JP3003935B2 - Molded heat insulating material and its manufacturing method - Google Patents

Molded heat insulating material and its manufacturing method

Info

Publication number
JP3003935B2
JP3003935B2 JP1026165A JP2616589A JP3003935B2 JP 3003935 B2 JP3003935 B2 JP 3003935B2 JP 1026165 A JP1026165 A JP 1026165A JP 2616589 A JP2616589 A JP 2616589A JP 3003935 B2 JP3003935 B2 JP 3003935B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
fibers
molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1026165A
Other languages
Japanese (ja)
Other versions
JPH02208264A (en
Inventor
博文 久徳
健吾 浜田
義貴 中東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1026165A priority Critical patent/JP3003935B2/en
Publication of JPH02208264A publication Critical patent/JPH02208264A/en
Application granted granted Critical
Publication of JP3003935B2 publication Critical patent/JP3003935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温熱処理時の断熱材等として好適な成形
断熱材とその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a molded heat insulating material suitable as a heat insulating material at the time of a high-temperature heat treatment and a method for producing the same.

[従来の技術と発明が解決しようとする課題] 近年、真空蒸着炉、半導体単結晶成長炉、セラミック
ス焼結炉やC/Cコンポジット焼成炉等による高温熱処理
が重要視されている。この高温熱処理用断熱材には、耐
熱性および耐熱性に優れ、高温で物性劣化が生じないこ
とが必要とされる。従って、炭素繊維を用いた断熱材の
有用性が高まっている。
[Related Art and Problems to be Solved by the Invention] In recent years, high-temperature heat treatment using a vacuum evaporation furnace, a semiconductor single crystal growth furnace, a ceramic sintering furnace, a C / C composite firing furnace, or the like has been regarded as important. The heat insulating material for high-temperature heat treatment is required to be excellent in heat resistance and heat resistance and not to deteriorate in physical properties at high temperatures. Therefore, the usefulness of the heat insulating material using carbon fiber is increasing.

一方、炭素繊維製断熱材の製造方法として、炭素繊
維フェルトに炭化又は黒鉛化可能な樹脂を含浸し熱処理
する方法が知られている。また炭素繊維フェルトに炭
化又は黒鉛化可能な樹脂を含浸させ、含浸フェルトを積
層圧縮して所望の厚さと嵩密度をもつ成形物とし、次い
で成形物を成形断熱材とする製造方法が提案されている
(特公昭50−35930号公報参照)。
On the other hand, as a method of manufacturing a carbon fiber heat insulating material, a method of impregnating a carbon fiber felt with a resin capable of being carbonized or graphitized and performing a heat treatment is known. A method of impregnating a carbon fiber felt with a carbonizable or graphitizable resin, laminating and compressing the impregnated felt into a molded product having a desired thickness and bulk density, and then using the molded product as a molded heat insulating material has been proposed. (See Japanese Patent Publication No. 50-30930).

しかしながら、これらの方法では、ニードルパンチに
より繊維を接合させた炭素繊維フェルトを用いるので、
繊維が多軸配向しその配向方向が不規則である。従っ
て、繊維による熱移動を十分に規制することができず、
熱伝導度が大きく断熱製が十分でない。特に前者の方法
では、製法上の問題から断熱材の嵩密度が小さいた
め、繊維の配向方向が不規則であることと相まって、断
熱性に劣る。
However, in these methods, since carbon fiber felt in which fibers are joined by needle punch is used,
The fibers are multiaxially oriented and the orientation direction is irregular. Therefore, the heat transfer by the fiber cannot be sufficiently restricted,
High thermal conductivity and insufficient insulation. In particular, in the former method, since the bulk density of the heat insulating material is low due to a problem in the production method, the heat insulating property is inferior in combination with the irregular orientation direction of the fibers.

またこれらの方法では、フェルト特有の繊維むら、含
浸むらに基づき断熱材の均一性及び加工性が十分でな
い。特に後者の方法では、金属バンドで積層体を締め
付けるので均一性が十分でない。
Further, in these methods, the uniformity and workability of the heat insulating material are not sufficient due to uneven fiber and characteristic impregnation of felt. In particular, in the latter method, since the laminate is fastened with the metal band, the uniformity is not sufficient.

また前者の方法では、複雑な形状の断熱材を得るに
は、適宜の形状が切断しかつ接合する必要があるので、
フェルトのロス等が生じコスト高となると共に、作業が
煩雑化し、複雑な形状の断熱材を生産性よく製造するこ
とが困難である。
Also, in the former method, in order to obtain a heat insulating material having a complicated shape, it is necessary to cut and join an appropriate shape,
Felt loss or the like occurs and the cost increases, and the operation becomes complicated, and it is difficult to produce a heat insulating material having a complicated shape with high productivity.

さらには後者の方法では、成形断熱材の嵩密度が圧
縮力に支配される。従って、平板状の成形断熱材の場合
は、比較的高密度に積層圧縮するのが容易であるが、円
筒状成形断熱材等の場合は、嵩密度の大きな成形断熱材
を得るために大きな機械的エネルギーを必要とし、作業
性及び生産性が低下する。
Furthermore, in the latter method, the bulk density of the molded heat insulating material is governed by the compressive force. Therefore, in the case of a flat shaped heat insulating material, it is easy to perform lamination compression at a relatively high density, but in the case of a cylindrical shaped heat insulating material or the like, a large machine is used to obtain a molded heat insulating material having a large bulk density. Energy is required, and workability and productivity are reduced.

また均一性に優れた断熱材を製造する方法として、
炭素繊維1重量部に対してポリビニルアルコール等のバ
インダーを0.05〜0.2重量部添加する方法も知られてい
る。この方法は厚み1mm程度の軽量のシート状断熱材
を製造する上では有用であるものの、厚みの大きな断熱
材を製造するには適さない。すなわち、熱圧着等しなけ
ればバインダー効果が得られず、十分な強度を有する断
熱材を得ることが困難である。またバインダーのマイグ
レーションにより、断熱材の表面のみが硬質で、内部が
非常に脆い構造となり不均一である。
Also, as a method of manufacturing a heat insulating material with excellent uniformity,
It is also known to add 0.05 to 0.2 parts by weight of a binder such as polyvinyl alcohol to 1 part by weight of carbon fiber. Although this method is useful for producing a lightweight sheet-like heat insulating material having a thickness of about 1 mm, it is not suitable for producing a thick heat insulating material. That is, a binder effect cannot be obtained unless thermocompression bonding is performed, and it is difficult to obtain a heat insulating material having sufficient strength. In addition, due to the migration of the binder, only the surface of the heat insulating material is hard, and the inside thereof has a very brittle structure and is non-uniform.

本発明の目的は、繊維が特定の方向に配向していると
共に、所望の嵩密度を有し、断熱性、均一性、均質性及
び加工性に優れる成形断熱材を提供することにある。
An object of the present invention is to provide a molded heat insulating material in which fibers are oriented in a specific direction, have a desired bulk density, and are excellent in heat insulating properties, uniformity, homogeneity, and workability.

また本発明の他の目的は、複雑な形状であっても、上
記特性を有する成形断熱材を作業性、生産性よく製造で
きる成形断熱材の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a molded heat insulating material having the above-mentioned characteristics with good workability and productivity even in a complicated shape.

[発明の構成] 本発明は、炭素繊維と、樹脂の炭化物又は黒鉛化物と
で一体に構成され、均一かつ均質な成形断熱材であっ
て、前記炭素繊維が、成形断熱材の厚み方向と直交する
方向に配向しており、厚さが3〜200mmであって、嵩密
度が0.3g/cm3以下である成形断熱材により、上記課題を
解決するものである。一体的に構成された成形断熱材の
形状は、中空筒状、リング状又はディスク状であっても
よい。
[Constitution of the invention] The present invention is a uniform and uniform molded heat insulating material which is integrally formed of carbon fiber and a carbide or graphitized resin, wherein the carbon fiber is perpendicular to the thickness direction of the molded heat insulating material. This problem is solved by a molded heat insulating material which is oriented in the direction in which it is oriented, has a thickness of 3 to 200 mm, and has a bulk density of 0.3 g / cm 3 or less. The shape of the integrally formed heat insulating material may be a hollow cylindrical shape, a ring shape, or a disk shape.

また本発明は、炭素繊維化可能な繊維又は炭素繊維
と、有機繊維と、炭化又は黒鉛化可能な粉末状熱硬化性
樹脂と、カチオン系樹脂とを含有するスラリーを調製
し、該スラリーを吸引成形した後、得られた成形体を焼
成することを特徴とする成形断熱材の製造方法により、
上記課題を解決するものである。
The present invention also provides a slurry containing fibers or carbon fibers that can be converted into carbon fibers, organic fibers, a powdered thermosetting resin that can be carbonized or graphitized, and a cationic resin, and suctioning the slurry. After molding, by the method of manufacturing a molded heat insulating material characterized by firing the obtained molded body,
This is to solve the above-mentioned problem.

なお、本明細書における用語の定義は次の通りであ
る。
The terms used in this specification are defined as follows.

炭化とは、ポリアクリロニトリル等の炭素含有物質
を、例えば450〜1500℃程度の温度で焼成処理すること
を言う。黒鉛化とは、炭素含有物質を、例えば1500〜30
00℃程度の温度で焼成処理することを言い、結晶構造が
黒鉛化していないときでも黒鉛化の概念に含める。
Carbonization refers to baking a carbon-containing substance such as polyacrylonitrile at a temperature of, for example, about 450 to 1500 ° C. Graphitization refers to carbon-containing substances, for example, 1500-30
This refers to baking at a temperature of about 00 ° C., which is included in the concept of graphitization even when the crystal structure is not graphitized.

炭素繊維とは炭化又は黒鉛化された繊維を言う。 Carbon fiber refers to a carbonized or graphitized fiber.

本発明の成形断熱材を構成する炭素繊維としては、例
えば、ポリアクリロニトリル、フェノール樹脂、レーヨ
ン等の高分子繊維、石油ピッチ、石炭ピッチ、液晶ピッ
チ等を素材とする種々の炭素繊維が使用できる。これら
の炭素繊維は少なくとも一種使用される。炭素繊維の長
さは、成形断熱材の嵩密度等を損わない範囲で適宜設定
できるが、繊維長0.1〜10mmであるのが好ましい。繊維
長が0.1mm未満であると成形断熱材の一体性を確保でき
ない場合があり、10mmを越えると嵩密度を高めるのが困
難であると共に、繊維の集合体である毛玉状物が生成し
易くなり、機械的強度が低下する。なお、上記炭素繊維
の繊維長を調整することにより、成形断熱材の嵩密度を
容易に制御することができる。炭素繊維は、例えば繊維
径5〜20μm等適宜のものが使用できる。
As the carbon fiber constituting the molded heat insulating material of the present invention, for example, various kinds of carbon fibers made of polymer fibers such as polyacrylonitrile, phenol resin, rayon, petroleum pitch, coal pitch, liquid crystal pitch and the like can be used. At least one of these carbon fibers is used. The length of the carbon fiber can be appropriately set within a range that does not impair the bulk density and the like of the molded heat insulating material, but the fiber length is preferably 0.1 to 10 mm. If the fiber length is less than 0.1 mm, it may not be possible to secure the integrity of the molded heat insulating material, and if it exceeds 10 mm, it is difficult to increase the bulk density, and pills, which are aggregates of fibers, are easily generated. , Mechanical strength is reduced. The bulk density of the molded heat insulating material can be easily controlled by adjusting the fiber length of the carbon fiber. As the carbon fiber, an appropriate one such as a fiber diameter of 5 to 20 μm can be used.

また成形断熱材は、均一かつ均質であり、樹脂の炭化
物又は黒鉛化物で一体化している。樹脂としては、例え
ば、フェノール樹脂、フラン樹脂、キシレン樹脂、尿素
樹脂、メラミン樹脂、グアナミン樹脂、エポキシ樹脂、
ジアリルフタレート樹脂、ポリウレタン、不飽和ポリエ
ステル、熱硬化性アクリル樹脂、ポリイミドなどの熱硬
化性樹脂が例示され、一種または二種以上使用される。
上記樹脂のうちレゾール型又はノボラック型フェノール
樹脂が好ましい。
Further, the molded heat insulating material is uniform and homogeneous, and is integrated with a carbide or graphitized resin. As the resin, for example, phenol resin, furan resin, xylene resin, urea resin, melamine resin, guanamine resin, epoxy resin,
Examples thereof include thermosetting resins such as diallyl phthalate resin, polyurethane, unsaturated polyester, thermosetting acrylic resin, and polyimide, and one or more of them are used.
Among the above resins, a resol type or novolak type phenol resin is preferable.

上記樹脂の炭化物又は黒鉛化物は、通常、炭素繊維1
重量部に対して樹脂の炭化物又は黒鉛化物0.05〜5重量
部、好ましくは0.1〜3重量部程度である。樹脂の炭化
物又は黒鉛化物の量が0.1重量部未満であると機械的強
度が十分でなく、5重量部を越えると均一性が低下す
る。
Usually, the carbonized or graphitized resin of the resin is made of carbon fiber 1
It is about 0.05 to 5 parts by weight, preferably about 0.1 to 3 parts by weight, based on the weight of the resin. If the amount of the carbide or graphitized resin is less than 0.1 part by weight, the mechanical strength is not sufficient, and if it exceeds 5 parts by weight, the uniformity is reduced.

なお、成形断熱材の均質性を高めるには、炭素繊維を
均質に絡み合わせることが重要である。しかしながら、
炭素繊維が剛直であるため、炭素繊維同士の絡み合いの
強度が十分でない。従って、炭素繊維の絡み合いを補助
するため、有機繊維、特にフィブリル化した有機繊維を
添加するのが好ましい。このような有機繊維としては、
例えば、木材パルプ、麻等の天然繊維、レーヨン等の半
合成繊維、ポリエステル、ポリエチレン、ポリプロピレ
ン、ポリスチレン、アクリル樹脂、ポリアクリロニトリ
ル、フェノール樹脂、ポリウレタン、ポリアミド等の合
成繊維などが例示され、少なくとも一種使用される。こ
れらのうち特にフィブリル化したアクリル繊維が好まし
い。
In addition, in order to enhance the homogeneity of the molded heat insulating material, it is important to uniformly entangle carbon fibers. However,
Since the carbon fibers are rigid, the strength of the entanglement between the carbon fibers is not sufficient. Therefore, it is preferable to add an organic fiber, particularly a fibrillated organic fiber, in order to assist the entanglement of the carbon fiber. Such organic fibers include:
For example, wood pulp, natural fibers such as hemp, semi-synthetic fibers such as rayon, polyester, polyethylene, polypropylene, polystyrene, acrylic resin, polyacrylonitrile, phenol resin, polyurethane, and synthetic fibers such as polyamide are exemplified. Is done. Of these, particularly preferred are fibrillated acrylic fibers.

有機繊維は、焼成後、通常、前記炭素繊維1重量部に
対して0〜0.5重量部程度含有される。
After firing, the organic fiber is usually contained in an amount of about 0 to 0.5 part by weight based on 1 part by weight of the carbon fiber.

また成形断熱材は、他の樹脂、例えばカチオン系樹
脂、高分子凝集剤等や、歩留り向上剤等の添加剤の焼成
物を含有していてもよい。
Further, the molded heat insulating material may contain a baked product of another resin, for example, a cationic resin, a polymer coagulant, or an additive such as a yield improver.

そして、炭素繊維は成形断熱材の厚み方向と直交する
方向に配列している。上記の方向に炭素繊維が配合して
いるので、炭素繊維の配向方向が不規則で、同じ嵩密度
を有する成形断熱材よりも断熱性を大きくすることがで
きる。すなわち、炭素繊維が成形断熱材の厚み方向に配
向していると、炭素繊維間に形成された空隙部が、高温
側から低温側への熱移動方向と一致するので、熱移動度
が大きくなる。これに対して、炭素繊維が成形断熱材の
厚み方向と直交する方向に配向すると、熱の移動が、熱
移動方向と直交する炭素繊維により規制され、熱移動度
を小さくすることができる。
The carbon fibers are arranged in a direction orthogonal to the thickness direction of the molded heat insulating material. Since the carbon fibers are blended in the above-mentioned direction, the orientation direction of the carbon fibers is irregular, and the heat insulating property can be made larger than that of a molded heat insulating material having the same bulk density. That is, when the carbon fibers are oriented in the thickness direction of the molded heat insulating material, the voids formed between the carbon fibers match the heat transfer direction from the high-temperature side to the low-temperature side, so that the heat mobility increases. . On the other hand, when the carbon fibers are oriented in a direction perpendicular to the thickness direction of the molded heat insulating material, the movement of heat is restricted by the carbon fibers perpendicular to the heat transfer direction, and the heat mobility can be reduced.

なお、炭素繊維の大部分が上記方向に配向していれば
よく、全ての炭素繊維が成形断熱材の厚み方向と直交す
る方向に配列している必要はない。
It is sufficient that most of the carbon fibers are oriented in the above-mentioned direction, and it is not necessary that all the carbon fibers are arranged in a direction orthogonal to the thickness direction of the molded heat insulating material.

本発明の成形断熱材は、適宜の嵩密度を有していても
よいが、通常、嵩密度0.3g/cm3以下、例えば、0.05〜0.
3g/cm3程度である。嵩密度は、炭素繊維/樹脂の炭化物
又は黒鉛化物=1/0.2〜1(重量部)の範囲において、
0.05〜0.3g/cm3程度であってもよい。また成形断熱材の
厚みは、通常3〜200mm程度で十分である。
The molded heat insulating material of the present invention may have an appropriate bulk density, but usually has a bulk density of 0.3 g / cm 3 or less, for example, 0.05 to 0.
It is about 3 g / cm 3 . The bulk density is in the range of carbon fiber / resin carbide or graphitized product = 1 / 0.2 to 1 (parts by weight)
It may be about 0.05 to 0.3 g / cm 3 . The thickness of the molded heat insulating material is usually about 3 to 200 mm.

本発明の成形断熱材の形状は、特に制限されず、シー
ト状のほか、中空筒状、リング状やディスク状などであ
ってもよい。
The shape of the molded heat insulating material of the present invention is not particularly limited, and may be a sheet shape, a hollow cylindrical shape, a ring shape, a disk shape, or the like.

以下に、本発明の成形断熱材の製造方法について説明
する。
Hereinafter, a method for producing the molded heat insulating material of the present invention will be described.

本発明の成形断熱材の製造方法は、炭素繊維化可能な
繊維又は炭素繊維と、有機繊維と、炭化又は黒鉛化可能
な粉末状熱硬化性樹脂と、カチオン系樹脂とを含有する
スラリーを調製するスラリー調製工程と、スラリーを吸
引成形する成形工程と、成形体を焼成する焼成工程とで
構成される。
The method for producing a molded heat insulating material of the present invention comprises preparing a slurry containing fibers or carbon fibers that can be converted into carbon fibers, organic fibers, a powdered thermosetting resin that can be carbonized or graphitized, and a cationic resin. And a baking step of baking the formed body.

スラリー調製工程では、上記材料と共に溶媒が用いら
れる。炭素繊維化可能な繊維としては、前記炭素繊維の
素材となる繊維、不融化したピッチ繊維が挙げられ、少
なくとも一種使用される。上記繊維のうちポリアクリロ
ニトリル繊維、フェノール樹脂繊維、レーヨン、ピッチ
系繊維が好ましい。炭素繊維としては前記と同様のもの
が使用できる。なお、本発明では炭素繊維化可能な繊維
又は炭素繊維として、前記のように短繊維が使用できる
ので、繊維製造時や加工時に生成する屑糸を有効利用で
きる。
In the slurry preparation step, a solvent is used together with the above materials. Examples of the fiber that can be converted into carbon fiber include a fiber used as a material of the carbon fiber and an infusibilized pitch fiber, and at least one fiber is used. Among the above fibers, polyacrylonitrile fibers, phenol resin fibers, rayon, and pitch-based fibers are preferable. As the carbon fiber, those similar to the above can be used. In the present invention, as described above, short fibers can be used as the fibers or carbon fibers that can be converted into carbon fibers, so that scrap yarn generated during fiber production or processing can be effectively used.

また有機繊維としてはフィブリル化した有機繊維が好
ましく、フィルブリル化した有機繊維の叩解度は、カナ
ディアン・フリーネス式叩解度試験器において、100〜4
00mlが好ましい。叩解度が100ml未満であると吸引成形
性および生産性が低下し、400mlを越えると短繊維との
均一混合性が低下する。
The organic fibers are preferably fibrillated organic fibers, and the beating degree of the fibrillated organic fibers is 100 to 4 in a Canadian freeness type beating degree tester.
00 ml is preferred. If the beating degree is less than 100 ml, the suction moldability and the productivity are reduced, and if it exceeds 400 ml, the uniform mixing with short fibers is reduced.

炭素繊維化可能な繊維又は炭素繊維と樹脂と有機繊維
との割合は、炭化又は黒鉛化により重量が減少すること
を考慮して設定される。すなわち、上記炭素繊維化可能
な繊維又は炭素繊維と樹脂との割合は、通常繊維1重量
部に対して樹脂0.01〜10重量部、好ましくは0.1〜3重
量部程度である。また炭素繊維化可能な繊維又は炭素繊
維と有機繊維との割合は、通常繊維1重量部に対して有
機繊維0.01〜0.5重量部程度である。
The ratio of the fiber that can be converted into carbon fiber or the ratio of carbon fiber, resin, and organic fiber is set in consideration of the fact that the weight is reduced by carbonization or graphitization. That is, the ratio of the carbon fiber-forming fiber or the carbon fiber to the resin is usually 0.01 to 10 parts by weight, preferably about 0.1 to 3 parts by weight with respect to 1 part by weight of the fiber. The ratio of the fibers that can be converted into carbon fibers or the ratio between the carbon fibers and the organic fibers is usually about 0.01 to 0.5 parts by weight of the organic fibers per 1 part by weight of the fibers.

カチオン系樹脂としては、例えば、ポリアミド、ポリ
アクリルアミド等のアクリル系樹脂、ポリエチレンイミ
ン等の窒素原子含有の樹脂が例示され、少なくとも一種
使用される。このカチオン系樹脂により、炭素繊維化可
能な繊維又は炭素繊維に前記熱硬化性樹脂を定着させる
ことができる。カチオン系樹脂は、適宜量使用できる
が、通常固形分に対して0.02〜2重量%程度である。な
お、カチオン系樹脂の使用量は、前記熱硬化性樹脂の使
用割合等に応じて調整することができる。
Examples of the cationic resin include an acrylic resin such as polyamide and polyacrylamide, and a resin containing a nitrogen atom such as polyethyleneimine, and at least one kind is used. With this cationic resin, the thermosetting resin can be fixed to fibers that can be converted into carbon fibers or carbon fibers. The cationic resin can be used in an appropriate amount, but is usually about 0.02 to 2% by weight based on the solid content. The amount of the cationic resin used can be adjusted according to the use ratio of the thermosetting resin and the like.

なお、上記カチオン系樹脂は、カチオン化澱粉、硫酸
バンド等と併用してもよい。
The cationic resin may be used in combination with a cationized starch, a sulfate band, or the like.

スラリー調製工程で使用される溶媒としては、例え
ば、水、炭化水素類、アルコール類、エーテル類、エス
テル類、ケトン類やこれらの混合溶媒が使用できる。な
お、上記溶媒は、吸引成形工程における樹脂の歩留りを
高めるため、樹脂に対する溶解性が小さく、樹脂が粒子
状に分散した状態で存在しうる溶媒、特に水が好まし
い。溶媒中の樹脂の粒径は、吸引成形効率等に応じて設
定できるが、成形断熱材の緻密性及び均質性を確保する
ため、微細なものが好ましく、通常、粒度100メッシュ
以下、好ましくは40μm以下で平均粒径が15μm程度で
ある。
As the solvent used in the slurry preparation step, for example, water, hydrocarbons, alcohols, ethers, esters, ketones, and a mixed solvent thereof can be used. In order to increase the yield of the resin in the suction molding step, the solvent is preferably a solvent having low solubility in the resin and capable of existing in a state where the resin is dispersed in the form of particles, particularly water. The particle size of the resin in the solvent can be set according to the suction molding efficiency and the like, but in order to ensure the compactness and homogeneity of the molded heat insulating material, a fine particle is preferable, and usually, the particle size is 100 mesh or less, preferably 40 μm. Below, the average particle size is about 15 μm.

なお、上記溶媒の使用量は、通常、スラリー中の固形
分濃度0.5〜5重量%、好ましくは1〜3重量%程度で
ある。
The amount of the solvent to be used is usually 0.5 to 5% by weight, preferably about 1 to 3% by weight, in the slurry.

スラリーは前記材料を同時に撹拌混合することによっ
ても調製できるが、炭素繊維化可能な繊維又は炭素繊維
と有機繊維、特にフィブリル化した有機繊維とを同時に
叩解し、その後、他の材料を添加混合するのが好まし
い。この同時叩解により、炭素繊維化可能な繊維又は炭
素繊維の繊維同士の絡み合いが促進され、均質で混合性
及び分散性に優れたスラリーが得られる。なお、炭素繊
維化可能な繊維又は炭素繊維と有機繊維とを叩解せずに
単に混合撹拌すると、不均一な絡み合いが生じ、ロング
テール等を形成し易く分散性が十分でない。
The slurry can be prepared by simultaneously stirring and mixing the above materials.However, the fibers that can be converted into carbon fibers or the carbon fibers and the organic fibers, particularly the fibrillated organic fibers, are beaten simultaneously, and then the other materials are added and mixed. Is preferred. By the simultaneous beating, the fibers that can be converted into carbon fibers or the fibers of the carbon fibers are entangled with each other, and a slurry that is homogeneous and has excellent mixing and dispersibility can be obtained. If the fibers that can be converted into carbon fibers or the carbon fibers and the organic fibers are simply mixed and stirred without beating, non-uniform entanglement occurs, a long tail or the like is easily formed, and the dispersibility is not sufficient.

また吸引成形による歩留りを高めるため、凝集作用を
有する界面活性剤、特に高分子凝集剤や歩留り向上剤を
添加するのが好ましい。高分子凝集剤としては、例え
ば、分子量10万以上の高分子量のポリアクリルアミド等
のアクリル系樹脂を用いることができる。凝集剤の使用
量は、凝集により歩留りを向上させ得る範囲であれば特
に制限されないが、通常、固形物に対して0.005〜0.5重
量%程度である。凝集剤の量が0.005重量%未満である
と十分な凝集効果を得るのが困難であり、0.5重量%を
越えると過度の凝集が起り易く均質な分散液を調製する
のが困難である。
In order to increase the yield by suction molding, it is preferable to add a surfactant having an aggregating action, particularly a polymer flocculant and a retention aid. As the polymer coagulant, for example, an acrylic resin such as polyacrylamide having a molecular weight of 100,000 or more can be used. The amount of the coagulant used is not particularly limited as long as the yield can be improved by coagulation, but is usually about 0.005 to 0.5% by weight based on the solid matter. If the amount of the flocculant is less than 0.005% by weight, it is difficult to obtain a sufficient flocculating effect, and if it exceeds 0.5% by weight, excessive flocculation tends to occur and it is difficult to prepare a homogeneous dispersion.

なお、必要に応じて、成形断熱材の特性に悪影響を及
ぼさない範囲で、分散剤、安定剤、粘度調整剤、充填剤
等の添加剤を添加してもよい。
If necessary, additives such as a dispersant, a stabilizer, a viscosity modifier, and a filler may be added as long as the properties of the molded heat insulating material are not adversely affected.

次いで、上記のようにして調製されたスラリー中で吸
引成形する。この吸引成形工程について、添付図面に基
づき説明する。
Next, suction molding is performed in the slurry prepared as described above. This suction molding step will be described with reference to the accompanying drawings.

第1図は吸引成形状態を示す概略縦断面図、第2図は
吸引成形型と成形体とを示す概略断面図、第3図は成形
体を示す概略断面斜視図である。吸引成形工程は、スラ
リー槽(2)内に収容されたスラリー(1)を吸引成形
型(3)で吸引し、スラリー(1)中の固形物を吸引成
形型(3)の外面に堆積させることにより行なわれる。
上記吸引成形型(3)は、第1図及び第2図に示される
ように、パイプ(5)接続用のパイプ接続部(6)が形
成された吸引部(4)と、この吸引部(4)と連通し、
かつスラリー(1)中の固形物の通過を阻止する大きさ
の多数のメッシュ状の孔(8)が形成された筒部(7)
と、筒部(7)に連設された鍔(9)とで構成されてい
る。従って、吸引成形型(3)のパイプ接続部(6)に
接続されたパイプ(5)を介して吸引ポンプ(図示せ
ず)で吸引することにより、筒部(7)の外周面にスラ
リー(1)中の固形分を吸引堆積させ、第3図に示され
るように、筒部(7)の外径に対応した中空部(11)を
有する中空筒状成形体(10)を得ることができる。その
際、スラリー(1)中の炭化可能な繊維や炭素繊維が筒
部(7)の外面に沿って堆積するので、成形体(10)の
炭素繊維化可能な繊維や炭素繊維が成形体(10)の厚み
方向dtと直交する方向drに配向する。なお、吸引成形
に際して、吸引力、炭素繊維化可能な繊維又は炭素繊維
の繊維長や、該繊維と樹脂との割合を調整することによ
り、成形体(10)の嵩密度を容易に制御できる。また吸
引成形するので、成形体は均質であり、均一性に優れ
る。
1 is a schematic longitudinal sectional view showing a suction molding state, FIG. 2 is a schematic sectional view showing a suction mold and a molded body, and FIG. 3 is a schematic sectional perspective view showing a molded body. In the suction molding step, the slurry (1) contained in the slurry tank (2) is suctioned by the suction molding die (3), and solids in the slurry (1) are deposited on the outer surface of the suction molding die (3). It is done by doing.
As shown in FIGS. 1 and 2, the suction mold (3) includes a suction part (4) having a pipe connection part (6) for connecting a pipe (5), and a suction part (4). 4)
And a cylindrical portion (7) formed with a large number of mesh-shaped holes (8) sized to prevent passage of solids in the slurry (1).
And a flange (9) connected to the cylindrical portion (7). Therefore, by suctioning with a suction pump (not shown) through the pipe (5) connected to the pipe connection part (6) of the suction mold (3), the slurry ( The solid content in 1) is deposited by suction to obtain a hollow cylindrical molded body (10) having a hollow portion (11) corresponding to the outer diameter of the cylindrical portion (7) as shown in FIG. it can. At that time, the carbonizable fibers and carbon fibers in the slurry (1) are deposited along the outer surface of the cylindrical portion (7), and thus the carbonizable fibers and carbon fibers of the molded body (10) are converted into the molded body ( It is oriented in the direction dr perpendicular to the thickness direction dt in 10). In addition, at the time of suction molding, the bulk density of the molded body (10) can be easily controlled by adjusting the suction force, the fiber length of the carbonizable fiber or the carbon fiber, and the ratio between the fiber and the resin. In addition, since the molding is performed by suction, the molded body is homogeneous and has excellent uniformity.

第4図は他の成形体を示す斜視図である。この成形体
(20)は厚みが小さく、前記と同様の中空部(21)を有
するリング状であり、厚み方向dtと直交する方向drに
炭素繊維化可能な繊維又は炭素繊維が配向している。な
お、第4図では吸引成形終了時の状態を示しているた
め、図中、上端面の繊維が種々の方向に配向している。
このような形状の成形体(20)は、第2図に示す吸引成
形型において、筒部(7)に孔(8)を形成せず、鍔
(9)の周縁部に外筒を立設し、筒部(7)と外筒との
間に位置する鍔(9)部、すなわち底板に多数の孔を形
成し、上記筒部(7)と外筒との高さを小さくした成形
型を用いて、吸引成形することにより作製できる。な
お、筒部と外筒との空間は吸引空間として利用され、底
板に形成された多数の孔はスラリー中の固形分の通過を
阻止する大きさを有し、第2図と同様の吸引部(4)と
連通している。この場合、底板上にスラリー中の固形分
を吸引堆積でき、炭素繊維化可能な繊維又は炭素繊維を
吸引面と平行、すなわち成形体(20)の厚み方向dtと
直交する方向drに配向させることができる。
FIG. 4 is a perspective view showing another molded body. The molded body (20) has a small thickness, is a ring shape having the same hollow portion (21) as described above, and fibers or carbon fibers that can be converted into carbon fibers are oriented in a direction dr perpendicular to the thickness direction dt. . Since FIG. 4 shows the state at the time of completion of the suction molding, the fibers on the upper end face are oriented in various directions in the figure.
In the suction mold shown in FIG. 2, the molded body (20) having such a shape does not have the hole (8) formed in the cylindrical portion (7), and has an outer cylinder set up on the periphery of the flange (9). A molding die in which a plurality of holes are formed in a flange (9) located between the cylindrical portion (7) and the outer cylinder, that is, a bottom plate, and the height of the cylindrical portion (7) and the outer cylinder is reduced. And can be produced by suction molding. The space between the cylindrical portion and the outer cylinder is used as a suction space, and a number of holes formed in the bottom plate have a size to prevent the passage of solids in the slurry. It communicates with (4). In this case, solids in the slurry can be suction-deposited on the bottom plate, and fibers or carbon fibers that can be converted into carbon fibers are oriented parallel to the suction surface, that is, in a direction dr perpendicular to the thickness direction dt of the molded body (20). Can be.

なお、スラリーの吸引方向は、横方向等、いずれであ
ってもよい。また吸引成形型は、所望する成形断熱材の
形状に応じて適宜選択することができる。例えば、平板
状、波型状等のシート状成形体を得るには、多数の孔が
成形された板等を、吸引部に設ければよい。また前記筒
部と外筒との間に位置する底板に適宜の高さの周壁や凸
部等を設けることにより、成形体に円周状スリットや凹
部等を形成することができる。
The suction direction of the slurry may be any direction, such as the horizontal direction. Further, the suction mold can be appropriately selected according to the desired shape of the molded heat insulating material. For example, in order to obtain a sheet-like molded body such as a flat plate or a corrugated plate, a plate or the like in which a large number of holes are formed may be provided in the suction unit. Further, by providing a peripheral wall, a convex portion, or the like having an appropriate height on a bottom plate located between the cylindrical portion and the outer cylinder, a circumferential slit, a concave portion, or the like can be formed in the molded body.

なお、スラリーとして炭素繊維化可能な繊維又は炭素
繊維と樹脂等との割合が異なる複数のスラリーを用い、
順次、吸引成形することにより、嵩密度が厚み方向に連
続的又は段階的に異なる成形体を得ることができる。
Note that, as the slurry, a plurality of slurries having different ratios of fibers capable of being converted into carbon fibers or carbon fibers and resin,
By sequentially performing suction molding, it is possible to obtain a molded body whose bulk density varies continuously or stepwise in the thickness direction.

成形体の形状は、前記シート状のほか、中空筒状、リ
ング状やディスク状などであってもよい。
The shape of the molded body may be a hollow cylindrical shape, a ring shape, a disk shape, or the like in addition to the sheet shape.

上記成形体を乾燥し、焼成工程で焼成することによ
り、成形断熱材が得られる。成形体の乾燥は、例えば、
100〜200℃程度の適宜の温度で行なうことができる。な
お、乾燥工程では、前記炭化又は黒鉛化可能な樹脂を硬
化させるのが好ましい。炭化又は黒鉛化可能な樹脂の硬
化は、例えば120〜250℃程度の温度で行なうことがで
き、その際、樹脂の種類に応じた硬化剤、例えば、好ま
しい樹脂であるノボラック型フェノール樹脂の場合、ヘ
キサメチレンテトラミン等が使用でき、レゾール型フェ
ノール樹脂の場合、酸触媒等が使用できる。
The molded body is dried and calcined in a calcining step to obtain a molded heat insulating material. Drying of the molded body is, for example,
It can be performed at an appropriate temperature of about 100 to 200 ° C. In the drying step, it is preferable to cure the carbonizable or graphitizable resin. Curing of the carbonizable or graphitizable resin can be performed at a temperature of, for example, about 120 to 250 ° C., and in that case, a curing agent according to the type of the resin, for example, in the case of a novolak type phenol resin which is a preferable resin, Hexamethylenetetramine and the like can be used. In the case of a resole type phenol resin, an acid catalyst and the like can be used.

そして、成形体を焼成工程で焼成することにより一体
化した成形断熱材が得られる。焼成工程での炭化及び黒
鉛化は、通常、真空下又は不活性雰囲気中で行なわれ、
炭化温度は、450〜1500℃程度、黒鉛化温度は、1500〜3
000℃程度である。なお、吸引成形により得られた成形
体は、上記焼成により若干収縮する。従って、成形体の
大きさは、最終製品である成形断熱材の大きさを考慮し
て成形すればよい。
Then, the molded body is fired in the firing step to obtain an integrated molded heat insulating material. Carbonization and graphitization in the firing step are usually performed under vacuum or in an inert atmosphere,
The carbonization temperature is about 450 ~ 1500 ℃, the graphitization temperature is 1500 ~ 3
It is about 000 ° C. The molded product obtained by the suction molding slightly shrinks due to the above-mentioned firing. Therefore, the size of the formed body may be determined in consideration of the size of the formed heat insulating material as the final product.

上記のようにして得られた成形断熱材は、前記成形体
に対応して形状を有している。また第3図を参照して説
明すると、炭素繊維が成形断熱材の厚み方向dtと直交
する方向drに配向しているので、焼成工程を経て得ら
れた成形断熱材の中空部(11)を高温側としても断熱効
率を高めることができる。すなわち、高温側の熱は、成
形断熱材の中空部(11)から外周面側、すなわち厚み方
向dtに移動するが、熱の移動方向と直交する方向drに
繊維が配向しているため、熱の移動が炭素繊維で規制さ
れ、断熱効率を大きくすることができる。このように成
形断熱材の断熱効率が大きいので、同じ嵩密度を有する
従来の成形断熱材よりも厚みを小さくすることができ
る。
The molded heat insulating material obtained as described above has a shape corresponding to the molded body. Referring to FIG. 3, since the carbon fibers are oriented in the direction dr perpendicular to the thickness direction dt of the formed heat insulating material, the hollow portion (11) of the formed heat insulating material obtained through the firing step is removed. The heat insulation efficiency can be increased even on the high temperature side. That is, the heat on the high temperature side moves from the hollow portion (11) of the molded heat insulating material to the outer peripheral surface side, that is, in the thickness direction dt, but since the fibers are oriented in the direction dr perpendicular to the direction of heat transfer, the heat is Movement is restricted by the carbon fiber, and the heat insulation efficiency can be increased. Since the heat insulating efficiency of the molded heat insulating material is high, the thickness can be made smaller than that of the conventional molded heat insulating material having the same bulk density.

本発明の成形断熱材は、その嵩密度や形状等に応じて
高温炉や真空炉用断熱材、瓶のプッシャーのクッション
材としての緩衝材等の種々の用途に使用できる。例え
ば、嵩密度0.3g/cm3までの成形断熱材は高温用断熱材、
嵩密度0.3〜0.5g/cm3程度の成形体は耐熱性、機械的強
度に優れると共に適度の硬度を有するため、断熱材以外
にクッション材等に使用できる。また中空筒状等の成形
断熱材は高温炉等に使用でき、ディスク状等の成形断熱
材は真空蒸着炉における溶融ルツボの下敷部材等として
好適に使用される。
The molded heat insulating material of the present invention can be used in various applications such as a heat insulating material for a high-temperature furnace or a vacuum furnace and a cushioning material as a cushioning material for a bottle pusher, depending on its bulk density and shape. For example, molded insulation material to a bulk density of 0.3 g / cm 3 are high temperature insulation,
A molded body having a bulk density of about 0.3 to 0.5 g / cm 3 is excellent in heat resistance and mechanical strength and has appropriate hardness, so that it can be used as a cushion material in addition to a heat insulating material. Further, a molded heat insulating material such as a hollow cylindrical shape can be used for a high-temperature furnace or the like, and a molded heat insulating material such as a disk shape is suitably used as an underlaying member of a molten crucible in a vacuum evaporation furnace.

[発明の効果] 以上のように、本発明の成形断熱材によれば、炭素繊
維が、均一かつ均質な成形断熱材の厚み方向と直交する
方向に配向しているので、高い断熱性を示す。また炭素
繊維と樹脂の炭化物又は黒鉛化物とで一体に構成されて
いるため、両者の割合などの調整することにより、所望
の嵩密度を有し、均一性、均質性及び加工性に優れてい
る。
[Effects of the Invention] As described above, according to the molded heat insulating material of the present invention, the carbon fibers are oriented in a direction orthogonal to the thickness direction of the uniform and uniform molded heat insulating material, and thus exhibit high heat insulating properties. . Also, since it is integrally formed of carbon fiber and resin carbide or graphitized material, by adjusting the ratio of the two, it has a desired bulk density, and is excellent in uniformity, homogeneity and workability. .

また本発明の成形断熱材の製造方法によれば、炭素繊
維等と有機繊維と炭化又は黒鉛化可能な粉末状熱硬化性
樹脂とカチオン系樹脂とを含有するスラリーを調製し、
吸引成形した後、成形体を焼成するので、樹脂含浸工程
を経ることなく、炭素繊維等の長さ及び吸引力を調整す
ることにより嵩密度を容易に制御することができるだけ
でなく、炭素繊維等が成形断熱材の厚み方向と直交する
方向に配向しているので、断熱性に優れた成形断熱材が
得られる。また吸引成形するので、均一性、均質性及び
加工性に優れ、複雑な形状の成形断熱材を作業性、生産
性よく製造できる。さらには、炭素繊維等として短繊維
を使用できるので、屑糸を有効利用できる。
According to the method for producing a molded heat insulating material of the present invention, a slurry containing a powdery thermosetting resin and a cationic resin that can be carbonized or graphitized and organic fibers and organic fibers is prepared,
After the suction molding, the molded body is baked, so that the bulk density can be easily controlled by adjusting the length and the suction force of the carbon fiber, etc., without going through the resin impregnation step, and the carbon fiber, etc. Are oriented in a direction perpendicular to the thickness direction of the molded heat insulating material, so that a molded heat insulating material having excellent heat insulating properties can be obtained. In addition, since suction molding is performed, a molded heat insulating material having excellent uniformity, homogeneity, and workability and having a complicated shape can be manufactured with good workability and productivity. Furthermore, since short fibers can be used as carbon fibers or the like, waste threads can be effectively used.

[実施例] 以下に、実施例に基づいて、本発明のより詳細に説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples.

炭素繊維の原綿チョップ(繊維直径13μm、長さ3m
m)65重量部、ポリアクリロニトリル繊維(繊維直径7
μm、長さ100mm)5重量部、粉末状ノボラック型フェ
ノール樹脂30重量部とヘキサメチレンテトラミン、ポリ
アクリルアミド(荒川化学(株)製、商品名ポリストロ
ン705)0.1重量部とを水10000重量部に添加して撹拌混
合しさ後、ポリアクリルアミド系高分子凝集剤(アライ
ドコロイド社製、商品名パコール292)0.01重量部を添
加しスラリーを調製した。
Raw cotton chop of carbon fiber (fiber diameter 13μm, length 3m
m) 65 parts by weight of polyacrylonitrile fiber (fiber diameter 7
μm, 100 mm length) 5 parts by weight, powdered novolak type phenolic resin 30 parts by weight, hexamethylenetetramine, polyacrylamide (manufactured by Arakawa Chemical Co., Ltd., trade name: Polystron 705) 0.1 part by weight to 10,000 parts by weight of water After the addition and stirring and mixing, 0.01 parts by weight of a polyacrylamide-based polymer flocculant (trade name: Pacoll 292, manufactured by Allied Colloid Co., Ltd.) was added to prepare a slurry.

次いで、パイプを介して吸引ポンプに接続された吸引
成形型を用い、吸引成形することにより、外径540mm、
内径420mm、厚み60mm、高さ630mmの中空筒状成形体を得
た。この成形体を110℃の温度で乾燥し、黒鉛化炉で最
高温度2000℃で焼成することにより、成形断熱材を得
た。得られた成形断熱材の嵩密度は0.15g/cm3であり、
均質であった。また成形断熱材の炭素繊維は、厚み方向
と略直交する方向に配向していた。
Then, using a suction mold connected to a suction pump through a pipe, by suction molding, an outer diameter of 540 mm,
A hollow cylindrical molded body having an inner diameter of 420 mm, a thickness of 60 mm, and a height of 630 mm was obtained. The molded body was dried at a temperature of 110 ° C. and fired at a maximum temperature of 2000 ° C. in a graphitization furnace to obtain a molded heat insulating material. The bulk density of the resulting molded heat insulating material is 0.15 g / cm 3,
It was homogeneous. Further, the carbon fibers of the molded heat insulating material were oriented in a direction substantially perpendicular to the thickness direction.

【図面の簡単な説明】[Brief description of the drawings]

第1図は吸引成形状態を示す概略縦断面図、 第2図は吸引成形型と成形体とを示す概略断面図、 第3図は成形体を示す概略断面斜視図、 第4図は他の成形体を示す斜視図である。 (1)……スラリー、(3)……吸引成形型、(10)
(20)……成形体
1 is a schematic longitudinal sectional view showing a suction molding state, FIG. 2 is a schematic sectional view showing a suction mold and a molded body, FIG. 3 is a schematic sectional perspective view showing a molded body, and FIG. It is a perspective view which shows a molded object. (1) Slurry (3) Suction mold (10)
(20) …… Mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中東 義貴 大阪府大阪市東区平野町5丁目1番地 大阪瓦斯株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiki Middle East 5-1, Hiranocho, Higashi-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維と、樹脂の炭化物又は黒鉛化物と
で一体に構成され、均一かつ均質な成形断熱材であっ
て、前記炭素繊維が、成形断熱材の厚み方向と直交する
方向に配向しており、厚さが3〜200mmであって、嵩密
度が0.3g/cm3以下であることを特徴とする成形断熱材。
1. A molded heat insulating material which is integrally formed of carbon fiber and resin carbide or graphitized material, wherein said carbon fiber is oriented in a direction orthogonal to a thickness direction of the formed heat insulating material. A molded heat insulating material having a thickness of 3 to 200 mm and a bulk density of 0.3 g / cm 3 or less.
【請求項2】一体的に構成された成形断熱材の形状が、
中空筒状、リング状又はディスク状である請求項1記載
の成形断熱材。
2. The shape of the integrally formed heat insulating material is as follows:
2. The molded heat insulating material according to claim 1, wherein the heat insulating material has a hollow cylindrical shape, a ring shape, or a disk shape.
【請求項3】炭素繊維化可能な繊維又は炭素繊維と、有
機繊維と、炭化又は黒鉛化可能な粉末状熱硬化性樹脂
と、カチオン系樹脂とを含有するスラリーを調製し、該
スラリーを吸引成形した後、得られた成形体を焼成する
ことを特徴とする成形断熱材の製造方法。
3. A slurry containing a carbon fiber or a carbon fiber, an organic fiber, a powdery thermosetting resin capable of being carbonized or graphitized, and a cationic resin is prepared, and the slurry is suctioned. A method for producing a molded heat insulating material, which comprises, after molding, firing the obtained molded body.
【請求項4】中空筒状、リング状又はディスク状の成形
体を焼成する請求項3記載の成形断熱材の製造方法。
4. The method according to claim 3, wherein the hollow cylindrical, ring-shaped or disk-shaped formed body is fired.
JP1026165A 1989-02-04 1989-02-04 Molded heat insulating material and its manufacturing method Expired - Lifetime JP3003935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026165A JP3003935B2 (en) 1989-02-04 1989-02-04 Molded heat insulating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026165A JP3003935B2 (en) 1989-02-04 1989-02-04 Molded heat insulating material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02208264A JPH02208264A (en) 1990-08-17
JP3003935B2 true JP3003935B2 (en) 2000-01-31

Family

ID=12185940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026165A Expired - Lifetime JP3003935B2 (en) 1989-02-04 1989-02-04 Molded heat insulating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3003935B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261014A1 (en) * 2004-04-14 2010-10-14 Geiger Jr Ervin Utilization of recycled carbon fiber
US8962500B2 (en) 2006-08-22 2015-02-24 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
TWI419780B (en) * 2009-10-29 2013-12-21 Kureha Corp Method for preparing a pre-shaped product or a heat insulating material, and a pre-shaped product or a heat insulating material
JP2013087367A (en) * 2011-10-13 2013-05-13 Ibiden Co Ltd Method for producing c/c composite material
CN107244938B (en) * 2017-02-23 2022-07-26 辽宁奥亿达新材料有限公司 Manufacturing method of high-performance composite carbon fiber guide cylinder
CN115403399A (en) * 2022-06-23 2022-11-29 单建 Graphite fiber heat-insulation composite material for high-purity semiconductor and preparation method thereof

Also Published As

Publication number Publication date
JPH02208264A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
EP0695730B1 (en) Fibre-reinforced carbon and graphite articles and method for the production thereof
EP0162976B1 (en) Process for preparation of porous carbon plates
US5578255A (en) Method of making carbon fiber reinforced carbon composites
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
JP3003935B2 (en) Molded heat insulating material and its manufacturing method
JP2012036018A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP2607670B2 (en) Molded insulation
WO2020059819A1 (en) Carbon-fiber-molded heat insulator and manufacturing method thereof
JPH0578182A (en) Production of porous carbon formed product and electrode material
JP6864588B2 (en) Carbon fiber sheet laminate and its manufacturing method
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
JPH09278558A (en) Carbonaceous porous body and its production
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPH0416331A (en) Manufacture of screw member
JP3739819B2 (en) Method for producing porous carbon material
JP2665957B2 (en) Carbon fiber / carbon composite
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
JPH05283264A (en) Electrode and capacitor using it
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JP3975496B2 (en) Method for producing carbon fiber reinforced carbon composite material