JPH01115882A - Production of porous carbonaceous material - Google Patents
Production of porous carbonaceous materialInfo
- Publication number
- JPH01115882A JPH01115882A JP27442187A JP27442187A JPH01115882A JP H01115882 A JPH01115882 A JP H01115882A JP 27442187 A JP27442187 A JP 27442187A JP 27442187 A JP27442187 A JP 27442187A JP H01115882 A JPH01115882 A JP H01115882A
- Authority
- JP
- Japan
- Prior art keywords
- mesophase
- pore
- powder
- carbonaceous material
- thermosetting resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000011347 resin Substances 0.000 claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 20
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 11
- 239000012298 atmosphere Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 239000011148 porous material Substances 0.000 abstract description 32
- 238000009826 distribution Methods 0.000 abstract description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 8
- 239000000446 fuel Substances 0.000 abstract description 7
- 230000035699 permeability Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 4
- 239000004005 microsphere Substances 0.000 abstract description 4
- 239000005011 phenolic resin Substances 0.000 abstract description 4
- 239000000295 fuel oil Substances 0.000 abstract description 3
- 235000019270 ammonium chloride Nutrition 0.000 abstract description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract 1
- 238000001354 calcination Methods 0.000 abstract 1
- 229920001568 phenolic resin Polymers 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000003763 carbonization Methods 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000007849 furan resin Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000011417 postcuring Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- WWILHZQYNPQALT-UHFFFAOYSA-N 2-methyl-2-morpholin-4-ylpropanal Chemical compound O=CC(C)(C)N1CCOCC1 WWILHZQYNPQALT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011847 coal-based material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- VRXOQUOGDYKXFA-UHFFFAOYSA-N hydroxylamine;sulfuric acid Chemical compound ON.ON.OS(O)(=O)=O VRXOQUOGDYKXFA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質炭素材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a porous carbon material.
さらに詳しくは、気孔径分布がシャープで、通気性、電
気伝導性、熱伝導性に優れ、機械的強度の高い燃料電池
用電極基板として好適な多孔質炭素材の製造方法に関す
る。More specifically, the present invention relates to a method for producing a porous carbon material having a sharp pore size distribution, excellent air permeability, electrical conductivity, and thermal conductivity, and having high mechanical strength and suitable as an electrode substrate for fuel cells.
近年、多孔質炭素材は、アルミニウム溶湯処理、化学薬
液中の不純物濾過、ボイラー復水濾過等の濾過材および
燃料電池用電極基板として注目されている。特に燃料電
池においては、電解質を電極で挟んだセルをセパレータ
を介して多数集積するため、セパレータ、電極とも薄物
の素材が望まれるだけでなく、充分な平面度、平滑度等
の寸法精度のほか、低熱膨張係数、耐熱性、耐化学薬品
性等に優れた材料が要求される。とりわけ、電極基板は
上記特性以外に、ガス透過性の良好な素材、すなわち、
通気度が大きく、気孔径分布がシャープな多孔質材料が
望まれている。In recent years, porous carbon materials have attracted attention as filter materials for processing molten aluminum, filtering impurities in chemical solutions, filtering boiler condensate, and as electrode substrates for fuel cells. In particular, in fuel cells, a large number of cells with an electrolyte sandwiched between electrodes are assembled via separators, so not only are separators and electrodes required to be thin materials, but also have sufficient dimensional accuracy such as sufficient flatness and smoothness. , materials with excellent low thermal expansion coefficient, heat resistance, chemical resistance, etc. are required. In particular, in addition to the above characteristics, the electrode substrate is made of a material with good gas permeability, that is,
Porous materials with high air permeability and a sharp pore size distribution are desired.
このような燃料電池用電極基板としての多孔質炭素材は
、従来、以下に述べる方法で製造されていた。Such porous carbon materials as electrode substrates for fuel cells have conventionally been manufactured by the method described below.
第1の方法は、炭素繊維、結合材、および有機粒状物質
を混合し、得られた混合物を加圧成形し、後硬化後年活
性雰囲気下1000〜3000℃で焼成する方法(特開
昭59−141170号公報)である。The first method involves mixing carbon fibers, a binder, and an organic particulate material, press-molding the resulting mixture, and firing it at 1000 to 3000°C in an active atmosphere after post-curing (Japanese Unexamined Patent Publication No. 59/1993). -141170).
第2の方法は、炭素繊維マントにレジン処理を施してプ
リプレグ化したプリプレグ炭素繊維マントを加熱加圧し
て硬化した後、炭化する(特開昭57429814号公
報)か、または炭素繊維紙に炭化性樹脂を含浸した後炭
化し、さらに気相熱分解炭素を沈着させる方法(特公昭
53−43920号公報)である。The second method is to apply a resin treatment to a carbon fiber cloak to make it into a prepreg, heat and pressurize the prepreg carbon fiber cloak to harden it, and then carbonize it (Japanese Patent Application Laid-open No. 57429814), or carbonize it to carbon fiber paper. This is a method (Japanese Patent Publication No. 53-43920) in which resin is impregnated, then carbonized, and vapor phase pyrolytic carbon is further deposited.
しかしながら、これらの方法ではいずれも炭素繊維を含
有しているから電気や熱の伝導性に優れた製品を得るこ
とはできるにしても、炭化過程での炭素繊維とマトリッ
クス(結合材、レジン、炭化性樹脂)の収縮率の差にも
とすく亀裂の発生を招くという難点があった。すなわち
、炭化過程でマトリックスは著しく収縮するのに対して
、炭素繊維は全く収縮しないため、両者の界面で亀裂(
隙間)が発生し、気孔径分布をシャープに制御すること
が困難であった。気孔径分布がシャープでないことは特
に燃料電池用電極基板等の用途においては致命的な欠陥
である。However, although these methods can produce products with excellent electrical and thermal conductivity because they contain carbon fibers, the carbon fibers and matrix (binder, resin, carbonized The problem was that the difference in shrinkage rate of the polyester resins could easily lead to cracks. In other words, while the matrix shrinks significantly during the carbonization process, the carbon fibers do not shrink at all, resulting in cracks (
It was difficult to sharply control the pore size distribution. The lack of a sharp pore size distribution is a fatal defect, especially in applications such as fuel cell electrode substrates.
そこで本発明の目的は、気孔径分布がシャープであり、
さらに通気性、電気伝導性、熱伝導性、機械的強度等の
諸元の優れた炭素材を提供することにある。Therefore, the object of the present invention is to have a sharp pore size distribution,
Another object of the present invention is to provide a carbon material with excellent specifications such as air permeability, electrical conductivity, thermal conductivity, and mechanical strength.
上記問題点を解決し本発明の目的を達成するための手段
は、メソフェーズ小球体あるいはメソフェーズ粉、気孔
形成剤、および熱硬化性樹脂を混合・成形した後、その
成形物を非酸化性雰囲気下で焼成することを特徴とする
ものである。The means for solving the above problems and achieving the object of the present invention is to mix and mold mesophase small spheres or mesophase powder, a pore-forming agent, and a thermosetting resin, and then mold the molded product under a non-oxidizing atmosphere. It is characterized by being fired in
本発明では、従来法において使用していた炭素繊維に代
えて、メソフェーズ小球体あるいはメソフェーズ粉(本
発明は両者を含有することも含む)を混入することを特
徴としている。このメソフェーズ小球体またはメソフェ
ーズ粉は、易黒鉛化物質であるから、炭化焼成によって
容易に黒鉛結晶となり、電気伝導性、熱伝導性に優れた
製品を得ることができる。また、上記メソフェーズ小球
体またはメソフェーズ粉は、炭化過程において熱硬化性
樹脂同様、著しく収縮するという特性があるので、炭化
後、上記メソフェーズ小球体またはメソフェーズ粉由来
の炭化物と熱硬化性樹脂由来の炭化物との界面で収縮率
の差に起因する亀裂の発生を防止できる。従って、気孔
形成剤の粒子径と配合量に応じた気孔が形成されること
になるから、製品の気孔径、気孔率の制御が容易である
上、気孔径分布をシャープなものとすることができる。The present invention is characterized in that mesophase spherules or mesophase powder (the present invention includes the inclusion of both) instead of the carbon fibers used in the conventional method. Since the mesophase spherules or mesophase powder are easily graphitized substances, they easily become graphite crystals by carbonization firing, and a product with excellent electrical conductivity and thermal conductivity can be obtained. In addition, since the mesophase spherules or mesophase powder have the property of shrinking significantly during the carbonization process, like the thermosetting resin, after carbonization, the charcoal derived from the mesophase spherules or mesophase powder and the carbide derived from the thermosetting resin are combined. It is possible to prevent the occurrence of cracks due to the difference in shrinkage rate at the interface between the Therefore, since pores are formed according to the particle size and amount of the pore-forming agent, it is easy to control the pore size and porosity of the product, and the pore size distribution can be made sharp. can.
なお、成形物の炭化焼成を非酸化性雰囲気下で行うこと
により、炭化物の焼成を防ぎ、目的とする炭素材を得る
ことができる。Incidentally, by performing the carbonization firing of the molded product in a non-oxidizing atmosphere, firing of the carbide can be prevented and the desired carbon material can be obtained.
以下本発明をさらに具体的に説明する。 The present invention will be explained in more detail below.
本発明における熱硬化性樹脂は、炭化焼成することによ
って炭化物を与えることができる樹脂であり、例えば、
フェノール樹脂、フラン樹脂、キシレン樹脂、エポキシ
樹脂等を挙げることができるが、炭化収率の高いフェノ
ール樹脂やフラン樹脂が好ましく、出来れば50重壁量
以上の炭化収率のものが好ましい。The thermosetting resin in the present invention is a resin that can give a carbide by carbonization firing, for example,
Examples include phenol resins, furan resins, xylene resins, epoxy resins, etc., but phenol resins and furan resins with high carbonization yields are preferred, and those with carbonization yields of 50 or more heavy walls are preferred if possible.
次に、メソフェーズ小球体またはメソフェーズ粉は、石
油系あるいは石炭系等の何れのピッチから製造したもの
でもよい。ただ、耐リン酸腐食性や電池反応の安定性の
面から不純物の少ない炭素材が要求されるので、石炭系
の場合には、メソフェーズ小球体あるいはメソフェーズ
粉製造用原料は精製しておいた方が好ましい。その原料
精製法としては、例えば特公昭5B−22070にみら
れるように、沸点270℃以下の留分を除去した石炭系
重質油にケトン類溶剤を常温、常圧下で混合する方法が
好んで用いられる。Next, the mesophase spherules or mesophase powder may be produced from any petroleum-based or coal-based pitch. However, carbon materials with few impurities are required from the viewpoint of phosphoric acid corrosion resistance and stability of battery reactions, so in the case of coal-based materials, it is recommended that the raw materials for producing mesophase spherules or mesophase powder be purified. is preferred. As a raw material refining method, for example, as shown in Japanese Patent Publication No. 5B-22070, a method is preferred in which a ketone solvent is mixed with coal-based heavy oil from which fractions with a boiling point of 270°C or less have been removed at room temperature and pressure. used.
次に、本発明で用いられるメソフェーズ小球体、メソフ
ェーズ粉とは次のものをいう。通常、石油系または石炭
系の重質油あるいはピッチを350〜500℃で熱処理
すると、熱処理の初期には球晶と称する光学的に異方性
の球体がピッチの母相中に生成し、さらに熱処理を続け
ていくと、結晶が合体・成長を繰り返してピッチ全体が
光学的に異方性の物質、所謂、バルクメソフェーズ、と
なる。上記の球晶やバルクメソフェーズは熱処理条件に
よっても異なるが、−a的には軟化点を示さない、つま
り、不融性というコークス的な性質がある反面、揮発分
を数重量%含有するというピッチ的な性質をも併せ持つ
炭素前駆体である。本発明でいうメソフェーズ小球体と
は上記球晶であり、メソフェーズ粉とは上記バルクメソ
フェーズを粉砕したものである。Next, the mesophase small spheres and mesophase powder used in the present invention refer to the following. Normally, when petroleum-based or coal-based heavy oil or pitch is heat-treated at 350 to 500°C, optically anisotropic spheres called spherulites are formed in the pitch matrix in the early stage of the heat treatment, and As the heat treatment continues, the crystals coalesce and grow repeatedly, and the entire pitch becomes an optically anisotropic material, the so-called bulk mesophase. The above spherulites and bulk mesophases differ depending on the heat treatment conditions, but in terms of -a, they do not show a softening point, that is, they have coke-like properties of infusibility, but on the other hand, they contain several percent by weight of volatile matter. It is a carbon precursor that also has several properties. The mesophase microspheres as used in the present invention are the above-mentioned spherulites, and the mesophase powder is obtained by pulverizing the above-mentioned bulk mesophase.
このメソフェーズ小球体あるいはメソフェーズ粉として
は、炭素含有率が92%以上であり、900℃までの揮
発分が7〜13重量%、500℃まで加熱した時の線収
縮率が1%以上で、平均粒径が40μm以下であるもの
が好ましい。この理由は次の通りである。すなわち、炭
素含有率が92%未満の場合には、炭素以外の元素が焼
成過程で分解・ガス化して重量減少量が増加すると共に
、炭素以外の原子が黒鉛化を阻害し、熱伝導性、電気伝
導性、耐リン酸性が向上しない慮れがある。This mesophase small sphere or mesophase powder has a carbon content of 92% or more, a volatile content of 7 to 13% by weight up to 900°C, a linear shrinkage rate of 1% or more when heated to 500°C, and an average Preferably, the particle size is 40 μm or less. The reason for this is as follows. In other words, when the carbon content is less than 92%, elements other than carbon decompose and gasify during the firing process, resulting in increased weight loss, and atoms other than carbon inhibit graphitization, resulting in poor thermal conductivity and There is a possibility that electrical conductivity and phosphoric acid resistance will not improve.
また、900℃までの揮発分が7重量%未満であると、
焼成過程で熱硬化性樹脂との濡れ性が悪く、メソフェー
ズ小球体あるいはメソフェーズ粉との界面に亀裂が発生
し、気孔径分布の制御が困難となる。他方、13重量%
を超えると、メソフェーズ小球体あるいはメソフェーズ
粉内部から多量に発生する揮発分により発泡体ないしは
多孔体となって、これまた気孔径分布の制御が困難とな
る虞れがある。さらに、「500℃まで加熱した時の線
収縮率」とは、メソフェーズ小球体あるいはメソフェー
ズ粉単独を2t/cd以上の圧力で加圧成形し、得られ
た成形体から試片を採取して測定した値である。この線
収縮率が1%未満の場合には、炭化焼成後のメソフェー
ズ小球体あるいはメソフェーズ粉由来の炭素粒子と熱硬
化性樹脂由来の炭素粒子との界面に隙間が発生し、気孔
径分布が広がりがちになるので好ましくない。In addition, if the volatile content up to 900°C is less than 7% by weight,
During the firing process, the wettability with the thermosetting resin is poor, and cracks occur at the interface with the mesophase spherules or mesophase powder, making it difficult to control the pore size distribution. On the other hand, 13% by weight
If it exceeds this value, a large amount of volatile matter generated from inside the mesophase small spheres or mesophase powder may result in a foam or porous body, which may also make it difficult to control the pore size distribution. Furthermore, "linear shrinkage rate when heated to 500°C" is measured by pressure-molding mesophase small spheres or mesophase powder alone at a pressure of 2t/cd or more and taking a sample from the resulting compact. This is the value. If this linear shrinkage rate is less than 1%, gaps will occur at the interface between the carbon particles derived from the mesophase small spheres or mesophase powder after carbonization firing and the carbon particles derived from the thermosetting resin, and the pore size distribution will expand. This is not preferable because it makes it difficult to use.
本発明で用いる気孔形成剤は、熱硬化性樹脂の硬化温度
以下では流動せず、かつ分解および昇華しない物質が好
適である。その理由は、熱硬化性樹脂が硬化するまでは
、所望の気孔径、気孔率に相当する空間が気孔形成剤で
充填されており、次の炭化工程で始めて気孔形成剤が分
解または昇華す−ることによって、所望の気孔径、気孔
率を生成させんがためである。かかる特性を有する気孔
形成剤としては、ヨウ化アンモニウム、塩化アンモニウ
ム、硫酸水素アンモニウム、硫酸ヒドロキシアンモニウ
ム等のアンモニウム塩とへキサメチレンテトラミン;エ
ポキシ樹脂の硬化物(エポキシ樹脂液を150〜200
℃に加熱処理して硬化させたもの)等の有機物などが使
用できる。The pore-forming agent used in the present invention is preferably a substance that does not flow, decompose, or sublimate below the curing temperature of the thermosetting resin. The reason for this is that until the thermosetting resin is cured, the spaces corresponding to the desired pore size and porosity are filled with the pore-forming agent, and it is not until the next carbonization process that the pore-forming agent decomposes or sublimates. This is to generate the desired pore size and porosity. Pore-forming agents having such characteristics include ammonium salts such as ammonium iodide, ammonium chloride, ammonium hydrogen sulfate, and hydroxyammonium sulfate; hexamethylenetetramine; cured products of epoxy resin (epoxy resin liquid
Organic substances such as those cured by heat treatment at ℃) can be used.
次に、本発明に係る炭素材の製造方法について説明する
。まず、メソフェーズ小球体またはメソフェーズ粉2〜
25重量%と熱硬化性樹脂10〜30重量%と気孔形成
剤50〜85重量%とを混合する。メソフェーズ小球体
またはメソフェーズ粉の配合割合が2重量%未満の場合
にはメソフェーズ小球体やメソフェーズ粉の配合効果が
得られず、熱伝導性、電気伝導性が低下する。一方、2
5重量%を超えて配合すると、メソフェーズ小球体ある
いはメソフェーズ粉の表面積が増えるにもかかわらず、
熱硬化性樹脂配合割合が相対的に減少するため熱硬化性
樹脂により均一にメソフェーズ小球体あるいはメソフェ
ーズ粉、気孔形成剤を結着できなくなり、強度低下を招
く。なお、補強材として炭素繊維を1〜3重量%の範囲
で配合してもよい。この場合、炭素繊維と熱硬化性樹脂
との界面に亀裂が発生するものの、炭素繊維の配合割合
が少いので、炭素材の気孔分布を実質的に広げることは
なく、従って本発明の主旨を逸脱するものではない。こ
の炭素繊維の形態は長さ0.5〜10鶴程度の短繊維や
長さ0.5〜10m程度の短繊維を抄造した紙状のもの
が好適である。Next, a method for manufacturing a carbon material according to the present invention will be explained. First, mesophase small spheres or mesophase powder 2~
25% by weight, 10-30% by weight of thermosetting resin, and 50-85% by weight of pore former. When the blending ratio of mesophase small spheres or mesophase powder is less than 2% by weight, the effect of blending the mesophase small spheres or mesophase powder cannot be obtained, and the thermal conductivity and electrical conductivity decrease. On the other hand, 2
Even though the surface area of mesophase spherules or mesophase powder increases when more than 5% by weight is added,
Since the proportion of the thermosetting resin blended is relatively reduced, the mesophase small spheres or mesophase powder, and the pore forming agent cannot be uniformly bound by the thermosetting resin, resulting in a decrease in strength. Note that carbon fiber may be added as a reinforcing material in a range of 1 to 3% by weight. In this case, although cracks occur at the interface between the carbon fiber and the thermosetting resin, since the blending ratio of carbon fiber is small, the pore distribution of the carbon material is not substantially expanded, and therefore the gist of the present invention is not achieved. It's not something to deviate from. The carbon fibers are preferably in the form of short fibers with a length of about 0.5 to 10 meters or paper-like fibers made from short fibers with a length of about 0.5 to 10 meters.
次に、このようにして得られた混合物を金型に仕込み、
通常は130〜200℃の温度で5〜150kr/cd
の圧力で加熱加圧成形する。次いでこの成形体を必要に
応じて130〜200℃で10〜30時間加熱して後硬
化させる。後硬化した成形体は、非酸化性雰囲気、例え
ばNtガスや計ガスの流通下で昇温速度0.5〜b
なくとも800℃まで炭化焼成し、必要に応じてさらに
黒鉛化して多孔質炭素材とされる。Next, the mixture obtained in this way is charged into a mold,
Normally 5-150kr/cd at a temperature of 130-200℃
Heat and press mold at a pressure of Next, this molded body is heated at 130 to 200° C. for 10 to 30 hours to post-cure, if necessary. The post-cured compact is carbonized and fired at a heating rate of 0.5 to at least 800°C in a non-oxidizing atmosphere, such as Nt gas or gauge gas, and is further graphitized if necessary to form porous carbon. It is considered as a material.
次に実施例により本発明をより具体的に詳説する。 Next, the present invention will be explained in more detail with reference to Examples.
(実施例1)
炭素含有率93.3重量%、900℃までの揮発分10
.3重世%、500℃までの線収縮率が3%で、平均粒
子径が15μlのメソフェーズ小球体と1000℃にお
ける炭化収率が52重量%のフェノール・ノボラック樹
脂粉末(rPGA 4504」群栄化学■)と70重量
%以上の粒径が10〜50μ僧になるように粉砕したN
H4(lの粉末とを第1表に示す配合割合で混合した。(Example 1) Carbon content 93.3% by weight, volatile content up to 900°C 10
.. Mesophase microspheres with a linear shrinkage rate of 3% up to 500°C and an average particle size of 15 μl, and a phenol/novolac resin powder (rPGA 4504) with a carbonization yield of 52% by weight at 1000°C, manufactured by Gunei Chemical Co., Ltd. ■) and N crushed so that 70% by weight or more has a particle size of 10 to 50μ
H4 (l) powder was mixed in the proportions shown in Table 1.
次いでこの混合物をlmX1mの平面積を持つ金型に仕
込み、温度180℃、圧力80kg/aJで30分間加
熱加圧成形して厚さ0.5 mの成形体を得、この成形
体を20時間かけて200℃まで昇温した後、200℃
で20時間保持して後硬化させた。Next, this mixture was charged into a mold having a planar area of 1 m x 1 m, and heated and pressure molded at a temperature of 180°C and a pressure of 80 kg/aJ for 30 minutes to obtain a molded product with a thickness of 0.5 m, and this molded product was molded for 20 hours. After increasing the temperature to 200℃,
It was held for 20 hours for post-curing.
次に、後硬化させた成形体を、粉コークスを詰めた容器
内にてN2ガス流通下4℃/Hrの速度で1000℃に
昇温しで炭化した後、アルゴン雰囲気中で4℃/lll
1nの速度で2500℃まで昇温し、厚さ0.4mの黒
鉛化物を得た。この黒鉛化物の物性を測定し、第1表に
示す結果を得た。なお、第1表中の通気度は差圧1 k
g/aJのN、ガスの通過量の室温での測定値である。Next, the post-cured compact was carbonized by heating to 1000°C at a rate of 4°C/Hr under N2 gas flow in a container filled with coke powder, and then carbonized at a rate of 4°C/ll in an argon atmosphere.
The temperature was raised to 2500° C. at a rate of 1 n to obtain a graphitized material with a thickness of 0.4 m. The physical properties of this graphitized product were measured, and the results shown in Table 1 were obtained. Note that the air permeability in Table 1 is based on a differential pressure of 1 k
This is the measured value of the amount of N gas passing through in g/aJ at room temperature.
また、第1表中の「70%以上の細孔半径」とは水銀ポ
ロシメータを用いて水銀圧入法で測定した細孔分布から
求めた値である。この細孔半径の範囲が狭い程、気孔径
分布がシャープであることから、「70%以上の細孔半
径」によって気孔分布の広がりの尺度とした。Further, "pore radius of 70% or more" in Table 1 is a value determined from the pore distribution measured by mercury porosimetry using a mercury porosimeter. Since the narrower the pore radius range, the sharper the pore size distribution, "a pore radius of 70% or more" was used as a measure of the spread of the pore distribution.
(実施例2)
炭素含有率92.8重量%、900℃までの揮発分12
.0重量%、500℃までの線収縮率が5%で平均粒子
径が15μmのメソフェーズ粉をメソフェーズ小球体の
代りに用いたことと、70重量%以上の粒径が5〜30
μmになるように粉砕したNH4Cj!を用いたこと以
外は実施例1と全く同じ方法で黒鉛化物を得た。結果を
第1表に示す。また、第1図には気孔径分布の測定例と
してGの気孔分布測定結果を示す。(Example 2) Carbon content 92.8% by weight, volatile content up to 900°C 12
.. 0% by weight, a linear shrinkage rate of 5% up to 500°C and an average particle size of 15 μm was used instead of the mesophase spherules, and 70% by weight or more had a particle size of 5 to 30%.
NH4Cj crushed to μm! A graphitized product was obtained in exactly the same manner as in Example 1, except that Graphite was used. The results are shown in Table 1. Further, FIG. 1 shows the pore distribution measurement results of G as an example of the measurement of pore size distribution.
(実施例3)
実施例2のメソフェーズ粉の配合率のうち3重量%だけ
を直径18μm、長さ0.7μm、引張強度60kgr
/1m”の炭素繊維にした以外は実施例1と全く同じ方
法で黒鉛化物を得た、結果を第1表に示す。(Example 3) Of the blending ratio of mesophase powder in Example 2, only 3% by weight was mixed with a diameter of 18 μm, a length of 0.7 μm, and a tensile strength of 60 kgr.
A graphitized product was obtained in exactly the same manner as in Example 1 except that carbon fibers with a diameter of 1 m" were used. The results are shown in Table 1.
(実施例4)
実施例1のフェノール樹脂のかわりにフラン樹脂を用い
たことと、NH4Cj2のかわりに(NH4)HSO4
を用いた以外は実施例1と全く同じ方法で黒鉛化物を得
た。(Example 4) Furan resin was used instead of the phenol resin in Example 1, and (NH4)HSO4 was used instead of NH4Cj2.
A graphitized product was obtained in exactly the same manner as in Example 1, except that .
結果を第1表に示す。The results are shown in Table 1.
(比較例1)
実施例1のメソフェーズ粉の代りに実施例3で用いたの
と同じ炭素繊維を用いた以外は実施例1と全く同じ方法
で黒鉛化物を得た。結果を同じく第1表に示す。また、
第2図にはTの気孔分布測定結果を示す。(Comparative Example 1) A graphitized material was obtained in exactly the same manner as in Example 1, except that the same carbon fiber as used in Example 3 was used instead of the mesophase powder of Example 1. The results are also shown in Table 1. Also,
FIG. 2 shows the results of measuring the pore distribution of T.
以上の通り、本発明によれば、気孔径分布がシャープで
、通気性、強度が共に優れ、リン酸型燃料電池の電極基
板としてきわめて好適な多孔質炭素材を提供できる。As described above, according to the present invention, a porous carbon material having a sharp pore size distribution, excellent air permeability and strength, and extremely suitable as an electrode substrate for a phosphoric acid fuel cell can be provided.
第1図は、実施例2−Gの気孔分布、第2図は比較例1
−Tの気孔分布をそれぞれ示す図である。
Q2−
史≠々k き
隻償14聯炭 ざ
嵜4々を ひ
蔓辻シ蹟蟹さ
手続争甫正書(自発)
昭和63年2月1日
1、事件の表示
昭和62年 特許願 第274421号2、発明の名称
多孔質炭素材の製造方法
3、補正をする者
事件との関係 特許出願人
住所
名称 (211)住友金属工業株式会社4、代理人■
101
氏名 (8264) 弁理士 永 井 義 久゛5
、補正命令の日付 自発補正
6、補正の対象
明細書、発明の詳細な説明の欄
7、補正の内容
(1) 明細書、発明の詳細な説明の欄を下記の通り
訂正する。
■第5頁、5行「炭化物の焼成を」とあるのを「炭化物
の酸化による燃焼を」とする。
■第6頁、12行「結晶」を「球晶」とする。
■第11頁、19行「差圧1kg/ctAのNzガスの
」とあるのを「差圧0.013kg/−の空気の」とす
る。
■閥−11Figure 1 shows the pore distribution of Example 2-G, Figure 2 shows Comparative Example 1.
- It is a figure which shows the pore distribution of T. Q2- History ≠ ≠ ≠ 1 1 4 1 3 3 3 3 3 4 3 4 3 4 4 4 4 274421 No. 2, Name of the invention Method for manufacturing porous carbon material 3, Relationship with the person making the amendment Patent applicant address name (211) Sumitomo Metal Industries, Ltd. 4, Agent ■
101 Name (8264) Patent attorney Yoshihisa Nagai 5
, Date of amendment order Voluntary amendment 6, Specification to be amended, Detailed explanation of the invention column 7, Contents of amendment (1) The description and Detailed explanation of the invention column are corrected as follows. ■Page 5, line 5, ``Burning of carbide'' was changed to ``Combustion of carbide by oxidation.'' ■Page 6, line 12, “crystal” is replaced with “spherulite”. ■Page 11, line 19, "of Nz gas with a differential pressure of 1 kg/ctA" is changed to "of air with a differential pressure of 0.013 kg/-". ■Follow-11
Claims (1)
孔形成剤、および熱硬化性樹脂を混合・成形した後、そ
の成形物を非酸化性雰囲気下で焼成することを特徴とす
る多孔質炭素材の製造方法。(1) A method for producing a porous carbon material, which comprises mixing and molding mesophase small spheres or mesophase powder, a pore-forming agent, and a thermosetting resin, and then firing the molded product in a non-oxidizing atmosphere. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27442187A JPH01115882A (en) | 1987-10-29 | 1987-10-29 | Production of porous carbonaceous material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27442187A JPH01115882A (en) | 1987-10-29 | 1987-10-29 | Production of porous carbonaceous material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01115882A true JPH01115882A (en) | 1989-05-09 |
Family
ID=17541437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27442187A Pending JPH01115882A (en) | 1987-10-29 | 1987-10-29 | Production of porous carbonaceous material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01115882A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999065843A2 (en) * | 1998-05-22 | 1999-12-23 | Alliedsignal Inc. | Graphitizable foam preform |
JP2010234445A (en) * | 2002-05-31 | 2010-10-21 | Sued-Chemie Hi-Tech Ceramics Inc | Fiber reinforced filter for molten metal filtration and method for producing such filter |
-
1987
- 1987-10-29 JP JP27442187A patent/JPH01115882A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126874A (en) * | 1997-11-14 | 2000-10-03 | Alliedsignal Inc. | Process of making a graphitizable foam preform |
WO1999065843A2 (en) * | 1998-05-22 | 1999-12-23 | Alliedsignal Inc. | Graphitizable foam preform |
WO1999065843A3 (en) * | 1998-05-22 | 2000-02-24 | Allied Signal Inc | Graphitizable foam preform |
JP2010234445A (en) * | 2002-05-31 | 2010-10-21 | Sued-Chemie Hi-Tech Ceramics Inc | Fiber reinforced filter for molten metal filtration and method for producing such filter |
JP4782416B2 (en) * | 2002-05-31 | 2011-09-28 | ズード−ケミー ハイ−テック セラミックス インコーポレイティド | Fiber reinforced filter for filtering molten metal and method for producing such a filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4734674B2 (en) | Low CTE isotropic graphite | |
US4293533A (en) | Method for producing solid carbon material having high flexural strength | |
JP4696279B2 (en) | High purity nuclear graphite | |
CN108341669B (en) | Large-size nuclear graphite material for high-temperature gas cooled reactor internals and preparation method thereof | |
US3201330A (en) | Process of forming a carbon article from furfural alcohol and carbon particles | |
CN106083049A (en) | A kind of method preparing isotropic graphite material from sintering | |
JPH01115882A (en) | Production of porous carbonaceous material | |
KR101031689B1 (en) | High-purity carbon fiber-reinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same | |
KR100653929B1 (en) | Product method for matrix pitch using carbon complex material reinforced carbon fiber | |
JP3616829B2 (en) | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body | |
JPH0520386B2 (en) | ||
JPS63222072A (en) | Impermeable carbon material | |
JPS59195514A (en) | Molded impermeable carbon body and its manufacture | |
JP2697482B2 (en) | Method for producing pitch-based material and method for producing carbon material using the same as raw material | |
Badaczewski et al. | An advanced structural characterization of templated meso-macroporous carbon monoliths by small-and wide-angle scattering techniques | |
JPH06102530B2 (en) | Method for manufacturing graphite molded body | |
Neubert et al. | The structure and properties of artificial and natural graphite | |
JPH09208314A (en) | Production of carbonaceous material | |
JPS6153104A (en) | Production of high-strength carbon material | |
JPS61158806A (en) | Formed article of impermeable carbon | |
JPS62187167A (en) | Manufacture of graphite formed body | |
JPH01264917A (en) | Production of impermeable carbon material | |
JPH0550468B2 (en) | ||
JPH05270938A (en) | Production of porous carbon material | |
JPH0669077A (en) | Manufacture of polarizing electrode for electric double layer capacitor |