JP3616829B2 - Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body - Google Patents
Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body Download PDFInfo
- Publication number
- JP3616829B2 JP3616829B2 JP35413492A JP35413492A JP3616829B2 JP 3616829 B2 JP3616829 B2 JP 3616829B2 JP 35413492 A JP35413492 A JP 35413492A JP 35413492 A JP35413492 A JP 35413492A JP 3616829 B2 JP3616829 B2 JP 3616829B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- boron carbide
- sintered body
- powder
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ceramic Products (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、核融合炉内のプラズマ対向材や、機械用の耐酸化性材料として極めて好適な炭素−炭化硼素焼結体の製造方法、その方法で得られた焼結体、およびその焼結体の使用方法に関するものである。
【0002】
【従来の技術】
現在、一般的に知られている炭素−炭化硼素結合体の製造方法としては、炭素粉および炭化硼素、更に必要に応じて炭化し得る原料を加えて混合、成形、焼成する方法が良く知られており、例えば特開昭62−108767号、特開昭62−297202号等が挙げられる。
【0003】
しかし、これ等の方法においては、炭素−炭化硼素系焼結体の製造時の焼結温度は、不思議にも一様に最高点において2000℃までで抑えることが行われていた。
【0004】
その理由として考えられることは、2000℃以上の高温焼成を行った場合、B4Cの状態が不安定となり、硼素成分の揮散損失が著しくなると言われていた。例えば加藤昭夫、山口喬監修、(株)サイエンスフォーラム発行の「ニューセラミック粉体ハンドブック」第12章第3節、炭化硼素、窒素硼素の項就中236頁にも、「原料としては中心粒径1.5〜5μm前後のB4C粉末を用い、2000℃前後の温度、150〜300kg/cm2の圧力下でホットプレス成形を行う」ことが記されている。
【0005】
また、上記の引用出願等においても、最高焼成温度は1500〜2000℃までに抑えられていた。これ等は原料であるB4Cの変質とB成分の蒸散、減耗を考えての配慮であったものと推察されるが、黒鉛結晶化を進めるという硼素の特徴は生かされていない。
【0006】
ところが、通常一般の人造黒鉛の製造時の最高点での焼成温度が2800〜3000℃であるのに対し、このようにB4C粉を混入した場合の2000℃焼成では、炭素系原料(A)の黒鉛結晶化反応が充分進まないために、熱伝導率が充分上がらず、製品加工時の機械加工性が悪いという欠点があった。また、このような温度条件はB4Cが安定に存在するための条件であり、ほとんどの硼素成分はB4C粒のままで、多量の炭素成分中に存在するため、硼素成分の炭素材中に於ける分散状態は、微視的には完全均一であるとは言い難かった。即ちB成分の偏在性と分散性に問題があった。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来のこの種炭素−炭化硼素焼結体の上記各難点を解消することであり、更に詳しくは、炭素材中に於ける硼素成分の分散性が、均一でしかも極めて微細に分散しており、この結果、焼結体全体としては、更に一段と優れた中性子吸収性、耐酸化性、大きな熱伝導性、耐熱衝撃性、機械加工性、高靭性等を有する焼結体、特にショアー硬度の平均値が20以下と比較的柔軟性を有していて、機械加工性が極めて優れたものであり、且つ引張強度が10MPaよりも低くならずに10MPa以上という実用的に十分満足する引張強度を有する焼結体を開発することである。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決するために、研究を続けた結果、炭素粉、炭化硼素および/または炭化し得るバインダー成分を用いて、炭素−炭化硼素複合焼結体を製造するに際し、炭素粉の一成分として人造黒鉛粉を使用し、また焼成手段及び焼成温度として、特定の手段と温度を採用した。更に詳しくは、焼成手段として仮焼成と本焼成という二段焼成を採用し、且つ焼成温度としては本焼成の温度について、従来の通念であった2000℃までの焼成という上限を超えて、従来当業者が全く考えてもみなかった2000℃を超える温度で焼成すると、ショアー硬度の平均値が20以下という比較的柔らかく、機械加工性が極めて優れたものであり、且つ強度や熱伝導が向上し、且つ硼素の分散性が極めて良好になる、これまでとは全く異なる特性の素材が創製されることを見出した。また、強度の低下についても実用上ほとんど支障のない程度に収まり、場合によっては2000℃以上のある温度帯では、逆に強度の向上が見られた。
【0009】
更に2400℃以上で焼成すると、特にショアー硬度や引張強度、更には加工性が著しく向上することも併せ見出された。
【0010】
【発明の構成並びに作用】
炭素−炭化硼素焼結体は、炭化硼素粉(B)と炭素粉(A)、および必要に応じ炭化し得るバインダー成分(C)を用いる。なおこの際本発明に於いては、炭素粉(A)の一成分として必ず人造黒鉛粉を使用する。これら原料を混合、成形、焼成の工程に通すことによって製造される物である。例えば炭化硼素とコークス粉、人造黒鉛粉等をボールミルで混合し、高温高圧で焼結体を得るホットプレス法や自己焼結性を有する炭素粉末、人造黒鉛粉及び炭化硼素を混合、成形、焼成して焼結体を得る方法等がある。
【0011】
この際の炭化硼素粉(B)は特に限定はなく市販の物で良いが、平均粒径1〜50μmのものが好ましい。サブミクロンの炭化硼素は非常に高価であり、50μmを超えると焼結体中の硼素成分の偏在部が大きくなる傾向がある。
【0012】
また炭素粉(A)は、コークス粉、炭素繊維粉、人造黒鉛粉、所謂メソフェーズ小球体(メソ相炭素球晶)粉等が用いられる。この際必ず人造黒鉛粉が炭素粉(A)の一成分として使用される。特に好ましくは平均粒径が50μm程度のものである。必要に応じ、使用される炭化し得るバインダー成分(C)としては、タール、ピッチ類、芳香族多環式有機化合物、合成樹脂、例えばフェノール樹脂、フラン樹脂、イミド樹脂、アミド樹脂等の高分子化合物、特に縮合系合成高分子や、天然高分子等が具体的に挙げられる。
【0013】
これ等の樹脂、高分子類は、主として炭化硼素粉及び炭素粉の成形時のバインダー的作用を利用して添加されるものであるが、昇温焼成時には炭化して、炭素粉等と混然一体となって最終的には焼結体の一成分として機能するものである。
【0014】
炭化し得るバインダー成分(C)は、主として炭素粉(A)の持つ粘着性の有無によって、その使用の有無が決定される。例えば、前記したメソフェーズ小球体(例えば川崎製鉄製「KMFCグレード」)を炭素粉(A)として用いた場合には、それが持つ粘着成分によって、自己焼結性があり、この(C)を用いずとも成形することが出来る。しかし、(A)としてコークス粉を用いた場合には、炭化硼素成分(B)も自己焼結性が無く 、固まらないので、バインダー成分として(C)を添加する必要がある。
【0015】
この際の各原料成分(A)、(B)及び必要に応じ用いられる(C)成分の配合割合は原則として、熱処理時に発生するガスにより、割れやふくれ等を生じない配合割合であれば良い。通常以下の通りである。
【0016】
<炭素粉が粘着性を有する場合、例えばメソフェーズ小球体>
(A)50〜99.9重量%
(B)0.1〜50重量%
この場合には黒鉛粉を0〜20重量%更に添加しても良い。
【0017】
<炭素粉が粘着性を有しない場合、例えばコークス粉、黒鉛粉等>
(A)10〜50重量%
(B)0.1〜50重量%
(C)15〜50重量%
【0018】
これ等の各原料を、任意の有効な装置により混合した後、昇温し、またはせずして成形する。成形した原料は圧力を加え、または加えずして一旦600〜1300℃前後の温度で、仮焼成(予備焼成とも言う)し、炭化し得る原料(C)等を炭化、焼結させる。
【0019】
以上は従来公知の方法によるものであるが、次いで本格的な高温焼成工程(本焼成)を行う。
【0020】
尚、本発明は、若干既に述べた通り、この高温焼成工程における焼成温度の効果、作用に関する知見に基づいてされたものである。
【0021】
上記のようにして得られた仮焼結体は、常圧不活性ガス雰囲気で2000℃より高い温度、通常2050℃以上、更に好ましくは2100〜2800℃、特に好ましくは2400〜2600℃の温度で焼結処理を行うことによって、硼素成分が炭素成分中に極めて均一に分布し、且つ機械加工性が極めて優れ、熱伝導の高い焼結体を得ることが出来る。また、配合時に炭化硼素量を調節することにより、任意の硼素濃度とすることが出来る。更に、必要であれば真空炉で例えば5Torr、2000℃等の条件で脱ガス処理の工程を付け加えることも出来る。
【0022】
上記のように、本発明方法においては、従来の通念であった2000℃以下という焼成温度を、逆に2000℃よりもより高い温度で焼成することにより、意外にも硼素成分の揮散損耗も殆ど抑えられたまま、極めて均一に微分散され、且つ機械加工性や熱伝導率、熱膨張係数等の重要物性が寧々向上するという、従来の炭素−炭化硼素焼結体では決して見られなかった実用上極めて好都合な事実を発見し、本発明を完成するに至ったものである。
【0023】
このような理由については現在明らかではないが、従来B4Cの安定存在のための温度限界を超えて加熱することにより、B4Cからの硼素成分の遊離、炭素部分への転移、拡散、再結合等を繰り返し、硼素成分の損失が殆ど無く、極めて均一に、微分散され、且つ高温焼成のため炭素部分の黒鉛化反応が進められ、熱伝導率も高くなし得る副次的効果も発現したものと推考される。
【0024】
このような高温焼成のため、原料として用いた[B4C+C]の形態から、Bが全体に混然分散した固溶体、硼素に一部置換された黒鉛結晶の集合体で、あたかも純黒鉛材であるかの様な素材に変化したものと考えられる。
【0025】
このように、仮焼成と本焼成という二段処理を採用し、且つ本焼成を従来より高い温度で処理することにより、
(イ)通説に反し硼素成分の大きな揮散損耗を生じることがない(後記表2参照)。
【0026】
(ロ)硼素成分が極めて均一に、且つ微分散され、固溶体化される効果がある(後記図1参照)。
【0027】
(ハ)この事実により黒鉛材の耐酸化性能は著しく向上した(後記実施例参照)。
(ニ)ショアー硬度の平均値が20以下であって比較的柔かく機械加工性に優れ、且つ引張強度が10MPaより低くなることはなく、10MPa以上であって、実用上満足出来る強度を有する焼結体が得られること。
【0028】
(ホ)更に炭素成分についても、硼素成分の存在による黒鉛化反応の触媒的促進効果と高温処理効果等の相乗作用により、炭素成分の黒鉛化度が向上し、従来の炭素−炭化硼素焼結体の欠点であった熱伝導性能が著しく改善され、純黒鉛材に近い値にまで向上した。
【0029】
(ヘ)このため原子力関連装置に使用される中性子吸収材、核融合装置内のプラズマ対向材等の諸用途に適用可能となった。
【0030】
(ト)また、このような高温焼成による副次的効果として、後記表3にも示すように、熱膨張係数が黒鉛材及び他の製法にかかる炭素−炭化硼素複合体に比べ、非常に低いことが挙げられる。
【0031】
(チ)このことは、先に記した高温処理によって熱伝導率が向上した効果と共に考慮すると、この材料が熱伝導率が高く、且つ熱膨張係数が逆に小さい材料、即ち著しく耐熱衝撃性に優れた特異な性質を持つ材料であることを示唆するものである。
【0032】
この炭素−炭化硼素複合材が原子力関連設備の内部構造材や保護材等に使用されることを考えると、安全性を考える上で極めて重要な特性である。
【0033】
【実施例】
以下実施例によって具体的に説明する。
【0034】
【実施例1】
炭化硼素(平均粒径5μm)を15重量%、メソフェーズ小球体(平均粒径11μm)80重量%、人造黒鉛粉(平均粒径4μm)5重量%の割合となるように各原料を配合し、常温で1時間、乾式混合を行った後、油圧プレス2ton/cm2で成形し、30×30×30mmの成形体を得た。成形体をコークス粉末中に詰め、非酸化性雰囲気下で1000℃まで昇温し、予備焼成品とした。この予備焼成品を抵抗式加熱炉内でコークス粉末中に埋め、不活性雰囲気中で2500℃迄熱処理して、炭素−炭化硼素焼結体を得た。
【0035】
【比較例1】
実施例1で得られた予備焼成品を抵抗式加熱炉内でコークス粉末中に埋め、不活性雰囲気中にて2000℃迄熱処理して、炭素−炭化硼素焼結体を得た。
【0036】
上記実施例1および比較例1に示す方法で得られた2種の焼結体について、その各々の硼素分布をX線マイクロアナライザー(XMA)によって測定した。この結果を図1および2に示す。但し、図1は実施例1を、図2は比較例1の測定写真の模擬図である。
【0037】
比較例1では明らかに炭化硼素と考えられる硼素の集中した部分があるが、実施例1では全体に硼素が均一分布していることが判る。
【0038】
次に、上記実施例1及び比較例1の焼結体について、その耐酸化性試験を行った。この結果を図3に示す。但し、この試験では、実施例1と比較例1のテストピースを、空気中で800℃で酸化消耗試験を行ったものである。
【0039】
この図3から明らかなように、実施例1のほうがはるかに重量減少が少ないことが判る。これは酸化防止膜を作ると考えられている硼素が、より均一に焼結体中に分布しているためと考えられる。
【0040】
【実施例2〜5、および比較例2】
炭化硼素(平均粒径5μm、市販品)を13重量部(以下単に部という)、メソフェーズ小球体(平均粒径11μm)83部および人造黒鉛粉(平均粒径4μm)4部を混合し、2ton/cm2の加圧下で成形、トンネル炉内にて1000℃で予備焼成した。
【0041】
上記の予備焼成した試料を5分し、それぞれを抵抗式加熱炉内でコークス粉末中に埋め、アルゴン雰囲気下にて、最高処理温度を2000℃(比較例2)、2200℃;2400℃;2600℃;2800℃(順次実施例2、3、4、5)にて焼成した。これ等各焼結体についてX線回折を行った。その結果を表1に示す。またその曲げ強さ、熱膨張係数、熱伝導率及びボロン濃度を測定した。この結果を表2に示す。加えて、焼成処理温度と強度及び熱伝導率との関係を図4及び5に示す。
【0042】
【表1】
【0043】
【表2】
【0044】
同表1中で、002、004はそれぞれ結晶面を指し、上段(A)は結晶面間隔の絶対値を表す指標値を、下段(B)は文献「炭素材料実験技術1」に記される純粋な黒鉛結晶の面間隔(6.708Å)と上記(A)欄の数値との差、即ち、試料の焼成温度を高めるに従って、硼素成分の存在に拘わらず、その結晶構造が純粋な黒鉛結晶の構造と物性に近づいて行くことを示している。
【0045】
【実施例6】
炭化硼素(平均粒径5μm)を15重量%、メソフェーズ小球体(平均粒径11μm)85重量%、人造黒鉛粉(平均粒径4μm)5重量%の割合となるように各原料を配合し、常温で1時間、乾式混合を行った後、油圧プレス2ton/cm2で成形し、100×100×30mmの成形体を得た。成形体をコークス粉末中に詰め、非酸化性雰囲気下で1000℃まで昇温し、予備焼成品とした。この予備焼成品を抵抗式加熱炉内でコークス粉末中に埋め、不活性雰囲気中で2400℃に熱処理して、炭素−炭化硼素焼結体を得た。
【0046】
【実施例7及び8】
上記実施例6に於いて2400℃の熱処理に代えて、夫々2600℃(実施例7)及び2800℃(実施例8)となし、その他はすべて、実施例6と同様に処理して、焼結体を得た。
【0047】
【実施例9】
炭化硼素(平均粒径5μm)を15重量%、人造黒鉛粉(平均粒径4μm)を45重量%、石油系ピッチを40重量%の割合となる様に配合し、200℃で1時間混捏し、冷却後粉砕した。
粉砕粉を静水圧プレスで成形し、100×100×100(mm)の成形体を得た。この成形体をコークス粉末中に詰め非酸化性雰囲気下で1000℃まで昇温し、予備焼成品とした。この予備焼成品を不活性雰囲気下2600℃にて高温処理を行い、炭素−炭化硼素焼結体を得た。
【0048】
【比較例3】
東洋炭素(株)製等方性黒鉛材「IG−11」
【0049】
【比較例4〜6】
実施例6に於いて、炭化硼素の配合量を夫々5%(比較例4)、15%(比較例5)、20%(比較例6)に代え、且つ、加熱温度2400℃を最高2000℃迄に代え、その他は実施例6と同様に処理した。
【0050】
上記実施例6〜9及び比較例3〜6について、夫々その物性を測定した。この結果を表3に示す。
【0051】
【表3】
【0052】
またそれぞれの加工性を測定した。この結果を表4に示す。
【0053】
【表4】
【0054】
但し表3及び表4の各物性はそれぞれ以下の方法で測定した。
【0055】
<ショアー硬度>
硬さ試験機ショア式D型で、立方体又は直方体の試験片を用いて、各面3点、合計18点の測定のショア硬度の平均値。
【0056】
<熱伝導率>
レーザーフラッシュ法により室温で求めた。
【0057】
<熱衝撃強度>
下記[化1]により測定。
【0058】
【化1】
【0059】
但し、
бf :引張り強さ(MPa)
λ :熱伝導率(W/m・K)
CTE:熱膨張係数(10−6/K)
E :弾性係数(GPa)
【0060】
<熱膨張係数>
室温から400℃までの平均値。
【0061】
<弾性係数>
引張り試験で求めた引張り歪0〜0.03%を直線とみなして応力−歪曲線から求める。
【0062】
<引張り強度>
インストロン試験機を用いて測定した。
【0063】
<加工性>
下記の切削条件で加工したときの切削トルク、逃げ面摩耗を測定した。
【0064】
条件
回転数 :1330rpm
送り :120mm/min
切り込み径 :1mm
切り込み深さ:10mm
切削距離 :100mm
【0065】
【図面の簡単な説明】
【0066】
【図1】
【0067】
実施例1の炭素−炭化硼素焼結体のX線マイクロアナライザーによる写真の模擬図である。
【0068】
【図2】
【0069】
比較例1の炭素−炭化硼素焼結体のX線マイクロアナライザーによる写真の模擬図である。
【0070】
【図3】
【0071】
実施例1及び比較例1の焼結体の酸化消耗試験の結果を示すグラフであり、Aは実施例1を、Bは比較例1を示す。
【0072】
【図4】
【0073】
実施例2〜5及び比較例2の焼結体の処理温度と曲げ強さとの関係を示すグラフである。
【0074】
【図5】
【0075】
実施例2〜5及び比較例2の焼結体の処理温度と熱伝導率との関係を示すグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for producing a carbon-boron carbide sintered body that is extremely suitable as a plasma facing material in a nuclear fusion reactor and an oxidation resistant material for a machine, a sintered body obtained by the method, and a sintering method thereof. It relates to how to use the body.
[0002]
[Prior art]
At present, as a generally known method for producing a carbon-boron carbide combined body, a method of adding carbon powder and boron carbide and, if necessary, a raw material that can be carbonized, mixing, molding, and firing is well known. Examples thereof include JP-A Nos. 62-108767 and 62-297202.
[0003]
However, in these methods, the sintering temperature during the production of the carbon-boron carbide-based sintered body is strangely uniformly suppressed to 2000 ° C. at the highest point.
[0004]
A possible reason for this is that when high-temperature firing at 2000 ° C. or higher is performed, the state of B 4 C becomes unstable and the volatilization loss of the boron component becomes significant. For example, in the section of “New Ceramic Powder Handbook”, Chapter 12 Section 3 of the “New Ceramic Powder Handbook” published by Akio Kato and Satoshi Yamaguchi Co., Ltd. The hot press molding is performed using B 4 C powder of about 1.5 to 5 μm at a temperature of about 2000 ° C. and a pressure of 150 to 300 kg / cm 2 .
[0005]
Moreover, also in said cited application etc., the maximum baking temperature was suppressed by 1500-2000 degreeC. These are presumed to be due to consideration of alteration of the raw material B 4 C, transpiration and depletion of the B component, but the feature of boron that promotes crystallization of graphite is not utilized.
[0006]
However, while the firing temperature at the highest point in the production of general artificial graphite is usually 2800 to 3000 ° C., in the firing at 2000 ° C. when the B 4 C powder is mixed in this way, the carbon-based raw material (A ) Does not proceed sufficiently, so that the thermal conductivity does not sufficiently increase and the machinability during product processing is poor. Moreover, such temperature conditions is a condition for B 4 C is stably present, most of the boron component remains B 4 C grains, due to the presence in large quantity of carbon component, the carbon material of the boron component It was difficult to say that the dispersion state inside was completely uniform microscopically. That is, there was a problem in the uneven distribution and dispersibility of the B component.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the above-mentioned problems of the conventional carbon-boron carbide sintered body. More specifically, the dispersibility of the boron component in the carbon material is uniform. Moreover, as a result, the sintered body as a whole has further excellent neutron absorption, oxidation resistance, large thermal conductivity, thermal shock resistance, machinability, high toughness, etc. Sintered body, in particular, the average value of Shore hardness is 20 or less, has relatively flexibility, has excellent machinability, and has a tensile strength of 10 MPa or more without being lower than 10 MPa. It is to develop a sintered body having a sufficient tensile strength .
[0008]
[Means for Solving the Problems]
The present inventors, in order to solve the above problems, as a result of continued research, carbon powder, with boron carbide and / or binder components that may be carbonized, a carbon - upon producing boron carbide composite sintered body, carbon Artificial graphite powder was used as one component of the powder , and specific means and temperature were adopted as the firing means and firing temperature. More specifically, a two-stage firing called temporary firing and main firing is adopted as the firing means, and the firing temperature exceeds the upper limit of firing up to 2000 ° C., which is the conventional wisdom, and the conventional firing temperature. When fired at a temperature exceeding 2000 ° C., which the trader never thought of, the average value of Shore hardness was 20 or less, and the machinability was extremely excellent, and the strength and heat conduction were improved. In addition, the present inventors have found that a material having completely different properties from the past, in which the dispersibility of boron is extremely good, is created. In addition, the decrease in strength was within a practically no hindrance, and in some cases, the strength was increased in a temperature range of 2000 ° C. or higher.
[0009]
It has also been found that when calcined at 2400 ° C. or higher, especially the Shore hardness, tensile strength and workability are remarkably improved.
[0010]
Configuration and operation of the invention
The carbon-boron carbide sintered body uses boron carbide powder (B), carbon powder (A), and a binder component (C) that can be carbonized as necessary. In this case, in the present invention, artificial graphite powder is always used as one component of the carbon powder (A). It is a product manufactured by passing these raw materials through the steps of mixing, molding and firing. For example, boron carbide and coke powder, artificial graphite powder, etc. are mixed in a ball mill, hot press method to obtain a sintered body at high temperature and high pressure, self-sintering carbon powder, artificial graphite powder and boron carbide are mixed, molded and fired Thus, there is a method for obtaining a sintered body.
[0011]
The boron carbide powder (B) at this time is not particularly limited and may be a commercially available product, but those having an average particle diameter of 1 to 50 μm are preferred. Submicron boron carbide is very expensive, and when it exceeds 50 μm, the uneven distribution portion of the boron component in the sintered body tends to increase.
[0012]
Further, as the carbon powder (A), coke powder, carbon fiber powder, artificial graphite powder , so-called mesophase microsphere (mesophase carbon spherulite) powder, or the like is used. At this time, artificial graphite powder is always used as one component of the carbon powder (A) . The average particle size is particularly preferably about 50 μm. If necessary, the carbonizable binder component (C) includes tar, pitches, aromatic polycyclic organic compounds, synthetic resins such as polymers such as phenol resins, furan resins, imide resins, and amide resins. Specific examples include compounds, particularly condensed synthetic polymers and natural polymers.
[0013]
These resins and polymers are added mainly by utilizing the binder action during the molding of boron carbide powder and carbon powder, but carbonize during temperature rising firing and are mixed with carbon powder and the like. Together, it finally functions as a component of the sintered body.
[0014]
Whether or not the binder component (C) that can be carbonized is used is mainly determined by the presence or absence of tackiness of the carbon powder (A). For example, when the above-mentioned mesophase microsphere (for example, “KMFC grade” manufactured by Kawasaki Steel) is used as the carbon powder (A), it has self-sintering properties due to the adhesive component of the carbon powder (A). It can be molded. However, when coke powder is used as (A), the boron carbide component (B) also has no self-sintering property and does not harden, so it is necessary to add (C) as a binder component.
[0015]
In this case, the mixing ratio of each raw material component (A), (B) and the component (C) used as necessary may be a mixing ratio that does not cause cracking or blistering due to the gas generated during heat treatment. . Usually:
[0016]
<When carbon powder has adhesiveness, for example, mesophase microsphere>
(A) 50-99.9 wt%
(B) 0.1 to 50% by weight
In this case, 0 to 20% by weight of graphite powder may be further added.
[0017]
<When carbon powder is not sticky, for example, coke powder, graphite powder, etc.>
(A) 10 to 50% by weight
(B) 0.1 to 50% by weight
(C) 15-50% by weight
[0018]
Each of these raw materials is mixed with any effective apparatus, and then molded with or without increasing the temperature. The formed raw material is temporarily calcined (also referred to as pre-firing) at a temperature of about 600 to 1300 ° C. with or without applying pressure, and carbonized raw material (C) or the like is carbonized and sintered.
[0019]
Although the above is based on a conventionally well-known method, a full-scale high-temperature baking process (main baking) is then performed.
[0020]
In addition, this invention is based on the knowledge regarding the effect and effect | action of the calcination temperature in this high temperature calcination process as it has already stated a little.
[0021]
The presintered body obtained as described above is a temperature higher than 2000 ° C., usually 2050 ° C. or higher, more preferably 2100 to 2800 ° C., particularly preferably 2400 to 2600 ° C. in an atmospheric pressure inert gas atmosphere. By performing the sintering treatment, it is possible to obtain a sintered body in which the boron component is very uniformly distributed in the carbon component, the machinability is extremely excellent, and the heat conduction is high. Further, by adjusting the amount of boron carbide at the time of blending, an arbitrary boron concentration can be obtained. Furthermore, if necessary, a degassing process can be added in a vacuum furnace under conditions such as 5 Torr and 2000 ° C.
[0022]
As described above, in the method of the present invention, the calcination temperature of 2000 ° C. or lower, which is a conventional wisdom, is conversely fired at a temperature higher than 2000 ° C. Practical use never seen in conventional carbon-boron carbide sintered bodies that are very uniformly finely dispersed while being suppressed, and that important physical properties such as machinability, thermal conductivity, and thermal expansion coefficient are gradually improved. The present inventors have found a very favorable fact and completed the present invention.
[0023]
Although not currently known about this reason, by heating beyond the temperature limit for stable existence of a conventional B 4 C, B 4 free of boron components from C, metastasis to carbon moiety, diffusion, Repeated recombination, etc., almost no loss of boron component, very evenly and finely dispersed, and carbonization is promoted by high temperature firing, and secondary effects that can increase the thermal conductivity are also exhibited. It is inferred.
[0024]
Due to such high temperature firing, from the form of [B 4 C + C] used as a raw material, a solid solution in which B is mixed and dispersed, an aggregate of graphite crystals partially substituted with boron, as if pure graphite material It is thought that the material has changed to a certain material.
[0025]
In this way, by adopting a two-stage process of pre-baking and main baking, and processing the main baking at a higher temperature than before ,
(B) Contrary to popular belief, there is no significant volatilization and wear of boron components (see Table 2 below).
[0026]
(B) There is an effect that the boron component is very evenly and finely dispersed to form a solid solution (see FIG. 1 described later).
[0027]
(C) Due to this fact, the oxidation resistance performance of the graphite material was remarkably improved (see Examples below).
(D) Sintering having an average value of Shore hardness of 20 or less, relatively soft and excellent in machinability, tensile strength never lower than 10 MPa, 10 MPa or higher, and practically satisfactory strength The body is obtained.
[0028]
(E) Furthermore, with regard to the carbon component, the degree of graphitization of the carbon component is improved by the synergistic effect of the catalytic effect of the graphitization reaction due to the presence of the boron component and the high temperature treatment effect, and the conventional carbon-boron carbide sintering The heat conduction performance, which was a defect of the body, was remarkably improved and improved to a value close to that of pure graphite material.
[0029]
(F) For this reason, it can be applied to various applications such as neutron absorbers used in nuclear equipment and plasma facing materials in nuclear fusion equipment.
[0030]
(G) Further, as a secondary effect of such high-temperature firing, as shown in Table 3 below, the thermal expansion coefficient is very low as compared with the carbon-boron carbide composite according to the graphite material and other manufacturing methods. Can be mentioned.
[0031]
(H) Considering this together with the effect of improving the thermal conductivity by the high-temperature treatment described above, this material has a high thermal conductivity and, on the contrary, a material having a low thermal expansion coefficient, that is, extremely high thermal shock resistance. This suggests that the material has excellent unique properties.
[0032]
Considering that this carbon-boron carbide composite material is used as an internal structural material or a protective material for nuclear facilities, it is an extremely important characteristic when considering safety.
[0033]
【Example】
Examples will be described in detail below.
[0034]
[Example 1]
Each raw material was blended so that the proportion of boron carbide (average particle size 5 μm) was 15% by weight, mesophase microspheres (average particle size 11 μm) 80% by weight, artificial graphite powder (average particle size 4 μm) 5% by weight, After dry mixing at room temperature for 1 hour, the mixture was molded with a hydraulic press 2 ton / cm 2 to obtain a molded body of 30 × 30 × 30 mm. The compact was packed in coke powder and heated to 1000 ° C. in a non-oxidizing atmosphere to obtain a pre-fired product. This pre-fired product was embedded in coke powder in a resistance heating furnace and heat-treated up to 2500 ° C. in an inert atmosphere to obtain a carbon-boron carbide sintered body.
[0035]
[Comparative Example 1]
The pre-fired product obtained in Example 1 was embedded in coke powder in a resistance heating furnace and heat-treated up to 2000 ° C. in an inert atmosphere to obtain a carbon-boron carbide sintered body.
[0036]
About two types of sintered compacts obtained by the method shown in Example 1 and Comparative Example 1, the boron distribution of each was measured by an X-ray microanalyzer (XMA). The results are shown in FIGS. However, FIG. 1 is a schematic diagram of a measurement photograph of Example 1, and FIG.
[0037]
In Comparative Example 1, there is a portion where boron, which is clearly considered to be boron carbide, is concentrated, but in Example 1, it can be seen that boron is uniformly distributed throughout.
[0038]
Next, the sintered body of Example 1 and Comparative Example 1 was subjected to an oxidation resistance test. The result is shown in FIG. However, in this test, the test piece of Example 1 and Comparative Example 1 was subjected to an oxidation consumption test at 800 ° C. in air.
[0039]
As is clear from FIG. 3, it can be seen that Example 1 has much less weight loss. This is presumably because boron, which is considered to form an antioxidant film, is more uniformly distributed in the sintered body.
[0040]
Examples 2 to 5 and Comparative Example 2
Boron carbide (average particle size 5 μm, commercially available product) 13 parts by weight (hereinafter simply referred to as “parts”), mesophase spherules (average particle size 11 μm) 83 parts and artificial graphite powder (average particle size 4 μm) 4 parts are mixed, Molding was performed under a pressure of / cm 2 , and preliminary firing was performed at 1000 ° C. in a tunnel furnace.
[0041]
The above pre-fired samples were divided into 5 minutes, each was embedded in coke powder in a resistance heating furnace, and the maximum treatment temperature was 2000 ° C. (Comparative Example 2), 2200 ° C .; 2400 ° C .; 2600 in an argon atmosphere. C .: baked at 2800.degree. C. (sequential examples 2, 3, 4, 5). X-ray diffraction was performed on each of these sintered bodies. The results are shown in Table 1. The bending strength, thermal expansion coefficient, thermal conductivity and boron concentration were measured. The results are shown in Table 2. In addition, the relationship between the firing temperature, strength and thermal conductivity is shown in FIGS.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
In Table 1, 002 and 004 indicate crystal planes, the upper (A) indicates an index value indicating the absolute value of the crystal plane interval, and the lower (B) is described in the document “Carbon Material Experimental Technique 1”. The difference between the plane spacing of pure graphite crystals (6.708 mm) and the value in the above column (A), that is, as the calcination temperature of the sample is increased, the crystal structure is pure regardless of the presence of the boron component. It shows that the structure and physical properties are approaching.
[0045]
[Example 6]
Each raw material was blended so that the proportion of boron carbide (average particle size 5 μm) was 15% by weight, mesophase spherules (average particle size 11 μm) 85% by weight, artificial graphite powder (average particle size 4 μm) 5% by weight, After dry mixing at room temperature for 1 hour, it was molded with a hydraulic press 2 ton / cm 2 to obtain a molded body of 100 × 100 × 30 mm. The compact was packed in coke powder and heated to 1000 ° C. in a non-oxidizing atmosphere to obtain a pre-fired product. This pre-fired product was embedded in coke powder in a resistance heating furnace and heat-treated at 2400 ° C. in an inert atmosphere to obtain a carbon-boron carbide sintered body.
[0046]
Examples 7 and 8
In Example 6 above, instead of the heat treatment at 2400 ° C., 2600 ° C. (Example 7) and 2800 ° C. (Example 8), respectively, all the others were processed in the same manner as in Example 6 and sintered. Got the body.
[0047]
[Example 9]
Boron carbide (average particle size 5 μm) is blended to a ratio of 15% by weight, artificial graphite powder (average particle size 4 μm) to 45% by weight, and petroleum-based pitch to 40% by weight, and mixed at 200 ° C. for 1 hour. After cooling, it was pulverized.
The pulverized powder was molded by an isostatic press to obtain a molded body of 100 × 100 × 100 (mm). This compact was packed in coke powder and heated to 1000 ° C. in a non-oxidizing atmosphere to obtain a pre-fired product. This pre-fired product was subjected to high temperature treatment at 2600 ° C. in an inert atmosphere to obtain a carbon-boron carbide sintered body.
[0048]
[Comparative Example 3]
Isotropic graphite material "IG-11" manufactured by Toyo Tanso Co., Ltd.
[0049]
[Comparative Examples 4-6]
In Example 6, the boron carbide content was changed to 5% (Comparative Example 4), 15% (Comparative Example 5), and 20% (Comparative Example 6), respectively, and the heating temperature of 2400 ° C. was maximum 2000 ° C. The other processes were the same as in Example 6.
[0050]
About the said Examples 6-9 and Comparative Examples 3-6, the physical property was measured, respectively. The results are shown in Table 3.
[0051]
[Table 3]
[0052]
Each processability was measured. The results are shown in Table 4.
[0053]
[Table 4]
[0054]
However, the physical properties in Table 3 and Table 4 were measured by the following methods.
[0055]
<Shore hardness>
An average value of Shore hardness of a total of 18 points measured on 3 points on each surface using a test piece of a cube or a rectangular parallelepiped with a Shore D type hardness tester.
[0056]
<Thermal conductivity>
It calculated | required at room temperature by the laser flash method.
[0057]
<Thermal shock strength>
Measured according to [Chemical Formula 1] below.
[0058]
[Chemical 1]
[0059]
However,
бf: Tensile strength (MPa)
λ: Thermal conductivity (W / m · K)
CTE: Thermal expansion coefficient (10 −6 / K)
E: Elastic modulus (GPa)
[0060]
<Coefficient of thermal expansion>
Average value from room temperature to 400 ° C.
[0061]
<Elastic modulus>
A tensile strain of 0 to 0.03% obtained in the tensile test is regarded as a straight line and is obtained from a stress-strain curve.
[0062]
<Tensile strength>
Measurements were made using an Instron testing machine.
[0063]
<Processability>
Cutting torque and flank wear when measured under the following cutting conditions were measured.
[0064]
Condition rotational speed: 1330 rpm
Feeding: 120mm / min
Cutting diameter: 1mm
Cutting depth: 10mm
Cutting distance: 100 mm
[0065]
[Brief description of the drawings]
[0066]
[Figure 1]
[0067]
FIG. 3 is a simulation diagram of a photograph of the carbon-boron carbide sintered body of Example 1 by an X-ray microanalyzer.
[0068]
[Figure 2]
[0069]
FIG. 3 is a simulated view of a photograph of a carbon-boron carbide sintered body of Comparative Example 1 using an X-ray microanalyzer.
[0070]
[Fig. 3]
[0071]
4 is a graph showing the results of an oxidation consumption test of the sintered bodies of Example 1 and Comparative Example 1, wherein A shows Example 1 and B shows Comparative Example 1. FIG.
[0072]
[Fig. 4]
[0073]
It is a graph which shows the relationship between the processing temperature and bending strength of the sintered compact of Examples 2-5 and Comparative Example 2.
[0074]
[Figure 5]
[0075]
It is a graph which shows the relationship between the process temperature of the sintered compact of Examples 2-5 and Comparative Example 2, and thermal conductivity.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35413492A JP3616829B2 (en) | 1991-12-20 | 1992-12-14 | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35573591 | 1991-12-20 | ||
JP3-355735 | 1991-12-20 | ||
JP35413492A JP3616829B2 (en) | 1991-12-20 | 1992-12-14 | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05246761A JPH05246761A (en) | 1993-09-24 |
JP3616829B2 true JP3616829B2 (en) | 2005-02-02 |
Family
ID=34227933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35413492A Expired - Fee Related JP3616829B2 (en) | 1991-12-20 | 1992-12-14 | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3616829B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5783495B2 (en) * | 2011-07-26 | 2015-09-24 | 日立化成株式会社 | Control member for light water reactor |
GB2528272B (en) | 2014-07-15 | 2017-06-21 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
CN108821773A (en) * | 2018-09-29 | 2018-11-16 | 吉林长玉特陶新材料技术股份有限公司 | A kind of method that the sintering of wet forming reaction in-situ prepares boron carbide ceramics |
KR102513077B1 (en) * | 2021-02-09 | 2023-03-24 | 주식회사 티씨케이 | Semiconductor manufacturing parts including boron carbide resistant plasma members |
-
1992
- 1992-12-14 JP JP35413492A patent/JP3616829B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05246761A (en) | 1993-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4525461A (en) | Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure | |
JP4734674B2 (en) | Low CTE isotropic graphite | |
US9045374B2 (en) | Formation of silicon carbide-silicon nitride nanoparticle carbon compositions | |
JPS6143310B2 (en) | ||
JPS6228109B2 (en) | ||
CA1092615A (en) | High density hot pressed thermal shock resistant silicon carbide | |
JP5972362B2 (en) | Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon | |
JP3616829B2 (en) | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body | |
EP0178753B1 (en) | Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure | |
JP3765840B2 (en) | Carbon material manufacturing method | |
EP0257134B1 (en) | A method for producing high-density sintered silicon carbide articles | |
KR101972350B1 (en) | A ZrC Composites and A Manufacturing method of the same | |
JPH07165467A (en) | Method for producing isotropic graphite material | |
CA2086858C (en) | Sinterable carbon powder | |
EP0109839B1 (en) | Method of making graphite electrodes | |
JPS6096573A (en) | Pitch-free graphite product and manufacture | |
JP2005200239A (en) | Highly heat-conductive graphite material and its production method | |
Manocha et al. | Structural, mechanical and frictional studies on carbon-fly ash-ceramic composites | |
JPH0333064A (en) | Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material | |
JPH0692269B2 (en) | Impermeable carbon material | |
JPH08119741A (en) | Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact | |
JP2002154874A (en) | Method for producing isotropic graphite material having a high coefficient of thermal expansion, graphite jig made of the isotropic graphite material, and graphite substrate | |
JP3427077B2 (en) | Low carburized graphite material and its manufacturing method | |
JPH0625038B2 (en) | Method for manufacturing wear-resistant silicon carbide sintered body | |
JPH0735299B2 (en) | Method for producing isotropic high strength carbon material having low coefficient of thermal expansion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041019 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111119 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121119 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |