JPS62138361A - Manufacture of high density formed body from carbon material - Google Patents

Manufacture of high density formed body from carbon material

Info

Publication number
JPS62138361A
JPS62138361A JP60280260A JP28026085A JPS62138361A JP S62138361 A JPS62138361 A JP S62138361A JP 60280260 A JP60280260 A JP 60280260A JP 28026085 A JP28026085 A JP 28026085A JP S62138361 A JPS62138361 A JP S62138361A
Authority
JP
Japan
Prior art keywords
molded body
density
carbon material
carbon
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280260A
Other languages
Japanese (ja)
Inventor
隆男 藤川
守彦 杉野
井上 良男
小船 恵生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60280260A priority Critical patent/JPS62138361A/en
Publication of JPS62138361A publication Critical patent/JPS62138361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は炭素材料よりなる高密度成形体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a high-density molded body made of a carbon material.

[発明の背景] 炭素材料(ダイヤモンドを除く)は無定型炭素と黒鉛に
二分されるが、これらは各々成形体、m維など数々の形
態のものがあり、その優れた耐熱性、化学薬品に対する
安定性、特異な電気的性質のため、近年その利用分野は
、ロケットノズルなどの航空宇宙材料から、心臓の人工
弁まで多岐にわたっており、ますますその適用分野は広
がる傾向にある。
[Background of the invention] Carbon materials (excluding diamond) are divided into amorphous carbon and graphite, and each of these comes in many forms such as molded bodies and m-fibers, and has excellent heat resistance and resistance to chemicals. Due to its stability and unique electrical properties, its field of application has expanded in recent years, from aerospace materials such as rocket nozzles to artificial heart valves.

従来の炭素材料よりなる成形体は、コークスを骨材とし
、これにバインダーとしてタールやピッチを混合、程合
した後、成形して焼成し、黒鉛化が必要な場合にはさら
に2500〜3000℃の高温下にて黒鉛化するという
工程を経て製造がなされてきた。しかし、最近になって
これら炭素材料の分野においてもファインの傾向が強く
なり、原料として上記石油や石炭をベースとするものか
ら化学的な組成が明確で、科学的な研究開発がより確実
な合成原料すなわち樹脂類が用いられつつある。
Conventional molded bodies made of carbon materials are made using coke as an aggregate, mixed with tar or pitch as a binder, tempered, molded and fired, and further heated to 2500 to 3000°C if graphitization is required. It has been manufactured through a process of graphitization at high temperatures. However, recently there has been a strong trend toward fine carbon materials, and the chemical composition is clear and scientific research and development is more reliable than those based on petroleum or coal as raw materials. Raw materials, namely resins, are being used.

合成原料により作られた炭素材料の代表的な例にはグラ
フジ−カーボン材がある。グラフジ−カーボン材におい
てフラン樹脂やフェノ−ル系脂を原料とすることにより
、高強度で気体透過性を持たないという新しい機能が実
現された。
Graffy carbon material is a typical example of carbon materials made from synthetic raw materials. By using furan resin and phenolic fat as raw materials for Graffy Carbon material, new functions such as high strength and no gas permeability have been realized.

グラッシーカーボン材の新しい機能は原料と焼成方法に
より実現されたものである。すなわち、原料である熱硬
化性樹脂を緩速で昇温して焼成すると分子構造の骨格と
なっている炭素と炭素との結合が余りくずれることなく
、官能基や水素のみが炭素の骨格からはずれてゆき、そ
の結果グラフジ−カーボン材が成製される。しかし、グ
ラッシーカーポ、ン材は、上記のような過程を経て成形
されるため、大きな製品や厚肉の板材を製造する場合に
は、焼成中に発生する官脂基や水素ガスにより、成形体
の内部に高圧力の領域が生じ、そのために成形体が破損
してしまうという問題点がある。そのため、グラッシー
カーボン材は工業的には厚さ約2m+s以下の薄板しか
製造できないという欠点がある。
The new functions of glassy carbon material were realized by the raw materials and firing method. In other words, when the raw material thermosetting resin is slowly heated and fired, the carbon-to-carbon bonds that form the backbone of the molecular structure do not break down too much, and only the functional groups and hydrogen are released from the carbon backbone. As a result, a graphy carbon material is produced. However, since glassy carbon materials are formed through the process described above, when producing large products or thick plate materials, the molded product may be damaged by the resin groups and hydrogen gas generated during firing. There is a problem in that a region of high pressure is generated inside the molded body, which causes damage to the molded body. Therefore, the glassy carbon material has the disadvantage that it can only be produced industrially as a thin plate with a thickness of about 2 m+s or less.

[発明の目的] 本発明は、大形もしくは厚肉の高密度炭素材料を製造す
ることのできる炭素材料よりなる高密度成形体の製造方
法を提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a method for producing a high-density molded body made of a carbon material that can produce a large-sized or thick-walled high-density carbon material.

[発明の概要] 上記目的は、熱硬化性樹脂を主成分とする原料を加熱し
て、不活性ガスが通過しない成形体を加圧成形し、つい
で、該成形体を、 70kg/cm2以上の圧力の不活性ガス雰囲気下で4
00℃以上の温度で焼成することを特徴とする炭素材料
よりなる高密度成形体の製造方法によって達成される。
[Summary of the Invention] The above object is to heat a raw material containing a thermosetting resin as a main component to pressure mold a molded product through which an inert gas cannot pass, and then to mold the molded product into a molded product with a weight of 70 kg/cm2 or more. Under an inert gas atmosphere of pressure 4
This is achieved by a method for manufacturing a high-density molded body made of a carbon material, which is characterized by firing at a temperature of 00°C or higher.

樹脂の種類としては、たとえば、フェノール樹脂、フラ
ン樹脂、エポキシ樹脂等の使用が可能である。なお、フ
ェノール樹脂を使用した場合には高密度化を図る効果が
大きい。
As the type of resin, for example, phenol resin, furan resin, epoxy resin, etc. can be used. In addition, when a phenol resin is used, the effect of achieving high density is large.

なお、原料にはたとえば、炭素繊維、黒鉛粉末、メソフ
ェーズピッチ等を含有せしめてもよい。
Note that the raw material may contain, for example, carbon fiber, graphite powder, mesophase pitch, and the like.

なお、原料に炭素繊維を混合した場合、炭素繊維の種類
によっては、樹脂の重縮合、炭化の過程で、微細なボア
が炭素繊維に沿って生じることがあり、内部で発生した
メタン、水素などの散逸する通路ができ、成形体にフク
レを生じることを低減する効果がある。また、炭化後の
樹脂との親和性の高い炭素繊維や、フェノール系樹脂に
よる表面処理を行った炭素繊維を混合することにより、
焼成後の製品の高強度化をより一層図ることも可能であ
る。
In addition, when carbon fiber is mixed into the raw material, depending on the type of carbon fiber, fine bores may be formed along the carbon fiber during the polycondensation and carbonization process of the resin, and methane, hydrogen, etc. generated internally may be generated. This creates a path for the dissipation of water, which has the effect of reducing the occurrence of blisters in the molded product. In addition, by mixing carbon fibers that have a high affinity with resin after carbonization and carbon fibers that have been surface-treated with phenolic resin,
It is also possible to further increase the strength of the product after firing.

また、炭素繊維を含有せしめる場合、成形体の全重量に
占める割合が5〜50wt%が好ましい、最大を50w
 t%と°したのは、50w t%以上の炭素繊維を混
合した場1合、成形圧力を2000kg/cm”程度ま
で高くしても、アルゴン又は窒素等の不活性ガスを通さ
ない成形体を得ることが出来ないことによる。また、最
小を5wt%としたのは炭素繊維を原料中に混入させた
効果が高密度炭素材料の製造方法において現れる最小の
値であることによる。
In addition, when carbon fiber is contained, the proportion in the total weight of the molded product is preferably 5 to 50 wt%, and the maximum is 50 wt%.
The reason why t% is used is because when 50wt% or more of carbon fiber is mixed, even if the molding pressure is increased to about 2000kg/cm, the molded product will not pass through inert gas such as argon or nitrogen. Furthermore, the reason why the minimum value is set at 5 wt% is because the effect of mixing carbon fibers into the raw material is the minimum value that appears in the method for producing high-density carbon materials.

原料を加圧下にて加熱して得た成形体を、アルゴン又は
窒素等の不活性ガスが透過しないような成形体とする理
由は、成形体が、アルゴン又は窒素等の不活性ガスが透
過するようなポーラスである場合、成形体を高圧下で焼
成しても、高圧のガスが気孔中にも入るため、ガスの圧
力が圧縮力として緻密化を促進する効果を果さないため
による。
The reason why the molded product obtained by heating raw materials under pressure is made into a molded product that does not allow inert gases such as argon or nitrogen to pass through is because the molded product does not allow inert gases such as argon or nitrogen to pass through. This is because when the molded body is porous, even if the molded body is fired under high pressure, the high-pressure gas also enters the pores, so the gas pressure does not act as a compressive force to promote densification.

なお、このように不活性ガスが透過しない成形体にする
には、熱板プレスや温間静水圧加圧装置を用い、加圧は
たとえば10〜3000kg / c m’、温度は1
50〜400℃で行なえばよい。
In addition, in order to make a molded product that does not allow inert gas to pass through, a hot plate press or a warm isostatic pressure device is used, and the pressure is, for example, 10 to 3000 kg/cm', and the temperature is 1.
What is necessary is just to carry out at 50-400 degreeC.

成形体を70kg/crn’以上の圧力のアルゴン又は
窒素等の不活性ガス雰囲気下で400℃以上の温度で焼
成する理由は次にある。すなわち、成形体を高圧のアル
ゴン又は窒素雰囲気下に曝すと、ガスの圧力により成形
体は圧縮される。この状態で昇温すると樹脂は重縮合を
生じ官能基が炭素の骨格から離脱しようとしても、成形
体外部の圧力によりガス化が抑制されてしまうが、さら
に昇温すると、離脱しようとした官能基は、メタン、水
素などの分子容の小さな分子に分解する。そのため、ア
ルゴンや窒素の分子が通らないような微細な気孔を通じ
水素のみが散逸してゆく。そのため炭化性物質中の炭素
の残存量(カーボン収率)を高くした状態で炭化反応が
進み高密度炭素材料が製造されるが、このような効果は
、70kg/crn’以上の圧力下で、400℃以上の
温度で焼成することにより顕著となることによる。
The reason why the compact is fired at a temperature of 400° C. or higher in an atmosphere of an inert gas such as argon or nitrogen at a pressure of 70 kg/crn' or higher is as follows. That is, when the molded body is exposed to a high-pressure argon or nitrogen atmosphere, the molded body is compressed by the pressure of the gas. If the temperature is raised in this state, the resin undergoes polycondensation, and even if the functional groups try to detach from the carbon skeleton, gasification is suppressed by the pressure outside the molded body. decomposes into smaller molecules such as methane and hydrogen. Therefore, only hydrogen dissipates through minute pores that do not allow argon or nitrogen molecules to pass through. Therefore, the carbonization reaction progresses with a high residual amount of carbon (carbon yield) in the carbonizable substance, and a high-density carbon material is produced. This is because it becomes more noticeable when fired at a temperature of 400°C or higher.

なお、400℃以下での焼成は、必ずしも高圧下で行な
う必要がないため、常圧下で400℃程度まで熱処理し
た成形体を用いて、高圧下でビ、400℃程度まで、高
速で昇温し、それ以後の昇温速度を200℃/ h r
に落として焼成することにより、サイクルタイムの短縮
が可能となる。
Note that firing at temperatures below 400°C does not necessarily need to be carried out under high pressure; therefore, using a molded product that has been heat-treated to about 400°C under normal pressure, the temperature can be raised rapidly to about 400°C under high pressure. , the subsequent temperature increase rate is 200℃/hr
The cycle time can be shortened by firing at a lower temperature.

[実施例] (実施例1) ノボラック系のフェノール樹脂粉末100重量部に対し
、長さ0.13mmに切断されたPAN系の炭素繊!a
80重量部を混合し、さらにレゾール系のフェノール樹
脂10重量部を10倍のメタノールに混合した液体を混
合、乾燥後、金型プレスにて150℃の温度下で200
kg/cm″の圧力で加圧成形し、厚さ約4+amの成
形体を得た0表面は、光沢を有しており、アルキメデス
法によって密度を測定したところ、吸水もなくそのまま
の状態で密度測定が可能で、その密度は1.32g /
cm3であった。この成形体を常圧下で400°Cにて
焼成し密度1.30g/cm3の試料を得た。この試料
を、HIP装置中に配置し、真空引き・アルゴンガスに
よるガス置換を行った後、約300kg/ c m″の
アルゴンガスを充填した0次〜\でHIP装置のヒータ
に加熱電力を投入し、昇温速度200’O/hで120
0℃まで昇温した。同時にアルゴンガスを補給し、最終
的に1200℃、1000kg/cゴで2時間保持した
後、降温、減圧して試料を取り出した。試料は厚さ約3
.2+amで、大きなふくれ等を生じることもなく炭化
されていた。アルキメデス法により測定して求めた密度
は、1.84g /c+m3であった。
[Example] (Example 1) PAN-based carbon fibers were cut to a length of 0.13 mm from 100 parts by weight of novolac-based phenolic resin powder! a
80 parts by weight were mixed, and a liquid obtained by mixing 10 parts by weight of resol-based phenolic resin with 10 times the amount of methanol was mixed, dried, and then heated at 150°C in a mold press for 200°C.
The surface of the molded product obtained by pressure molding at a pressure of 1 kg/cm" has a luster and has a luster. When the density was measured by the Archimedes method, the density was found to be low as it was without water absorption. It can be measured and its density is 1.32g/
It was cm3. This molded body was fired at 400° C. under normal pressure to obtain a sample with a density of 1.30 g/cm 3 . This sample was placed in the HIP device, and after evacuation and gas replacement with argon gas, heating power was applied to the heater of the HIP device at the zero order filled with approximately 300 kg/cm'' of argon gas. 120 at a heating rate of 200'O/h.
The temperature was raised to 0°C. At the same time, argon gas was supplied, and the sample was finally held at 1200° C. and 1000 kg/c for 2 hours, then the temperature was lowered and the pressure was reduced, and the sample was taken out. The sample is approximately 3 thick
.. It was carbonized at 2+am without causing any large blisters. The density determined by the Archimedes method was 1.84 g/c+m3.

(比較例1) 実施例1と同様にして作成した成形体を、常圧下、アル
ゴンガス雰囲気下で、1200℃で焼成した。昇温速度
は400℃まで400℃/h、それより高温では20℃
/hとした。焼成後のサンプルは、中央部に大きな膨れ
を生じていた。この膨れ部を除去し、アルキメデス法に
より密度を測定した結果、約1.50g/cm3であっ
た。
(Comparative Example 1) A molded body prepared in the same manner as in Example 1 was fired at 1200° C. under normal pressure and in an argon gas atmosphere. The temperature increase rate is 400℃/h up to 400℃, and 20℃ at higher temperatures.
/h. The sample after firing had a large bulge in the center. After removing this bulge, the density was measured by Archimedes' method and found to be approximately 1.50 g/cm 3 .

(実施例2) 実施例1と同じ手順で作製した試料(密度1 、30 
g/ crn’)を、HIP装置中に配置し、真空引き
・アルゴンガスによるガス置換を行なった後、約70k
g/cm”のアルゴンガスを充填した0次いでHIP装
鐙のヒータに加熱電力を投入し、600″C/hrの昇
温速度で400℃まで加熱し、400℃から昇温速度を
100℃/ h rに下げ、900℃まで加熱した。9
00℃で2時間保持した時点での圧力は約200 k 
g / c rn’ テあった。降温、降圧後、取り出
した試料は、大きなふくれ等を生じることもなく炭化さ
れており密度はり、58g/crn”であった・ (比較例2) 実施例2と同じ手順で作製した試料(密度1 、30 
g/ crn’)をHIP装4中に配置し、真空引き・
アルゴンガスによるガス置換を行なった後、約70 k
 g / c rn’のアルゴンガスを充填した。次い
でHIP装置のヒータに加熱電力を投入し、600 ”
C/ h rの昇温速度で400℃まで加熱すると同時
に、アルゴンガスを補給し、最終的に400℃、zoo
kg/crn’で3時間保持した。降温・減圧後取り出
した試料の密度は、1.35g/Cゴで若干の密度上昇
が認められた。しかし、炭化がほとんど進んでいないた
め、この試料を不活性ガス雰囲気中、常圧下で、昇温速
度100℃/ h rで900℃まで加熱して炭化を試
みた。処理後のサンプルは、大小多くのふくれと、クラ
ックが発生していた。密度の測定結果は、約1.35〜
1.40 gであった。
(Example 2) Samples prepared in the same manner as in Example 1 (density 1, 30
g/crn') was placed in a HIP device, and after vacuuming and gas replacement with argon gas, approximately 70k
Heating power was then applied to the heater of the HIP stirrup, which was filled with argon gas at a temperature of hr and heated to 900°C. 9
The pressure after holding at 00℃ for 2 hours is approximately 200k.
g/crn'te was there. After lowering the temperature and pressure, the sample taken out was carbonized without causing any large blisters and had a density of 58 g/crn. 1, 30
g/crn') in HIP equipment 4, and vacuum
After gas replacement with argon gas, approximately 70 k
Filled with argon gas at g/c rn'. Next, heating power was applied to the heater of the HIP device, and the temperature was 600 ”
Heating to 400 °C at a temperature increase rate of C/hr, at the same time replenishing argon gas, and finally heating to 400 °C, zoo
kg/crn' for 3 hours. The density of the sample taken out after cooling and reducing the pressure was 1.35 g/C, and a slight increase in density was observed. However, since carbonization had hardly progressed, carbonization was attempted by heating this sample to 900°C at a temperature increase rate of 100°C/hr in an inert gas atmosphere under normal pressure. The sample after treatment had many large and small bulges and cracks. The density measurement results are approximately 1.35~
It was 1.40 g.

(実施例3〜6、比較例3〜6) 表に、実施例3〜6及び比較例3〜6を示す。(Examples 3-6, Comparative Examples 3-6) Examples 3 to 6 and Comparative Examples 3 to 6 are shown in the table.

表において、示されていない条件は実施例1と同様であ
る。
In the table, conditions not shown are the same as in Example 1.

実施例1〜6に示した如く、本発明を適用したものでは
、高圧のアルゴンまたは窒素雰囲気下で焼成した場合に
、常圧下で焼成したものと比較して、高密度の製品が得
られる。ただし、成形時に加熱加圧成形をしなっかだ場
合には。
As shown in Examples 1 to 6, products to which the present invention is applied can obtain products with higher density when fired in a high-pressure argon or nitrogen atmosphere compared to products fired under normal pressure. However, if heating and pressure molding is not performed during molding.

高圧のガス雰囲気下で焼成してもポーラスな製品しか得
られず必ずしも高密度の製品が得られるには至っていな
い。
Even when fired in a high-pressure gas atmosphere, only a porous product can be obtained, and a high-density product cannot necessarily be obtained.

(本発明の効果) 本発明により、厚肉又は大形の高密度の炭素製品の製造
が可能となり、炭素材料の用途はさらに広がるものと考
えられ、産業上、大きく貢献するものである。
(Effects of the present invention) The present invention makes it possible to manufacture thick-walled or large-sized, high-density carbon products, and it is thought that the uses of carbon materials will further expand, making a significant contribution to industry.

Claims (5)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂を主成分とする原料を加熱して、ア
ルゴン又は窒素ガスが通過しない成形体を加圧成形し、
ついで、該成形体を、 70kg/cm^2以上の圧力のアルゴン又は窒素ガス
雰囲気下で400℃以上の温度で焼成することを特徴と
する炭素材料よりなる高密度成形体の製造方法。
(1) Heat a raw material whose main component is a thermosetting resin and press-form it into a molded body through which argon or nitrogen gas cannot pass,
A method for producing a high-density molded body made of a carbon material, characterized in that the molded body is then fired at a temperature of 400° C. or higher in an argon or nitrogen gas atmosphere at a pressure of 70 kg/cm^2 or higher.
(2)原料が、炭素繊維を含有する特許請求の範囲1項
記載の炭素材料よりなる高密度成形体の製造方法。
(2) A method for producing a high-density molded body made of a carbon material according to claim 1, wherein the raw material contains carbon fiber.
(3)炭素繊維が成形体の全重量に占める割合が5〜5
0重量%である特許請求の範囲第2項記載の炭素材料よ
りなる高密度成形体の製造方法。
(3) The proportion of carbon fiber in the total weight of the molded body is 5 to 5
A method for producing a high-density molded body made of the carbon material according to claim 2, wherein the content is 0% by weight.
(4)熱硬化性樹脂がフェノール樹脂である特許請求の
範囲第1項乃至第3項のいずれかに記載の炭素材料より
なる高密度成形体の製造方法。
(4) A method for producing a high-density molded body made of a carbon material according to any one of claims 1 to 3, wherein the thermosetting resin is a phenol resin.
(5)焼成前の成形体を常圧下で400℃以下の温度に
加熱し、その後焼成を行なう特許請求の範囲第1項乃至
第4項のいずれかに記載の炭素材料よりなる高密度成形
体の製造方法。
(5) A high-density molded body made of the carbon material according to any one of claims 1 to 4, wherein the molded body before firing is heated to a temperature of 400°C or less under normal pressure, and then fired. manufacturing method.
JP60280260A 1985-12-12 1985-12-12 Manufacture of high density formed body from carbon material Pending JPS62138361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280260A JPS62138361A (en) 1985-12-12 1985-12-12 Manufacture of high density formed body from carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280260A JPS62138361A (en) 1985-12-12 1985-12-12 Manufacture of high density formed body from carbon material

Publications (1)

Publication Number Publication Date
JPS62138361A true JPS62138361A (en) 1987-06-22

Family

ID=17622513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280260A Pending JPS62138361A (en) 1985-12-12 1985-12-12 Manufacture of high density formed body from carbon material

Country Status (1)

Country Link
JP (1) JPS62138361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160867A (en) * 1987-12-16 1989-06-23 Toray Ind Inc Production of electrically conductive material
JPH01188468A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Carbon fiber-reinforced carbon composite material and its production
US5138925A (en) * 1989-07-03 1992-08-18 Casio Computer Co., Ltd. Apparatus for playing auto-play data in synchronism with audio data stored in a compact disc
US5148419A (en) * 1989-09-04 1992-09-15 Casio Computer Co., Ltd. Auto-playing apparatus
US5189237A (en) * 1989-12-18 1993-02-23 Casio Computer Co., Ltd. Apparatus and method for performing auto-playing in synchronism with reproduction of audio data
US5397853A (en) * 1989-12-18 1995-03-14 Casio Computer Co., Ltd. Apparatus and method for performing auto-playing in synchronism with reproduction of audio data and/or image data

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458428A (en) * 1990-06-26 1992-02-25 Matsushita Electric Works Ltd Electrostatic relay

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458428A (en) * 1990-06-26 1992-02-25 Matsushita Electric Works Ltd Electrostatic relay

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160867A (en) * 1987-12-16 1989-06-23 Toray Ind Inc Production of electrically conductive material
JPH01188468A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Carbon fiber-reinforced carbon composite material and its production
US5554354A (en) * 1988-01-22 1996-09-10 Kabushiki Kaisha Kobe Seiko Sho Carbon fiber-reinforced carbon composite material and process for producing the same
US5138925A (en) * 1989-07-03 1992-08-18 Casio Computer Co., Ltd. Apparatus for playing auto-play data in synchronism with audio data stored in a compact disc
US5148419A (en) * 1989-09-04 1992-09-15 Casio Computer Co., Ltd. Auto-playing apparatus
US5299181A (en) * 1989-09-04 1994-03-29 Casio Computer Co., Ltd. Auto-playing apparatus
US5189237A (en) * 1989-12-18 1993-02-23 Casio Computer Co., Ltd. Apparatus and method for performing auto-playing in synchronism with reproduction of audio data
US5397853A (en) * 1989-12-18 1995-03-14 Casio Computer Co., Ltd. Apparatus and method for performing auto-playing in synchronism with reproduction of audio data and/or image data

Similar Documents

Publication Publication Date Title
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US3814642A (en) Manufacture of carbon shaped articles
US5057254A (en) Process for producing carbon/carbon composites
KR100989793B1 (en) Blended pitch/coal based carbon foams
US4135937A (en) High density hot pressed thermal shock resistant silicon carbide
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS589879A (en) Manufacture of anisotropic carbon formed body
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
US3567808A (en) Production of low density-high strength carbon
US7553470B2 (en) Method of controlling swelling and shrinkage during synthesis of coke
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH1171106A (en) Production of glassy carbon material
JPS6328873B2 (en)
KR950011212B1 (en) Caron composite material for friction article
JPH0151441B2 (en)
KR970008693B1 (en) Process for the preparation of carbon composite material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP2630602B2 (en) Manufacturing method of high density carbon material
JP2536513B2 (en) Manufacturing method of impermeable carbon material
JPH02129071A (en) Production of silicon carbide ceramics
JPH0323207A (en) Production of carbon compact