JPS5913614A - Manufacture of carbonaceous material of low elasticity - Google Patents

Manufacture of carbonaceous material of low elasticity

Info

Publication number
JPS5913614A
JPS5913614A JP57121397A JP12139782A JPS5913614A JP S5913614 A JPS5913614 A JP S5913614A JP 57121397 A JP57121397 A JP 57121397A JP 12139782 A JP12139782 A JP 12139782A JP S5913614 A JPS5913614 A JP S5913614A
Authority
JP
Japan
Prior art keywords
carbon material
molded body
carbonaceous material
bending strength
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121397A
Other languages
Japanese (ja)
Inventor
Rokuro Fujii
藤井 禄郎
Kanji Matsuo
松尾 寛二
Shoji Hori
昭二 堀
Teruhisa Kondo
照久 近藤
Koichiro Matsuo
松尾 孝一郎
Kazuhiro Maekawa
和広 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyo Tanso Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP57121397A priority Critical patent/JPS5913614A/en
Publication of JPS5913614A publication Critical patent/JPS5913614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily a carbonaceous material with low elasticity and high bending strength by substituting a material formed by expanding artificial graphite granules for part of a carbonaceous material, adding a binder, kneading them, and molding and calcining the kneaded material. CONSTITUTION:A material formed by expanding artificial graphite granules made from petroleum coke or coal coke is substituted for at least 20wt% of a carbonaceous material, and a binder is added. They are kneaded, and the kneaded material is molded and calcined. By this method a molded body of a carbonaceous material or a graphitic material with low elasticity, high bending strength and high electric conductivity is obtd. The molded body is suitable for use as an electric brush, a gasket, packing, etc.

Description

【発明の詳細な説明】 本発明は炭素材料又は黒鉛材料の成形体の製造方法に関
し、その目的とするところは低弾性であると同時に大き
な曲げ強度及び電気型導度を有する炭素材料又は黒鉛材
料の成形体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a molded body of carbon material or graphite material, and its object is to produce a carbon material or graphite material that has low elasticity, high bending strength, and electrical type conductivity. The object of the present invention is to provide a molded article.

従来、炭素材料又は黒鉛材料成形体は、石油コークス、
石炭コークス、ピッチコークス、カーボンブラック等の
炭素材料にコールタール、コールタールピッチ%合成樹
脂等の結合材を加えて混線、成形及び焼成し、更に必要
に応じ黒鉛化して製造されている。而して焼成工程及び
黒鉛化工程においては、処理温度が高くなるに伴ない、
また処理時間が長くなるに伴ない、得られる炭素羽村又
は黒鉛材料の成形体の弾性率が低下すると共に、曲げ強
度及び電気型導度も低下する傾向がある。従って、弾性
率が低くしかも曲げ強度及び電気型導度が大である炭素
材料又は黒鉛材料成形体を人造することは不可能に近く
、そのため低弾性率である成形体が要求される分野にお
いては、曲げ強度及び電気型導度の点において不充分で
あるにも拘らず、斯かる成形体がその分野において敢え
て使用されているのが現状である。
Conventionally, carbon material or graphite material molded bodies are made of petroleum coke,
It is manufactured by adding a binder such as coal tar or coal tar pitch% synthetic resin to a carbon material such as coal coke, pitch coke, or carbon black, mixing it, forming it, firing it, and then graphitizing it if necessary. Therefore, in the firing process and graphitization process, as the processing temperature increases,
Further, as the treatment time becomes longer, the elastic modulus of the obtained molded body of carbon hamura or graphite material tends to decrease, and the bending strength and electrical conductivity also tend to decrease. Therefore, it is nearly impossible to manufacture a carbon or graphite material molded body with a low elastic modulus and high bending strength and electrical conductivity, and therefore, in fields where a low elastic modulus molded body is required, Despite being insufficient in terms of bending strength and electrical conductivity, such molded bodies are currently being used in this field.

本発明者は、斯かる現状に鑑み、低弾性であると同時に
曲げ強度及び覗気電導度が高い炭素材料又は黒鉛材料成
形体を製造し得る方法を開発すべく鋭意研究を重ね、遂
に本発明を完成するに至った。
In view of the current situation, the present inventor has conducted extensive research in order to develop a method for producing a molded body of carbon or graphite material that has low elasticity, high bending strength, and high electrical conductivity, and has finally completed the present invention. I was able to complete it.

即ち本発明は、炭素材料に結合材を加えて混線、成形及
び焼成し、更に必要に応じ黒鉛化して炭素材料または黒
鉛材料成形体を製造するに際し、炭素材料の少くとも2
0重量%を石油コークス又は石炭コークスを原料とする
人造黒鉛粒子に膨張化処理を施こした材料で置換するこ
とを特徴とする炭素材料又は黒鉛材料の成形体の製造方
法に係る。
That is, the present invention provides a method for producing a carbon material or a graphite material molded body by adding a binder to a carbon material, cross-wiring, forming and firing it, and graphitizing it if necessary.
The present invention relates to a method for producing a molded body of a carbon material or graphite material, characterized in that 0% by weight is replaced with a material obtained by subjecting artificial graphite particles made from petroleum coke or coal coke to an expansion treatment.

本発明の方法では、焼成工程及び黒鉛化工程において処
理温度を高くすることによってもまた処理時間を長くす
ることによっても、曲げ強度及び電気型導度が殆んど低
下することなく、弾性率のみを下げることができる。従
って本発明の方法によれば、低弾性であると同時に、実
用上充分な曲げ強度及び電気型導度を有している炭素材
料又は黒鉛材料の成形体を製造することができる。また
本発明の方法に従えば、人造黒鉛粒子に膨張化処理を施
した材料の使用量、焼成工程及び黒鉛化工程における処
理温度及び処理時間を適宜選択することによυ、所望の
弾性率を有する炭素材料又は−黒鉛材料の成形体を製造
することができる。本発明の方法で得られる成形体は、
放電加工用、焼結炉用トレー、半導体用サセプター、鋳
造装置ノズル等の耐熱衝撃性の要求される分野や電気ブ
ラシ、ロータリーコンプレッサー用ベーン、真空ポンプ
用ベーン、ガスケット、パツキン等の低弾性が要求され
る分野において好適に使用され得る。
In the method of the present invention, even by increasing the treatment temperature or lengthening the treatment time in the firing step and the graphitization step, the bending strength and electrical conductivity hardly decrease, and only the elastic modulus remains. can be lowered. Therefore, according to the method of the present invention, it is possible to produce a molded body of carbon material or graphite material that has low elasticity and at the same time has practically sufficient bending strength and electrical conductivity. Furthermore, according to the method of the present invention, the desired elastic modulus can be achieved by appropriately selecting the amount of material used for expanding artificial graphite particles, the treatment temperature and treatment time in the firing process and the graphitization process. It is possible to produce a molded body of a carbon material or a graphite material. The molded article obtained by the method of the present invention is
Fields that require thermal shock resistance such as electrical discharge machining, trays for sintering furnaces, susceptors for semiconductors, and nozzles for casting equipment, and low elasticity such as electric brushes, vanes for rotary compressors, vanes for vacuum pumps, gaskets, and packings. It can be suitably used in the field of

本発明で用いられる炭素材料としては従来公知のものを
広く使用でき、例えば石油コークス、石炭コークス、ピ
ッチコークス、カーボンブラック等を挙げることができ
る。本発明においては、炭素材料の少くとも20重量%
を石油コークス又は石炭コークスを原料とする人造黒鉛
粒子に膨張化処理を施した材料で置換することを必須と
する。
As the carbon material used in the present invention, a wide variety of conventionally known carbon materials can be used, such as petroleum coke, coal coke, pitch coke, carbon black, etc. In the present invention, at least 20% by weight of the carbon material
It is essential to replace it with a material made by expanding artificial graphite particles made from petroleum coke or coal coke.

前記人造黒鉛粒子に膨張化処理を施した材料は、例えば
人造黒鉛粒子を強酸化性の溶液に浸漬した後、該黒鉛粒
子を必要に応じて水洗し、次いで該黒鉛粒子を加熱する
ことによシ製造される。ここで用いられる人造黒鉛粒子
は、石油コークス又は石炭コークスを原料とするもので
あれば従来公知のものを広く使用でき、例えばギルツナ
イトコークス、ニードルコークス、レギュラーコークス
等を挙げることができる。強酸化性の溶液としては、例
えば発煙硫酸、濃硫酸、硝酸、発煙硝酸、濃硝酸、濃硫
酸と濃硝酸との混液、濃硫酸と硝酸との混液、濃硫酸と
過酸化水素、過塩素酸、二酸化マンガン等の酸化剤七の
混液(酸化剤の含肴は通常5〜50重MLチ)等を挙げ
るととができる。強酸化性の溶液の使用量としては特に
制限されず広い範囲内から適宜選択できるが、処理され
るべき人造黒鉛粒子が強酸化性溶液中に充分浸漬され得
る程度でよい。通常人造黒鉛粒子に対して重量で約3〜
30借用の強酸化性溶液が使用される。引続き行なわれ
る水洗は、黒鉛層間fll:合物を部分的に加水分解さ
せ、残留化合物を膨張化に必要な物質として黒鉛層間内
に閉じ込めることを目的として行なわれる。
The material obtained by subjecting the artificial graphite particles to an expansion treatment can be obtained by, for example, immersing the artificial graphite particles in a strongly oxidizing solution, washing the graphite particles with water as necessary, and then heating the graphite particles. is manufactured. As the artificial graphite particles used here, a wide variety of conventional graphite particles can be used as long as they are made from petroleum coke or coal coke, such as gilt night coke, needle coke, regular coke, etc. Examples of strong oxidizing solutions include oleum, concentrated sulfuric acid, nitric acid, fuming nitric acid, concentrated nitric acid, a mixture of concentrated sulfuric acid and concentrated nitric acid, a mixture of concentrated sulfuric acid and nitric acid, concentrated sulfuric acid and hydrogen peroxide, and perchloric acid. , a mixture of an oxidizing agent such as manganese dioxide (the oxidizing agent usually contains 5 to 50 ml of oxidizing agent), and the like. The amount of the strongly oxidizing solution to be used is not particularly limited and can be appropriately selected from within a wide range, but it is sufficient that the artificial graphite particles to be treated can be sufficiently immersed in the strongly oxidizing solution. Usually about 3 to 30% by weight for artificial graphite particles
A strong oxidizing solution of 30% is used. The subsequent washing with water is carried out for the purpose of partially hydrolyzing the graphite interlayer compound and trapping the remaining compound within the graphite interlayer as a substance necessary for expansion.

しかし本発明では水洗を行なわなくても1本発明の所期
の効果が発揮され得る。加熱温度としては侍に限定され
ないが、一般には200°C以上、通常は200〜14
00°Cの範囲内でよい。また加熱時間は加熱温度等に
よシ異なシー概にはMえないが、通常2〜60秒程度で
よい。さらに本発明では、人造黒鉛粒子を強酸化性溶液
に浸漬する代りに、希硝酸中に該黒鉛粒子を浸漬して電
解処理してもよい。斯くして人造黒鉛粒子が約1.1〜
2倍に膨張化された材料が製造される。本発明では炭素
材料として、該材料の少くとも20重尉チが上記人造黒
鉛粒子に膨張化処理を施した材料で置換されたものを使
用する。膨張化処理を施し念材料の使用割合が20重府
係より少なくなると、゛本発明の所期の効果が発揮され
難くなる傾向となる。本発明では、膨張化処理された材
料のみを炭素材料として使用することは勿論可能である
However, in the present invention, the desired effects of the present invention can be exhibited even without washing with water. The heating temperature is not limited to Samurai, but is generally 200°C or higher, usually 200 to 14°C.
It may be within the range of 00°C. Although the heating time varies depending on the heating temperature and the like, it is usually about 2 to 60 seconds. Furthermore, in the present invention, instead of immersing the artificial graphite particles in a strongly oxidizing solution, the graphite particles may be immersed in dilute nitric acid for electrolytic treatment. Thus, the artificial graphite particles have a particle size of about 1.1~
A twice expanded material is produced. In the present invention, a carbon material in which at least 20 parts of the carbon material is replaced with a material obtained by subjecting the artificial graphite particles to an expansion treatment is used. When the expansion treatment is applied and the proportion of the material used is less than 20 times, the intended effect of the present invention tends to be less likely to be achieved. In the present invention, it is of course possible to use only the expanded material as the carbon material.

本発明で用いられる結合材としては従来公知のものを広
く使用でき、例えばコールタール、コールタールピッチ
、合成樹脂等を挙げることがで舞る。
As the binder used in the present invention, a wide variety of conventionally known binders can be used, such as coal tar, coal tar pitch, synthetic resins, and the like.

本発明において、炭素材料と結合材との使用割合として
は特に限定がなく広い範囲内から適宜選択することがで
きるが、通常前者に対して後者を約20〜40時間%使
用するのがよい。結合材の使用量がlθ重蓋チよシ少な
くなると、炭化処理後の機械的強度が低くなる傾向が生
じ、一方結合材の使用量が60重量%よシ多くなると炭
化処理後の気孔率が大きくなる傾向が生ずる。
In the present invention, the ratio of the carbon material and the binder to be used is not particularly limited and can be appropriately selected within a wide range, but it is usually preferable to use the latter in an amount of about 20 to 40% of the former. When the amount of binder used is less than lθ, the mechanical strength after carbonization tends to decrease, while when the amount of binder used is more than 60% by weight, the porosity after carbonization tends to decrease. A tendency to increase occurs.

本発明の低弾性炭素材料を製造するに当シ、混練、成形
、焼成及び黒鉛化は、従来の技術をそのまま適用できる
0混練に当っては5例えばニーダ−、ローラー等の慣用
の混線機を用いて行なうことができる。また成形を行な
うに際しては、型押し成形、押出し成形、ラバープレス
成形等の従来公知の成形方法をいずれも採用することが
できる。
In order to produce the low modulus carbon material of the present invention, kneading, molding, firing and graphitization can be carried out using conventional mixing machines such as kneaders and rollers. It can be done using Further, when performing molding, any conventionally known molding method such as die pressing, extrusion molding, rubber press molding, etc. can be employed.

例えば型押し成形や押出し成形では結晶配列に異方性を
持つ成形体を得ることができ、ラバープレス成形では結
晶配列に等方性を持つ成形体を得ることができる。成形
時の圧力は特に限定されないが、通常面圧500〜15
00好ましくは700〜10100に9/c−でよい。
For example, stamp molding or extrusion molding can yield a molded product with anisotropic crystal orientation, while rubber press molding can yield a molded product with isotropic crystal orientation. The pressure during molding is not particularly limited, but is usually a surface pressure of 500 to 15
00 preferably 700 to 10100 and 9/c-.

焼成は通常700−1200好ましくは900〜110
0℃程度で行なうのがよく、焼成時間は一般的には約4
0〜80時間である。ま九黒鉛化は通常2000〜30
00’C好ましくは2500〜2900℃程度で行なう
のがよく、黒鉛化に要する時間は一般的には約20〜4
0時間である。斯くして所望の炭素材料又は黒鉛材料成
形体を得ることができる。
Firing is usually 700-1200, preferably 900-110
It is best to carry out the firing at a temperature of about 0°C, and the firing time is generally about 4
0 to 80 hours. Graphitization is usually 2000~30
00'C Preferably, it is carried out at about 2500 to 2900°C, and the time required for graphitization is generally about 20 to 4
It is 0 hours. In this way, a desired carbon material or graphite material molded body can be obtained.

以下に参考例及び実施例を挙げる。Reference examples and examples are listed below.

参考例 平均径80μmの人造黒鉛を濃硫酸(濃度97一チ以上
)二濃硝酸(濃度6o亜M9&以上)=9:lの容積比
の混酸(重繊で10倍殿)へ温度100℃において10
分間ガラス棒で攪拌しながら浸漬した。その後電気か中
で60秒間、温度too。
Reference example: Artificial graphite with an average diameter of 80 μm was mixed with concentrated sulfuric acid (concentration 97% or higher) and diconcentrated nitric acid (concentration 6°C or higher) at a volume ratio of 9:1 (10 times the concentration for heavy fibers) at a temperature of 100°C. 10
It was immersed for a minute while stirring with a glass rod. Then put it in an electric oven for 60 seconds at a temperature of too much.

℃に加熱して体積を1.3倍に膨張化させた。斯くして
膨張化処理を施した材料(以下「膨張化処理材料」とい
う)を得た。
The volume was expanded by 1.3 times by heating to .degree. A material subjected to expansion treatment (hereinafter referred to as "expansion treatment material") was thus obtained.

実施例 上記参考例で得られる膨張化処理材料と石油コークスと
を適宜混合して炭素材料とした。仁の混合物に結合剤を
全量に対して30%添加し、ニーダ−にて150℃に加
熱しながら混合した。
Example The expanded material obtained in the above reference example and petroleum coke were appropriately mixed to prepare a carbon material. A binder was added to the kernel mixture in an amount of 30% based on the total amount, and the mixture was mixed while being heated to 150° C. in a kneader.

(1)  y%方性成形体の製造 上記混合物を型押しタイプ金型に入れて、面圧1000
 kg/crAで60秒間相対する2面より加圧成形し
7.1000℃で焼成して炭素飼料成形体を作成した。
(1) Production of y% isotropic molded product The above mixture was placed in an embossing type mold, and the surface pressure was 1000.
kg/crA for 60 seconds from two opposing sides and fired at 7.1000°C to produce a carbon feed molded body.

得られる成形体の物性を下紀第1表に示す。また黒鉛材
料成形体については、上記炭素材料成形体を電気炉で最
藁温度2700T、を通電時間120時間熱処理して作
成j〜7も。得られる成形体の物性を下記第2表に示す
The physical properties of the obtained molded product are shown in Table 1 below. In addition, graphite material molded bodies were also prepared by heat-treating the above-mentioned carbon material molded bodies in an electric furnace at a maximum straw temperature of 2700 T and a current running time of 120 hours. The physical properties of the obtained molded product are shown in Table 2 below.

/″′ / / (2)等方性成形体の製造 上記混合物をラバープレス装置に入れて、面圧1000
 tog/cJで60分間加圧成形し、1000℃で焼
成して炭素材料成形体を作成した。得られる成形体の物
性を下記第3表に示す。また黒鉛材料成形体については
、上記炭素材料成形体を電気炉で最高温度2700℃、
通電時間120時間熱処理して作成した。得られる成形
体の物性を下記第4表に示す。
/''' / / (2) Production of isotropic molded product The above mixture was placed in a rubber press machine and a surface pressure of 1000
It was press-molded at tog/cJ for 60 minutes and fired at 1000°C to create a carbon material molded body. The physical properties of the molded product obtained are shown in Table 3 below. Regarding graphite material molded bodies, the above carbon material molded bodies are heated in an electric furnace at a maximum temperature of 2700°C.
It was created by heat treatment for 120 hours of current application. The physical properties of the molded product obtained are shown in Table 4 below.

銅化に要する時間は一般的には約20〜40時間である
。斯くして所望の炭素材料又は黒鉛材料成形体を得るこ
とができる。
The time required for copperization is generally about 20 to 40 hours. In this way, a desired carbon material or graphite material molded body can be obtained.

上記実施例及び比較例から明らかなように1従来法では
平均曲げ強度/弾性率が0.29(炭素材料)、0.3
7(黒鉛材料)であるが、本発明では炭素材料として膨
張化処理材料のみを使用し・九場合、平均曲げ強度/弾
性率が0.37 (炭素材料)、0.46(黒鉛材料)
となシ、平均曲げ強度に対する弾性率の変化量が大きく
、弾性率を用途に応じて変化させるには極めて有効な方
法である。また弾性率の最も小さい膨張化処理材料lo
oチのものでも、平均曲げ強度及び電気比抵抗はいずれ
も高い値を示しておシ、実用上の問題を全く生じない。
As is clear from the above examples and comparative examples, the average bending strength/elastic modulus of the conventional method is 0.29 (carbon material) and 0.3.
7 (graphite material), but in the present invention, only the expansion treated material is used as the carbon material. In the case of 9, the average bending strength/modulus of elasticity is 0.37 (carbon material) and 0.46 (graphite material).
In addition, the amount of change in the elastic modulus with respect to the average bending strength is large, and it is an extremely effective method for changing the elastic modulus depending on the application. In addition, the expansion treated material lo with the smallest elastic modulus
Even in the case of 0, the average bending strength and the electrical specific resistance both show high values and do not cause any practical problems.

一方耐熱衝撃性は計算式 %式% E:ヤング率(ゆ/ crA) 8:機械強度(ゆ/ cf ) k:熱伝導率(にcal/Cm、 sec 、 ℃)α
:熱膨張係数(to、/’] で表わされる。機械強度と熱伝導率は高い方向が望まし
く、またヤング率と熱膨張係数は低い方向が望ましい。
On the other hand, thermal shock resistance is calculated using the formula % E: Young's modulus (Y/CRA) 8: Mechanical strength (Y/CF) K: Thermal conductivity (Cal/Cm, sec, °C) α
: Coefficient of thermal expansion (to, /') The mechanical strength and thermal conductivity are preferably high, and the Young's modulus and thermal expansion coefficient are preferably low.

上記実施例よシ推定すれば、弾性率の最も低い膨張化処
理材料toosの場合は、機械強度に相当する曲げ強度
の絶対値は高く、熱伝導率とほぼ近似的な傾向を示す。
As estimated from the above example, in the case of the expanded material "toos" having the lowest elastic modulus, the absolute value of the bending strength corresponding to the mechanical strength is high and shows a tendency almost similar to the thermal conductivity.

電気比抵抗の絶対値も高く、ヤング率及び熱膨張係数も
低いため、耐熱衝撃性は良い傾向を示している。
The absolute value of the electrical resistivity is high, and the Young's modulus and thermal expansion coefficient are low, so the thermal shock resistance tends to be good.

(以上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] ■ 炭素材料に結合材を加えて混線、成形及び焼成し、
更に必要に応じ黒鉛化して炭素材料または黒鉛材料成形
体を製造するに際し、炭素材料の少くとも20重j1%
を石油コークス又は石炭コークスを原料とする人造黒鉛
粒子に膨張化処理を施こした材料で置換することを特徴
とする炭素材料又は黒鉛材料の成形体の製造方法。
■ Add a binder to the carbon material, cross-wire, shape and sinter,
Furthermore, when graphitizing as necessary to produce a carbon material or a graphite material molded body, at least 20% by weight of the carbon material.
A method for producing a molded body of a carbon material or a graphite material, characterized in that the material is replaced with a material obtained by subjecting artificial graphite particles made from petroleum coke or coal coke to an expansion treatment.
JP57121397A 1982-07-13 1982-07-13 Manufacture of carbonaceous material of low elasticity Pending JPS5913614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121397A JPS5913614A (en) 1982-07-13 1982-07-13 Manufacture of carbonaceous material of low elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121397A JPS5913614A (en) 1982-07-13 1982-07-13 Manufacture of carbonaceous material of low elasticity

Publications (1)

Publication Number Publication Date
JPS5913614A true JPS5913614A (en) 1984-01-24

Family

ID=14810173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121397A Pending JPS5913614A (en) 1982-07-13 1982-07-13 Manufacture of carbonaceous material of low elasticity

Country Status (1)

Country Link
JP (1) JPS5913614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148411A (en) * 1984-08-16 1986-03-10 Tokai Carbon Co Ltd Preparation of isotropic carbon material
JPH02204316A (en) * 1988-02-09 1990-08-14 Union Carbide Corp Complex of flexible graphite grain and amorphous carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148411A (en) * 1984-08-16 1986-03-10 Tokai Carbon Co Ltd Preparation of isotropic carbon material
JPH02204316A (en) * 1988-02-09 1990-08-14 Union Carbide Corp Complex of flexible graphite grain and amorphous carbon

Similar Documents

Publication Publication Date Title
CN112125671B (en) Preparation method and application of isotropic graphite material
US20060125131A1 (en) Carbonaceous porous material and method of manufacturing same
DE1956815A1 (en) Process for the production of carbon and graphite bodies
JPS5913614A (en) Manufacture of carbonaceous material of low elasticity
US3567808A (en) Production of low density-high strength carbon
JPS6042212A (en) Manufacture of heat resistant impermeable carbonaceous material
US2270181A (en) Making shaped articles from coke and pitch
CN103449426A (en) Wear-resisting graphite and preparation technology thereof
US2356076A (en) Porous brush and method of manufacture
JPS6111905B2 (en)
KR101977572B1 (en) Pitch for carbon precursor, method of preparing the same
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS5913613A (en) Manufacture of carbonaceous material of high density and low elasticity
JPS5767011A (en) Manufacture of graphitic molding
KR100573907B1 (en) Manufacturing of carbonized low temperature heater
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH06116033A (en) Low carburizing graphite material and its production
KR102506927B1 (en) Carbon brush and producing method for the same
JPS594517B2 (en) Manufacturing method of graphite electrode material
JPH02208213A (en) Production of molded carbonaceous body excellent in compression elasticity
JPS6131050B2 (en)
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH04240022A (en) Manufacture of graphite material for electric discharge machining electrode
JPS59232906A (en) Manufacture of gas impermeable carbonaceous material