JPH0360415A - Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding - Google Patents
Production of high density and high strength isotropic carbon material and starting material of carbon material for injection moldingInfo
- Publication number
- JPH0360415A JPH0360415A JP1193840A JP19384089A JPH0360415A JP H0360415 A JPH0360415 A JP H0360415A JP 1193840 A JP1193840 A JP 1193840A JP 19384089 A JP19384089 A JP 19384089A JP H0360415 A JPH0360415 A JP H0360415A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- pitch
- injection molding
- self
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 26
- 238000001746 injection moulding Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000007858 starting material Substances 0.000 title 1
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000011295 pitch Substances 0.000 abstract description 15
- 239000011294 coal tar pitch Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000003779 heat-resistant material Substances 0.000 abstract description 2
- 239000011301 petroleum pitch Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 238000000465 moulding Methods 0.000 description 11
- 238000010304 firing Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000003245 coal Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010068 moulding (rubber) Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、ルツボやノズルあるいは複雑な形状をした耐
熱材等に用いられる等方性高密度高強度炭素材の製造方
法及びその方法の発明の実施に直接使用される炭素材原
料に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention is an invention of a method for manufacturing an isotropic high-density, high-strength carbon material used for crucibles, nozzles, heat-resistant materials with complicated shapes, etc., and the invention of the method. This relates to carbon material raw materials that are directly used in the implementation of
〈従来の技(ネi〉
等方性高密度高強度炭素材の原料として炭素質メソフェ
ーズ小球体は公知である。炭素質メソフェーズ小球体と
は、コールタールピッチ、右曲ピッチ類を350〜50
0℃の温度で加熱処理する際に光学的等方性ピッチ中に
生成するメソフェーズ小球体で、溶剤分別法によりピン
ヂマトリックス中から分離されたものである。<Conventional technique> Carbonaceous mesophase spherules are known as raw materials for isotropic high-density, high-strength carbon materials. Carbonaceous mesophase spherules are carbonaceous mesophase spherules with coal tar pitch and right-handed pitch of 350 to 50.
Mesophase spherules are produced in optically isotropic pitch during heat treatment at a temperature of 0°C, and are separated from the pinge matrix by solvent fractionation.
例えば、特公昭60−25364号公報によれば、小球
体の分別にベンゼンやタール中油等のピッチに対して若
干抽出力の低い溶剤を用いることにより、ピッチ中のβ
成分の一部を小球体と共に残存させ、さらに不活性雰囲
気中200〜450℃の温度で仮焼処理することにより
自己焼結性の優れた原料となることが示されている。こ
の方法により得られた原料を使用すれば、容易に高密度
1.85g/cd以上、萌げ強度800kg/cd以上
の等方性・高密度・高強度炭素材が得ら県る。For example, according to Japanese Patent Publication No. 60-25364, by using a solvent with a slightly low extraction power for pitch, such as benzene or oil in tar, to separate small spheres, β
It has been shown that a raw material with excellent self-sintering properties can be obtained by allowing some of the components to remain together with the small spheres and further calcining the material in an inert atmosphere at a temperature of 200 to 450°C. If the raw material obtained by this method is used, an isotropic, high-density, high-strength carbon material with a high density of 1.85 g/cd or more and a sprouting strength of 800 kg/cd or more can be easily obtained.
しかしながら、従来の炭素材の製造方法は、まずラバー
成形等により角型あるいは円柱型に成形したものに焼成
・黒鉛化処理を施して炭素材を製造後、次に切削加工等
により製品形状を得ていたため、使用される炭素材の歩
留りが悪く、また切削加工工程に多くの時間が費やされ
ていた。However, the conventional manufacturing method for carbon materials is to first form the carbon material into a rectangular or cylindrical shape by rubber molding, etc., then perform firing and graphitization treatment to produce the carbon material, and then obtain the product shape by cutting, etc. As a result, the yield of the carbon material used was poor, and a lot of time was wasted in the cutting process.
上記問題の解決法として射出成形による成形方法が考え
られる。ところで、射出成形は従来プラスデックやセラ
ミック等で利用されてきたが、この場合、通常の工程と
して原料に成形用バインダーとして樹脂を加えて混練し
たものを、射出成形した後、脱脂、焼成、精密加工を行
ってきた。特に成形用バインダーとして熱可塑性樹脂を
使用するため脱脂工程は不可欠であり、この工程に多く
の時間が費やされていた。A molding method using injection molding may be considered as a solution to the above problem. By the way, injection molding has traditionally been used to make plastic decks, ceramics, etc. In this case, the normal process is to add resin as a molding binder to the raw materials and knead them, then injection mold, then degrease, sinter, and precision I have been processing it. In particular, since a thermoplastic resin is used as a molding binder, a degreasing process is essential, and a lot of time is spent on this process.
また従来、炭素材料の製造方法として炭素質メソフェー
ズ小球体を原料とする以外に、コークスを原料としこれ
にピッチを加えて金型あるいはラバー等で成形後、焼成
・ピッチ含浸の工程を繰返す方法も公知である。しかし
、この材料を射出成形した場合、射出成形は一軸成形で
あるため、得られる炭素材が異方性を示すばかりでなく
、製造過程で含浸・焼成の繰返しという複雑な工程を行
わねばならない。In addition to using carbonaceous mesophase small spheres as a raw material, conventional methods for manufacturing carbon materials include using coke as a raw material, adding pitch to it, molding it with a mold or rubber, and then repeating the firing and pitch impregnation steps. It is publicly known. However, when this material is injection molded, since the injection molding is uniaxial molding, the resulting carbon material not only exhibits anisotropy, but also requires complicated steps of repeated impregnation and firing during the manufacturing process.
〈発明が解決しようとする課題〉
本発明の目的は、?j!雑な形状を有する等方性高密度
・高強度炭素材料を製造するに際して、製品加工工程を
削減するとともに、製品歩留を向上させることのできる
コスト的に有利な製造方法を1!案することにある。<Problem to be solved by the invention> What is the purpose of the invention? j! When manufacturing isotropic high-density, high-strength carbon materials with rough shapes, there is a cost-effective manufacturing method that can reduce product processing steps and improve product yield! The purpose is to come up with a plan.
また、本発明の他の目的は、前記製造方法において、直
接使用される炭素材原料を提供することである。Another object of the present invention is to provide a carbon material raw material that can be used directly in the manufacturing method.
〈課題を解決するための手段〉
本発明は、自己焼結性を有する炭素質メソフェーズ小球
体にピッチ系バインダーを加えて混合し、次いで射出成
形した後、焼成・黒鉛化処理することを特徴とする等方
性高密度高強度炭素材の製造方法であり、これに用いる
射出成形用の原料としては、自己焼結性を有する炭素質
メソフェーズ小球体に対して欧化点200℃以下のピン
チを25〜75重量%混合したものが好ましい。<Means for Solving the Problems> The present invention is characterized in that carbonaceous mesophase small spheres having self-sintering properties are mixed with a pitch-based binder, then injection molded, and then subjected to firing and graphitization treatment. This is a method for producing an isotropic high-density, high-strength carbon material, in which the raw material for injection molding is carbonaceous mesophase spherules having self-sintering properties, and a pinch of 25°C with a Europeanization point of 200°C or less. A mixture of up to 75% by weight is preferred.
〈作用〉
本発明に使用する自己焼結性を有する炭素質メソフェー
ズ小球体とは、例えば特公昭60−25364号公報に
示されるように、メソフェーズ小球体表面に粘結性成分
を保持させたものであり、それ自体バインダーを使用す
ることなく成形・焼成・黒鉛化が可能な炭素材用原料お
)末である。<Function> The carbonaceous mesophase spherules having self-sintering properties used in the present invention are those in which a caking component is retained on the surface of the mesophase spherules, as shown in Japanese Patent Publication No. 60-25364, for example. It is a raw material powder for carbon materials that can be molded, fired, and graphitized without using a binder.
本発明は、該小球体の成形において、好ましくは軟化点
200℃以下、さらに好ましくは100’C以下のピッ
チをバインダーとして射出成形を行うもので、これによ
り得られた成形体は該小球体同様に焼成・含浸を繰返す
ことなく容易に高密度・高強度の炭素材が得られる。ま
た該小球体は個々の粒子は異方性を示すが、成形によっ
てランダムに配列するため全体としては、容易に等方性
の材料が得られ、さらに球形であるため、射出成形にお
いて、−層流動性暢優れるという作用を有している。こ
れらの作用をより活用するために、該小球体の平均粒径
はlμ稽以上30/7m以下であることが望ましい。In the molding of the small spheres of the present invention, injection molding is performed using a pitch having a softening point of preferably 200° C. or less, more preferably 100'C or less as a binder, and the molded object obtained thereby is similar to the small spheres. High-density and high-strength carbon materials can be easily obtained without repeating firing and impregnation. In addition, although the individual particles of the small spheres exhibit anisotropy, since they are arranged randomly during molding, it is easy to obtain an isotropic material as a whole.Furthermore, since the small spheres are spherical, in injection molding, a -layer It has the effect of improving fluidity. In order to make better use of these effects, it is desirable that the average particle diameter of the small spheres be 1μ or more and 30/7m or less.
本発明では成形用バインダーとして、好ましくは軟化点
200℃以下、ハンドリング上より好ましくは100℃
以下の石炭系または石泊系のピッチを使用することが望
ましく、さらに800℃残炭率が40%以上のピンチで
あることが望ましい。これら高残炭率かつ該小球体と親
和性の良いピッチを成形用バインダーとして使用するこ
とにより、成形後に必要であった脱脂工程が省略でき、
成形体にそのまま焼成・黒鉛化処理を施すことで容易に
高密度・高強度炭素材の製造が可能となった。In the present invention, as a molding binder, the softening point is preferably 200°C or lower, and preferably 100°C from the viewpoint of handling.
It is desirable to use the following coal-based or Ishibari-based pitch, and it is further desirable that the residual coal percentage at 800° C. be at least 40%. By using these pitches with a high residual carbon content and good affinity with the small spheres as a molding binder, the degreasing process that was necessary after molding can be omitted.
It has become possible to easily produce a high-density, high-strength carbon material by directly firing and graphitizing the compact.
ここで、バインダーとして用いるピッチは該小球体に対
して、25重重量以上75重量%以下が好ましい。25
重攪%未満の場合は射出成形時の流動性が悪<、75重
量%超の場合は焼成時に揮発分が多く良好な炭素材が得
られない。Here, the pitch used as the binder is preferably 25% by weight or more and 75% by weight or less based on the small spheres. 25
If it is less than 75% by weight, the fluidity during injection molding will be poor, and if it is more than 75% by weight, there will be too much volatile content during firing, making it impossible to obtain a good carbon material.
さらに、従来は切削加工によりブロックから製品形状を
切出していたのに比較して、本発明では射出成形を用い
るので、原料粉に対する製品歩留が向上するばかりでな
く、加工工程も著しく削減でき、コスト上有利に製品を
供給することが可能となる。また、ルツボ等の単純形状
のものはラバーを使用した冷間静水圧(CIP)成形で
製造可能であったが、従来困難であったより複雑形状の
成形も、本発明の射出成形を採用することで可能となっ
た。Furthermore, compared to the conventional method of cutting the product shape from the block by cutting, the present invention uses injection molding, which not only improves the product yield for raw material powder but also significantly reduces the processing steps. It becomes possible to supply products at a cost advantage. In addition, although it was possible to manufacture simple shapes such as crucibles by cold isostatic pressure (CIP) molding using rubber, the injection molding of the present invention can also be used to mold more complex shapes, which was previously difficult. It became possible.
〈実施例〉
実施例1
コールタールピッチを450℃で熱処理してメソ・フェ
ーズ小球体を発生させ、これを6倍容量のタール中油を
用いて抽出・濾過し、さらに360℃で3時間仮焼して
平均粒径15μmのメソフェーズ小球体を得た。該メソ
フェーズ小球体に、リングボール法による軟化点80℃
,FC(固定炭素)50%。<Examples> Example 1 Coal tar pitch was heat-treated at 450°C to generate meso-phase spherules, which were extracted and filtered using 6 times the volume of oil in tar, and further calcined at 360°C for 3 hours. Mesophase spherules with an average particle size of 15 μm were obtained. The mesophase small spheres were given a softening point of 80°C by the ring ball method.
, FC (fixed carbon) 50%.
Bl(ベンゼン不溶分)16%、 Ql (キノリンネ
溶分)4%のコールクールピッチを表1の配合比で混合
し、600kg/caの油圧で30 X 100 X
100mの板状に110℃で射出成形した。成形体を1
000″Cで3時間処理後、更に2500℃で2時間処
理して焼成体を得た。得られた炭素材の物性値を表1に
示す。Coal cool pitch containing 16% Bl (benzene insoluble content) and 4% Ql (quinoline soluble content) was mixed at the blending ratio shown in Table 1, and was heated to 30 x 100 x with a hydraulic pressure of 600 kg/ca.
It was injection molded into a 100 m plate at 110°C. 1 molded body
After treatment at 000''C for 3 hours, a fired body was obtained by further treatment at 2500°C for 2 hours.Table 1 shows the physical property values of the obtained carbon material.
実施例2
実施例1と同様の自己焼結性を有するメソフェーズ小球
体に、リングボール法による軟化点が90”C,FC5
5%、BI30%、QI9%のピッチを表1の配合比で
混合し、実施例1と同様の方法で射出成形後、熱処理し
て焼成体を得た。得られた炭素材の物性値を表1に示す
。Example 2 Mesophase small spheres having the same self-sintering properties as in Example 1 had a softening point of 90"C, FC5 by the ring ball method.
Pitch of 5%, BI of 30%, and QI of 9% were mixed at the compounding ratio shown in Table 1, injection molded in the same manner as in Example 1, and then heat treated to obtain a fired body. Table 1 shows the physical property values of the obtained carbon material.
なお、各物性値の測定は焼成体を10 X 10 X
50m5+の試料に切り出して行った0曲げ強度は圧縮
試験機を使用して支点間距離を40調にし、試験片中央
に毎秒5kgfの均一速度で釦直に荷重を加え、破壊し
た時の最大荷重を記録し、強度の計算には、JI S
R7202の式を使った。電気比抵抗はJISI?72
02に記載の電圧降下法で、硬度はシジアー硬度計を用
いて測定した。In addition, the measurement of each physical property value was performed on the fired body at 10 x 10 x
The zero bending strength was measured by cutting a 50m5+ sample using a compression testing machine, setting the distance between the supports to 40, and applying a load directly to the button at a uniform speed of 5 kgf per second to the center of the test piece, and calculating the maximum load at the time of failure. For strength calculation, JIS
The formula of R7202 was used. Is electrical resistivity JISI? 72
The hardness was measured by the voltage drop method described in 02 using a Schzier hardness meter.
〈発明の効果〉
上述したように本発明により、加工工程の少ないコスト
的にイf利な簡単なプロセスで、等方性高密度高強度炭
素材が得られ、ルツボ、ノズル、シール材やその他複雑
な加工を必要とする炭素材に広く利用の途が開かれ、産
業的に益するところが大である。<Effects of the Invention> As described above, according to the present invention, an isotropic high-density, high-strength carbon material can be obtained with a simple process that requires few processing steps and is advantageous in terms of cost, and can be used in crucibles, nozzles, sealing materials, etc. This opens up a wide range of uses for carbon materials that require complicated processing, and has great industrial benefits.
Claims (1)
ッチ系バインダーを加えて混合し、次いで射出成形した
後、焼成・黒鉛化処理することを特徴とする等方性高密
度高強度炭素材の製造方法。 2、自己焼結性を有する炭素質メソフェーズ小球体に対
して軟化点200℃以下のピッチを25〜75重量%混
合してなることを特徴とする射出成形用の炭素材原料。[Claims] 1. Highly isotropic, carbonaceous mesophase small spheres having self-sintering properties are mixed with a pitch-based binder, then injection molded, and then fired and graphitized. A method for producing a high-density, high-strength carbon material. 2. A carbon material raw material for injection molding, characterized in that 25 to 75% by weight of pitch having a softening point of 200° C. or lower is mixed with carbonaceous mesophase small spheres having self-sintering properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1193840A JPH0360415A (en) | 1989-07-28 | 1989-07-28 | Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1193840A JPH0360415A (en) | 1989-07-28 | 1989-07-28 | Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0360415A true JPH0360415A (en) | 1991-03-15 |
Family
ID=16314613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1193840A Pending JPH0360415A (en) | 1989-07-28 | 1989-07-28 | Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0360415A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59160136A (en) * | 1983-03-03 | 1984-09-10 | Ricoh Co Ltd | Diazo copying material |
US5382392A (en) * | 1993-02-05 | 1995-01-17 | Alliedsignal Inc. | Process for fabrication of carbon fiber-reinforced carbon composite material |
KR100508473B1 (en) * | 2002-11-19 | 2005-08-17 | 요업기술원 | Method of producing carbon seal |
-
1989
- 1989-07-28 JP JP1193840A patent/JPH0360415A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59160136A (en) * | 1983-03-03 | 1984-09-10 | Ricoh Co Ltd | Diazo copying material |
US5382392A (en) * | 1993-02-05 | 1995-01-17 | Alliedsignal Inc. | Process for fabrication of carbon fiber-reinforced carbon composite material |
US5556704A (en) * | 1993-02-05 | 1996-09-17 | Alliedsignal Inc. | Carbon fiber-reinforced carbon composite material |
KR100508473B1 (en) * | 2002-11-19 | 2005-08-17 | 요업기술원 | Method of producing carbon seal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111018554A (en) | Method for preparing ultrahigh-power graphite electrode by using graphene | |
JPH0360415A (en) | Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding | |
JP4311777B2 (en) | Method for producing graphite material | |
US3567808A (en) | Production of low density-high strength carbon | |
JPH0791107B2 (en) | Method for producing isotropic graphite material having high density and high strength | |
JPS63151610A (en) | Raw material composition for producing large-sized carbonaceous material | |
JP3314383B2 (en) | Method for producing carbon fiber / carbon composite material | |
JPS62187167A (en) | Manufacture of graphite formed body | |
SU1034994A1 (en) | Method for preparing coke and pitch composition for making fine-grained graphite products | |
JPH0288464A (en) | Production of density and high strength carbon material and graphite electrode material for electric spark machining | |
JPS5913614A (en) | Manufacture of carbonaceous material of low elasticity | |
JPH02172809A (en) | Production of elastic graphite molded body | |
US2496671A (en) | Titanium carbide article | |
JPH09208314A (en) | Production of carbonaceous material | |
JPS59102870A (en) | Manufacture of powder for carbonaceous formed body | |
JPH02296897A (en) | Production of raw material for high-density, high-strength carbon material | |
JPH0135767B2 (en) | ||
JP2924062B2 (en) | Production method of raw material powder for carbon material | |
JPH0764528B2 (en) | Method for producing high-quality carbonaceous compact | |
RU2064471C1 (en) | Method for preparation of the press powder for carbon articles | |
JP2759837B2 (en) | Manufacturing method of carbon material | |
JPH02208213A (en) | Production of molded carbonaceous body excellent in compression elasticity | |
JPH0735299B2 (en) | Method for producing isotropic high strength carbon material having low coefficient of thermal expansion | |
JP2536513B2 (en) | Manufacturing method of impermeable carbon material | |
JPH03170314A (en) | Production of isotropic carbon material |