JPH01264917A - Production of impermeable carbon material - Google Patents

Production of impermeable carbon material

Info

Publication number
JPH01264917A
JPH01264917A JP63092532A JP9253288A JPH01264917A JP H01264917 A JPH01264917 A JP H01264917A JP 63092532 A JP63092532 A JP 63092532A JP 9253288 A JP9253288 A JP 9253288A JP H01264917 A JPH01264917 A JP H01264917A
Authority
JP
Japan
Prior art keywords
mesophase
resin
weight
powder
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092532A
Other languages
Japanese (ja)
Inventor
Mikiro Kato
加藤 幹郎
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63092532A priority Critical patent/JPH01264917A/en
Publication of JPH01264917A publication Critical patent/JPH01264917A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title gas-impermeable carbon material having excellent heat conductivity, electrical conductivity, chemical resistance, and mechanical strength by forming a mixture of mesophase globules or mesophase powder, a thermosetting resin, and infusibilized fiber, and calcining the formed product. CONSTITUTION:A mixture contg. 5-70wt.% mesophase globules or mesophase powder, 10-60wt.% thermosetting resin, and 3-60wt.% infusibilized fiber is formed. The formed product is calcined in a nonoxidizing atmosphere to obtain the desired carbon material. The thermosetting resin to be used is capable of providing a carbide by carbonization and calcination, and phenolic resin, furan resin, xylene resin, epoxy resin, etc., can be exemplified. However, the phenolic resin and furan resin having high carbonization yield are preferably used, and the resin having >=50wt.% carbonization yield is preferably selected. In addition, the mesophase powder can be produced from either petroleum pitch or coal pitch.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、熱伝導性、電気伝導性及び耐薬品性に優れ
ると共に、高い機械的強度を備えたガス不浸透性炭素材
の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a gas-impermeable carbon material having excellent thermal conductivity, electrical conductivity, and chemical resistance as well as high mechanical strength. It is something.

〈従来技術とその課題〉 近年、軽量である上、寸法安定性、耐熱性、電気伝導性
、熱伝導性並びに耐薬品性に優れた素材として炭素成形
材が注目されるようになり、半導体製造の治工具、原子
炉材或いは電極等、多方面の分野においてその利用が推
進されている。
<Prior art and its challenges> In recent years, carbon molding materials have attracted attention as materials that are lightweight, and have excellent dimensional stability, heat resistance, electrical conductivity, thermal conductivity, and chemical resistance, and are used in semiconductor manufacturing. Its use is being promoted in many fields such as jigs and tools, nuclear reactor materials, and electrodes.

中でも、特に“ガス不浸透性炭素材”は、ガスの透過遮
断物性のほか、低電気抵抗や良好な耐薬品性を示すこと
から、“リン酸型燃料電池の分離板”としての適用が注
目を集めている。なぜなら、リン酸型燃料電池の分離板
は、燃料として供給される水素と燃料用の空気との仕切
りの役目を果たすものであることから両者の混和を防止
する機能が必要であり、また、発生した電気や熱の良導
体であることや、更には約200℃のリン酸に対する優
れた耐触性が要求されていたが、ガス不浸透性炭素材の
有する物性はこれらの要求特性に極めて近いものだった
からである。
Among these, "gas-impermeable carbon materials" in particular are attracting attention for their application as "separator plates for phosphoric acid fuel cells" because they exhibit low electrical resistance and good chemical resistance in addition to gas permeation blocking physical properties. are collecting. This is because the separator plate in a phosphoric acid fuel cell serves as a partition between the hydrogen supplied as fuel and the fuel air, so it must have a function to prevent the two from mixing. Gas-impermeable carbon materials were required to be good conductors of electricity and heat, and to have excellent resistance to phosphoric acid at temperatures of about 200°C, but the physical properties of gas-impermeable carbon materials are extremely close to meeting these requirements. Because it was.

それ故、これまでにも“リン酸型燃料電池の分離板”等
としても十分に満足できる特性を備えたガス不浸透性炭
素材を実現すべく様々な提案がなされてきた。
Therefore, various proposals have been made to realize gas-impermeable carbon materials with sufficiently satisfactory characteristics as "separation plates for phosphoric acid fuel cells" and the like.

例えば、特公昭56−22836号公報には、硬化し得
る樹脂(熱硬化性樹脂)と硬化フェノール樹脂繊維との
混和物を成形・硬化した後、これを800℃以上の温度
で焼成して成る炭素材が示されている。ところが、該公
報に示された炭素材は、無定形炭素質であるので黒鉛質
の炭素材に比べ電気や熱の伝導性や耐リン酸性に劣ると
いう問題点に加えて、機械加工性(例えばリブ付の分離
板に加工する場合の溝の加工性)の点で十分に満足でき
るものではなかった。
For example, Japanese Patent Publication No. 56-22836 discloses that after molding and curing a mixture of a curable resin (thermosetting resin) and cured phenol resin fibers, the mixture is fired at a temperature of 800°C or higher. Carbon material is shown. However, since the carbon material disclosed in the publication is an amorphous carbonaceous material, it has problems such as inferior electrical and thermal conductivity and phosphoric acid resistance compared to graphite carbonaceous materials, as well as poor machinability (e.g. The workability of the grooves when processing into a ribbed separation plate was not fully satisfactory.

そこで、上記の電気伝導性、熱伝導性、耐リン酸性並び
に機械加工性を改善した炭素材として、熱硬化性樹脂に
黒鉛粉を混合した原料を焼成したものが提案された(特
開昭57−72273号、特開昭59−195514号
、特開昭59−232906号等)。
Therefore, as a carbon material with improved electrical conductivity, thermal conductivity, phosphoric acid resistance, and machinability, a material prepared by firing a raw material of thermosetting resin mixed with graphite powder was proposed (Japanese Unexamined Patent Application Publication No. 57-197). -72273, JP-A-59-195514, JP-A-59-232906, etc.).

しかしながら、これらの炭素材は、無定形炭素質(所謂
“グラッシーカーボン質”)のマトリックス中に電気や
熱の良導体でかつ耐リン酸性や機械加工性の良好な黒鉛
質粉末が分散したものであることから、確かに無定形炭
素質単独の場合に比べて電気伝導性、熱伝導性、耐リン
酸性及び機械加工性に優れた特性を有してはいたが、一
方で、熱硬化性樹脂を原料とした上記炭素材は、その炭
化焼成過程において「熱硬化性樹脂が著しく収縮するの
に対して黒鉛は全く収縮せず、そのため収縮率の差に起
因して両者の界面に亀裂が発生するのを防止できない」
との問題を抱えるものであり、従ってガス不浸透性に対
する信頼性が乏しいのを否めなかった。
However, these carbon materials are made by dispersing graphite powder, which is a good electrical and thermal conductor and has good phosphoric acid resistance and machinability, in a matrix of amorphous carbon (so-called "glassy carbon"). Therefore, it certainly had better electrical conductivity, thermal conductivity, phosphoric acid resistance, and machinability than amorphous carbon alone, but on the other hand, thermosetting resin During the carbonization and firing process of the above-mentioned carbon material used as a raw material, ``thermosetting resin shrinks significantly, but graphite does not shrink at all, and as a result, cracks occur at the interface between the two due to the difference in shrinkage rate.'''cannot be prevented'
Therefore, it was undeniable that the reliability of gas impermeability was poor.

〈課題を解決するための手段〉 本発明者等は、上述のような観点から、ガス遮断性に優
れることは勿論、申し分のない電気伝導性、熱伝導性、
耐リン酸性並びに機械加工性を備え、リン酸型燃料電池
の分離板に適用しても十分に満足できる不浸透性炭素材
を提供すべく研究を行ったところ、[易黒鉛化物質であ
るメソフェーズ小球体やメソフェーズ粉は、その炭化焼
成の過程で収縮する」点に強い関心が向くこととなり、
「炭化焼成の過程で著しい収縮を見せる熱硬化性樹脂に
メソフェーズ小球体又はメソフェーズ粉を混合した場合
には、該メソフェーズ小球体又はメソフェーズ粉が熱硬
化性樹脂と同じく炭化焼成の際に収縮することから、マ
トリックスの熱硬化性樹脂との界面に収縮率差に基づく
亀裂の生成が抑制されるはずである」との推測の下に、
熱硬化性樹脂とメソフェーズ小球体又はメソフェーズ粉
との混合物を出発物質とする炭素材について更に研究を
重ねた結果、[該混合物を炭化焼成したものは、“メソ
フェーズ小球体又はメソフェーズ粉由来の炭化物”と“
熱硬化性物質由来の炭化物”の両者の界面に亀裂が認め
られず、不浸透性に優れた炭素材となっている上、電気
伝導性、熱伝導性。
<Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed a technology that not only has excellent gas barrier properties but also has impeccable electrical conductivity, thermal conductivity,
We conducted research to provide an impermeable carbon material that has phosphoric acid resistance and machinability and can be used as a separator plate in phosphoric acid fuel cells. There was a strong interest in the fact that small spheres and mesophase powders contract during the carbonization and firing process.
``If mesophase small spheres or mesophase powder are mixed with a thermosetting resin that shows significant shrinkage during carbonization and firing, the mesophase small spheres or mesophase powder will shrink during carbonization and firing in the same way as the thermosetting resin. Based on this assumption, the formation of cracks due to the difference in shrinkage rate at the interface with the matrix thermosetting resin should be suppressed.
As a result of further research on carbon materials that use a mixture of thermosetting resin and mesophase spherules or mesophase powder as a starting material, we found that [the mixture obtained by carbonization and firing is "carbide derived from mesophase spherules or mesophase powder"] and"
There are no cracks at the interface between the two carbides derived from thermosetting substances, making it a carbon material with excellent impermeability, as well as electrical and thermal conductivity.

耐リン酸性並びに機械加工性の面でも十分に満足できる
ものであり、更に、これに熱硬化性樹脂と同程度の炭化
収縮率を有する不融化繊維を混合すると、上記好ましい
特性がそのまま維持された上で機械的強度が一段と向上
するようになる」との知見を得るに至ったのである。
It was fully satisfactory in terms of phosphoric acid resistance and machinability, and furthermore, when infusible fibers having a carbonization shrinkage rate comparable to that of the thermosetting resin were mixed, the above-mentioned favorable characteristics were maintained. This led to the discovery that the mechanical strength of the material is further improved.

この発明は、上記知見に基づいてなされたものであり、
「メソフェーズ小球体又はメソフェーズ粉:5〜70M
量%、熱硬化性梼脂:10〜60重量%及び不融化繊維
:3〜60重量%の混合物を成形した後、その成形物を
非酸化性雰囲気下で焼成することにより、優れたガス遮
蔽性、電気伝導性、熱伝導性、耐リン酸性並びに機械加
工性を兼備し、しかも高い強度を示す不浸透性炭素材を
安定製造し得るようにした点」を特徴としている。
This invention was made based on the above findings,
"Mesophase spherules or mesophase powder: 5-70M
After molding a mixture of thermosetting resin: 10 to 60% by weight and infusible fiber: 3 to 60% by weight, the molded product is fired in a non-oxidizing atmosphere to provide excellent gas shielding. It is characterized by the ability to stably produce an impermeable carbon material that exhibits high strength, electrical conductivity, thermal conductivity, phosphoric acid resistance, and machinability.

本発明において対象とする熱硬化性樹脂は、炭化焼成す
ることによって炭化物を与えることができる樹脂であり
、例えばフェノール樹脂、フラン樹脂、キシレン樹脂、
エポキシ樹脂等を挙げることができるが、炭化収率の高
いフェノール樹脂やフラン樹脂が好ましく、できれば5
0重量%以上の炭化収率のものを選ぶのが良い。このよ
うな樹脂が出発原料であれば、十分に優れた不浸透性の
炭素材が得られる。
Thermosetting resins targeted in the present invention are resins that can be carbonized to provide a carbide by carbonization firing, such as phenol resins, furan resins, xylene resins,
Examples include epoxy resins, but phenol resins and furan resins with high carbonization yields are preferred, preferably 5
It is better to choose one with a carbonization yield of 0% by weight or more. If such a resin is used as a starting material, a sufficiently excellent impermeable carbon material can be obtained.

また、メソフェーズ粉は、石油系或いは石炭系等の何れ
のピッチから製造したものでも良い。ただ、耐リン酸腐
食性や電池反応の安定性の面から不純物の少ない炭素材
が要求されるので、石炭系メソフェーズ粉の場合にはメ
ソフェーズ製造川原料は精製しておいた方が好ましい。
Further, the mesophase powder may be produced from any petroleum-based or coal-based pitch. However, from the viewpoint of phosphoric acid corrosion resistance and stability of battery reactions, a carbon material with few impurities is required, so in the case of coal-based mesophase powder, it is preferable to refine the mesophase production raw material.

通常、石油系または石炭系の重質油或いはピッチを35
0〜500℃で熱処理すると、熱処理の初期には球晶と
称する光学的に異方性の球体がピンチの母相中に生成し
、更に熱処理を続けて行くと球晶が合体・成長を繰り返
してピッチ全体が光学的に異方性の物質、所謂“バルク
メソフェーズ”となる。上記の球晶やバルクメソフェー
ズは、熱処理条件によっても異なるが、−船釣には軟化
点を示さない。つまり、不融性というコークス的な性質
がある反面、揮発分を数重量%含有するというピッチ的
な性質をも併せ持つ炭素前駆体である。
Usually petroleum or coal based heavy oil or pitch
When heat treated at 0 to 500℃, optically anisotropic spheres called spherulites are generated in the pinch matrix at the beginning of the heat treatment, and as the heat treatment continues, the spherulites repeatedly coalesce and grow. The entire pitch becomes an optically anisotropic material, the so-called "bulk mesophase." The above-mentioned spherulites and bulk mesophases differ depending on the heat treatment conditions, but - they do not show a softening point in boat fishing. In other words, it is a carbon precursor that has coke-like properties of being infusible, but also pitch-like properties of containing several percent by weight of volatile matter.

本発明で対象とするメソフェーズ小球体とは前記“球晶
゛であり、メソフェーズ粉とは前記“バルクメソフェー
ズを粉砕したちの”である。
The mesophase microspheres targeted by the present invention are the above-mentioned "spherulites", and the mesophase powder is the above-mentioned "pulverized bulk mesophase".

そして、例えば「炭素含有率が92重量%以上であり、
900℃までの揮発分が7〜20重量%。
For example, "the carbon content is 92% by weight or more,
Volatile content up to 900°C is 7-20% by weight.

500℃まで加熱した時の線収縮率が1%以上で、その
平均粒子径が40μm以下のメソフェーズ小球体」或い
は「上記メソフェーズ小球体と同一の性状を有するバル
クメソフェーズを平均粒径4゜μm以下に粉砕したメソ
フェーズ粉」が好ましい対象となる。
"Mesophase microspheres with a linear shrinkage rate of 1% or more when heated to 500°C and an average particle size of 40 μm or less" or "Bulk mesophase having the same properties as the above mesophase microspheres with an average particle size of 4 μm or less" The preferred target is ``mesophase powder that has been ground into

ここで、炭素含有率が92%未満の場合は、炭素以外の
元素が焼成過程で分解・ガス化して重量減少量が増加す
ると共に、炭素以外の原子が黒鉛化性を阻害し、熱伝導
性、電気伝導性、耐リン酸性が向上しない恐れがある。
If the carbon content is less than 92%, elements other than carbon will decompose and gasify during the firing process, resulting in increased weight loss, and atoms other than carbon will inhibit graphitization, resulting in poor thermal conductivity. , electrical conductivity and phosphoric acid resistance may not improve.

また、900℃までの揮発分が7重量%未満であると焼
成過程でマトリックスの熱硬化性樹脂との濡れ性が悪く
、メソフェーズ小球体又はメソフェーズ粉とマトリック
スとの界面に隙間(クランク)が発生し不浸透性の低下
を招く恐れがあり、一方、13重量%を超えると、メソ
フェーズ小球体又はメソフェーズ粉内部から多量に発生
する揮発分により発泡乃至は多孔体となって不浸透性が
低下する点が懸念されるようになる。
In addition, if the volatile content up to 900°C is less than 7% by weight, wettability with the thermosetting resin of the matrix will be poor during the firing process, and a gap (crank) will occur at the interface between the mesophase spherules or mesophase powder and the matrix. On the other hand, if it exceeds 13% by weight, a large amount of volatile matter generated from inside the mesophase spherules or mesophase powder will result in a foamed or porous body, resulting in a decrease in impermeability. This is becoming a concern.

そして、500“Cまでに加熱した時の線収縮率とは、
メソフェーズ小球体又はメソフェーズ粉単独を2t/c
II1以上の圧力で加圧成形し、得られた成形体から試
片を採取して測定した値である。この線収縮率が1%未
満の場合には、炭化・焼成後のメソフェーズ小球体或い
はメソフェーズ粉由来の炭素粒子と熱硬化性樹脂由来の
マトリックス炭素との界面に隙間が発生し不浸透性が低
下しがちとなるので好ましくない。
And what is the linear shrinkage rate when heated to 500"C?
2t/c of mesophase small spheres or mesophase powder alone
This is a value measured by taking a sample from the molded product obtained by pressure molding at a pressure of II1 or higher. If this linear shrinkage rate is less than 1%, a gap will occur at the interface between the carbon particles derived from the mesophase small spheres or mesophase powder after carbonization and firing and the matrix carbon derived from the thermosetting resin, resulting in a decrease in impermeability. This is not desirable because it tends to occur.

本発明が対象とする不融化繊維は、石油系及び石炭系の
ピッチ繊維、ポリアクリロニトリル(PAN)繊維、セ
ルロース繊維、フェノール樹脂繊維等の有機繊維を不融
化処理した繊維である。不融化処理の方法としては、有
機繊維の種類によっても異なるが、通常、200〜40
0℃の温度で空気酸化させる方法が採用される。
The infusible fibers targeted by the present invention are fibers obtained by infusible treatment of organic fibers such as petroleum-based and coal-based pitch fibers, polyacrylonitrile (PAN) fibers, cellulose fibers, and phenol resin fibers. The method of infusibility treatment varies depending on the type of organic fiber, but usually 200 to 40
A method of air oxidation at a temperature of 0° C. is adopted.

なお、これらの不融化繊維は、長さ0.5〜10鶴の短
繊維、不織布、マット クロス等の何れの形態であって
も差し支えない。
Note that these infusible fibers may be in any form such as short fibers with a length of 0.5 to 10 mm, nonwoven fabric, mat cloth, etc.

次に、かかる性状を有するメソフェーズ小球体又はメソ
フェーズ粉、熱硬化性樹脂、及び不融化繊維を用いた不
浸透性炭素材の製造条件について説明する。
Next, conditions for manufacturing an impermeable carbon material using mesophase small spheres or mesophase powder having such properties, a thermosetting resin, and infusible fibers will be explained.

メソフェーズ小球体又はメソフェーズ粉は、熱硬化性樹
脂及び不融化繊維との混合物に対して5〜70重量%の
範囲の割合になるように配合される。この配合割合が5
重量%未満の場合には、メソフェーズ小球体又はメソフ
ェーズ粉の配合効果が得られず、熱伝導性、電気伝導性
、耐リン酸性並びに機械加工性が低下する。一方、70
重量%を超えて配合すると、メソフェーズ小球体又はメ
ソフェーズ粉の表面積が増えて、熱硬化性樹脂により均
一にメソフェーズ小球体又はメソフェーズ粉を結着でき
なくなって強度低下を招く。
The mesophase spherules or mesophase powder are blended in a proportion ranging from 5 to 70% by weight with respect to the mixture with the thermosetting resin and infusible fiber. This blending ratio is 5
When the amount is less than % by weight, the effect of blending the mesophase spherules or mesophase powder cannot be obtained, and thermal conductivity, electrical conductivity, phosphoric acid resistance, and machinability deteriorate. On the other hand, 70
If the amount exceeds % by weight, the surface area of the mesophase spherules or mesophase powder will increase, and the thermosetting resin will not be able to bind the mesophase spherules or mesophase powder uniformly, resulting in a decrease in strength.

また、不融化繊維は、メソフェーズ小球体又はメソフェ
ーズ粉と熱硬化性樹脂との混合物に対して3〜60重量
%の範囲となるように配合される。
Further, the infusible fiber is blended in an amount of 3 to 60% by weight with respect to the mixture of mesophase spherules or mesophase powder and thermosetting resin.

なぜなら、この配合割合が3重量%未満の場合には不融
化繊維の配合効果が得られないので十分な強度を確保で
きず、一方、60重量%を超えて配合すると、メソフェ
ーズ小球体又はメソフェーズ粉の配合割合にもよるが、
不融化繊維の表面積が増大して熱硬化性樹脂により均一
に不融化繊維を結着できなくなって、やはり強度低下を
招く。
This is because if the blending ratio is less than 3% by weight, the blending effect of infusible fibers cannot be obtained and sufficient strength cannot be secured, whereas if the blending ratio exceeds 60% by weight, mesophase spherules or mesophase powder It depends on the blending ratio of
The surface area of the infusible fibers increases, making it impossible to bind the infusible fibers uniformly with the thermosetting resin, which also results in a decrease in strength.

上記素材原料から不浸透性炭素材を製造するには、まず
、前述の如くに配合した素材原料混合物を金型に仕込み
、通常は130〜200℃の温度下で5〜150 kg
/cm”の圧力を負荷して加圧成形する。次いで、この
成形体を必要に応じて130〜200℃で10〜30時
間加熱することによって“後硬化”させる。後硬化した
成形体は、非酸化性雰囲気(例えばN2ガスや計ガスの
流通下)で昇温速度二0.5〜50℃/hrにて少なく
とも800℃まで炭化焼成し、必要に応じて更に黒鉛化
して不浸透性炭素材とされる。
In order to produce an impermeable carbon material from the above-mentioned raw materials, first, the raw material mixture blended as described above is charged into a mold, and 5-150 kg of the raw material mixture is usually placed at a temperature of 130-200°C.
The molded product is then pressure-molded by applying a pressure of 1.5 cm/cm. The molded product is then “post-cured” by heating at 130 to 200°C for 10 to 30 hours as necessary.The post-cured molded product is Carbonization is carried out in a non-oxidizing atmosphere (for example, under the flow of N2 gas or gauge gas) at a heating rate of 20.5 to 50°C/hr to at least 800°C, and if necessary, further graphitized to form impermeable carbon. It is considered as a material.

以下、実施例によってこの発明を更に具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 実施例 1 炭素含有率: 93.3重量%、900℃までの揮発分
: 10.3重量%、500℃までの線収縮率が3%で
平均粒子径が15μmのメソフェーズ粉、 1000°
Cにおける炭化収率が52重四%のフェノール・ノボラ
ック樹脂粉末、及びPANの不融化短繊維(長さ111
)を第1表に示す配合割合で混合した後(第1表ではメ
ソフェーズ粉と不融化繊維の配合割合のみを示したが、
残部は配合熱硬化性樹脂である)、lmX1mの平面積
を持つ金型に仕込み、温度:180℃、圧カニ 80 
kg/cm2で30分間加熱・加圧成形して厚さl m
mの成形体を得、次いでこの成形体を20時間かけて2
00℃まで昇温してから、200℃で20時間保持して
“後硬化”させた。
<Examples> Example 1 Mesophase powder with carbon content: 93.3% by weight, volatile content up to 900°C: 10.3% by weight, linear shrinkage rate up to 500°C of 3%, and average particle size of 15 μm. 1000°
Phenol/novolac resin powder with a carbonization yield of 52x4% in C and infusible short fibers of PAN (length 111
) at the blending ratio shown in Table 1 (Table 1 only shows the blending ratio of mesophase powder and infusible fiber,
The remainder is a blended thermosetting resin), placed in a mold with a planar area of 1m x 1m, temperature: 180°C, pressure crab 80
Heated and pressure molded at kg/cm2 for 30 minutes to a thickness of lm.
A molded body of m is obtained, and then this molded body is heated for 20 hours.
After raising the temperature to 00°C, it was held at 200°C for 20 hours for "post-curing".

次に、後硬化させた成形体を“粉コークスを詰めた容器
”内にて 4℃/hrの速度で1000℃まで昇温しで
炭化した後、アルゴン雰囲気中で4℃/minの速度で
2500°Cまで昇温し、厚さ0.8鶴の黒鉛化物を得
た。
Next, the post-cured compact was carbonized by raising the temperature to 1000°C at a rate of 4°C/hr in a “vessel filled with coke powder”, and then carbonized at a rate of 4°C/min in an argon atmosphere. The temperature was raised to 2500°C to obtain a graphitized material with a thickness of 0.8 mm.

得られた黒鉛化物の物性を測定したが、この結果を第1
表に示す。
The physical properties of the obtained graphitized material were measured, and these results were used in the first
Shown in the table.

なお、第1表における「通気度」は、差圧1 kg/c
m2のN2ガスの通過量を室温にて測定することによっ
て求めた。
Note that "air permeability" in Table 1 is based on a differential pressure of 1 kg/c.
It was determined by measuring the amount of N2 gas passing through m2 at room temperature.

また、「耐リン酸性」は、200℃の100%リン酸液
に1000時間浸漬した後の初期重量に対する重量減量
率である。
Moreover, "phosphoric acid resistance" is the weight loss rate with respect to the initial weight after being immersed in a 100% phosphoric acid solution at 200° C. for 1000 hours.

機械加工性は、直径200mm、J!J−さ2鶴のダイ
ヤモンドブレードを243Orpmの速度で回転し、黒
鉛化物を111m1nの送り速度で移動させて切断加工
を行い、このときの黒鉛化物のワレ発生の有無から判定
した。
Machinability is 200mm in diameter, J! Cutting was performed by rotating a J-Sa2 Tsuru diamond blade at a speed of 243 rpm and moving the graphitized material at a feed rate of 111 m1n, and judgment was made based on the presence or absence of cracking of the graphitized material at this time.

実施例 2 炭素含有率: 92.8重量%、900℃までの揮発分
712.0重量%、500゛cまでの線収縮率が5%で
、平均粒子径が30μmのメソフェーズ小球体をメソフ
ェーズ粉の代わりに用い、硬化フェノール樹脂繊維の1
011長のチョップをPAN不融化繊維の代わりに用い
た以外は、実施例1と全く同じ方法で黒鉛化物を得た。
Example 2 Mesophase spherules with a carbon content of 92.8% by weight, a volatile content of 712.0% by weight up to 900°C, a linear shrinkage rate of 5% up to 500°C, and an average particle size of 30 μm were made into mesophase powder. 1 of the cured phenolic resin fiber.
A graphitized material was obtained in exactly the same manner as in Example 1, except that a 011-length chopped fiber was used instead of the PAN infusible fiber.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

実施例 3 炭素含有率: 93.3重量%、900℃までの揮発分
:9.8重量%、500’Cまでの線収縮率が2%で平
均粒子径が30μmのメソフェーズ粉:50重量部に、
フェノール・ノゾール樹脂液:25重量部とLoamの
長さのピンチ繊維の不融化繊維:25重量部を混練した
後、80℃で10分間乾燥した。
Example 3 Mesophase powder with carbon content: 93.3% by weight, volatile content up to 900°C: 9.8% by weight, linear shrinkage rate up to 500°C of 2% and average particle size of 30 μm: 50 parts by weight To,
After kneading 25 parts by weight of the phenol/nozole resin liquid and 25 parts by weight of the infusible pinched fibers having a loam length, the mixture was dried at 80° C. for 10 minutes.

そして、このようにして得られた乾燥粉末を出発混合物
とした以外は、実施例1と同じ方法で黒鉛化物を製造し
た。
A graphitized product was produced in the same manner as in Example 1, except that the dry powder thus obtained was used as the starting mixture.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 1 固定炭素: 97.0重量%、灰分:2重量%、揮発分
:1重量%で、平均粒径:10μmの天然黒鉛をメソフ
ェーズ粉の代わりに用いた以外は、実施例1と全く同じ
方法で黒鉛化物を製造した。
Comparative Example 1 Completely the same as Example 1 except that fixed carbon: 97.0% by weight, ash content: 2% by weight, volatile content: 1% by weight, and natural graphite with an average particle size of 10 μm was used instead of mesophase powder. A graphitized product was produced in the same manner.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 2 実施例1で用いたのと同一の原料を用い、配合割合のみ
を変えて、実施例1と同じ方法で黒鉛化物を製造した。
Comparative Example 2 A graphitized product was produced in the same manner as in Example 1, using the same raw materials as in Example 1 and changing only the blending ratio.

得られた黒鉛化物の物性を測定し、その結果を同じく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

比較例 3 フェノール・ノボラック樹脂:50重量部と、硬化フェ
ノール樹脂繊維〔カイノール11010 :群栄化学に
、に、の商品名〕の10mm長のチヨ・7プ:50重量
部とを混合した後、実施例1と同じ方法で成形し、後硬
化し、炭化し、更に黒鉛化した。
Comparative Example 3 After mixing 50 parts by weight of phenol novolac resin and 50 parts by weight of 10 mm long Chiyo 7 fiber of cured phenol resin fiber [Kynol 11010: Gunei Chemical Co., Ltd., product name], It was molded, post-cured, carbonized, and graphitized in the same manner as in Example 1.

得られた黒鉛化物の物性を測定し、その結果を同しく第
1表に示す。
The physical properties of the obtained graphitized product were measured, and the results are also shown in Table 1.

なお、得られた1000°C焼成品、2500℃焼成品
とも機械加工は非常に困難であった。
Note that machining was extremely difficult for both the obtained products fired at 1000°C and 2500°C.

〈効果の総括〉 以上に説明した如く、この発明によれば、ガス遮蔽性、
電気伝導性、熱伝導性、耐リン酸性1強度並びに機械加
工性が共に優れ、リン酸型燃料電池の分離板に適用した
としても十分に満足できる不浸透性炭素材を提供できる
など、産業上有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, gas shielding properties,
It has excellent electrical conductivity, thermal conductivity, phosphoric acid resistance, strength, and machinability, and can provide an impermeable carbon material that is fully satisfactory even when applied to the separation plate of phosphoric acid fuel cells. Useful effects are produced.

Claims (1)

【特許請求の範囲】[Claims] メソフェーズ小球体又はメソフェーズ粉:5〜70重量
%、熱硬化性樹脂:10〜60重量%及び不融化繊維:
3〜60重量%の混合物を成形した後、その成形物を非
酸化性雰囲気下で焼成することを特徴とする、不浸透性
炭素材の製造方法。
Mesophase small spheres or mesophase powder: 5 to 70% by weight, thermosetting resin: 10 to 60% by weight, and infusible fiber:
A method for producing an impermeable carbon material, which comprises molding a 3-60% by weight mixture and then firing the molded product in a non-oxidizing atmosphere.
JP63092532A 1988-04-14 1988-04-14 Production of impermeable carbon material Pending JPH01264917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092532A JPH01264917A (en) 1988-04-14 1988-04-14 Production of impermeable carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092532A JPH01264917A (en) 1988-04-14 1988-04-14 Production of impermeable carbon material

Publications (1)

Publication Number Publication Date
JPH01264917A true JPH01264917A (en) 1989-10-23

Family

ID=14056970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092532A Pending JPH01264917A (en) 1988-04-14 1988-04-14 Production of impermeable carbon material

Country Status (1)

Country Link
JP (1) JPH01264917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534306A (en) * 2007-07-24 2010-11-04 シエツフレル コマンディートゲゼルシャフト Method for manufacturing a graphite cage for anti-friction bearings containing a plurality of rolling elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534306A (en) * 2007-07-24 2010-11-04 シエツフレル コマンディートゲゼルシャフト Method for manufacturing a graphite cage for anti-friction bearings containing a plurality of rolling elements

Similar Documents

Publication Publication Date Title
USRE42775E1 (en) Isotropic pitch-based materials for thermal insulation
CA2000664C (en) Process for producing a porous carbon electrode substrate for a fuel cell
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JP2010507550A (en) High purity nuclear graphite
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
JPH01264917A (en) Production of impermeable carbon material
US3993738A (en) High strength graphite and method for preparing same
JP3003935B2 (en) Molded heat insulating material and its manufacturing method
Vohler et al. New forms of carbon
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPS63222072A (en) Impermeable carbon material
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JPH05330915A (en) Production of carbon/carbon composite material
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS63233074A (en) Manufacture of impermeable carbon material
Jagtoyen et al. Carbon fiber composite molecular sieves for gas separation
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JPH06102530B2 (en) Method for manufacturing graphite molded body
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPH0151441B2 (en)
CN117510219A (en) Rapid preparation method of carbon-carbon heating element
JPS61191509A (en) Production of isotropic graphitic material