JPH0692269B2 - Impermeable carbon material - Google Patents

Impermeable carbon material

Info

Publication number
JPH0692269B2
JPH0692269B2 JP62055265A JP5526587A JPH0692269B2 JP H0692269 B2 JPH0692269 B2 JP H0692269B2 JP 62055265 A JP62055265 A JP 62055265A JP 5526587 A JP5526587 A JP 5526587A JP H0692269 B2 JPH0692269 B2 JP H0692269B2
Authority
JP
Japan
Prior art keywords
weight
carbon material
resin
phosphoric acid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62055265A
Other languages
Japanese (ja)
Other versions
JPS63222072A (en
Inventor
幹郎 加藤
好彦 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62055265A priority Critical patent/JPH0692269B2/en
Publication of JPS63222072A publication Critical patent/JPS63222072A/en
Publication of JPH0692269B2 publication Critical patent/JPH0692269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、熱伝導性、電気伝導性及び耐薬品性に優れ
ると共に、高い機械的強度を備えたガス不浸透性炭素材
に関するものである。
TECHNICAL FIELD The present invention relates to a gas-impermeable carbon material having excellent thermal conductivity, electrical conductivity and chemical resistance, and high mechanical strength. .

<背景技術> 近年、軽量である上、寸法安定性,耐熱性,電気伝導
性,熱伝導性並びに耐薬品性に優れた素材として炭素成
形材が注目されるようになり、半導体の冶工具,原子炉
材或いは電極等、多方面の分野においてその利用が推進
されている。
<Background Art> In recent years, a carbon molding material has been attracting attention as a material excellent in dimensional stability, heat resistance, electrical conductivity, thermal conductivity, and chemical resistance in addition to being lightweight, semiconductor jigs, Its use is promoted in various fields such as nuclear reactor materials and electrodes.

中でも、特に“ガス不浸透性炭素材”は、ガスの透過遮
断物性のほか、低電気抵抗や良好な耐薬品性を示すこと
から“リン酸型燃料電池の分離板”としての適用が注目
を集めている。なぜなら、リン酸型燃料電池の分離板
は、燃料として供給される水素や天然ガスと燃焼用の空
気との仕切りの役目を果たすものであることから両者の
混和を防止する機能が必要であり、また発生した電気や
熱の良導体であることや、更には約200℃のリン酸に対
する優れた耐食性が要求されていたが、ガス不浸透性炭
素材の有する物性はこれら要求特性に極めて近いものだ
ったからである。
Among them, especially "gas impermeable carbon material" shows low electrical resistance and good chemical resistance in addition to gas permeation barrier properties, so its application as "separating plate for phosphoric acid fuel cell" attracts attention. I am collecting. Because the separation plate of the phosphoric acid fuel cell serves as a partition between hydrogen and natural gas supplied as fuel and air for combustion, it is necessary to have a function of preventing the mixture of both. In addition, it was required to be a good conductor of generated electricity and heat, and to have excellent corrosion resistance to phosphoric acid at approximately 200 ° C, but the physical properties of gas impermeable carbon materials are very close to these required characteristics. This is because the.

それ故、これまでにも“リン酸型燃料電池の分離板”等
としても十分に満足できる特性を備えたガス不浸透性炭
素材を実現すべく様々な提案がなされてきた。
Therefore, various proposals have hitherto been made to realize a gas-impermeable carbon material having sufficiently satisfactory characteristics as a “separator for a phosphoric acid fuel cell” and the like.

例えば、特公昭56−22836号公報には、硬化し得る樹脂
と硬化フェノール樹脂繊維との混和物を成形・硬化した
後、これを800℃以上の温度で焼成して成る炭素材が示
されている。ところが、該公報に示された炭素材は、無
定形炭素質であるので黒鉛質の炭素材に比べ電気や熱の
伝導性や耐リン酸性に劣ると言う問題点に加えて、加工
性(例えばリブ付きの分離板に加工する場合の溝の加工
性)の点で十分に満足できるものでは無かった。
For example, Japanese Patent Publication No. 56-22836 discloses a carbon material obtained by molding and curing a mixture of a curable resin and a cured phenolic resin fiber, and then firing the mixture at a temperature of 800 ° C. or higher. There is. However, in addition to the problem that the carbon material disclosed in the publication is inferior in electrical and thermal conductivity and phosphoric acid resistance as compared with the graphite carbon material because it is an amorphous carbonaceous material, workability (for example, It was not completely satisfactory in terms of groove workability when processed into a ribbed separation plate.

そこで、上記の電気導電性,熱伝導性,耐リン酸性並び
に加工性を改善した炭素材として、熱硬化性樹脂に黒鉛
粉を混合した原料を焼成したものが提案された(特開昭
57−72273号,特開昭59−195514号,特開昭59−232906
号等)。そして、これらの炭素材は、無定形炭素質(所
謂“グラッシーカーボン質”)のマトリックス中に電気
や熱の良導体であると共に耐リン酸性や加工性の良好な
黒鉛質粉末が分散したものであることから、確かに無定
形炭素質単独の場合に比べて電気伝導性,熱伝導性,耐
リン酸性及び加工性に優れた特性を有してはいた。
Therefore, as a carbon material having improved electrical conductivity, thermal conductivity, phosphoric acid resistance, and workability, there has been proposed a carbon material obtained by firing a raw material obtained by mixing graphite powder with a thermosetting resin (Japanese Patent Laid-Open No. Sho 61-206).
57-72273, JP-A-59-195514, JP-A-59-232906
Etc.). In addition, these carbon materials are obtained by dispersing graphite powder having good phosphoric acid resistance and good processability in an amorphous carbonaceous (so-called "glassy carbonaceous") matrix, which is a good conductor of electricity and heat. Therefore, it certainly had the characteristics of superior electrical conductivity, thermal conductivity, phosphoric acid resistance, and processability as compared with the case of using the amorphous carbon alone.

しかしながら、熱硬化性樹脂を原料とした上記炭素材
は、その炭化焼成過程において「熱硬化性樹脂が著しく
収縮するのに対して黒鉛は全く収縮せず、そのため収縮
率の差に起因して両者の界面に亀裂が発生するのを防止
できない」との問題を抱えるものであり、従ってガス不
浸透性に対する信頼性の乏しいものだったのである。
However, the above-mentioned carbon material made of a thermosetting resin as a raw material shows that "the thermosetting resin contracts remarkably while the graphite does not contract at all in the carbonization and firing process, and therefore, due to the difference in contraction rate, both It cannot prevent the occurrence of cracks at the interface of the "." Therefore, the reliability of gas impermeability was poor.

<問題点を解決する手段> 本発明者等は、上述のような観点から、ガス遮蔽性に優
れることは勿論、申し分のない電気伝導性,熱伝導性,
対リン酸性並びに加工性を備え、リン酸型燃料電池の分
離板に適応しても十分に満足できる不浸透性炭素材を提
供すべく研究を行ったところ、「易黒鉛化物質であるメ
ソフェーズ粉は、その炭化焼成の過程で収縮する」点に
強い関心が向くこととなり、「炭化焼成の過程で著しい
収縮を見せる熱硬化性樹脂にメソフェーズ粉を混合した
場合には、該メソフェーズ粉が熱硬化性樹脂と同じく炭
化焼成の際に収縮することから、マトリックスの熱硬化
性樹脂との界面に収縮率差に基づく亀裂の生成が抑制さ
れるはずである」との推測の下に、熱硬化性樹脂とメス
フェーズ粉との混合物を出発物質とする炭素材に付いて
更に研究を重ねた結果、 「該混合物を炭化焼成したものは、“メソフェーズ粉由
来の炭化物”と“熱硬化性物質由来の炭化物”の両者の
界面に亀裂が認められず、不浸透性に優れた炭素材とな
っている上、電気伝導性,熱伝導性,耐リン酸性並びに
加工性の面でも十分に満足できるものである」 との知見を得るに至ったのである。
<Means for Solving the Problems> From the above viewpoints, the present inventors are of course excellent in gas shielding property, and also have satisfactory electrical conductivity, thermal conductivity,
A study was conducted to provide an impermeable carbon material that has phosphoric acidity and processability and is sufficiently satisfactory even when applied to a separator for a phosphoric acid fuel cell. Is strongly contracted during the carbonization and firing process. ”When a mesophase powder is mixed with a thermosetting resin that shows a significant shrinkage during the carbonization and firing process, the mesophase powder is cured by heat. Since it shrinks at the time of carbonization and firing like a thermosetting resin, the generation of cracks at the interface with the thermosetting resin of the matrix should be suppressed. As a result of further research on a carbon material having a mixture of a resin and a mesophase powder as a starting material, as a result, "a mixture obtained by carbonizing and firing the mixture is a" carbide derived from mesophase powder "and a" thermosetting substance-derived carbonaceous material ". Carbide " No cracks were observed at the interface between the two, and it is a carbon material with excellent impermeability, and it is also fully satisfactory in terms of electrical conductivity, thermal conductivity, phosphoric acid resistance, and workability. " It came to the knowledge of.

この発明は、上記知見に基づいて成されたものであり、 不浸透性炭素材を、メソフェーズ粉5〜70重量%と熱硬
化性樹脂30〜95重量%との混合・焼成物で構成すること
により、優れたガス遮蔽性,電気伝導性,熱伝導性,耐
リン酸性,強度並びに加工性を兼備せしめた点、 に特徴を有するものである。
The present invention was made based on the above findings, and the impermeable carbon material is composed of a mixed / fired product of 5 to 70% by weight of mesophase powder and 30 to 95% by weight of a thermosetting resin. It has excellent gas shielding property, electrical conductivity, thermal conductivity, phosphoric acid resistance, strength and workability.

この発明の対象とする熱硬化性樹脂は、炭化焼成するこ
とによって炭化物を与えることができる樹脂であり、例
えばフェノール樹脂,フラン樹脂,キシレン樹脂,エポ
キシ樹脂等を挙げることができるが、炭化収率の高いフ
ェノール樹脂やフラン樹脂が好ましく、出来れば50重量
%以上の炭化収率のものを選ぶのが良い。このような樹
脂が出発原料であれば、十分に優れた不浸透性の炭素材
が得られる。
The thermosetting resin to which the present invention is applied is a resin that can give a carbide by carbonizing and firing, and examples thereof include phenol resin, furan resin, xylene resin, and epoxy resin. It is preferable to use a phenol resin or furan resin having a high carbon content, and if possible, it is preferable to select a resin having a carbonization yield of 50% by weight or more. If such a resin is a starting material, a sufficiently excellent impermeable carbon material can be obtained.

また、メソフェーズ粉は、石油系或いは石炭系等の何れ
のピッチから製造したものでも良い。ただ、耐リン酸腐
食性や電池反応の安定性の面から不純物の少ない炭素材
が要求されるので、石炭系メソフェーズ粉の場合にはメ
ソフェーズ製造用原料は精製しておいた方が好ましい。
The mesophase powder may be produced from any pitch such as petroleum-based or coal-based pitch. However, since carbon materials containing few impurities are required from the viewpoint of phosphoric acid corrosion resistance and stability of battery reaction, in the case of coal-based mesophase powder, it is preferable to purify the raw material for mesophase production.

通常、石油系又は石炭系の重質油或いはピッチを350〜5
00℃で熱処理すると、熱処理の初期には球晶と称する光
学的に異方性の球体がピッチの母相中に生成し、更に熱
処理を続けて行くと球晶が合体・成長を繰り返してピッ
チ全体が光学的に異方性の物質、所謂“バルクメソフェ
ーズ”となる。上記の球晶やバルクメソフェーズは、熱
処理条件によっても異なるが、一般的には軟化点を示さ
ない。つまり、不融性と言うコークス的な性質がある反
面、揮発分を数重量%含有すると言うピッチ的な性質を
も併せ持つ炭素前駆体である。
Usually, heavy oil or pitch of petroleum or coal is 350 to 5
When heat-treated at 00 ° C, optically anisotropic spheres called spherulites are formed in the matrix phase of the pitch at the beginning of the heat treatment, and when heat treatment is continued, spherulites repeat coalescence / growth The whole becomes an optically anisotropic substance, a so-called “bulk mesophase”. The spherulites and bulk mesophases do not generally show a softening point, although they differ depending on heat treatment conditions. In other words, it is a carbon precursor that has a coke-like property called infusibility but also has a pitch-like property that contains a few% by weight of volatile matter.

本発明が対象とするメソフェーズ粉は、“バルクメソフ
ェーズを粉砕したもの”である。
The mesophase powder targeted by the present invention is “a bulk mesophase pulverized”.

例えば、「炭素含有率が92重量%以上であり、900℃ま
での揮発分が7〜20重量%、500℃まで加熱した時の線
収縮率が1%以上のバルクメソフェーズを平均粒径40μ
m以下に粉砕したメソフェーズ粉」が好ましい対象とな
る。
For example, "a bulk mesophase having a carbon content of 92% by weight or more, a volatile content up to 900 ° C of 7 to 20% by weight, and a linear shrinkage rate of 1% or more when heated to 500 ° C has an average particle size of 40 µm.
"Mesophase powder pulverized to m or less" is a preferable target.

ここで、炭素含有率92%未満の場合は、炭素以外の元素
が焼成過程が分解・ガス化して重量減少量が増加すると
共に、炭素以外の原子が黒鉛化性を阻害し、熱伝導性,
電気伝導性,耐リン酸性が向上しない恐れがある。
Here, when the carbon content is less than 92%, the elements other than carbon decompose and gasify during the firing process to increase the weight reduction amount, and the atoms other than carbon inhibit the graphitization property, resulting in thermal conductivity,
The electrical conductivity and phosphoric acid resistance may not be improved.

また、900℃までの揮発分が7重量%未満であると燃焼
過程でマトリックスの熱硬化性樹脂との濡れ性が悪く、
メソフェーズ粉とマトリックスとの界面に隙間(クラッ
ク)が発生し不浸透性の低下を招く恐れがあり、一方、
13重量%を超えると、メソフェーズ粉内部から多量に発
生する揮発分により発泡乃至は多孔性となって不浸透性
が低下する点が懸念されるようになる。
If the volatile content up to 900 ° C is less than 7% by weight, the wettability of the matrix with the thermosetting resin is poor during the combustion process,
Gaps (cracks) may occur at the interface between the mesophase powder and the matrix, which may reduce the impermeability.
When it exceeds 13% by weight, there is a concern that a large amount of volatile components generated from the inside of the mesophase powder may cause foaming or porosity to reduce impermeability.

そして、500℃までに加熱した時の線収縮率とは、メソ
フェーズ粉単独を2t/cm2以上の圧力で加圧成形し、得ら
れた成形体から試片を採取して測定した値である。この
線収縮率が1%未満の場合には、炭化・焼成後のメソフ
ェーズ粉由来の炭素粒子と熱硬化性樹脂由来のマトリッ
クス炭素との界面に隙間が発生し不浸透性が低下しがち
となるので好ましくない。
The linear shrinkage when heated to 500 ° C. is a value measured by pressure-molding the mesophase powder alone at a pressure of 2 t / cm 2 or more and collecting a sample from the obtained molded body. . When the linear shrinkage is less than 1%, a gap is generated at the interface between the carbon particles derived from the mesophase powder after carbonization and firing and the matrix carbon derived from the thermosetting resin, and the impermeability tends to decrease. It is not preferable.

次に、かかる性状を有するメソフェーズ粉と熱硬化性樹
脂を用いた不浸透性炭素材の製造条件について説明す
る。
Next, the manufacturing conditions of the impermeable carbon material using the mesophase powder and the thermosetting resin having such properties will be described.

メソフェーズ粉は、熱硬化性樹脂との混合物において5
〜70重量%の範囲の割合になるように配合される。
The mesophase powder is 5 in the mixture with the thermosetting resin.
It is blended so as to have a ratio in the range of up to 70% by weight.

この配合割合が5重量%未満の場合にはメソフェーズ粉
の配合硬化が得られず、熱伝導性,電気伝導性,耐リン
酸性並びに加工性が低下する。一方、70重量%を超えて
配合すると、メソフェーズ粉の表面積が増えて熱硬化性
樹脂により均一にメソフェーズ粉を結着できなくなって
強度低下を招く。
If the blending ratio is less than 5% by weight, the mesophase powder cannot be blended and hardened, and the thermal conductivity, electrical conductivity, phosphoric acid resistance, and processability deteriorate. On the other hand, if the content exceeds 70% by weight, the surface area of the mesophase powder increases and the thermosetting resin cannot uniformly bind the mesophase powder, resulting in a decrease in strength.

不浸透性炭素材を製造するには、上述のように配合した
混合物を金型に仕込み、通常は130〜200℃の温度で5〜
150kg/cm2の圧力にて加圧成形する。次いで、この成形
体を必要に応じて130〜200℃で10〜30時間加熱して“後
硬化”させる。後硬化した成形体は、非酸化性雰囲気
(例えばN2ガスやArガスの流通下)で昇温速度:0.5〜50
℃/hrにて少なくとも800℃まで炭化焼成し、必要に応じ
て更に黒鉛化して不浸透性炭素材とされる。
In order to produce an impermeable carbon material, the mixture blended as described above is charged into a mold, and usually 5 to 5 at a temperature of 130 to 200 ° C.
Press molding at a pressure of 150 kg / cm 2 . The shaped body is then optionally "post-cured" by heating at 130-200 ° C for 10-30 hours. The post-cured molded body has a temperature rising rate of 0.5 to 50 in a non-oxidizing atmosphere (for example, under the flow of N 2 gas or Ar gas).
It is carbonized and baked at a temperature of at least 800 ° C at a temperature of 800 ° C / hr, and further graphitized as necessary to obtain an impermeable carbon material.

以下、実施例によってこの発明を更に具体的に説明す
る。
Hereinafter, the present invention will be described more specifically by way of examples.

<実施例> 実施例 1炭素含有率:93.3重量%,900℃までの揮発分:
10.3重量%,500℃までの線収縮率が3%で、平均粒子径
が15μmのメソフェーズ粉と、1000℃における炭化収率
が52重量%のフェノール・ノボラック樹脂粉末とを第1
表の配合割合で混合した後(第1表はメソフェーズ粉の
配合割合のみを示したが、残部は配合樹脂である)、1m
×1mの平面積をもつ金型に仕込み、温度:180℃,圧力:8
kg/cm2で30分間加熱・加圧成形して厚さ1mmの成形体を
得、次いでこの成形体を20時間かけて200℃まで昇温し
た後、200℃で20時間保持して“後硬化”させた。
<Example> Example 1 Carbon content: 93.3% by weight, volatile matter up to 900 ° C:
First, a mesophase powder with a linear shrinkage of 10.3% by weight and a linear shrinkage up to 500 ° C of 3%, an average particle diameter of 15 μm, and a phenol / novolak resin powder with a carbonization yield of 52% by weight at 1000 ° C.
After mixing at the compounding ratio shown in the table (Table 1 shows only the compounding ratio of mesophase powder, the rest is compounded resin), 1m
Charged in a mold with a flat area of × 1m, temperature: 180 ℃, pressure: 8
Heat and pressure molding at kg / cm 2 for 30 minutes to obtain a molded body with a thickness of 1 mm, then heat this molded body to 200 ° C over 20 hours, and then hold at 200 ° C for 20 hours. "Cured".

次に、後硬化させた成形体を“粉コークスを詰めた容
器”内にて4℃/hrの速度で1000℃まで昇温して炭化し
た後、アルゴン雰囲気中で4℃/minの速度で2500℃まで
昇温し、厚さ0.8mmの黒鉛化物を得た。
Next, the post-cured compact was heated in a "container filled with powdered coke" at a rate of 4 ° C / hr to 1000 ° C to carbonize it, and then in an argon atmosphere at a rate of 4 ° C / min. The temperature was raised to 2500 ° C. to obtain a graphitized product having a thickness of 0.8 mm.

得られた黒鉛化物の物性を測定したが、この結果を第1
表に示す。
The physical properties of the obtained graphitized product were measured.
Shown in the table.

なお、第1表における「通気度」は、差圧1kg/cm2のN2
ガスの通過量を室温にて測定すること によって求めた。
Incidentally, "air permeability" in Table 1, the differential pressure 1kg / cm 2 N 2
Measuring the amount of gas passing at room temperature Sought by.

また、「耐リン酸性」は、200℃の100%リン酸液に1000
時間浸漬して後の初期重量に対する重量減量率である。
"Phosphoric acid resistance" is 1000% in 100% phosphoric acid solution at 200 ℃.
It is the weight loss rate with respect to the initial weight after immersion for a period of time.

実施例2 炭素含有率:93.3重量%,900℃までの揮発分:9.8重量%,
500℃までの線収縮率が2%で、平均粒子径3が30μm
のメソフェーズ粉:50重量部に、フェノール・ノゾール
樹脂液:25重量部を混練した後、80℃で10分間乾燥し
た。このようにして得られた乾燥粉末にフェノール・ノ
ボラック樹脂粉末:25重量部を添加して出発混合物とし
て以外は、実施例1と同じ方法で黒鉛化物を製造した。
Example 2 Carbon content: 93.3% by weight, volatile matter up to 900 ° C .: 9.8% by weight,
Linear shrinkage up to 500 ℃ is 2%, average particle size 3 is 30μm
50 parts by weight of the mesophase powder of Example 2 was mixed with 25 parts by weight of the phenol / nozole resin solution, and then dried at 80 ° C. for 10 minutes. A graphitized product was produced in the same manner as in Example 1 except that 25 parts by weight of phenol / novolak resin powder was added to the dry powder thus obtained to prepare a starting mixture.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 1 固定炭素:97.0重量%,灰分:2重量%,揮発分:1重量%
で、平均粒径:10μmの天然黒鉛をメソフェーズ粉の代
わりに用いた以外は、実施例1と全く同じ方法で黒鉛化
物を製造した。
Comparative Example 1 Fixed carbon: 97.0% by weight, ash: 2% by weight, volatile: 1% by weight
Then, a graphitized product was produced by the same method as in Example 1 except that natural graphite having an average particle size of 10 μm was used instead of the mesophase powder.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 2 実施例1で用いたのと同一の原料を用い、配合割合のみ
を変えて、実施例1と同じ方法で黒鉛化物を製造した。
Comparative Example 2 A graphitized product was produced in the same manner as in Example 1, except that the same raw material as that used in Example 1 was used and only the mixing ratio was changed.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 3 フェノール・ノボラック樹脂:50重量部と、硬化フェノ
ール樹脂繊維〔カイノールKF1010:群栄化学K.K.の商品
名〕の10mm長のチョップ:50重量部とを混合した後、実
施例1と同じ方法で成形し、後硬化し、炭化し、更に黒
鉛化した。
Comparative Example 3 Phenol-novolak resin: 50 parts by weight and a 10 mm long chop of cured phenolic resin fiber [Kynol KF1010: Gunei Kagaku KK]: 50 parts by weight were mixed, and the same method as in Example 1 was followed. Was molded, post-cured, carbonized and graphitized.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

なお、得られた1000℃焼成品、2500℃焼成品とも加工は
非常に困難であった。
In addition, it was very difficult to process both the obtained 1000 ° C. baked product and 2500 ° C. baked product.

<効果の総括> 以上に説明した如く、この発明によれば、ガス遮蔽性,
電気伝導性,熱伝導性,対リン酸性,強度並びに加工性
が共に優れ、リン酸型燃料電池の分離板に適用したとし
ても十分に満足できる不浸透性炭素材を提供できるな
ど、産業上有用な効果がもたらされるのである。
<Summary of Effects> As described above, according to the present invention, the gas shielding property,
It has excellent electrical conductivity, thermal conductivity, acid resistance to phosphoric acid, strength and processability, and can provide an impervious carbon material that is sufficiently satisfactory even when applied to a separator for phosphoric acid fuel cells. It has a great effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】メソフェーズ粉5〜70重量%と熱硬化性樹
脂30〜95重量%との混合・焼成物からなる不浸透性炭素
材。
1. An impervious carbon material comprising a mixed and fired product of 5 to 70% by weight of mesophase powder and 30 to 95% by weight of a thermosetting resin.
JP62055265A 1987-03-12 1987-03-12 Impermeable carbon material Expired - Lifetime JPH0692269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62055265A JPH0692269B2 (en) 1987-03-12 1987-03-12 Impermeable carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055265A JPH0692269B2 (en) 1987-03-12 1987-03-12 Impermeable carbon material

Publications (2)

Publication Number Publication Date
JPS63222072A JPS63222072A (en) 1988-09-14
JPH0692269B2 true JPH0692269B2 (en) 1994-11-16

Family

ID=12993770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055265A Expired - Lifetime JPH0692269B2 (en) 1987-03-12 1987-03-12 Impermeable carbon material

Country Status (1)

Country Link
JP (1) JPH0692269B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364968B2 (en) * 1992-09-01 2003-01-08 株式会社デンソー Battery
JP2001351644A (en) * 2000-06-07 2001-12-21 Kawasaki Steel Corp Separator for fuel cell and fuel cell
JP2001351645A (en) * 2000-06-09 2001-12-21 Kawasaki Steel Corp Separator for fuel cell and fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252308A (en) * 1986-04-24 1987-11-04 Kawasaki Steel Corp Production of carbon plate
JPS6364963A (en) * 1986-09-01 1988-03-23 川崎製鉄株式会社 Carbon material and manufacture

Also Published As

Publication number Publication date
JPS63222072A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
JP4734674B2 (en) Low CTE isotropic graphite
US20140329663A1 (en) Formation of silicon carbide-silicon nitride nanoparticle carbon compositions
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
JPS61161666A (en) Electrochemical battery separator plate, manufacture thereofand fuel battery
JPH0692269B2 (en) Impermeable carbon material
US4137150A (en) Method for the manufacture of a coal-tar pitch coke
US3993738A (en) High strength graphite and method for preparing same
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JPH0768064B2 (en) Carbon fiber reinforced composite material
KR101144817B1 (en) Manufacturing method of separator for fuel cell using surface treatment and separator for fuel cell manufactured by the same
JPH01264917A (en) Production of impermeable carbon material
JPS63233074A (en) Manufacture of impermeable carbon material
JPH0597549A (en) Graphite crucible for metal evaporation
JP3517276B2 (en) Method for producing fullerenes
JPH0151441B2 (en)
JPH05279005A (en) Production of high-density carbon material
JP4633356B2 (en) Composition for fuel cell separator and method for producing fuel cell separator
JPH01115882A (en) Production of porous carbonaceous material
JPS6236075A (en) Fiber reinforced carbon material
JP3434538B2 (en) Method for producing glassy carbon material
JPH0550468B2 (en)