JP3975496B2 - Method for producing carbon fiber reinforced carbon composite material - Google Patents

Method for producing carbon fiber reinforced carbon composite material Download PDF

Info

Publication number
JP3975496B2
JP3975496B2 JP33214596A JP33214596A JP3975496B2 JP 3975496 B2 JP3975496 B2 JP 3975496B2 JP 33214596 A JP33214596 A JP 33214596A JP 33214596 A JP33214596 A JP 33214596A JP 3975496 B2 JP3975496 B2 JP 3975496B2
Authority
JP
Japan
Prior art keywords
sheet
resin
thickness
composite material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33214596A
Other languages
Japanese (ja)
Other versions
JPH10167849A (en
Inventor
巌 山本
均 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP33214596A priority Critical patent/JP3975496B2/en
Publication of JPH10167849A publication Critical patent/JPH10167849A/en
Application granted granted Critical
Publication of JP3975496B2 publication Critical patent/JP3975496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、成形工程の生産性向上により実現される、安価な炭素繊維強化炭素複合材及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に炭素繊維強化炭素複合材(以下「C/C複合材」と略す)は、PAN系、ピッチ系、レーヨン系の炭素繊維、またはその前駆体繊維に、フェノール樹脂などの熱硬化性樹脂、またはピッチなどの熱可塑性樹脂を、含浸あるいは混合した後、金型を用いて加圧加熱成形し、その後、非酸化性雰囲気において600〜2500℃で焼成することにより製造されている。ブレーキ材などに用いられる高品質のC/C複合材では、一般的に厚さは5〜40mm、繊維含有率(以下「Vf」と略す)は20〜60vol%であり、厚さが1〜2mm以下という薄い耐熱パネルや、Vfが数%しかない断熱材などと比べて、ある程度以上の厚さとVfが要求される。
【0003】
成形前のC/C複合材の繊維および樹脂の形態には、様々なものが知られている。このうち、連続繊維を用いる場合は、繊維を1方向に引きそろえた状態で樹脂を添着させてシート化した一方向(UD)プリプレグ・シート、あるいは、繊維を2次元または3次元の織物とした後に樹脂を添着させたシート状あるいはブロック状のクロス、などが知られている。また、短繊維を用いる場合は、繊維の束に樹脂を含浸させた後に一定の長さに切断した棒状のトウ・プリプレグ、繊維と樹脂を混練してペレット状としたコンパウンド、繊維を解繊して厚みのあるマットとしたもの(特開昭62−119288号公報)、繊維を溶媒中で叩解処理した後に溶媒を除去して繊維をランダム方向に配向させた集合体(特開昭62−96364号公報)、あるいは、繊維を乾式または湿式で解繊して繊維を2次元ランダムに配向させたシート(特願平1−279527号公報)、などが知られている。
【0004】
【発明が解決しようとする課題】
しかし、C/C複合材の製造において、金型を使用して加圧・加熱成形することは、様々な弊害を生じ、コストの削減や生産性の向上を阻害している。まず第一に、毎回金型を組み立て・分解するのに、かなりの手間と時間がかかってしまう。第二に、成形時に繊維・樹脂を加熱する際、金型を介して加熱するため、金型を温めるための余分な加熱電力・時間が必要になる。第三に、やはり金型を介して加熱するために、場所による金型の厚みの違いによって、金型内部での温度ムラが生じてしまい、結果として、得られた成形体に場所による品質のムラが生じてしまう。第四に、金型で積層方向と垂直な方向を拘束するため、高い圧力をかけた時に、余剰な樹脂・繊維が金型のわずかな隙間に集中して流動・漏出し、繊維の配向を乱してしまう。
【0005】
【課題を解決するための手段】
そこで、上記の課題を解決するために、発明者等は、長繊維よりもコストの低い短繊維を用いたC/C複合材に絞って検討に着手した。さらに、C/C複合材が成形以降の長い工程の中で寸法の変化があるため、中間あるいは最終段階で機械加工が必要となることに着目した。つまり、この機械加工工程があるために、通常のプラスチック材料のように、成形したものが最終製品の形状・寸法を満足している必要はなく、成形体の寸法精度は低くて良い、ということになる。そこで、発明者等は発想を逆転させ、金型を使わずに成形する方法について鋭意検討を重ねた。その結果、炭素繊維/樹脂の形態として2次元ランダムシートを使用すれば、金型を使うことなく、従来よりも安価・簡便かつ短時間に、所望の形状で厚くてVfの高い、品質ムラの少ない成形体を形成できることを見出し、本発明の完成に至った。
【0006】
即ち、本発明は、C/C複合材の成形までの工程をできるだけ安価・簡便かつ短時間に行えるようにすることを目的としており、短繊維状の炭素繊維またはその前駆体繊維が2次元ランダムに配向し、かつ樹脂が含まれるシートを、積層して積層シートを得て、前記積層シートを、積層方向と垂直な方向を拘束しない状態で、積層方向のみから加圧・加熱することにより成形体を形成する工程を有し、前記加圧・加熱を1次加圧及び2次加圧の二段階に分けて行い、前記2次加圧の1/10〜1/2の一定の圧力で前記積層シートを加圧し、前記樹脂の軟化に応じて連続的に前記積層シートの厚さを減少させて1次加圧を行い、温度が60〜500℃に達したら、2次加圧して前記積層シート厚さを成形体の目標厚さにまで小さくすることにより炭素繊維の2次元ランダム配向を乱さずに余剰な樹脂のみを除外して、成形前のシートと同形状で、厚くてVfの高い、品質ムラの少ない板状の成形体を形成し、その後、炭化、必要に応じて黒鉛化、緻密化、加工することを特徴としている。
【0007】
【発明の実施の形態】
以下、本発明の詳細を説明する。
炭素繊維は、その原料によってピッチ系、PAN(ポリアクリロニトリル)系、レーヨン系などに分類されるが、焼成することにより炭素繊維となる前駆体繊維も含めて、どの種類の繊維を使用しても良いし、複数の種類を混合して使用しても良い。なお、前駆体繊維をより詳細に説明すると、炭素繊維原料であるピッチ、PAN、レーヨンなどを紡糸した後に、空気雰囲気で温度を制御しながら熱処理することにより、酸化による分子架橋、高分子の硬化などをおこし、溶融しない状態に変化させたもので、通称では、ピッチ系の場合は不融化繊維、PAN系の場合は耐炎化繊維と呼ばれているものである。
【0008】
炭素繊維の形態としては、予めカッティングされた短繊維状の炭素繊維が2次元ランダムに配向したシート(以下「2次元ランダムシート」と称す)状のものを使用する。2次元ランダムシートは、短繊維が互いに絡まり合い、さらに場合によってはバインダーなどが付加されており、面内で繊維が動かないように固定されている。
したがって、積層したシートを、金型を使わず、積層方向と垂直な方向を拘束しない状態で加圧しても、繊維が面方向に流動して広がることがなく、積層シートの形状を保持して厚さのみが圧縮された成形体を得ることが出来る。
【0009】
なお、他の繊維形態について述べると、まず、連続繊維は短繊維と比べて高価な上、シート化・織物化のコストがさらにかかるため、原料コストが高くなってしまう。
したがって、安価な製造方法を提供するには、連続繊維は好ましくない。また、2次元ランダムシート以外の短繊維の形状としては、束状の短繊維に樹脂が含浸されたトウ・プリプレグ、短繊維と樹脂を混練・ペレット化したコンパウンド、あるいは短繊維が3次元的にランダムに配向した厚みのあるマットなどがある。しかし、これらは、繊維同士の絡み合いがない、または非常に弱いため、金型がなければ特定の形状に成形できず、また、加圧時に面方向へ広がってしまう。したがって、厚い成形体、あるいは、高いVfの成形体を得ることは困難である。
【0010】
炭素繊維の長さとしては、1〜100mm、好ましくは3〜50mmのものを使用する。繊維長が長すぎる場合は、繊維同士が過度に絡み合ってフロックを形成するなどして分散しにくくなり、均質なシートが得られなくなる。逆に、繊維長が短すぎる場合は、繊維同士の絡み合いが弱くなり、シートそのものを形成できなくなる。また、シートが形成できたとしても、非常に取扱性の悪く、さらに加圧時に面方向に広がって所望の形状を保持しにくくなる。
【0011】
短繊維状の炭素繊維から2次元ランダムシートを作るには様々な方法があり、その方法は特に限定されるものではない。例えば、乾式解繊によるシートの作製方法としては、機械的に炭素繊維を叩解してシート化する、ランダムウェッバー等の装置を使用する方法、あるいは、繊維を気流中で浮遊・解繊した後にスクリーン上に吸引する方法などがある。また、湿式解繊による作製方法としては、繊維を溶媒中に分散させ、製紙工業で使われるビーター、パルパーなどの装置を使用して解繊させた後に抄紙し、付着した溶媒を乾燥除去してシート化する方法などがある。
【0012】
この際、炭素繊維の解繊の度合いは、必要とする特性に応じて、繊維が単繊維1本ずつにまでバラバラに解繊された高解繊状態のものから、繊維束が残った低解繊状態のものまで、どの状態のものを用いても良い。ただし、低解繊となるほど繊維同士の絡み合いが弱くなり、加圧成形時に面方向に広がりやすくなるため、この場合には、後述するバインダーによる繊維同士の接着保持を確実に行う必要がある。
【0013】
シートの目付、すなわち、1m2 あたりの炭素繊維の重量は、10〜5000g/m2 、好ましくは、10〜1000g/m2 、特に好ましくは100〜500g/m2 とする。目付がこの範囲以下となると、繊維同士が交接せず、シートを形成できなくなる。また、この範囲以上の目付では、シート厚みが厚くなり、3 次元性が生じるため、2次元ランダムシートから逸脱してしまい、加圧時に面方向に広がって所望の形状を保持しにくくなる。
【0014】
炭素繊維シートに添着する樹脂としては、フェノール樹脂、フラン樹脂などの熱硬化性樹脂を用いても良いし、石油系、石炭系ピッチなどの熱可塑性樹脂を用いても良い。
樹脂を炭素繊維シートに添着する方法も様々である。一般的には、あらかじめ炭素繊維のシートを作った後、そのシートを溶媒で希釈された液状樹脂に含浸し、その後、溶媒を乾燥除去することによって行われる。樹脂は成形時のマトリックス原料であることに加えて、繊維同士を接着するバインダーとしても働き、シートの取扱性を向上させるとともに、加圧成形時の面方向への広がりを抑え、形状を保つ効果を持つ。
【0015】
炭素繊維シートの形成を湿式で行う場合は、樹脂との添着を同時に行うことによって工程を簡略化することもできる。即ち、粒状あるいは粉末状の固形樹脂を、炭素繊維と一緒に、溶媒中で分散・混合し、抄紙した後に、シートに付着した溶媒を乾燥除去する方法である。この場合、溶媒としては、固形樹脂を溶解するものは好ましくなく、また、炭素繊維・固形樹脂に比べて多量に消費するため、安全かつ安価である必要があり、実質的には水が最も好ましい。なお、溶媒中には、炭素繊維と固形樹脂の分散性向上ならびに溶液全体の取扱性向上のため、ポリエチレンオキサイド、ポリアクリルアミドなどの増粘剤を添加しても良い。また、乾燥後のシートの取扱性を向上させ、かつ繊維同士を接着して加圧成形時の面方向への広がりを抑えるために、ポリビニルアルコール、メチルセルロースなどのバインダーを添加しても良い。なお、この方法には、樹脂粒子が繊維間に分散することで、繊維同士の過度の絡まりによるフロックの形成を抑え、シートの均一性・平面性を高める、といった利点もある。また、抄紙に際して、スクリーンの開口部を所望の形状・寸法となるようマスキングすれば、直接、必要な寸法・形状のシートを得ることが出来、積層前に切断する必要がなくなる。
【0016】
樹脂の添着量は、成形後の炭素繊維のVfが通常20〜60%、好ましくは30〜50%となるように調整する。これ以下のVfでは、最終的なC/C複合材の強度・摩擦特性などの品質は優れたものとならない。また、短繊維による複合材料ではこれ以上のVfは実現できない。
このようにして得られたシートを、必要に応じて所望の寸法・形状に切断し、形状のそろったシートを積層し、積層したシート間に横ズレがないよう整列し、熱盤プレスにセットする。この際、好ましくは、熱盤への樹脂の付着を避けるために、積層したシートを上下とも同じ材質・厚さの離形紙または金属板で挟み込んだ状態で、熱盤プレスにセットする。
【0017】
熱盤プレスでの加圧は、基本的に、二段階に分けて行う。まず、積層シートを2次加圧の1/10〜1/2の低い圧力で1次加圧をおこない、成形体目標厚さの2〜3倍の厚みまで圧縮し、2次加圧を始める温度まで積層シートを予備加熱する。これより高い圧力で樹脂が軟化する前に加圧すると、繊維が折れる、積層シート同士のズレが大きくなる、などの弊害が起きるため、好ましくない。本発明では金型という大きな熱容量をもった介在物を使用しないために熱のロスが少なく、低電力かつ短時間に積層シート3を所望の温度に加熱することができる。また、熱は上下の熱盤1から積層方向のみを通じて積層シートに伝達されるため、シート面内でのムラはなく、均一に加熱できる。積層方向では、熱盤に近い表面層は温度が高く、中央が最も温度が低い、という温度差がつく。しかし、予熱時の積層厚さを小さくすることで、この温度差は小さくできる。また、予熱を厚さ一定で行うよりは、一定の圧力で加圧を続けることの方が、樹脂の軟化に応じて連続的に積層厚さを減少させ、さらに熱伝達効率を高めて温度差を小さくし、予熱時間を短縮でき、成形可能な厚さを大きくできるため、より好ましい。こうして積層シート全体の温度ムラを小さくすることにより、得られる成形体の品質ムラを小さく抑えることが出来る。なお、このムラは、成形体表面の硬度を測定することで、容易に確認できる。
【0018】
2次加圧を開始する温度は60〜500℃で、樹脂の粘度が最低となる温度より5〜30℃低い温度であることが好ましい。この範囲より高い温度では、熱硬化性樹脂を使用する場合に加圧より前に硬化反応が進行して成形不良となること、及び、過剰な熱量を消費することから好ましくない。また、この範囲より低い温度では、樹脂の粘度が高くて流動性が不足しているために目標厚さまで加圧するのに過剰な圧力を必要とすることから好ましくない。なお、樹脂の粘度が最低になる温度は、熱硬化性樹脂ではゲル化温度に相当し、コーンプレート型回転粘度計などにより測定・決定することができる。成形時には、積層シートのうちで最も温度が高くなる、熱盤に接する面がこの温度となることを監視することが望ましいが、積層シートそのものに熱電対4を挿入することは実際的ではないため、積層シート3と熱盤1の間にある金属板2を測温することで、加圧タイミングを判断すればよい。2次加圧により、積層シート厚さを板状成形体の目標厚さにまで小さくする。加圧の圧力は成形体の単位面積当たりの圧力で10〜300kg/cm2 であり、使用する樹脂の種類、所望のVfによって異なる。
【0019】
なお、上記の工程の内、予熱を熱盤プレスで行わないことで、より生産効率を上げることもできる。この場合は、積層シートをオーヴン等に投入して予め、前記の2次加圧開始温度に相当する、樹脂の粘度が最低となる温度より5〜30℃低い温度に加温した後に、その温度と同等以上に加熱された熱盤プレスにセットし、直ちに加圧して、積層シート厚さを成形体の目標厚さにまで小さくする。こうすることで、熱盤プレスを室温から加圧開始温度の間で加熱・冷却する時間を省略できるため、プレス占有時間が短縮でき、生産性の上から好ましい。ただし、熱硬化性樹脂を使用する場合は、積層シートのプレス外での予熱時間が長すぎると、硬化反応が進行してしまい、加圧時に成形不良が生じてしまうため、予熱はできるだけ低い温度で短い時間にとどめる必要がある。
【0020】
加圧によって板状成形体が目標厚さに達した時点で、フェノール樹脂などの熱硬化性樹脂を使用している場合は、さらに120〜300℃の高温にまで加熱し、樹脂を十分に硬化させた後、冷却し、圧力を減じて、成形を終了し、板状成形体をプレスから取り出す。この際、加熱時と同様に、本発明では金型という大きな熱容量をもった介在物を使用しないために、短時間に冷却を完了できる。また、ピッチなどの熱可塑性樹脂を使用している場合は、硬化反応は起きないため、加圧によって板状成形体が目標厚さに達した時点で、冷却を行う。この際、冷却は加熱時と別のプレスで行うようにすれば、熱盤プレスを占有する時間を短くでき、生産性を高めることができる。こうして、Vfが20〜60vol%、厚さが5〜40mmの成形体を得られる。成形体の形状は、積層シートの形状をほぼ保持しているが、シート積層時の横ズレや樹脂の漏れ出しによる若干のズレ・バラツキが生じるので、後工程で加工し、所望の寸法・形状にする。
【0021】
成形体は、次に、窒素ガスなどの不活性ガス雰囲気中で、1〜200℃/hの昇温速度で800〜2800℃の温度で焼成(炭化、黒鉛化)し、C/C複合材とする。この時点で、C/C複合材には多数の気孔があり、強度が低い、などの欠点があるため、緻密化処理を行う。なお、先に述べた寸法・形状の加工をこの緻密化処理前の段階で行えば、非常に容易に加工できて好ましい。緻密化処理としては、例えばピッチ含浸、樹脂含浸、CVD等の方法を単独あるいは組み合わせ、必要に応じては複数回繰り返して行う。また、最後に、必要に応じて、窒素ガスなどの不活性ガス雰囲気中で、1〜200℃/hの昇温速度で800〜2800℃の温度で焼成することで、黒鉛化処理を行う。こうして、強度・摩擦特性に優れたC/C複合材を得ることが出来る。
【0022】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例によって限定されるものではない。
実施例1
繊維長30mmのピッチ系炭素繊維束をランダムウェッバーを使用して解繊し、炭素繊維が2次元ランダムに配向した、目付180g/m2 のシートを作製し、これをエタノールで希釈したフェノール樹脂に含浸させ、エタノールを乾燥除去して、樹脂添着率が40wt%のプリプレグ・シートを作製した。
この樹脂の粘度が最低になる温度を、コーンプレート型回転粘度計で測定すると、105℃であった。よって、2次加圧開始温度は、それより25℃低い80℃とした。
【0023】
シートを外径350mmφ、内径80mmφのドーナツ状に裁断し、1815gを積層し、厚さ25mmtの表面が平滑な鉄板で上下を挟んで図1に示すように熱盤プレスにセットし、面圧26kg/cm2 の一定圧力で1次加圧を行いながら熱盤1を90℃まで昇温して予備加熱を開始した。加圧加熱開始時の積層シート3厚さは26mmで、成形体目標厚さ2倍強であった。そして、35分後に積層シートを挟み込んだ金属板(鉄板)2が80℃となった時点で、面圧を150kg/cm2 まで上げて2次加圧を行い、積層シート厚さを13mmまで減少させた。さらに、2次加圧開始から10分経過した後、150kg/cm2 の圧力を維持したまま、熱盤を30分で250℃まで昇温し、そこで30分保持し、鉄板の温度を最高240℃まで加熱して樹脂を十分に硬化させた後、冷却し、圧力を減じて、鉄板ごと成形体を取り出した。熱盤プレス運転の所要時間は150分と短時間であった。また、成形体は鉄板から容易に取り外すことが出来、取り外し後の鉄板への樹脂の付着も少なく、1分以内に簡単に整備できた。成形体の内外周には漏れ出た樹脂が付着していたが、これも容易に除去できた。得られた成形体は外径350〜355mmφ、内径74〜80mmφ、厚さ12mm、Vf53%であった。またロックウェル硬度計を用いて板面の硬度を測定したところ、上面、下面でそれぞれ100RHP、99RHPであり、上下面の差がない成形体であった。
この成形体を不活性雰囲気で2000℃まで焼成し、さらに、これにピッチを含浸して気孔を充填し、不活性雰囲気で1000℃で焼成して炭化する緻密化工程を複数回繰り返し、最後に不活性雰囲気で2000℃で焼成して、気孔率10%のC/C複合材を得た。
【0024】
比較例
実施例1と同じ原料・製法で作製したプリプレグ・シートを、外径350mmφ、内径80mmφのドーナツ状に裁断し、1800gを金型内に積層し、金型を熱盤プレスにセットした。そして、積層シート厚さが25mm程度となるまで1次加圧をした後、その厚さを保ったままで、熱盤を150℃まで昇温して予備加熱を開始した。そして、60〜75分後に金型側面が77℃となった時点で、面圧を150kg/cm2 まで上げて2次加圧を行い、積層シート厚さを12mmまで減少させた。さらに、150kg/cm2 の圧力を維持したまま、熱盤を80分で250℃まで昇温し、そこで60分保持し、金型を最高温度で240℃まで加熱して樹脂を十分に硬化させた後、冷却し、圧力を減じて、金型を取り出した。熱盤プレス運転の所要時間は300分となり、実施例1の2倍近い長時間を要した。また、漏れ出した樹脂が金型の隙間に入り込んだ状態で硬化していたため、金型を分解して成形体を取り出すこと、および、分解した金型に付着した樹脂を除去することに手間がかかり、60分ほどの時間を要した。得られた成形体は外径350mmφ、内径80mmφ、厚さ11mm、Vf52%であり、板面の硬度は、上面、下面でそれぞれ60RHP、80RHPであり、上下面で差のある成形体であった。
この成形体を実施例1と同様な製法で焼成、緻密化、熱処理を行い、気孔率10%のC/C複合材を得た。
【0025】
実施例2
繊維長30mmのピッチ系炭素繊維束、粒状のレゾール型フェノール樹脂を重量割合が61:39となる配合で、濃度0.4wt%のポリエチレンオキサイド水溶液を充たしたパルパーに投入し、撹拌操作により解繊・分散・混合した後、さらに、濃度0.4wt%のポリエチレンオキサイド水溶液を追加して、炭素繊維および粒状樹脂を重量割合で0.5%含む、均質なスラリーを調製した。このスラリーを5.65リットルずつ秤量し、350mmφの筒内に入れ、外径350mmφ・内径80mmφの抄紙スクリーン付きノズルで上部より吸引した。そして、スクリーン上に得られたシートを40℃で24時間乾燥して水分を除去し、外径350mmφ・内径80mmφのドーナツ形状をもち、繊維が目付170g/m2 で2次元ランダムに配向し、添着率39wt%の粒状樹脂が均一に分散したシートを作製した。
【0026】
このシートを1752g積層し、実施例1と同様な方法で、鉄板で上下を挟んで熱盤プレスにセットし、加圧加熱成形を行った。ただし、実施例1とは使用した樹脂が異なり、樹脂の粘度が最低となる温度は125℃であったため、予備加熱の熱盤温度、および2次加圧開始温度は、それぞれ110℃、101℃とした。熱盤プレス運転の所要時間は150分で、実施例と同じ短時間であった。また、成形体の取り外しも、実施例1と同様、容易であった。得られた成形体は、外径350〜360mmφ、内径60〜80mm、φ厚さ12mm、Vf44%であった。また板面の硬度は、上面、下面でそれぞれ113RHP、109RHPであり、上下面の差がない成形体であった。
この成形体を実施例1と同様な製法で焼成、緻密化、熱処理を行い、気孔率11%のC/C複合材を得た。
【0027】
【発明の効果】
本発明により、炭素繊維強化炭素複合材の成形までの工程が、安価・簡便かつ短時間に行えることで、生産性の向上が実現でき、それによって炭素繊維強化炭素複合材をより安価に供給することができる。
【図面の簡単な説明】
【図1】本発明の加圧加熱時の状態の説明図。
【符号の説明】
1 熱盤
2 金属板
3 積層シート
4 金属板測温用熱電対
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inexpensive carbon fiber reinforced carbon composite material realized by improving the productivity of a molding process and a method for producing the same.
[0002]
[Prior art]
Generally, a carbon fiber reinforced carbon composite (hereinafter abbreviated as “C / C composite”) is a PAN-based, pitch-based, rayon-based carbon fiber, or a precursor fiber thereof, a thermosetting resin such as a phenol resin, or It is manufactured by impregnating or mixing a thermoplastic resin such as pitch, pressurizing and molding using a mold, and then firing at 600 to 2500 ° C. in a non-oxidizing atmosphere. A high-quality C / C composite material used for a brake material or the like generally has a thickness of 5 to 40 mm, a fiber content (hereinafter abbreviated as “Vf”) of 20 to 60 vol%, and a thickness of 1 to Compared with a thin heat-resistant panel of 2 mm or less or a heat insulating material having Vf of only a few percent, a thickness and Vf of a certain level or more are required.
[0003]
Various forms of fibers and resins of the C / C composite material before molding are known. Of these, when continuous fibers are used, a unidirectional (UD) prepreg sheet in which a resin is attached in a state where the fibers are aligned in one direction, or a two-dimensional or three-dimensional woven fabric. A sheet-like or block-like cloth to which a resin is attached later is known. When short fibers are used, a rod-like tow / prepreg that has been impregnated with a resin in a bundle of fibers and then cut to a certain length, a compound in which fibers and resin are kneaded into pellets, and fibers are defibrated. A thick mat (Japanese Patent Laid-Open No. Sho 62-119288), an assembly in which fibers are beaten in a solvent and then the solvent is removed to orient the fibers in a random direction (Japanese Patent Laid-Open No. Sho 62-96364). No.), or a sheet (Japanese Patent Application No. 1-279527) in which fibers are defibrated in a dry or wet manner and fibers are two-dimensionally oriented randomly is known.
[0004]
[Problems to be solved by the invention]
However, in the production of a C / C composite material, pressurization and thermoforming using a mold causes various adverse effects, and hinders cost reduction and productivity improvement. First of all, it takes a lot of work and time to assemble and disassemble the mold every time. Secondly, when heating the fiber / resin at the time of molding, since heating is performed through the mold, extra heating power and time are required to warm the mold. Thirdly, since heating is also performed through the mold, the temperature unevenness inside the mold is caused by the difference in the thickness of the mold depending on the location, and as a result, the quality of the obtained molded product depends on the location. Unevenness occurs. Fourthly, in order to constrain the direction perpendicular to the stacking direction in the mold, when high pressure is applied, excess resin / fiber concentrates in a small gap in the mold and flows / leaks out, and the fiber orientation It will be disturbed.
[0005]
[Means for Solving the Problems]
Therefore, in order to solve the above-described problems, the inventors have started investigation by focusing on C / C composite materials using short fibers whose cost is lower than that of long fibers. Furthermore, the C / C composite material has undergone a dimensional change in a long process after molding, and thus attention has been paid to the fact that machining is required in the middle or final stage. In other words, because of this machining process, it is not necessary for the molded product to satisfy the shape and dimensions of the final product, as in ordinary plastic materials, and the dimensional accuracy of the molded product may be low. become. Thus, the inventors reversed the idea and conducted extensive studies on a method of molding without using a mold. As a result, if a two-dimensional random sheet is used as the form of carbon fiber / resin, the thickness of the desired shape is high and Vf is high, without using a mold. The present inventors have found that a small number of molded bodies can be formed and have completed the present invention.
[0006]
That is, the object of the present invention is to make it possible to perform the process up to the formation of the C / C composite material as cheaply, conveniently and in a short time as possible, and the short fiber carbon fiber or its precursor fiber is two-dimensional random. A sheet containing resin is laminated to obtain a laminated sheet, and the laminated sheet is molded by pressing and heating only from the laminating direction without restraining the direction perpendicular to the laminating direction. A step of forming a body, wherein the pressurization and heating are performed in two stages of primary pressurization and secondary pressurization, and at a constant pressure of 1/10 to 1/2 of the secondary pressurization. Pressurize the laminated sheet, continuously reduce the thickness of the laminated sheet according to the softening of the resin, perform primary pressurization, and when the temperature reaches 60-500 ° C., secondary pressurize in reducing the laminated sheet thickness to a target thickness of the shaped body Excluding only excess resin without disturbing the two-dimensional random orientation of the carbon fiber, forming a plate-like molded body having the same shape as the sheet before molding, thick, high Vf, and less quality unevenness, It is characterized by carbonization, graphitization, densification and processing as required.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
Carbon fiber is classified into pitch type, PAN (polyacrylonitrile) type, rayon type, etc. depending on the raw material, and any kind of fiber can be used, including precursor fiber that becomes carbon fiber by firing. It is good, and a plurality of types may be mixed and used. The precursor fiber will be explained in more detail. After spinning the carbon fiber raw material pitch, PAN, rayon, etc., heat treatment while controlling the temperature in an air atmosphere, molecular crosslinking by oxidation, curing of the polymer In other words, the pitch system is called an infusible fiber, and the PAN system is called a flame resistant fiber.
[0008]
As the form of the carbon fiber, a sheet in which short-cut carbon fibers cut in advance are two-dimensionally oriented (hereinafter referred to as “two-dimensional random sheet”) is used. In the two-dimensional random sheet, short fibers are entangled with each other, and a binder is added in some cases, and the fibers are fixed so that the fibers do not move in the plane.
Therefore, even if the laminated sheet is pressed without using a mold and restraining the direction perpendicular to the lamination direction, the fibers do not flow and spread in the plane direction, and the shape of the laminated sheet is maintained. A molded body in which only the thickness is compressed can be obtained.
[0009]
When describing other fiber forms, first, continuous fibers are more expensive than short fibers, and further costs for sheeting and woven fabrics are increased, which increases raw material costs.
Therefore, continuous fibers are not preferable for providing an inexpensive production method. The short fiber shape other than the two-dimensional random sheet is a tow prepreg in which a bundle of short fibers is impregnated with resin, a compound in which short fibers and resin are kneaded and pelletized, or a short fiber is three-dimensionally. There are randomly oriented thick mats and the like. However, since these fibers are not entangled with each other or very weak, they cannot be formed into a specific shape without a mold, and spread in the surface direction when pressed. Therefore, it is difficult to obtain a thick molded body or a molded body having a high Vf.
[0010]
The carbon fiber has a length of 1 to 100 mm, preferably 3 to 50 mm. When the fiber length is too long, the fibers are entangled excessively to form a flock, making it difficult to disperse and a homogeneous sheet cannot be obtained. On the contrary, when the fiber length is too short, the entanglement between the fibers becomes weak, and the sheet itself cannot be formed. Even if a sheet can be formed, the handling property is very poor, and further, it becomes difficult to maintain a desired shape by spreading in the surface direction during pressing.
[0011]
There are various methods for producing a two-dimensional random sheet from short fiber carbon fibers, and the method is not particularly limited. For example, as a method for producing a sheet by dry defibration, a method of mechanically beating carbon fibers into a sheet, using a device such as a random webber, or a screen after floating and defibrating fibers in an air stream There is a method of sucking up. Also, as a production method by wet defibration, the fibers are dispersed in a solvent, defibrated using a device such as a beater or a pulper used in the paper industry, paper is made, and the attached solvent is removed by drying. There is a method to make a sheet.
[0012]
At this time, the degree of defibration of the carbon fiber is low defibration in which the fiber bundle remains from a high defibrated state in which the fibers are defibrated to one single fiber according to the required characteristics. Any state may be used up to a fine state. However, the lower the defibration, the weaker the entanglement between the fibers, and the easier it is to spread in the surface direction at the time of pressure molding.
[0013]
The basis weight of the sheet, that is, the weight of the carbon fiber per 1 m 2 is 10 to 5000 g / m 2 , preferably 10 to 1000 g / m 2 , and particularly preferably 100 to 500 g / m 2 . If the basis weight is below this range, the fibers do not come into contact with each other, and a sheet cannot be formed. In addition, if the basis weight is more than this range, the sheet thickness increases and three-dimensionality occurs, so that the sheet deviates from the two-dimensional random sheet and spreads in the surface direction when pressed, making it difficult to maintain a desired shape.
[0014]
As the resin to be attached to the carbon fiber sheet, a thermosetting resin such as a phenol resin or a furan resin may be used, or a thermoplastic resin such as petroleum-based or coal-based pitch may be used.
There are various methods for attaching the resin to the carbon fiber sheet. In general, a carbon fiber sheet is prepared in advance, the sheet is impregnated with a liquid resin diluted with a solvent, and then the solvent is removed by drying. In addition to being a matrix raw material during molding, the resin also acts as a binder to bond fibers together, improving the handleability of the sheet and suppressing the spread in the surface direction during pressure molding and maintaining the shape have.
[0015]
In the case where the carbon fiber sheet is formed by a wet process, the process can be simplified by simultaneously performing the attachment with the resin. That is, it is a method in which a solid resin in a granular or powder form is dispersed and mixed in a solvent together with carbon fibers to make paper, and then the solvent attached to the sheet is removed by drying. In this case, a solvent that dissolves the solid resin is not preferable as the solvent, and it is necessary to be safe and inexpensive because it consumes a large amount compared to the carbon fiber / solid resin, and water is most preferable. . In the solvent, a thickener such as polyethylene oxide or polyacrylamide may be added in order to improve the dispersibility of the carbon fiber and the solid resin and improve the handleability of the whole solution. Moreover, in order to improve the handleability of the sheet | seat after drying, and in order to adhere | attach fibers and suppress the spread to the surface direction at the time of pressure forming, you may add binders, such as polyvinyl alcohol and methylcellulose. This method also has the advantage that the resin particles are dispersed between the fibers, thereby suppressing the formation of flocs due to excessive entanglement between the fibers and improving the uniformity and flatness of the sheet. Further, when making paper, if the opening of the screen is masked so as to have a desired shape and size, a sheet having a required size and shape can be obtained directly, and there is no need to cut it before lamination.
[0016]
The amount of resin applied is adjusted so that the Vf of the carbon fiber after molding is usually 20 to 60%, preferably 30 to 50%. Below Vf, the quality of the final C / C composite material, such as strength and friction characteristics, is not excellent. Further, Vf beyond this cannot be realized with a composite material of short fibers.
Sheets obtained in this way are cut to the desired size and shape as necessary, stacked sheets with uniform shapes, aligned so that there is no lateral displacement between the stacked sheets, and set in a hot platen press To do. At this time, preferably, in order to avoid the adhesion of the resin to the hot platen, the laminated sheets are set on the hot platen press in a state of being sandwiched between release papers or metal plates of the same material and thickness.
[0017]
Pressing with a hot platen press is basically performed in two stages. First, the primary pressure is applied to the laminated sheet at a pressure 1/10 to 1/2 lower than the secondary pressure, and the laminated sheet is compressed to a thickness of 2 to 3 times the target thickness of the molded body, and the secondary pressure is started. Preheat laminated sheet to temperature. If the pressure is applied before the resin is softened at a pressure higher than this, it is not preferable because the fiber breaks and the misalignment between the laminated sheets increases. In the present invention, since the inclusion having a large heat capacity such as a mold is not used, there is little heat loss, and the laminated sheet 3 can be heated to a desired temperature in a short time with low power. Further, since heat is transmitted from the upper and lower heating plates 1 to the laminated sheet only through the laminating direction, there is no unevenness in the sheet surface, and heating can be performed uniformly. In the stacking direction, there is a temperature difference that the surface layer near the hot platen has a high temperature and the center has the lowest temperature. However, this temperature difference can be reduced by reducing the thickness of the laminate during preheating. Rather than performing preheating at a constant thickness, continuing to pressurize at a constant pressure continuously reduces the laminate thickness in response to the softening of the resin, further increasing the heat transfer efficiency and increasing the temperature difference. Is preferable because the preheating time can be shortened and the moldable thickness can be increased. By reducing the temperature unevenness of the entire laminated sheet in this way, it is possible to suppress the quality unevenness of the obtained molded body. This unevenness can be easily confirmed by measuring the hardness of the surface of the molded body.
[0018]
The temperature at which the secondary pressurization starts is 60 to 500 ° C., and is preferably 5 to 30 ° C. lower than the temperature at which the resin viscosity is minimum. When the temperature is higher than this range, when a thermosetting resin is used, a curing reaction proceeds before pressurization, resulting in a molding failure, and an excessive amount of heat is consumed. Further, a temperature lower than this range is not preferable because an excessive pressure is required to pressurize to a target thickness because the viscosity of the resin is high and the fluidity is insufficient. The temperature at which the resin has the lowest viscosity corresponds to the gelation temperature in the case of a thermosetting resin, and can be measured and determined with a cone plate type rotational viscometer or the like. At the time of molding, it is desirable to monitor that the temperature of the laminated sheet is the highest, and the surface in contact with the hot platen is at this temperature, but it is not practical to insert the thermocouple 4 into the laminated sheet itself. The pressurization timing may be determined by measuring the temperature of the metal plate 2 between the laminated sheet 3 and the hot platen 1. By the secondary pressurization, the thickness of the laminated sheet is reduced to the target thickness of the plate-like molded body. The pressure of the pressurization is 10 to 300 kg / cm 2 as a pressure per unit area of the molded body, and varies depending on the type of resin used and the desired Vf.
[0019]
In addition, production efficiency can also be raised by not performing preheating by a hot platen press among said processes. In this case, the laminated sheet is put into an oven or the like and heated in advance to a temperature corresponding to the secondary pressurization start temperature, which is lower by 5 to 30 ° C. than the temperature at which the resin has the lowest viscosity. Is set in a hot platen press heated to the same level or more, and immediately pressed to reduce the thickness of the laminated sheet to the target thickness of the molded body. By doing so, the time for heating and cooling the hot platen press between the room temperature and the pressurization start temperature can be omitted, so that the press occupation time can be shortened, which is preferable in terms of productivity. However, when using a thermosetting resin, if the preheating time outside the press of the laminated sheet is too long, the curing reaction will proceed and molding defects will occur during pressing. It is necessary to stay in a short time.
[0020]
When the plate-shaped molded product reaches the target thickness by pressurization, if a thermosetting resin such as phenol resin is used, it is further heated to a high temperature of 120 to 300 ° C to fully cure the resin. After cooling, the pressure is reduced, the molding is finished, and the plate-like molded body is taken out from the press. At this time, as in the case of heating, the present invention does not use an inclusion having a large heat capacity such as a mold, so that cooling can be completed in a short time. Further, when a thermoplastic resin such as pitch is used, the curing reaction does not occur. Therefore, cooling is performed when the plate-shaped molded body reaches the target thickness by pressurization. At this time, if the cooling is performed by a press different from that used during heating, the time required to occupy the hot platen press can be shortened, and the productivity can be increased. Thus, a molded body having a Vf of 20 to 60 vol% and a thickness of 5 to 40 mm can be obtained. The shape of the molded product is almost the same as the shape of the laminated sheet, but there are slight deviations and variations due to lateral deviation when the sheets are laminated and leakage of the resin. To.
[0021]
Next, the compact is fired (carbonized and graphitized) at a temperature of 800 to 2800 ° C. at a temperature rising rate of 1 to 200 ° C./h in an inert gas atmosphere such as nitrogen gas, and a C / C composite material. And At this point, the C / C composite material has a large number of pores and has such disadvantages as low strength, so that densification is performed. Note that it is preferable that the processing of the dimensions and shapes described above is performed at a stage before the densification treatment because it can be processed very easily. As the densification treatment, for example, methods such as pitch impregnation, resin impregnation, and CVD are used alone or in combination, and are repeated a plurality of times as necessary. Finally, if necessary, graphitization is performed by firing at a temperature of 800 to 2800 ° C. at a rate of temperature increase of 1 to 200 ° C./h in an inert gas atmosphere such as nitrogen gas. Thus, a C / C composite material excellent in strength and friction characteristics can be obtained.
[0022]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Example 1
A pitch-based carbon fiber bundle having a fiber length of 30 mm is defibrated using a random webber to produce a sheet having a basis weight of 180 g / m 2 in which carbon fibers are randomly oriented in two dimensions, and this is diluted with ethanol to a phenol resin. Impregnation was performed and ethanol was removed by drying to prepare a prepreg sheet having a resin adhesion rate of 40 wt%.
The temperature at which the resin had the lowest viscosity was measured at 105 ° C. using a cone-plate rotary viscometer. Therefore, the secondary pressurization start temperature was set to 80 ° C., which is 25 ° C. lower than that.
[0023]
The sheet is cut into a donut shape having an outer diameter of 350 mmφ and an inner diameter of 80 mmφ, 1815 g is laminated, and the surface is set on a hot platen press as shown in FIG. Preheating was started by heating the hot platen 1 to 90 ° C. while performing primary pressurization at a constant pressure of / cm 2 . The thickness of the laminated sheet 3 at the start of pressurization and heating was 26 mm, which was more than twice the target thickness of the molded body. After 35 minutes, when the metal plate (iron plate) 2 sandwiching the laminated sheet reaches 80 ° C., the surface pressure is increased to 150 kg / cm 2 and the secondary pressure is applied to reduce the laminated sheet thickness to 13 mm. I let you. Further, after 10 minutes from the start of the secondary pressurization, while maintaining the pressure of 150 kg / cm 2 , the hot platen was heated to 250 ° C. in 30 minutes and held there for 30 minutes, and the temperature of the iron plate was kept at a maximum of 240 After the resin was sufficiently cured by heating to ° C., it was cooled, the pressure was reduced, and the molded body was taken out together with the iron plate. The time required for the hot platen press operation was as short as 150 minutes. Further, the molded body could be easily removed from the iron plate, and the resin did not adhere to the iron plate after removal, and could be easily maintained within 1 minute. The leaked resin adhered to the inner and outer circumferences of the molded body, which could be easily removed. The obtained molded body had an outer diameter of 350 to 355 mmφ, an inner diameter of 74 to 80 mmφ, a thickness of 12 mm, and Vf of 53%. Further, when the hardness of the plate surface was measured using a Rockwell hardness meter, it was 100 RHP and 99 RHP on the upper surface and the lower surface, respectively, and it was a molded product having no difference between the upper and lower surfaces.
This compact is fired up to 2000 ° C. in an inert atmosphere, and further, a densification step of impregnating this with a pitch, filling the pores, firing at 1000 ° C. in an inert atmosphere and carbonizing is repeated a plurality of times. Baking at 2000 ° C. in an inert atmosphere gave a C / C composite with a porosity of 10%.
[0024]
Comparative Example A prepreg sheet produced by the same raw material and production method as in Example 1 was cut into a donut shape having an outer diameter of 350 mmφ and an inner diameter of 80 mmφ, 1800 g was laminated in the mold, and the mold was set on a hot platen press. Then, after the primary pressure was applied until the thickness of the laminated sheet became about 25 mm, the hot platen was heated up to 150 ° C. while maintaining the thickness, and preheating was started. Then, when the side surface of the mold reached 77 ° C. after 60 to 75 minutes, the surface pressure was increased to 150 kg / cm 2 and the secondary pressure was applied to reduce the laminated sheet thickness to 12 mm. Further, while maintaining the pressure of 150 kg / cm 2 , the hot platen is heated to 250 ° C. in 80 minutes, held there for 60 minutes, and the mold is heated to 240 ° C. at the maximum temperature to sufficiently cure the resin. After cooling, the pressure was reduced and the mold was taken out. The time required for the hot platen press operation was 300 minutes, which was nearly twice as long as that of Example 1. In addition, since the leaked resin was cured in a state where it entered the gap between the molds, it was troublesome to disassemble the mold and take out the molded body, and to remove the resin adhering to the decomposed mold. It took about 60 minutes. The obtained molded body had an outer diameter of 350 mmφ, an inner diameter of 80 mmφ, a thickness of 11 mm, and a Vf of 52%. The hardness of the plate surface was 60 RHP and 80 RHP on the upper surface and the lower surface, respectively. .
This molded body was fired, densified, and heat-treated by the same production method as in Example 1 to obtain a C / C composite material having a porosity of 10%.
[0025]
Example 2
A pitch-based carbon fiber bundle with a fiber length of 30 mm and a granular resol-type phenol resin are blended at a weight ratio of 61:39 into a pulper filled with a polyethylene oxide aqueous solution with a concentration of 0.4 wt%, and defibrated by stirring. -After dispersion and mixing, a polyethylene oxide aqueous solution having a concentration of 0.4 wt% was further added to prepare a homogeneous slurry containing 0.5% by weight of carbon fibers and granular resin. This slurry was weighed 5.65 liters, put into a 350 mmφ cylinder, and sucked from above with a nozzle with a papermaking screen having an outer diameter of 350 mmφ and an inner diameter of 80 mmφ. And the sheet | seat obtained on the screen was dried at 40 degreeC for 24 hours, water | moisture content was removed, it had a donut shape with an outer diameter of 350 mmφ and an inner diameter of 80 mmφ, and the fibers were randomly oriented with a basis weight of 170 g / m 2 A sheet in which granular resin having an adhesion rate of 39 wt% was uniformly dispersed was produced.
[0026]
1752 g of this sheet was laminated, and set in a hot platen press with an iron plate sandwiched between the upper and lower sides in the same manner as in Example 1, and pressurization heating molding was performed. However, since the resin used was different from Example 1 and the temperature at which the viscosity of the resin was the lowest was 125 ° C., the hot platen temperature for preheating and the secondary pressurization start temperature were 110 ° C. and 101 ° C., respectively. It was. The time required for the hot platen operation was 150 minutes, which was the same short time as the example. Moreover, the removal of the molded body was easy as in Example 1. The obtained molded body had an outer diameter of 350 to 360 mmφ, an inner diameter of 60 to 80 mm, a φ thickness of 12 mm, and Vf of 44%. Further, the hardness of the plate surface was 113 RHP and 109 RHP on the upper surface and the lower surface, respectively, and it was a molded product having no difference between the upper and lower surfaces.
This molded body was fired, densified and heat-treated by the same production method as in Example 1 to obtain a C / C composite material having a porosity of 11%.
[0027]
【The invention's effect】
According to the present invention, the process up to the formation of the carbon fiber reinforced carbon composite material can be performed inexpensively, simply and in a short time, thereby improving productivity, thereby supplying the carbon fiber reinforced carbon composite material at a lower cost. be able to.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a state during pressure heating according to the present invention.
[Explanation of symbols]
1 Hot plate 2 Metal plate 3 Laminated sheet 4 Thermocouple for metal plate temperature measurement

Claims (10)

短繊維状の炭素繊維またはその前駆体繊維が2次元ランダムに配向し、かつ樹脂が含まれるシートを、積層して積層シートを得て、前記積層シートを、積層方向と垂直な方向を拘束しない状態で、積層方向のみから加圧・加熱することにより成形体を形成する工程を有し、前記加圧・加熱を1次加圧及び2次加圧の二段階に分けて行い、前記2次加圧の1/10〜1/2の一定の圧力で前記積層シートを加圧し、前記樹脂の軟化に応じて連続的に前記積層シートの厚さを減少させて1次加圧を行い、温度が60〜500℃に達したら、2次加圧して前記積層シート厚さを成形体の目標厚さにまで小さくすることを特徴とする炭素繊維強化炭素複合材の製造方法。A short fiber-like carbon fiber or its precursor fiber is randomly oriented two-dimensionally and a sheet containing a resin is laminated to obtain a laminated sheet, and the laminated sheet is not constrained in a direction perpendicular to the laminating direction. state, comprising the step of forming a shaped body by pressing and heating only the stacking direction, is performed by dividing the application of pressure and heat to the two stages of the primary pressure and secondary pressure, the secondary the laminated sheet at a constant pressure of 1 / 10-1 / 2 of pressure pressurized performs primary pressure continuously reduce the thickness of the laminated sheet according to the softening of the resin, temperature When the temperature reaches 60 to 500 ° C., secondary pressure is applied to reduce the thickness of the laminated sheet to the target thickness of the molded body. 短繊維状の炭素繊維またはその前駆体繊維が2次元ランダムに配向し、かつ樹脂が含まれるシートを、積層して積層シートを得て、前記積層シートを、積層方向と垂直な方向を拘束しない状態で、積層方向のみから加圧・加熱することにより成形体を形成する工程を有し、前記積層シートを、前記樹脂の粘度が最低となる温度より5〜30℃低い温度に予め加熱した後、前記積層シートの温度以上に加熱されたプレスに投入して加圧し、前記積層シート厚さを成形体の目標厚さまで減ずることを特徴とする炭素繊維強化炭素複合材の製造方法。  A short fiber-like carbon fiber or its precursor fiber is randomly oriented two-dimensionally and a sheet containing a resin is laminated to obtain a laminated sheet, and the laminated sheet is not constrained in a direction perpendicular to the laminating direction. After forming the molded body by pressurizing and heating only from the laminating direction in the state, the laminated sheet is preheated to a temperature 5-30 ° C. lower than the temperature at which the resin has the lowest viscosity A method for producing a carbon fiber reinforced carbon composite material, wherein the pressure is applied by pressing into a press heated to a temperature higher than the temperature of the laminated sheet, and the thickness of the laminated sheet is reduced to a target thickness of the formed body. 前記加圧・加熱することにより成形体を形成する工程を経て得られた成形体の厚さが5〜40mm、繊維含有率が20〜60vol%である、請求項1または2に記載の炭素繊維強化炭素複合材の製造方法。The carbon fiber according to claim 1 or 2, wherein a thickness of the molded body obtained through the step of forming the molded body by pressing and heating is 5 to 40 mm, and a fiber content is 20 to 60 vol%. A method for producing a reinforced carbon composite material. 短繊維状の炭素繊維またはその前駆体繊維の長さが1〜100mmである、請求項1〜3のいずれかに記載の炭素繊維強化炭素複合材の製造方法。  The manufacturing method of the carbon fiber reinforced carbon composite material in any one of Claims 1-3 whose length of a short fiber-like carbon fiber or its precursor fiber is 1-100 mm. シート1m中の炭素繊維またはその前駆体繊維の重量が10〜5000gである、請求項1〜4のいずれかに記載の炭素繊維強化炭素複合材の製造方法。Carbon fibers or weight of the precursor fiber in the sheet 1 m 2 is 10~5000G, method of producing a carbon fiber-reinforced carbon composite material according to any of claims 1 to 4. 前記二段階の加圧・加熱は、まず成形体の目標厚さの2〜3倍の厚さに圧縮し、その圧力を保持しながら加熱してシート厚さを徐々に減少させ、積層シートが、樹脂の粘度が最低となる温度より5〜30℃低い温度に達した時点で、より高い圧力で加圧し、積層シート厚さを成形体の目標厚さまで減ずることによって行われることを特徴とする、請求項1に記載の炭素繊維強化炭素複合材の製造方法。In the two-stage pressurization and heating, first, the sheet is compressed to a thickness of 2 to 3 times the target thickness, and heated while maintaining the pressure to gradually reduce the sheet thickness. When the temperature reaches 5 to 30 ° C. lower than the temperature at which the resin has the lowest viscosity, pressurization is performed at a higher pressure, and the laminated sheet thickness is reduced to the target thickness of the molded body. The manufacturing method of the carbon fiber reinforced carbon composite material of Claim 1 . あらかじめ短繊維状の炭素繊維またはその前駆体繊維が2次元ランダムに配向したシートを作り、そのシートを溶媒で希釈された液状樹脂に含浸した後、溶媒を乾燥除去することにより、炭素繊維に樹脂が添着したシートとし、これを積層、加圧・加熱成形する、請求項1〜6のいずれかに記載の炭素繊維強化炭素複合材の製造方法。  After making a sheet in which short fiber-like carbon fibers or precursor fibers thereof are two-dimensionally oriented in advance, the sheet is impregnated with a liquid resin diluted with a solvent, and then the solvent is dried and removed, whereby a resin is added to the carbon fiber. A method for producing a carbon fiber reinforced carbon composite material according to any one of claims 1 to 6, wherein the sheet is laminated, pressed and thermoformed. 粒状あるいは粉末状の固形樹脂を、短繊維状の炭素繊維またはその前駆体繊維と一緒に溶媒中で分散・混合した後、抄紙・乾燥することにより、炭素繊維に樹脂が添着したシートとし、これを積層、加圧・加熱成形する、請求項1〜6のいずれかに記載の炭素繊維強化炭素複合材の製造方法。  A granular or powdered solid resin is dispersed and mixed in a solvent together with short fiber carbon fibers or precursor fibers thereof, and then papermaking and drying are performed to form a sheet in which the resin is attached to the carbon fibers. The manufacturing method of the carbon fiber reinforced carbon composite material in any one of Claims 1-6 which laminates | stacks, pressurizes and heat-molds. 請求項1〜8のいずれかに記載された製造方法から得られる炭素繊維強化炭素複合材。  The carbon fiber reinforced carbon composite material obtained from the manufacturing method as described in any one of Claims 1-8. 請求項9に記載の炭素繊維強化炭素複合材より成るブレーキ摺動部。  The brake sliding part which consists of a carbon fiber reinforced carbon composite material of Claim 9.
JP33214596A 1996-12-12 1996-12-12 Method for producing carbon fiber reinforced carbon composite material Expired - Lifetime JP3975496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33214596A JP3975496B2 (en) 1996-12-12 1996-12-12 Method for producing carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33214596A JP3975496B2 (en) 1996-12-12 1996-12-12 Method for producing carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPH10167849A JPH10167849A (en) 1998-06-23
JP3975496B2 true JP3975496B2 (en) 2007-09-12

Family

ID=18251654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33214596A Expired - Lifetime JP3975496B2 (en) 1996-12-12 1996-12-12 Method for producing carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JP3975496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894882B2 (en) * 2002-02-20 2007-03-22 本田技研工業株式会社 Method for manufacturing friction plate for wet multi-plate clutch
CN116655397B (en) * 2023-07-28 2023-10-27 浙江德鸿碳纤维复合材料有限公司 Carbon/carbon composite material based on short carbon fibers and preparation method thereof

Also Published As

Publication number Publication date
JPH10167849A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
KR101294825B1 (en) Method for preparing carbon substrate for gas diffusion layer of polymer electrolyte membrane fuel cell, carbon substrate prepared thereby, and system for manufacturing the same
KR101094566B1 (en) Porous Carbon Base Material, Gas-Diffusing Material, Film-Electrode Jointed Article, and Fuel Cell
US4297307A (en) Process for producing carbon-carbon fiber composites suitable for use as aircraft brake discs
KR101324703B1 (en) Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
JP7153688B2 (en) Carbon/carbon composites using anisotropic nonwovens
JP3975496B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
JP2004134108A (en) Manufacturing method of precursor sheet-like material for porous carbon electrode base material
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPS59187623A (en) Preparation of carbon fiber molded sheet
JP2009073715A (en) Method for producing carbon-fibered heat insulating material
JP2009280437A (en) Method for producing porous carbon sheet
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP2005104779A (en) Method of manufacturing porous carbon board
JPH0360478A (en) Production of porous carbon sheet
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP2685365B2 (en) Manufacturing method of porous carbon plate
JP2001181064A (en) Molding for carbon fiber-reinforced carbon composite material, carbon fiber reinforced carbon composite material and method for producing them
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP2001192276A (en) Carbon-fiber-reinforced carbon composite material and formed body for producing the same and production process of the same
JP3131911B2 (en) Method for producing thick porous carbon material
JPH08120600A (en) Sheet and its production
JP3380271B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2607397B2 (en) Method for producing porous glassy carbon material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term