JPS62187167A - Manufacture of graphite formed body - Google Patents

Manufacture of graphite formed body

Info

Publication number
JPS62187167A
JPS62187167A JP61027260A JP2726086A JPS62187167A JP S62187167 A JPS62187167 A JP S62187167A JP 61027260 A JP61027260 A JP 61027260A JP 2726086 A JP2726086 A JP 2726086A JP S62187167 A JPS62187167 A JP S62187167A
Authority
JP
Japan
Prior art keywords
graphite
weight
mesophase
pitch
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61027260A
Other languages
Japanese (ja)
Inventor
柴谷 治雄
高橋 邦昌
隆 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP61027260A priority Critical patent/JPS62187167A/en
Publication of JPS62187167A publication Critical patent/JPS62187167A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、黒鉛粉とメソフェーズ含有ピッチとからなる
黒鉛質成形体の製!1法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the production of a graphite molded body made of graphite powder and mesophase-containing pitch! This is related to Law 1.

〔発明の技術的背景〕[Technical background of the invention]

従来、黒鉛を基材とする黒鉛質成形体の製造において、
黒鉛の結着材として、コールタールピッチ、フェノール
樹脂、フラン樹脂等を用いる方法は知られている。
Conventionally, in the production of graphite molded bodies using graphite as a base material,
Methods of using coal tar pitch, phenol resin, furan resin, etc. as a binder for graphite are known.

コールタールピッチ、フェノール樹脂等を結着材として
用いると結着材の溶融点が100℃前後と低いため、基
材との加熱混線および成形は比較的容易であるが、一方
これらの結着材は1000℃付近までの炭素化における
炭素化収率が50〜60重量%と低く、炭素化にともな
う収縮量が大きく又、急速炭素化をおこなうと収縮歪み
が発生するという欠点を有している。
When coal tar pitch, phenolic resin, etc. are used as a binder, the melting point of the binder is as low as around 100°C, so it is relatively easy to heat cross-wire and mold with the base material, but on the other hand, these binders The carbonization yield in carbonization up to around 1000℃ is low at 50 to 60% by weight, the amount of shrinkage accompanying carbonization is large, and it has the disadvantage that shrinkage distortion occurs when rapid carbonization is performed. .

ま友、複雑な形状の生成形体を炭素化すると収縮量の相
違の為に得られ九成形体に複雑な変形を生じるという問
題がある。
Friend, when a formed body with a complicated shape is carbonized, there is a problem that the formed body undergoes complicated deformation due to the difference in the amount of shrinkage.

さて、米国および日本で実用化研究が大規模に取シ進め
られている燐酸型燃料電池は200℃前後の熱燐酸を電
解質に用いる為に、その電極基板及びガス分離板は共に
耐熱燐酸性に富む電気抵抗の小さい炭素材料で構成され
ている。そして、燃料電池で使用されるがス分離板につ
いては、ガス不透過性が強く要求されている。
Phosphoric acid fuel cells, which are being studied on a large scale for practical application in the United States and Japan, use hot phosphoric acid at around 200°C as an electrolyte, so both the electrode substrate and gas separation plate must be resistant to hot phosphoric acid. It is made of a rich carbon material with low electrical resistance. Gas impermeability is strongly required for gas separators used in fuel cells.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池のガス分離板に用いるガス不透過性炭素材料と
して、従来からガラス状炭素質が提案されている。例え
ば、特開昭58−150275号公報では、ガラス状炭
素単独を用いる例が述べられておシ、特開昭57−72
273号公報では、黒鉛とフェノール樹脂の生成形体に
一定の荷重を印加し、168時間もの長時間の炭素化(
1000℃)t−行い、更に48時間で2800℃まで
昇温して黒鉛化分離板を得ている。又、特開昭59−1
27377号公報では、フラン樹脂に必要に応じて超微
粉のカーゲンプラ、り等t” 添加混合し、所定の厚み
に成形後室温硬化せしめ友、焼成後の厚みが0.1〜1
1111となる素材を熱伝導性に優れ保形特性のある黒
鉛板等に挾み均焼化に留意しながら焼成してガラス状炭
素薄板を得ている。
Glassy carbonaceous materials have been proposed as gas-impermeable carbon materials for use in gas separation plates of fuel cells. For example, JP-A No. 58-150275 describes an example in which glassy carbon alone is used, and JP-A No. 57-72
In Publication No. 273, a constant load is applied to a formed form of graphite and phenolic resin, and carbonization (
The temperature was further increased to 2800°C for 48 hours to obtain a graphitized separator plate. Also, JP-A-59-1
No. 27377 discloses that ultrafine powder of cargen plastic, resin, etc. is added and mixed to furan resin as needed, and after molding to a predetermined thickness, it is cured at room temperature, and the thickness after firing is 0.1 to 1.
A glass-like carbon thin plate is obtained by sandwiching the material 1111 between graphite plates, etc., which have excellent thermal conductivity and shape-retaining properties, and firing while paying attention to uniform firing.

しかしながら、何れの方法においても、ガラス状炭素の
原料であるフェノール樹脂やフラン樹脂の約1000℃
までの炭素化における炭化収率が50〜60重i%とい
う特性に伴う体積収縮に起因する成形体の変形の問題に
対して画期的な対策は採られていない。
However, in both methods, the temperature of the phenol resin or furan resin, which is the raw material for glassy carbon, is about 1000℃.
No innovative measures have been taken to address the problem of deformation of the molded body due to volumetric shrinkage associated with the carbonization yield of 50 to 60% by weight.

また、ガス分離板については、前述技術に開示されてい
る平板の他にリプ付セパレーターと称される細分化され
たガス流路を板の表裏に直交する形で有するものも提案
されている。しかし、この様な複雑な形状を有するガス
分離板を黒鉛を基材としフェノール樹脂を結着材として
用いる生成形体の炭素化によって一挙に製造することの
困難さは特開昭58−140977号公報が示唆してい
る。即ち、該公報によnば、リプ付セパレーターの如き
複雑形状体では多数のガス流路を構成する溝に起因して
板の変形やそりが発生するので、生成形体の炭素化時収
縮係数を予め測定し、部分毎に黒鉛とフェノールの配合
比を変えた粉末を金型に充填した上で炭素化する方法が
開示されている。しかし、同一出願人による他の出願(
特開昭58−119163号公報)では粉末充填法の歩
留まりの悪さが指摘され、ガス分離板を平板とする方法
が提唱されている。又、特開昭58−150275号公
報によれば、フルフリールアルコール樹脂単独でリプ付
セパレーターを所定の方法で得る為に遠心成形用の金型
を収縮量に合わせて形成する方法が開示されている。
Regarding gas separation plates, in addition to the flat plate disclosed in the above-mentioned technique, a type having subdivided gas flow channels called a separator with lips orthogonally to the front and back sides of the plate has also been proposed. However, the difficulty of manufacturing a gas separation plate with such a complicated shape all at once by carbonization of a formed body using graphite as a base material and phenol resin as a binder is disclosed in Japanese Patent Application Laid-open No. 140977/1983. suggests. That is, according to the publication, in complex-shaped bodies such as separators with lips, plate deformation and warpage occur due to the grooves that constitute a large number of gas flow paths, so the shrinkage coefficient during carbonization of the formed body is A method is disclosed in which powder is measured in advance and the mixing ratio of graphite and phenol is varied for each part, and the powder is filled into a mold and then carbonized. However, other applications by the same applicant (
In JP-A-58-119163), it was pointed out that the yield of the powder filling method was poor, and a method of using a flat gas separation plate was proposed. Furthermore, JP-A-58-150275 discloses a method in which a mold for centrifugal molding is formed in accordance with the shrinkage amount in order to obtain a separator with a lip using furfuryl alcohol resin alone in a predetermined manner. ing.

しかしながら、特開昭57−72273号公報記載の技
術で得られるガス分離板は高価なものとならざるを得な
いし、特開昭58−140977号公報や特開昭58−
150275号公報の方法では、本来連続的に微妙に変
化する収縮量を近似的に捕捉する為に寸法積度が不安定
となり作業も繁雑となることを避は難い。
However, the gas separation plate obtained by the technique described in JP-A-57-72273 must be expensive, and
In the method disclosed in Japanese Patent No. 150275, since the amount of shrinkage, which naturally varies slightly continuously, is approximately captured, it is inevitable that the dimensions become unstable and the work becomes complicated.

燐酸を燃料電池の夫用化のためには、ガス分離板に関す
る上記のような技術上の諸課題が充分に解決されること
が望まれている。
In order to utilize phosphoric acid in fuel cells, it is desired that the technical problems described above regarding gas separation plates be fully resolved.

本発明者らはこのd題を解決する方法としてキノリン不
溶分が70!1lLIJ以下、メソフェーズ含有量が4
0−以上、加熱溶融温度上限が400℃、1000℃で
の炭素化収率が少なくとも70重孟チであるメソフェー
ズ含有ピッチと黒鉛粉を混合して得られる粉体を加圧成
形して生成形体を得、更に該生成形体を不活性雰囲気中
700℃以上で焼成することによって、導電性及び強度
に優れ、かつ炭化時の体積変化及び重量変化の小さい黒
鉛質成形体が得られることを見出し、特許出願し次。(
特願昭59−199737号明細書。)友だし、本方法
は工程の簡略化、成形体のガス不透過性の向上等に尚改
良の余地を有するものであった。
The present inventors have proposed a method for solving this problem, in which the quinoline insoluble content is 70!1 l LIJ or less and the mesophase content is 4.
0- or higher, the upper limit of the heating melting temperature is 400°C, and the carbonization yield at 1000°C is at least 70 Fengmeng. A shaped body produced by pressure molding a powder obtained by mixing mesophase-containing pitch and graphite powder. and further found that by firing the formed body in an inert atmosphere at 700° C. or higher, a graphite shaped body having excellent conductivity and strength and having small changes in volume and weight during carbonization can be obtained, Next, apply for a patent. (
Patent Application No. 199737/1983. ) However, this method still has room for improvement in terms of simplifying the process and improving the gas impermeability of the molded product.

〔発明の目的〕[Purpose of the invention]

本発明は、よりガス不透過性に優れ几黒鉛質成形体を簡
略化され次工程で製造する方法を提供することを目的と
する。
An object of the present invention is to provide a simplified method for manufacturing a phosphorescent graphite molded body with better gas impermeability in a subsequent step.

〔発明の概要〕[Summary of the invention]

本発明者らは、特願昭59−199737号の方法で用
いたメソフェーズ含有ピッチと黒鉛粉の混合粉体を直接
700〜3000℃で加圧成形することによって、導電
性及び強度に優れるとともにガス不透過性が一層改良さ
れ次黒鉛質成形体が一段で得られ、さらにこの方法では
より広い範囲のメソフェーズ含有ピッチが使用可能であ
ることを見出し、本発明に到達した。即ち、本発明は、
キノリノ不溶分が95重量%以下、メツフェーズ含有率
が35%以上、1000℃での炭素化収率が少なくとも
70重量%であるメソフェーズ含有ピッチと黒鉛粉を混
合して得られる粉体を700〜3000℃で加圧成形す
ることf、特徴とする黒鉛質成形体の製陰考法で1′あ
る。
The present inventors directly pressure-molded the mixed powder of mesophase-containing pitch and graphite powder used in the method of Japanese Patent Application No. 59-199737 at 700 to 3000°C. The inventors have discovered that the impermeability is further improved, a subgraphitic molded body can be obtained in one step, and that a wider range of mesophase-containing pitches can be used in this method, and the present invention has been achieved. That is, the present invention
A powder obtained by mixing mesophase-containing pitch and graphite powder with a quinolino insoluble content of 95% by weight or less, a mesophase content of 35% or more, and a carbonization yield of at least 70% by weight at 1000°C. Pressure molding at a temperature of 1' is a characteristic method for producing a graphite molded body.

〔発明の詳細な説明〕[Detailed description of the invention]

黒鉛粉末としては、鱗状天然黒鉛、土状天然黒鉛、人造
黒鉛などを用いることができる。更に本発明の方法を効
果的ならしめるためには、常温での加圧成形で成形体を
形成しうる黒鉛粉末Cfcとえば日本黒鉛工業(株)製
CPB及びASP−1000(商品名) ヤLONZA
社JK8−2.5(商品名))を用いることが好ましい
As the graphite powder, scale-like natural graphite, earth-like natural graphite, artificial graphite, etc. can be used. Furthermore, in order to make the method of the present invention effective, it is necessary to use graphite powder CFC that can be formed into a compact by pressure molding at room temperature, such as CPB and ASP-1000 (trade name) manufactured by Nippon Graphite Industries Co., Ltd.
It is preferable to use JK8-2.5 (trade name).

メソフェーズ含有ピッチは、コールタール、接触分解残
渣、ナフサ分解残渣等の石炭系又は石油系重質油を35
0〜550℃で熱処理して得られる。ナフサ分解残渣は
、他の重質油に比して重金属や硫黄などの不純物が少な
いので高純度の黒鉛質成形体を製造するのに適している
Mesophase-containing pitch contains 35% of coal-based or petroleum-based heavy oil such as coal tar, catalytic cracking residue, naphtha cracking residue, etc.
Obtained by heat treatment at 0 to 550°C. Naphtha decomposition residue contains less impurities such as heavy metals and sulfur than other heavy oils, so it is suitable for producing high-purity graphite molded bodies.

その場合、特開昭58−154792号及び15479
3号に開示され友ように水素処理改質したのち熱処理す
る方法が高強度、高緻密度の成形体を得るのに適してい
るが、改質しないものも勿論用いることができる。
In that case, JP-A-58-154792 and 15479
Although the method disclosed in No. 3, in which the material is modified by hydrogen treatment and then heat treated, is suitable for obtaining a molded product with high strength and high density, it is of course possible to use a method that is not modified.

メンフェーズ含有ピッチのキノリン不溶分は95重量−
以下、好ましくは90重tチ以下、さらに好ましくは7
0重量%以下である。キノリ/不溶分が95重量Sを超
すと、成形体の強度及びガス不透過性が低下する。メソ
フェーズ含有量は35%以上、好ましくは40%以上で
ある。35%未満であれば、成形体の緻密性が損われる
。炭素化収率は70重量%以上、好ましくは80重量−
以上である。70重量%未満であれば、炭化時の収縮が
大きく成形体の寸法安定性が悪くなる。
The quinoline-insoluble content of pitch containing menphase is 95% by weight.
or less, preferably 90 weights or less, more preferably 7
It is 0% by weight or less. If the solid/insoluble content exceeds 95 weight S, the strength and gas impermeability of the molded article will decrease. The mesophase content is at least 35%, preferably at least 40%. If it is less than 35%, the compactness of the molded article will be impaired. The carbonization yield is 70% by weight or more, preferably 80% by weight.
That's all. If it is less than 70% by weight, shrinkage during carbonization will be large and the dimensional stability of the molded article will be poor.

黒鉛粉末とメソフェーズ含有ピッチの混合は種々の方法
で行なうことができるが、ゴールミル、振動ミル等で摩
砕混合することが望ましい。
The graphite powder and the mesophase-containing pitch can be mixed by various methods, but it is preferable to grind and mix with a gall mill, a vibrating mill, or the like.

磨砕時間は1分から1時間が適当である。The appropriate grinding time is 1 minute to 1 hour.

メンフェーズ含有ピッチは黒鉛粉末100重量部に対し
て5〜60重量%好ましくは10〜40重量%添加する
ことができる。最適の添加比率はメソフェーズ含有ピッ
チの種類によって異なる。
Menphase-containing pitch can be added in an amount of 5 to 60% by weight, preferably 10 to 40% by weight, based on 100 parts by weight of graphite powder. The optimum addition ratio varies depending on the type of mesophase-containing pitch.

混合粉体は黒鉛製モールド等を用いて、真空下又は不活
性ガス雰囲気下に700℃以上、好ましくは900℃以
上でホットプレス成形し、黒鉛成形体を得ることができ
る。他の炭素前駆体については直接ホットプレスするこ
とができず、予備焼成する手段がとられてい次。(炭素
材料学会第11回年会予稿集P、146(1984) 
)これに対して、本発明の黒鉛−メソフェーズ含有ピッ
チ混合粉体の場合は、予備焼成を必要とせず、しかもプ
レス面が平滑な場合のみならず凹凸を有する場合にもク
ラックを生ずることなく、又融着することもなく直接ホ
ットプレス成形が可能であり、本発明方法の大きな特徴
をなしている。
The mixed powder can be hot press-molded using a graphite mold or the like at 700° C. or higher, preferably 900° C. or higher under vacuum or an inert gas atmosphere to obtain a graphite molded body. Other carbon precursors cannot be hot-pressed directly, so pre-calcination is required. (Proceedings of the 11th Annual Meeting of the Carbon Materials Society P, 146 (1984)
) On the other hand, in the case of the graphite-mesophase-containing pitch mixed powder of the present invention, no pre-firing is required, and it does not cause cracks not only when the pressed surface is smooth but also when it has irregularities. Further, direct hot press molding is possible without fusion, which is a major feature of the method of the present invention.

得られた成形体は、強度、導電性に優れ、ま次、ガス不
透過性の特徴をもつ。これらの特性は、1100℃以下
での成形で達成されるが、さらに要求される特性に応じ
て3000℃までの温度を用いることができる。所定温
度に至る昇温速度は150−3000℃/時、圧力は5
0〜2000kM3  (ゲージ)の範囲で行なうこと
ができる。
The obtained molded product has excellent strength and conductivity, and is characterized by being gas-impermeable. These properties are achieved by molding at temperatures below 1100°C, although temperatures up to 3000°C can be used depending on further desired properties. The heating rate to reach the specified temperature is 150-3000℃/hour, and the pressure is 5
It can be carried out in the range of 0 to 2000 km3 (gauge).

〔本発明方法の特長及び応用例〕[Features and application examples of the method of the present invention]

本発明の方法によシ■予備焼成を要することなく、直接
ホットプレス成形により、複雑形状の成形体を得ること
ができる。ま友、■得られた成形体は強度、導電性に優
れ、さらにガス不透過性の特徴をもつ。
According to the method of the present invention, it is possible to obtain a molded body having a complex shape by direct hot press molding without requiring preliminary firing. 1) The obtained molded product has excellent strength and conductivity, and is also gas-impermeable.

本発明の方法で得られた黒鉛質成形体は、燃料電池のガ
ス分離板をはじめ各種・fイポーラデとができる。
The graphite molded body obtained by the method of the present invention can be used for various types of materials including gas separation plates for fuel cells.

〔発明の実施例〕[Embodiments of the invention]

以下実施例及び比較例を以って本発明の内容を更に具体
的に説明する。
The content of the present invention will be explained in more detail below with reference to Examples and Comparative Examples.

実施例1 〔メソフェーズ含有ピッチの製造〕 内容積16のオートクレーブにナフサの熱分解で生成し
几ナフサ分解残渣タール(常圧換算沸点170℃以上)
630iP及び流動接触分解用シリカアルミナ触媒(触
媒化成@)製、アルミナ含量13g量チ、粉末)30?
を仕込み、水素を毎時100 t (STP )で通じ
、反応圧力をx20kp/α (r−ジ)に保ちながら
室温から140分で460℃まで昇温し、その温度に8
0分間保持し次。室温に冷却後内容物を取り出し固型物
を濾過した後、蒸留で常圧換算490℃以下の留分を除
いて、水素処理ナフサ分解残渣タールを仕込み原料に対
して25重量%の収率で得た。
Example 1 [Manufacture of mesophase-containing pitch] Naphtha decomposition residue tar produced by thermal decomposition of naphtha in an autoclave with an internal volume of 16 (normal pressure equivalent boiling point 170°C or higher)
630iP and silica alumina catalyst for fluid catalytic cracking (made by Catalyst Kasei@), alumina content 13g, powder) 30?
was charged, hydrogen was passed at a rate of 100 t/hour (STP), and the temperature was raised from room temperature to 460 °C in 140 minutes while maintaining the reaction pressure at x20 kp/α (r-di).
Hold for 0 minutes and then. After cooling to room temperature, the contents were taken out and solid matter was filtered, and then distilled to remove the fraction below 490°C in terms of normal pressure, and the hydrogen-treated naphtha decomposition residue tar was charged at a yield of 25% by weight based on the raw material. Obtained.

上記の様にして得几改質ピッチ109”を内容積40−
の円筒を備え、留出物のピッチ中への逆流を防いだ反応
器に入れ、アルゴンを毎分3sot11,2,3.4−
テトラヒドロキノ1)7t″液状で毎分0.13Pビ、
チの上に供給しながら10分間保持した後、予め485
℃に保つ溶融塩浴に浸漬し次。ピッチが浴融したのちア
ルゴン及びテトラヒドロキノリンを液状ピッチの中に供
給するようにし、反応温度483℃で13分熱処理を行
った。
The modified pitch 109'' was obtained as described above with an internal volume of 40-
into a reactor equipped with a cylinder of 300 ml to prevent backflow of distillate into the pitch, and 3 sots of argon per minute.
Tetrahydrokino 1) 7t″ liquid form, 0.13Pbis per minute,
After holding for 10 minutes while supplying the
Next immerse in a molten salt bath and keep at °C. After the pitch was melted in the bath, argon and tetrahydroquinoline were supplied into the liquid pitch, and heat treatment was performed at a reaction temperature of 483° C. for 13 minutes.

その結果、改質ピッチに対して52:fflt%の収率
でメソフェーズ含有ピッチを得た。得られ几ピ、チは、
エポキシ樹脂に埋込み研磨した試料について室温にて偏
光顕微鏡観察を行ない、光学的異方性の比率、即ちメン
フェーズ含有率を測定した。その結果、該ピッチのメン
フェーズ含有率はほぼ100%であった。また、本試料
のキノリン不溶分(JIS2425遠心法)は45重量
%であった。又、ピッチ101n9を示差熱重量測定装
置中、窒素ガス雰囲気で1000℃まで加熱して重量減
少を求め、炭素化収率85重t%を得た。
As a result, mesophase-containing pitch was obtained at a yield of 52:fflt% based on the modified pitch. The results are as follows:
A sample embedded in an epoxy resin and polished was observed under a polarizing microscope at room temperature to measure the optical anisotropy ratio, that is, the menphase content. As a result, the menphase content of the pitch was approximately 100%. In addition, the quinoline insoluble content (JIS2425 centrifugation method) of this sample was 45% by weight. Further, pitch 101n9 was heated to 1000° C. in a nitrogen gas atmosphere in a differential thermogravimeter to determine the weight loss, and a carbonization yield of 85% by weight was obtained.

〔黒鉛質成形体の製造〕[Manufacture of graphite molded body]

該メソフェーズ含有ピッチ0.6?を日本黒鉛工業(株
)製鱗状黒鉛粉(商品名CPB ) 2.4 ?ととも
に、平工製作所製グアイブレイティングサンプルミル(
VIBRATING SAMPLE MILI、 )用
f7デルチエンパー(SAMPLE CHAMBER)
に仕込み、5分間磨砕混合して混合粉体を得次。
The mesophase containing pitch is 0.6? Scale graphite powder manufactured by Nippon Graphite Industries Co., Ltd. (product name CPB) 2.4? Along with this, a Guai Brating Sample Mill manufactured by Hirako Seisakusho (
VIBRATING SAMPLE MILI, ) f7 del chainer (SAMPLE CHAMBER)
Then, grind and mix for 5 minutes to obtain a mixed powder.

該混合粉末約21P11:内径約35.の黒鉛型に充填
し、0.4 ’rON/、 (ダージ)の圧力を印加し
ながら130分で1020℃まで昇温し、1分間保持し
た。室温まで降温後圧力を解放し、直径as、3m、厚
さ1.0 mの黒鉛質成形体を得た。
The mixed powder approximately 21P11: inner diameter approximately 35. The mixture was filled into a graphite mold, heated to 1020°C in 130 minutes while applying a pressure of 0.4'rON/, (dirge), and held for 1 minute. After cooling to room temperature, the pressure was released to obtain a graphite molded body with a diameter as of 3 m and a thickness of 1.0 m.

該成形体の四端子法による平面方向の体積固有抵抗は1
.1mΩ’w、曲げ強度575 kg7cm 、室温で
の窒素ガスの透過度は105I/use未満であった。
The volume resistivity of the molded body in the plane direction by the four-terminal method is 1
.. It had a bending strength of 1 mΩ'w, a bending strength of 575 kg7 cm, and a nitrogen gas permeability of less than 105 I/use at room temperature.

実施例2 実施例1の実験において、混合磨砕するメン7エーズ含
有ピツチと鱗状黒鉛の量をそれぞれ0.91及び2.I
Pとし、他は同様にして黒鉛質成形体を得た。該黒鉛質
成形体の体積固有抵抗は1.3mΩ・傭、曲げ強度は5
93ゆ6、ガス透過率は10  cIn/sec未満で
あった。
Example 2 In the experiment of Example 1, the amounts of Men7Aze-containing pitch and flaky graphite to be mixed and ground were 0.91 and 2.9%, respectively. I
A graphite molded body was obtained in the same manner except for P. The volume resistivity of the graphite molded body is 1.3 mΩ・cm, and the bending strength is 5.
93 Yu6, the gas permeability was less than 10 cIn/sec.

実施例3 ナフサの熱分解で生成したナフサ分解残渣タール(常圧
換算沸点170℃以上)94.1j’を、内容積250
−の内筒を備え留出物のピッチ中への還流を防いだ反応
器に充填し、反応器内筒底部に窒素を毎分1.7 s 
t (s’rP )供給しながら、予め鳴60℃に保っ
た溶融塩浴に反応器を浸漬した。15分後に反応温度4
57℃に達し友後15分保持し、冷却して原料タールに
対して10.5重量%の収率でメソフェーズ含有ピッチ
を得友。該ピッチのメソフェーズ含有率は約45チ、キ
ノリン不溶分は41重量%、炭素化収率は79重量%で
あり危。
Example 3 94.1j' of naphtha decomposition residue tar (boiling point of 170°C or higher when converted to normal pressure) generated by thermal decomposition of naphtha was heated to an inner volume of 250
A reactor equipped with an inner cylinder of
The reactor was immersed in a molten salt bath previously maintained at 60° C. while supplying t (s'rP ). Reaction temperature 4 after 15 minutes
After reaching 57°C, it was held for 15 minutes and cooled to obtain mesophase-containing pitch with a yield of 10.5% by weight based on the raw material tar. The pitch has a mesophase content of about 45%, a quinoline insoluble content of 41% by weight, and a carbonization yield of 79% by weight, which is dangerous.

た。該成形体の体積固有抵抗は1.1mΩ・国、曲げ強
度は445晦僑 、室温での窒素ガス透過率は10  
α/II @ 0未満であった。
Ta. The molded body has a volume resistivity of 1.1 mΩ, a bending strength of 445 mΩ, and a nitrogen gas permeability of 10 at room temperature.
α/II @ was less than 0.

実施例4 実施例3の実験において熱処理温度を477℃とし、他
は同様にしてメソフェーズ含有ピッチを得、これよシ黒
鉛質成形体を得た。該ピッチの収率は10.0重量チ、
メソフェーズ含有率は約80%、キノリン不溶分は80
重tチ、炭素化収率は877重量%あり几。又、得られ
t黒鉛質成形体の体積固有抵抗は1.1mΩ・伽、曲げ
強度427 kVcm 、室温での窒素ガス透過率は1
0 cM/sec未満であツタ。
Example 4 A mesophase-containing pitch was obtained in the same manner as in Example 3 except that the heat treatment temperature was 477° C., and a graphite molded body was obtained. The yield of the pitch is 10.0 wt.
Mesophase content is approximately 80%, quinoline insoluble content is 80%
The carbonization yield was 877% by weight. In addition, the volume resistivity of the obtained T-graphite molded body was 1.1 mΩ·ka, the bending strength was 427 kVcm, and the nitrogen gas permeability at room temperature was 1.
Ivy below 0 cM/sec.

実施例5 実施例3の実験において熱処理温度を487℃とし、他
は同様にしてメツフェーズ含有ピッチ及び黒鉛質成形体
を得た。該ピッチの収率は10.0重量%、メソフェー
ズ含有率は約90%。
Example 5 In the experiment of Example 3, the heat treatment temperature was set to 487° C., and the other conditions were the same to obtain metsuphase-containing pitch and graphite molded bodies. The yield of the pitch was 10.0% by weight, and the mesophase content was about 90%.

キノリン不溶分は900重量%炭素化収率は91重t%
であり九。又、黒鉛質成形体の体積固有抵抗は1.2m
Ω・儒、曲げ強度380kits、室温での窒素ガス透
過率は10 crR/sec未満であり九。
Quinoline insoluble matter is 900% by weight Carbonization yield is 91% by weight
And nine. In addition, the volume resistivity of the graphite molded body is 1.2m.
Ω/F, bending strength of 380 kits, and nitrogen gas permeability at room temperature of less than 10 crR/sec.

Claims (1)

【特許請求の範囲】[Claims] キノリン不溶分が95重量%以下、メソフエーズ含有量
が35%以上、1000℃での炭素化収率が少なくとも
70重量%であるメソフエーズ含有ピッチと黒鉛粉を混
合して得られる粉体を700〜3000℃で加圧成形す
ることを特徴とする黒鉛質成形体の製法。
A powder obtained by mixing mesophase-containing pitch with a quinoline insoluble content of 95% by weight or less, a mesophase content of 35% or more, and a carbonization yield of at least 70% by weight at 1000°C and graphite powder. A method for producing a graphite molded body characterized by pressure molding at ℃.
JP61027260A 1986-02-10 1986-02-10 Manufacture of graphite formed body Pending JPS62187167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027260A JPS62187167A (en) 1986-02-10 1986-02-10 Manufacture of graphite formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027260A JPS62187167A (en) 1986-02-10 1986-02-10 Manufacture of graphite formed body

Publications (1)

Publication Number Publication Date
JPS62187167A true JPS62187167A (en) 1987-08-15

Family

ID=12216105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027260A Pending JPS62187167A (en) 1986-02-10 1986-02-10 Manufacture of graphite formed body

Country Status (1)

Country Link
JP (1) JPS62187167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340697A2 (en) * 1988-05-03 1989-11-08 Union Carbide Corporation Process for producing high density carbon and graphite articles
JP2003533001A (en) * 2000-05-10 2003-11-05 バラード パワー システムズ インコーポレイティド Method and apparatus for embossing expanded graphite sheets under reduced pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340697A2 (en) * 1988-05-03 1989-11-08 Union Carbide Corporation Process for producing high density carbon and graphite articles
JPH0214804A (en) * 1988-05-03 1990-01-18 Union Carbide Corp Production of high density carbon and graphite product
JP2505880B2 (en) * 1988-05-03 1996-06-12 ユニオン、カーバイド、コーポレーション Method for producing high-density carbon and graphite products
JP2003533001A (en) * 2000-05-10 2003-11-05 バラード パワー システムズ インコーポレイティド Method and apparatus for embossing expanded graphite sheets under reduced pressure

Similar Documents

Publication Publication Date Title
US4929404A (en) Graphitic or carbonaceous moldings and processes for producing the same
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
US3346678A (en) Process for preparing carbon articles
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
EP0283211B1 (en) Binderless carbon materials
US4534949A (en) Process for the manufacture of molded carbon bodies
JPS61161666A (en) Electrochemical battery separator plate, manufacture thereofand fuel battery
JPS62187167A (en) Manufacture of graphite formed body
JPS6177667A (en) Graphite formed body and manufacture
JPH06102530B2 (en) Method for manufacturing graphite molded body
JP3038489B2 (en) Method for producing metal composite carbon material
TWI610887B (en) Isotropic graphite material, method of producing the same and application thereof
JPS61122110A (en) Production of high-density carbon material
JPS6112888A (en) Manufacture of electrode binder
SU1034994A1 (en) Method for preparing coke and pitch composition for making fine-grained graphite products
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH0269357A (en) Production of isotropic graphite material having high density and high strength
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JPH0360415A (en) Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding
JPH04321560A (en) Production of isotropic graphite material having high strength
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPS61251505A (en) Production of formed graphite
JPH01115882A (en) Production of porous carbonaceous material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS62123007A (en) Production of raw material for composite molded article of carbon type