素成形体を、
その大きさ、肉厚によらず、通常の熱硬化性樹脂の成形
法を用いることによって効率より賦形し、短時間で炭素
化処理を施し、優れた軸徴を優する硬質炭素材の各種工
業製品を安価に供給することを可能ならしめる有益な発
明であるということができる。
In the above method, the present invention uses a hard carbon molded body with a complicated shape.
Regardless of its size or wall thickness, it can be shaped for efficiency by using a normal thermosetting resin molding method, carbonized in a short time, and has a variety of hard carbon materials with excellent axial characteristics. It can be said that this is a useful invention that makes it possible to supply industrial products at low cost.

次に本発明を実施例により、より具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

ス」1舛−」− コールタールピンチを450℃において80分間処理し
、キノリンネ溶分24wt%の熱処理ピッチを得た。此
の熱処理ピンチを石炭系中油を用いて、メソフェーズを
ピンチマトリックスから分離して取り出し、更に窒素雰
囲気中で380℃に加熱して力焼した。次に得られた力
焼品を加熱オーブンに入れ空気中で200°C148時
間の熱処理を施した後に窒素雰囲気中で徐々に昇温し4
8時間後に1000℃迄加熱し、冷却後これを取り出し
炭素化メソフェーズとした。次いで黒鉛化炉を用いてア
ルゴン雰囲気中で60℃/hの昇温速度で2700℃迄
加熱し、黒鉛化処理を施し、冷却後取り出して黒鉛化メ
ソフェーズを得た。得られた炭素化及び黒鉛化メソフェ
ーズの平均粒子径は12.5μであった。
A coal tar pinch was treated at 450° C. for 80 minutes to obtain a heat-treated pitch with a quinoline soluble content of 24 wt %. The mesophase of this heat-treated pinch was separated and taken out from the pinch matrix using coal-based medium oil, and further heated to 380° C. in a nitrogen atmosphere to be calcined. Next, the obtained power-calcined product was placed in a heating oven and heat-treated at 200°C for 148 hours in the air, and then gradually heated in a nitrogen atmosphere.
After 8 hours, it was heated to 1000°C, and after cooling, it was taken out and used as a carbonized mesophase. Next, the mixture was heated to 2700° C. in an argon atmosphere at a heating rate of 60° C./h using a graphitization furnace, subjected to graphitization treatment, and taken out after cooling to obtain a graphitized mesophase. The average particle size of the obtained carbonized and graphitized mesophase was 12.5μ.

次にフラン樹脂初期縮合体(成田薬品工業@製プロミネ
ートQ−1001)72wt%、前記操作によって27
00℃加熱して調整された黒鉛化メソフェーズ28wt
%を加熱ミキサーを用いて60℃で1時間分散、混合後
、取り出し、て室温迄冷却し、硬化剤(式日薬品工業(
株製ブロミネー)Q−2001)を外割りで2wt%加
え、均一に攪拌した後に真空脱泡処理を行って成形用組
成物とした。
Next, 72 wt% of a furan resin initial condensate (Prominate Q-1001 manufactured by Narita Pharmaceutical Co., Ltd.) was added to
Graphitized mesophase 28wt heated to 00℃
% using a heating mixer at 60°C for 1 hour. After mixing, take it out and cool it to room temperature.
Brominea Co., Ltd. Q-2001) was added in an amount of 2 wt %, stirred uniformly, and then subjected to vacuum defoaming treatment to obtain a molding composition.

得られた成形用組成物の粘度は25℃で100ポアズで
あった。一方、型取り用シリコーンゴムを用いてJis
B 1180に規定される呼びM24の六角ボルト及び
JisB −1181に規定される呼びM24の六角ナ
ツトの型取りを行って注型用型を製作し、成形用組成物
を50°Cに加熱して流動性を高め、注型用型に注入し
、80℃の加熱オーブン中で2時間加熱して固化させた
後に型から取り出し賦形物を得た。次に賦形物を加熱オ
ーブン中で室温から18080龍程間で昇温し不融化処
理を施した。その後、窒素ガス雰囲気中にて室温〜60
0℃間は25℃/h、600〜1000℃間は100℃
/hの昇温速度にて加熱し炭素化処理を行い、冷却後製
品を得た。得られた製品は焼成による寸法収縮が認めら
れたがJisB1180に規定される呼びM2Oの六角
ボルト、JisB−1181に規定される呼びM2Oの
六角ナツトの形状、寸法を精度良く有しており、六角ボ
ルトの引張強度は30kg/m♂、ショア硬度90、六
角ナツトの圧縮強度は40 kg / 11m”、ショ
ア硬度90であり、表面が平滑な硬質炭素材の二次加工
を必要としない六角ボルトと六角ナンドであった。
The viscosity of the molding composition obtained was 100 poise at 25°C. On the other hand, using silicone rubber for mold making,
A casting mold was made by making a mold of a hexagonal bolt with a nominal size of M24 specified in JIS B-1180 and a hexagonal nut with a nominal size of M24 specified in JIS B-1181, and the molding composition was heated to 50 ° C. The fluidity was increased, the mixture was poured into a casting mold, and the mixture was heated in a heating oven at 80° C. for 2 hours to solidify, and then taken out from the mold to obtain a shaped product. Next, the excipient was heated in a heating oven from room temperature to 18,080 degrees to perform infusibility treatment. After that, in a nitrogen gas atmosphere at room temperature to 60°C.
25℃/h between 0℃ and 100℃ between 600 and 1000℃
Carbonization treatment was performed by heating at a temperature increase rate of /h, and a product was obtained after cooling. The obtained product showed dimensional shrinkage due to firing, but it had the shape and dimensions of a hexagonal bolt with a nominal M2O specified in JIS B1180 and a hexagonal nut with a nominal M2O specified in JIS B-1181 with good accuracy. The tensile strength of the bolt is 30 kg/m♂ and the shore hardness is 90, and the compressive strength of the hexagon nut is 40 kg/11 m'' and the shore hardness is 90, making it a hex bolt with a smooth surface that does not require secondary processing of hard carbon material. It was a hexagonal Nando.

芸」1舛−」エ フラン樹脂初期縮合体(日立化成■製ヒタフランvF−
302)6 it%、実施例1で1000℃迄加熱して
調整した炭素化メソフェーズ35−t%、天然黒鉛粉末
(日本黒鉛@製C3P)5れ%を加熱ミキサーを用いて
100℃で分散、混合し、2時間後に取り出して半流動
性の配合組成物を得、次いで加熱3本ロールを用いてフ
ラン樹脂初期縮合体を熱重合し、シート状物質を作成し
、これをベレットマシンを用いて3鶴角の成形用ベレッ
トを得た。次いでこれをスクリュー押出機を用いてダイ
温度80℃にて成形し、肉厚5龍、外径60龍、内径5
01mのパイプ状賦形物を得た。次に得られた賦形物を
10100Oに切断後、150℃の加熱オーブンで6時
間加熱し、不融化処理を施した後、窒素雰囲気中にて室
温〜600℃間は40’C/h、600〜1000℃間
は120℃/hの昇温速度にて炭素化処理を行い、冷却
後取り出して肉厚4.4鰭、外径53龍、内径44.2
錦、長さ880龍のパイプ材を得た。得られたパイプ材
の曲げ強度は18 kg / +u”、ショア硬度10
5、不通気率 4 X 10 ctA/ s (lle
、△P=1at+++)の表面が滑らかな肌を有する硬
質炭素パイプ祠を得た。
``Gei'' 1 Masu-''Efuran resin initial condensate (Hitafuran vF- manufactured by Hitachi Chemical)
302) 6 it%, 35-t% of carbonized mesophase prepared by heating to 1000°C in Example 1, and 5% of natural graphite powder (C3P manufactured by Nippon Graphite@) were dispersed at 100°C using a heating mixer. Mix and take out after 2 hours to obtain a semi-fluid blended composition, then thermally polymerize the furan resin initial condensate using three heated rolls to create a sheet-like material, which is then processed using a pellet machine. A pellet for molding with three crane angles was obtained. Next, this was molded using a screw extruder at a die temperature of 80°C, and the thickness was 5 mm, the outer diameter was 60 mm, and the inner diameter was 5 mm.
A pipe-shaped excipient having a length of 0.01 m was obtained. Next, the obtained excipient was cut to 10,100O, heated in a heating oven at 150℃ for 6 hours to perform infusibility treatment, and then heated at 40'C/h between room temperature and 600℃ in a nitrogen atmosphere. Carbonization treatment is performed at a heating rate of 120°C/h between 600 and 1000°C, and after cooling, the fins are taken out and have a wall thickness of 4.4 mm, an outer diameter of 53 mm, and an inner diameter of 44.2 mm.
Obtained brocade pipe material with a length of 880 dragons. The bending strength of the resulting pipe material is 18 kg/+u”, and the shore hardness is 10.
5. Impairment rate 4 x 10 ctA/s (lle
, ΔP=1at+++) A hard carbon pipe shrine having a smooth surface was obtained.

実JjJLu ビスマレイミドトリアジン樹脂(三菱瓦斯化学@琲製B
T−; 100)5.5れ%、実施例1で2700℃に
加熱して調整した黒鉛化メソフェーズ35れ%、カーボ
ンブランク(三菱化成@製MA−100)10wt%を
加熱ミキレーを用いて100℃に保ちながら30分混練
して配合組成物を得た。得られた配合組成物は品温では
固体であるが、100℃でIOポアズの粘度を有してい
た。次にm整された配合組成物が180℃、10分で完
全硬化する様に有機過酸化物と有機金属塩を各々外削り
で0.5wt%ずつ添加し、加熱下均−に混合し、税気
処理を施して、ペレットマシンを用いて成形用ベレット
を得た。次に、これをターンテーブル付熱硬化性樹脂用
射出成形機を用いて180℃の温度に保たれている全型
に射出して10分後に取り出し肉厚2ms、高さ25鶴
、外径120龍のシャーレ形状の賦形物を得た。得られ
た賦形物を窒素雰囲気中で、室温〜600℃間は35℃
/h。
Real JjJLu Bismaleimide triazine resin (Mitsubishi Gas Chemical @ Haisei B
T-; 100) 5.5%, 35% graphitized mesophase prepared by heating to 2700°C in Example 1, and 10wt% carbon blank (MA-100 manufactured by Mitsubishi Kasei@) were heated to 100% using a heating millet. A blended composition was obtained by kneading for 30 minutes while maintaining the temperature at °C. The resulting blended composition was solid at product temperature, but had a viscosity of IO poise at 100°C. Next, 0.5 wt% of each of an organic peroxide and an organic metal salt were added by external scraping so that the prepared composition was completely cured in 10 minutes at 180°C, and mixed uniformly under heating. After treatment, a pellet for molding was obtained using a pellet machine. Next, this was injected into a mold kept at a temperature of 180°C using a thermosetting resin injection molding machine equipped with a turntable, and taken out after 10 minutes with a wall thickness of 2 ms, a height of 25 mm, and an outer diameter of 120 mm. A dragon petri dish-shaped excipient was obtained. The obtained excipient was heated at 35°C between room temperature and 600°C in a nitrogen atmosphere.
/h.

600〜1000℃間は100℃/hの昇温速度にて炭
素化処理して冷却後これを取り出した得られたシャーレ
形状の炭素化物は焼成による収縮が認められたが、炭素
化処理前の物と全く相似形であり、肉厚1.4in、高
さ18mm、外径85鶴の精度高い寸法を有していた。
Carbonization was performed at a heating rate of 100°C/h between 600 and 1000°C, and the obtained petri dish-shaped carbonized product was taken out after cooling. Shrinkage due to baking was observed, but the carbonization before carbonization was It was completely similar in shape to the real thing, and had highly accurate dimensions: 1.4 inches thick, 18 mm high, and 85 mm in outer diameter.

得られた製品の表面は極めて平滑で、圧縮強度35 k
g / m式ショア硬度110、不通電率 7 X 1
0 csl/ s (He、△P=latm)の硬質炭
素のシャーレ状成形体であった。
The resulting product has an extremely smooth surface and a compressive strength of 35 k.
g/m Shore hardness 110, non-current rate 7 x 1
It was a Petri dish-shaped molded body of hard carbon of 0 csl/s (He, ΔP=latm).

ル較皿 実施例1〜3の内容のうち、配合組成物ケら黒鉛化メソ
フェーズを除いた配合にて、それぞれの実施例と全く同
一方法を用いて賦形、硬化した後、同一昇温速度にて焼
成し、冷却後取り出したところ、全ての比較例において
製品は亀裂を生じており、実施例1と同じ形状の六角ボ
ルトと六角す・ノドにおいては、塊状に割れて飛散して
むまた。各々の比較例によるものは、全く用をなさない
炭素成形体であった。
Comparison dish Among the contents of Examples 1 to 3, the blended composition was shaped and cured using exactly the same method as in each example, with the same temperature increase rate except for graphitized mesophase. When taken out after cooling, all comparative examples had cracks, and the hexagonal bolts and hexagonal grooves, which had the same shape as in Example 1, were cracked into chunks and scattered. . The carbon molded bodies of each comparative example were completely useless.

特許出願人 三菱鉛筆株式会社 手続主甫正書(自発) 昭和59年6月1日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第219203号 2、発明の名称 硬質炭素成形品の製造法 3、補正をする者 事件との関係 特許出願人 住所 東京部品用区東大井5丁目23番37号名称(5
95)’三菱鉛筆株式会社 4、代理人 住所 ■104東京都中央区銀座8丁目15番10号銀
座ダイヤハイツ410号 明細書の〔発明の詳細な説明〕の欄 6、補正の内容 (1) 明細書の第6頁1行の「高度」を「硬度1に訂
正する。
Patent Applicant: Mitsubishi Pencil Co., Ltd. Proceeding Officer (spontaneous) June 1, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of the Case 1982 Patent Application No. 219203 2, Name of the Invention: Hard Carbon Manufacturing method for molded products 3, relationship with the case of the person making the amendment Patent applicant address: 5-23-37 Higashi-oi, Tokyo Parts Ward Name (5
95) 'Mitsubishi Pencil Co., Ltd. 4, Agent Address ■104 Ginza Dia Heights 410, 8-15-10, Ginza, Chuo-ku, Tokyo Column 6 of [Detailed Description of the Invention] of the Specification, Contents of Amendment (1) "Height" on page 6, line 1 of the specification is corrected to "Hardness 1."

6行の「粘結材」を「粘結剤」に訂正する。Correct “caking agent” in line 6 to “caking agent”.

(2)第10頁1行の「ミート状」を「シート状jに訂
正する。
(2) Correct "meat-like" in line 1 of page 10 to "sheet-like j.

7〜8行の「ミーティングロール」を rシーテイングロール」に訂正する。7-8 lines of “meeting roll” r seating roll”.

(3)第12頁6〜7行の「オープン」を「オーブン1
に訂正する。
(3) Change “Open” in lines 6-7 of page 12 to “Oven 1”.
Correct to.

(4ン 第15頁15行の「ミキレー」をrミキサーj
に訂正する。
(4th page 15th line 15th line ``Mikile''
Correct to.

(5)第16頁5行の「全型」をr金型」に訂正する。(5) Correct "all molds" in line 5 of page 16 to "r molds".

Claims (1)

【特許請求の範囲】[Claims] 炭素微粉末に、粘結剤として焼成後高い炭素残査収率を
示す有機物である熱硬化性樹脂のモノマー、プレポリマ
ーまたは低重合体の一種又は二種以上を加え、分散混合
し、賦形した後に該有機物を重合硬化させ、不活性雰囲
気中で焼成して硬質炭素成形品を製造する方法において
、炭素微粉末として、メソフェーズを炭素化もしくは黒
鉛化した微粉末が少なくとも配合されていることを特徴
とする硬質炭素成形品の製造法
One or more types of thermosetting resin monomers, prepolymers, or low polymers, which are organic substances that exhibit a high carbon residue yield after firing, are added to fine carbon powder as a binder, and the mixture is dispersed and mixed, and then shaped. A method of manufacturing a hard carbon molded article by subsequently polymerizing and curing the organic substance and firing it in an inert atmosphere, characterized in that at least a fine powder of carbonized or graphitized mesophase is blended as the fine carbon powder. Manufacturing method for hard carbon molded products
JP58219203A 1983-11-21 1983-11-21 Preparation of rigid molded article of carbon Pending JPS60112609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219203A JPS60112609A (en) 1983-11-21 1983-11-21 Preparation of rigid molded article of carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219203A JPS60112609A (en) 1983-11-21 1983-11-21 Preparation of rigid molded article of carbon

Publications (1)

Publication Number Publication Date
JPS60112609A true JPS60112609A (en) 1985-06-19

Family

ID=16731819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219203A Pending JPS60112609A (en) 1983-11-21 1983-11-21 Preparation of rigid molded article of carbon

Country Status (1)

Country Link
JP (1) JPS60112609A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350366A (en) * 1986-08-14 1988-03-03 呉羽化学工業株式会社 Low gas permeability fine carbon material and manufacture
JPS63218583A (en) * 1987-03-06 1988-09-12 東海カ−ボン株式会社 Manufacture of carbonaceous formed body
WO2023275123A1 (en) * 2021-07-01 2023-01-05 Nippon Kornmeyer Carbon Group Gmbh Method for producing carbonized or graphitized molding parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350366A (en) * 1986-08-14 1988-03-03 呉羽化学工業株式会社 Low gas permeability fine carbon material and manufacture
JPS63218583A (en) * 1987-03-06 1988-09-12 東海カ−ボン株式会社 Manufacture of carbonaceous formed body
JPH0463806B2 (en) * 1987-03-06 1992-10-13 Tokai Carbon Kk
WO2023275123A1 (en) * 2021-07-01 2023-01-05 Nippon Kornmeyer Carbon Group Gmbh Method for producing carbonized or graphitized molding parts

Similar Documents

Publication Publication Date Title
JPS6143309B2 (en)
JPS5829269B2 (en) Manufacturing method of carbonaceous bricks
JP4311777B2 (en) Method for producing graphite material
JPS60112609A (en) Preparation of rigid molded article of carbon
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH0234902B2 (en)
US3107153A (en) Method of fabricating carbon and graphite structures
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JPH0135767B2 (en)
JP2000319068A (en) Carbon/graphite composite molding
JPH07315931A (en) Carbon material for ion implantation member and production thereof
JPH08222357A (en) Manufacture of carbon heating element
JP4973917B2 (en) Carbon material manufacturing method
JP3342515B2 (en) Method for producing thick glassy carbon material
JP3198120B2 (en) Method for producing glassy carbon plate
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH05848A (en) Production of high strength isotropic graphite material
JPH0159969B2 (en)
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH0551258A (en) Production of high density and high strength graphite material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH0463806B2 (en)
JPH0380722B2 (en)
JP2536513B2 (en) Manufacturing method of impermeable carbon material