JPS6236075A - Fiber reinforced carbon material - Google Patents

Fiber reinforced carbon material

Info

Publication number
JPS6236075A
JPS6236075A JP60172796A JP17279685A JPS6236075A JP S6236075 A JPS6236075 A JP S6236075A JP 60172796 A JP60172796 A JP 60172796A JP 17279685 A JP17279685 A JP 17279685A JP S6236075 A JPS6236075 A JP S6236075A
Authority
JP
Japan
Prior art keywords
carbon
weight
fibers
fiber
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172796A
Other languages
Japanese (ja)
Inventor
坂本 東男
徹 岩橋
鶴木 考典
松山 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60172796A priority Critical patent/JPS6236075A/en
Publication of JPS6236075A publication Critical patent/JPS6236075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素粉に無機繊維や金属繊維を混合した繊維
強化炭素材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the improvement of fiber-reinforced carbon materials in which carbon powder is mixed with inorganic fibers or metal fibers.

〔従来の技術〕[Conventional technology]

各種炭素材料の中でも、とシわけ高強度炭素材は各種電
極、原子力黒鉛材、ルツ?、ヒーター、メカニカルシー
ル材、摺動集電材、ホットプレス用ダイス等多分野にわ
たって使用されている。このような用途に向く高強度炭
素材としては炭素繊維で補強した炭素材料が性能的にも
優れていると云われている。
Among various carbon materials, high-strength carbon materials are particularly used for various electrodes, nuclear graphite materials, and Ruthenium carbon materials. It is used in a wide range of fields, including heaters, mechanical sealing materials, sliding current collectors, and hot press dies. As high-strength carbon materials suitable for such uses, carbon materials reinforced with carbon fibers are said to have excellent performance.

この炭素繊維で補強した炭素材料の製造にあたっては一
般に炭素繊維の織布をフェノール樹脂等の熱硬化性高分
子で固め、硬化後、炭化または黒鉛化処理を行ない、更
に密度を上げるため、炭化または黒鉛化処理で生じた気
孔に再び樹脂を含浸し、炭化、黒鉛化する含浸処理を4
〜5回繰り返す方法を採っている。
In the production of carbon materials reinforced with carbon fibers, carbon fiber woven fabrics are generally hardened with thermosetting polymers such as phenolic resin, and after hardening, carbonization or graphitization treatment is performed. The pores generated during the graphitization process are impregnated with resin again, and the impregnation process is performed to carbonize and graphitize.
A method of repeating ~5 times is adopted.

この方法は、高価な炭素繊維の配合率が高く、しかも工
程数がかかるため、得られる炭素材料が極めて高価なも
のとなシ、従って航空機、宇宙産業等の限られた分野で
のみ使用され、一般産業用には不向きであった。
This method requires a high blending rate of expensive carbon fibers and requires a number of steps, so the carbon material obtained is extremely expensive, and therefore it is used only in limited fields such as aircraft and space industries. It was unsuitable for general industrial use.

そこで、含浸処理を行なわない炭素繊維補強炭素材の製
法が提案されるに至っている。
Therefore, methods for producing carbon fiber-reinforced carbon materials without impregnation treatment have been proposed.

例えば特公昭49−29281号にみられるように、特
定の有機質繊維を無機または炭素骨材および有機質バイ
ンダー(結合剤)に加え焼成する方法がある。更には特
開昭51−87515号にみられるように炭素繊維を液
状の有機質結合剤でぬらし、その炭素繊維を炭素粉およ
び有機質結合剤に混ぜて混イし、成型、焼成する方法が
ある。
For example, as seen in Japanese Patent Publication No. 49-29281, there is a method in which specific organic fibers are added to an inorganic or carbon aggregate and an organic binder and fired. Furthermore, as shown in Japanese Patent Application Laid-Open No. 51-87515, there is a method in which carbon fibers are wetted with a liquid organic binder, the carbon fibers are mixed with carbon powder and an organic binder, and then molded and fired.

〔従来技術の問題点〕[Problems with conventional technology]

上記いずれの方法も含浸処理を必要とせず、混合する繊
維に工夫を凝らしであるが、この繊維と炭素粉と有機質
結合剤に加え混捏、成型、焼成する工程では、 ■ 有機質結合剤で繊維および炭素粉を充分ぬらすよう
混捏する必要があり、混捏により繊維が粉化する。
None of the above methods require impregnation treatment, and the fibers to be mixed are carefully selected. However, in the process of adding the fibers, carbon powder, and organic binder to kneading, molding, and firing, It is necessary to mix and knead the carbon powder so that it is sufficiently wetted, and the fibers are pulverized by kneading.

■ 混捏、加圧成型時に粗粒の炭素粒子または骨材が繊
維を破損し粉化する。
■ During kneading and pressure molding, coarse carbon particles or aggregates damage fibers and turn them into powder.

■ 焼成過程で繊維、炭素粒子、有機質結合剤の3種の
原料の収縮率の差で微小クラックが多発する。
■ During the firing process, microcracks occur frequently due to the difference in shrinkage rates of the three raw materials: fibers, carbon particles, and organic binder.

といった悪条件が重って、曲げ強度800 kg/cm
2以上の高強度炭素材料が得られず、また耐摩性に優れ
た炭素材料が得られないという問題があった。
Due to these adverse conditions, the bending strength was 800 kg/cm.
There was a problem that a carbon material with a high strength of 2 or more could not be obtained, and a carbon material with excellent wear resistance could not be obtained.

本発明は、繊維と炭素粉との結合力強化を図ることで従
来法における問題点を解消し、しかも含浸処理を必要と
せず、経済的な製法で製造することができる高強度・耐
摩性に優れた繊維強化炭素材料を提供することにある。
The present invention solves the problems of conventional methods by strengthening the bonding strength between fibers and carbon powder, and also achieves high strength and wear resistance that does not require impregnation treatment and can be manufactured using an economical manufacturing method. Our objective is to provide excellent fiber-reinforced carbon materials.

〔問題点を解決するための技術的手段〕本発明の繊維強
化炭素材料は、無機繊維、金属繊維の中から選ばれfc
lまたは2以上の繊維材料3〜60重量%と炭素粉30
〜96重量%を混合した複合材料に、酸化イツトリウム
等の酸化物焼結助剤を1〜10重量%添加して成ること
を特徴とする。
[Technical means for solving the problem] The fiber-reinforced carbon material of the present invention is selected from inorganic fibers and metal fibers.
1 or 2 or more fiber materials 3-60% by weight and carbon powder 30%
It is characterized in that it is made by adding 1 to 10% by weight of an oxide sintering aid such as yttrium oxide to a composite material mixed with 1 to 96% by weight.

ここで炭素粉とはコークスまたは黒鉛にコールタールピ
ッチまたはフェノールレジン等のバインダーを混練した
もの、またはピッチを重縮合し、自己焼結性を持たせた
炭素粉をいう。
Here, carbon powder refers to carbon powder obtained by kneading coke or graphite with a binder such as coal tar pitch or phenol resin, or by polycondensing pitch to give it self-sintering properties.

この炭素粉と混合する無機繊維には炭素繊維、ガラス繊
゛維、炭化硅素繊維等がある。また、金属繊維としては
、スチールファイバーや銅ファイバー等がある。これら
の繊維材料は長さが200m+n以下で、L(長さ)/
D(太さ)≧50、強度50 ky/mn2以上あるこ
とが好ましい。
Inorganic fibers to be mixed with this carbon powder include carbon fibers, glass fibers, silicon carbide fibers, and the like. Furthermore, examples of metal fibers include steel fibers and copper fibers. These fiber materials have a length of 200m+n or less, and L (length)/
It is preferable that D (thickness)≧50 and strength is 50 ky/mn2 or more.

酸化物焼結助剤は、特に酸化イツトリウムが繊維強化炭
素材料の強度・耐摩耗性を向上するに優れておシ、粒度
は特に限定するものではないが10μmφ〜200μm
φがよい。
Among the oxide sintering aids, yttrium oxide is particularly effective in improving the strength and wear resistance of fiber-reinforced carbon materials.The particle size is not particularly limited, but may be 10 μmφ to 200 μm.
φ is good.

本発明において、繊維材料を3〜60重量%と限定した
理由は、繊維材料が60%を超えると、繊維同志上くつ
けるバインダー成分(炭素粉中に含まれるバインダーや
バインダーに相当する揮発分)の比率が低下し、接着力
が確保されないのと、3重量%以下では繊維材料の補作
的効果が得られないことによるものである。
In the present invention, the reason why the fiber material is limited to 3 to 60% by weight is that if the fiber material exceeds 60%, the binder component (the binder contained in the carbon powder and the volatile content equivalent to the binder) that is attached to the fibers This is due to the fact that the adhesion strength is not ensured due to a decrease in the ratio of 10% by weight, and that if the amount is less than 3% by weight, the complementary effect of the fiber material cannot be obtained.

イツトリウム化合物を1〜10重i−俤とした理由は、
10重量1に超えて添加してもコストアップとなるのみ
でさして効果があがらず、1重量%よシも少くすると、
繊維材料と炭素粉との結合力が低下するからである。
The reason why the yttrium compound is 1 to 10 times i-
Even if it is added in excess of 10% by weight, it will only increase the cost and will not be very effective, and if it is added as low as 1% by weight,
This is because the bonding force between the fiber material and the carbon powder decreases.

上記繊維強化炭素材料は、通常の製法に従って繊維材料
と炭素粉との複合材料にイツトリウム化合物を添加・混
合し、成形・焼成して得られる。
The above-mentioned fiber-reinforced carbon material is obtained by adding and mixing a yttrium compound to a composite material of a fiber material and carbon powder, molding and firing the composite material according to a conventional manufacturing method.

〔作 用〕[For production]

複合材料に酸化イツトリウム等の酸化物焼結助剤を1〜
10重量%を添加することによシ、炭素粒子−繊維間の
空隙が埋り、結合力が向上するので強度、耐摩耗性の優
れた繊維強化炭素材料が得られる。
Adding an oxide sintering aid such as yttrium oxide to the composite material
By adding 10% by weight, the voids between carbon particles and fibers are filled and the bonding strength is improved, so that a fiber-reinforced carbon material with excellent strength and wear resistance can be obtained.

〔実施例〕〔Example〕

炭素繊維5%〜8重量係、自己焼結炭素粉87〜90重
量%、酸化イツトリウム5重量%から成る原料を摺潰機
中で40分間混合摩砕し、混合したものをプレス機を用
いて2 T/cnt2で成形加工した。成形加工したも
の’tlooo℃で炭化・焼成し、更に1800〜24
00℃で黒鉛化した。
Raw materials consisting of 5% to 8% by weight of carbon fiber, 87% to 90% by weight of self-sintered carbon powder, and 5% by weight of yttrium oxide were mixed and ground in a grinder for 40 minutes, and the mixed material was crushed using a press. Molding was performed at 2 T/cnt2. The molded product is carbonized and fired at 1800~24℃.
Graphitized at 00°C.

この実施例における曲げ強度等の物理的特性を従来例と
ともに表1に示す。
Physical properties such as bending strength in this example are shown in Table 1 together with the conventional example.

本発明の繊維強化炭素材料は、曲げ強度が960〜12
50kgf/crn2、衝撃強度が3.6〜7.0 k
Flf ・crrv’cm2であり、従来の黒鉛質、金
属含浸質の炭素材料よりも優れている。
The fiber reinforced carbon material of the present invention has a bending strength of 960 to 12
50kgf/crn2, impact strength 3.6-7.0k
Flf·crrv'cm2, which is superior to conventional graphite and metal-impregnated carbon materials.

また、本発明の繊維強化炭素材料の比摩耗量を、純カー
?ン、他の焼結助剤を添加した炭素材料との間で比較を
行った。その結果を第1図に示す。
In addition, the specific wear amount of the fiber-reinforced carbon material of the present invention is determined from pure car? Comparisons were made between carbon materials containing carbon and other sintering aids. The results are shown in FIG.

比較にあたって実施例は、複合材料に酸化イツトリウム
を1.3,5.8重量%添加した各実施例であり、比較
例は複合材料に酸化イツトリウム5重量%+酸化アルミ
ニウム2重量%全添加した炭素材料、複合材料に炭化朋
素15重量%+炭化硅素10重量%を添加した炭素材料
、それに加えて純カーがンの3比較例である。いずれに
おいても製造工程を同じくし、2,200℃の焼成温度
で黒鉛化した。
For comparison, the examples are examples in which 1.3 and 5.8% by weight of yttrium oxide were added to the composite material, and the comparative examples were carbon in which 5% by weight of yttrium oxide + 2% by weight of aluminum oxide were added to the composite material. These are three comparative examples of materials, a carbon material in which 15% by weight of boron carbide and 10% by weight of silicon carbide are added to a composite material, and pure carganese in addition. In both cases, the manufacturing process was the same, and graphitization was performed at a firing temperature of 2,200°C.

実施例における比摩耗量は、複合材料に酸化イツトリウ
ムを1重量%添加した場合が10  trrm3/霞・
kgfで、酸化イノ) IJウムの量が多くなるに従っ
て減少し、8重量%で6 X 10  m+3/rtv
n−に9fになっている。純カーボンや他の焼結助剤を
添加した場合と比べるとイノ) IJウム化合物を添加
した本発明の方が比摩耗量においても優れていることが
判る。これらの優れた点や、電気抵抗率が低いという点
を利用して本発明にかかる繊維強化炭素材料を特に使用
条件が厳しいトロリー線等の摺動集電材に活用すること
ができる。
The specific wear amount in the example is 10 trrm3/haze when 1% by weight of yttrium oxide is added to the composite material.
kgf, the amount of IJium oxide decreases as the amount increases, and at 8% by weight 6 X 10 m+3/rtv
It is 9f on n-. It can be seen that compared to cases where pure carbon or other sintering aids are added, the case of the present invention in which the IJ compound is added is also superior in terms of specific wear amount. Taking advantage of these excellent points and the low electrical resistivity, the fiber-reinforced carbon material according to the present invention can be used for sliding current collectors such as trolley wires, which have particularly severe usage conditions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複合材料に酸化イノ) IJウム等の
酸化物焼結助剤を1〜10重量%添加することにより、
強度・耐摩耗性の優れた繊維強化炭素材料が得られる。
According to the present invention, by adding 1 to 10% by weight of an oxide sintering aid such as ino-IJium oxide to the composite material,
A fiber-reinforced carbon material with excellent strength and wear resistance can be obtained.

また、本発明の繊維強化炭素材料は含浸処理をすること
なく、成形・焼成により得ることができるものであるか
ら、コスト的にも低廉し一般産業にも使用可能となる。
Furthermore, since the fiber-reinforced carbon material of the present invention can be obtained by molding and firing without impregnation treatment, it is inexpensive and can be used in general industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明と比較例との間で比摩耗量を比較したグ
ラフである。
FIG. 1 is a graph comparing the specific wear amount between the present invention and a comparative example.

Claims (1)

【特許請求の範囲】[Claims] (1)無機繊維、金属繊維の中から選ばれた1または2
以上の繊維材料3〜60重量%と炭素粉30〜96重量
%を混合した複合材料に、酸化イットリウム等の酸化物
焼結助剤を1〜10重量%添加したことを特徴とする繊
維強化炭素材料。
(1) 1 or 2 selected from inorganic fibers and metal fibers
Fiber-reinforced carbon characterized by adding 1 to 10% by weight of an oxide sintering aid such as yttrium oxide to a composite material obtained by mixing 3 to 60% by weight of the above fiber material and 30 to 96% by weight of carbon powder. material.
JP60172796A 1985-08-06 1985-08-06 Fiber reinforced carbon material Pending JPS6236075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172796A JPS6236075A (en) 1985-08-06 1985-08-06 Fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172796A JPS6236075A (en) 1985-08-06 1985-08-06 Fiber reinforced carbon material

Publications (1)

Publication Number Publication Date
JPS6236075A true JPS6236075A (en) 1987-02-17

Family

ID=15948521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172796A Pending JPS6236075A (en) 1985-08-06 1985-08-06 Fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPS6236075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252357A (en) * 1990-02-28 1991-11-11 Nippon Steel Chem Co Ltd Production of carbon material for sliding current collection
JPH04310568A (en) * 1991-04-05 1992-11-02 Toyota Motor Corp Carbon fiber reinforced carbon composite material having high coefficient of friction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252357A (en) * 1990-02-28 1991-11-11 Nippon Steel Chem Co Ltd Production of carbon material for sliding current collection
JPH04310568A (en) * 1991-04-05 1992-11-02 Toyota Motor Corp Carbon fiber reinforced carbon composite material having high coefficient of friction

Similar Documents

Publication Publication Date Title
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
US5326732A (en) Carbon-silicon carbide composite material and method for the preparation thereof
CN110550940A (en) Ti (C, N) solid solution combined corundum-spinel refractory material and preparation method thereof
CN107619288B (en) Method for preparing carbon fiber reinforced titanium diboride composite material by adopting in-situ reaction
EP0157586B1 (en) A method for producing sintered silicon carbide articles
JPS6236075A (en) Fiber reinforced carbon material
CN109095929B (en) Preparation method of carbon-ceramic brake disc
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JPS63222072A (en) Impermeable carbon material
JPS63151677A (en) Carbon fiber reinforced carbon composite material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
KR100215094B1 (en) Process for producing carbon matrics
JPH0512398B2 (en)
JPS6153104A (en) Production of high-strength carbon material
JPH01264917A (en) Production of impermeable carbon material
JPS63233074A (en) Manufacture of impermeable carbon material
JPS63147880A (en) Silicon carbide-carbon composite material
JPS5957975A (en) Non-permeable carbon material manufacture