JPS61122110A - Production of high-density carbon material - Google Patents

Production of high-density carbon material

Info

Publication number
JPS61122110A
JPS61122110A JP59242600A JP24260084A JPS61122110A JP S61122110 A JPS61122110 A JP S61122110A JP 59242600 A JP59242600 A JP 59242600A JP 24260084 A JP24260084 A JP 24260084A JP S61122110 A JPS61122110 A JP S61122110A
Authority
JP
Japan
Prior art keywords
raw material
carbon material
carbon
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59242600A
Other languages
Japanese (ja)
Other versions
JPH0132162B2 (en
Inventor
Takeshi Hagio
萩尾 剛
Kenji Miyazaki
宮崎 憲治
Ichitaro Ogawa
一太郎 小川
Hisayoshi Yoshida
吉田 久良
Kazuo Kobayashi
和夫 小林
Honami Tanaka
田中 穂波
Mitsuhisa Tsunoda
三尚 角田
Eiji Kitajima
北嶋 栄二
Toshifumi Ishitobi
石飛 利文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Koa Oil Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59242600A priority Critical patent/JPS61122110A/en
Publication of JPS61122110A publication Critical patent/JPS61122110A/en
Publication of JPH0132162B2 publication Critical patent/JPH0132162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve the bulk density and strength of carbon, by heating a raw material of carbon at a specific temperature under atmospheric pressure, and forming the material by pressing at the temperature for a short time. CONSTITUTION:A raw material of carbon composed of carbonaceous powder is heated at 400-600 deg.C under atmospheric pressure, and pressed under a pressure of 50-400kg/cm<2> for a short time (about <=10min) while keeping the material at a temperature within the above range. If necessary, the obtained formed article is further baked and graphitized. The above raw material of carbon is preferably self-sinterable carbonaceous powder such as bulk mesophase, meso- carbon microbead, petroleum or coal-based coke, or their mixture. The carbona ceous powder is preferably the one having a volatile content of about 6-14wt%, a quinoline insoluble content of about >=70wt%, and particle diameter of about <=10mu.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、炭素材の製造方法に関し、さらに詳しくは、
ホットプレス法による高密度炭素材の製造方法に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a carbon material, and more specifically,
This invention relates to a method for producing high-density carbon material using a hot press method.

〔発明の背景〕[Background of the invention]

摺動部材、機械用シール等の機械部品または炭素電極等
に用いられる高密度炭素材の製造方法どしては、従来か
ら、石油コークス、石炭ピッチコークス等の炭素質原料
をコールタールピッチ等のバインダーとともに混練、加
圧成形し、得られた成形体を焼成して炭化ないし黒鉛化
する方法が−般的に行なわれている。ところが、最近、
炭素部品の高精度化、使用条件の過酷化に伴ない、炭素
材の高強度化への要求が強まっている。炭素材の強度は
主としてその密度に依存するために、併せて炭素材の高
密度化が要求されている。
Conventionally, high-density carbon materials used for mechanical parts such as sliding members and mechanical seals, or carbon electrodes, etc., have been produced by converting carbonaceous raw materials such as petroleum coke and coal pitch coke into coal tar pitch and other materials. A commonly used method is to knead the material with a binder, pressure mold it, and then fire the resulting molded product to carbonize or graphitize it. However, recently,
As carbon parts become more precise and their usage conditions become more severe, there is an increasing demand for higher strength carbon materials. Since the strength of a carbon material mainly depends on its density, it is also required to increase the density of the carbon material.

このような炭素材の高密度化の要求に応えるために、従
来、(イ)生コークス等の自己焼結性を有する炭素質粉
末を原料として用い、バインダーを含有させることなく
、加圧成形し、さらに焼成し炭化する方法(特公昭55
−46968号公報等)(ロ)炭素質粉末を所望形状の
成形型に充填し、加熱と加圧とを同時に進行させる所謂
ホットプレス法によって炭素材を得る方法(特公昭57
−25481号公報、特公昭54−30677号公報等
)が提案されている。
In order to meet the demand for higher density carbon materials, conventionally, (a) carbonaceous powder with self-sintering properties, such as raw coke, was used as a raw material and pressure-molded without containing a binder. , further firing and carbonization method (Special Publication Act 1983)
-46968, etc.) (b) A method of obtaining a carbon material by the so-called hot press method in which a mold of a desired shape is filled with carbonaceous powder and heating and pressurization are performed simultaneously (Japanese Patent Publication No. 57
-25481, Japanese Patent Publication No. 54-30677, etc.) have been proposed.

上記(イ)の方法は、バインダーを使用しない点で、原
理的にも気孔率が小さく高密度で均質な炭素材を単純化
された工程で製造できる点ですぐれている。しかしなが
ら、本発明者らの研究によれば、実際の製造にあたって
は、原料素材に揮発分の多いものを使用した場合、焼成
時に天吊のガスが発生するために膨れ、割れが生じやす
くなるという問題がある。一方、揮発分含有量の少ない
ものを原料とした場合には粘結性が不足するという問題
があり、そのため、適切な原料を選択することは極めて
困難である。
The above method (a) is excellent in that it does not use a binder and can, in principle, produce a high-density, homogeneous carbon material with low porosity through a simplified process. However, according to research conducted by the present inventors, in actual manufacturing, if raw materials with a high volatile content are used, ceiling gas is generated during firing, making them more likely to swell and crack. There's a problem. On the other hand, when a material with a low volatile content is used as a raw material, there is a problem that the caking property is insufficient, and therefore it is extremely difficult to select an appropriate raw material.

また、上記(口〉のホットプレス法は、従来法のように
、−担型込成形あるいは静水圧加圧により強固な成形体
を作製したのちに加熱焼成するのではなく、加圧成形な
らびに焼成が一工程で行なわれるので製造工程が一層簡
略化され、また、常圧焼成よりも高密度の炭素材が得ら
れやずいという点ですぐれている。しかしながら、ホッ
トプレス法で加圧成形、焼成を行なう場合、用いる炭素
材原料の材質如何によっては、加熱過程で不可避的に起
こるガス発生と収縮のために必ずしも良好な成形体を得
ることはできす、甚だしい場合には、得られた成形体に
クラックが生じたり、破壊されることがある。このよう
な傾向は、自己焼結性の大きな炭素材原料はど強いこと
が認められる。
In addition, in the hot press method mentioned above, instead of producing a strong molded body by carrier molding or isostatic pressing and then heating and firing, as in the conventional method, pressure molding and firing are performed. Since it is carried out in one step, the manufacturing process is further simplified, and it is also superior in that it is easier to obtain a carbon material with higher density than normal pressure firing. Depending on the quality of the raw carbon material used, it may not always be possible to obtain a good molded product due to gas generation and shrinkage that inevitably occur during the heating process, and in extreme cases, the resulting molded product may deteriorate. Cracks may occur or breakage may occur.It is recognized that such a tendency is stronger for carbon material raw materials that have a high self-sintering property.

本発明者らは、上記従来法の問題点に鑑みて種々の研究
を行なった結果、炭素材原料を大気圧下で焼成した場合
、焼成の初期の段階でまず膨張が起こり次いで収縮する
挙動が認められ、この膨張から収縮へと転化する温度は
、原料によっても若干の差異があるが、はぼ400〜6
00℃の範囲であることを見出した。また室温から高温
までの全領域をホットプレスで加圧成形、焼成する工程
においては、この温度範囲で膨張から収縮へと転化する
ためにクラックが発生することもわかった。
The present inventors have conducted various studies in view of the above-mentioned problems of the conventional method, and have found that when a carbon material raw material is fired under atmospheric pressure, it first expands and then contracts in the initial stage of firing. It is recognized that the temperature at which this expansion changes to contraction varies slightly depending on the raw material, but it is approximately 400 to 600℃.
It was found that the temperature was in the range of 00°C. It was also found that in the process of pressure forming and firing in the entire range from room temperature to high temperature using a hot press, cracks occur due to the transition from expansion to contraction in this temperature range.

そのため、ホットプレス法を用いてクラックのない高密
度の成形体を得ようとする場合はこの温度範囲を避けて
加圧する必要がある。
Therefore, when attempting to obtain a crack-free, high-density molded product using the hot press method, it is necessary to press while avoiding this temperature range.

その方法として考えられるのは、第1には常温から40
0℃までをホットプレスで加圧予備焼成し、それ以降の
温度を常圧で焼成する方法であり、第2には、型造成形
等で予め成形したものを、膨張から収縮への転化が終わ
る温度、即ち、600℃まで大気圧下で予備焼成してお
き、その後の高温領域をホップレスで加圧焼成する方法
である。
The first possible method is to
This is a method of pre-firing under pressure with a hot press down to 0°C, and then firing at normal pressure at a temperature thereafter.The second method is to convert the expansion to contraction of the pre-formed product using molding, etc. This is a method in which preliminary firing is performed under atmospheric pressure up to the final temperature, that is, 600° C., and then pressure firing is performed in the high temperature region without hops.

しかしながら、これらの方法ではホットプレス法本来の
特長である高密度かつ高強度の炭素材を得ることができ
ず、特に、自己焼結能を有ヂる炭素質粉末を原料とした
場合、上記の方法では満足のいく品質の成形体は得られ
ないことがわかった。
However, with these methods, it is not possible to obtain high-density and high-strength carbon materials, which are the original characteristics of the hot pressing method.Especially, when carbonaceous powder with self-sintering ability is used as a raw material, the above-mentioned It was found that the method did not yield molded bodies of satisfactory quality.

その理由は次のように考えることができる。本来、バル
クメソフェーズのような自己焼結能を有する炭素質粉末
はバインダー的な働きをする成分を含んでいるので、常
温においても加圧することにより成形することが可能で
あるが、これをさらに400〜600℃へ加熱した場合
、内部に含まれているバインダー成分が粒子表面ににじ
みだし、しかも、この粒子が若干塑性を有するようにな
る。
The reason can be considered as follows. Originally, carbonaceous powder with self-sintering ability such as bulk mesophase contains components that act as a binder, so it is possible to mold it by pressurizing it even at room temperature. When heated to ~600°C, the binder component contained inside oozes out onto the surface of the particles, and moreover, the particles become slightly plastic.

従って、加熱下で加圧することにより、原料粒子が変形
してより緻密に充填され、かつ表面ににじみだしたバイ
ンダー成分のため粒子同士が強固に結合して、より高密
度で高強度の成形体を得ることができると考えられる。
Therefore, by applying pressure under heat, the raw material particles are deformed and packed more densely, and the binder component that oozes out onto the surface causes the particles to bond firmly to each other, resulting in a molded product with higher density and higher strength. It is thought that it is possible to obtain

しかしながら、上記第1の方法では、400℃までのポ
ットプレスでは粒間の結合が不十分なためそれ以降の常
圧焼成Cの焼結の進行が不十分となり、このため高密度
、高強度の成形体は得られない。一方、第2の方法では
、600℃以上という粒子が塑性を失った温度で加圧す
るために、高密度化の効果が少なく逆に脆性破壊を起こ
して強度が向上しないという欠点がある。
However, in the first method described above, the bonding between grains is insufficient in the pot press up to 400°C, so the progress of sintering in the atmospheric pressure firing C is insufficient. A molded body cannot be obtained. On the other hand, in the second method, since the pressure is applied at a temperature of 600° C. or higher, at which the particles have lost their plasticity, there is a drawback that the densification effect is small and, on the contrary, brittle fracture occurs and strength is not improved.

〔発明の概要〕[Summary of the invention]

本発明は、上述した従来法の問題点ならびに本発明者ら
の知見に鑑みてなされたものであり、高密度かつ高強度
の炭素材を得る方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional method and the findings of the present inventors, and aims to provide a method for obtaining a high-density and high-strength carbon material.

上記目的を達成するため、本発明に係る高密度炭素材の
製造方法は、実質的に炭素質粉末からなる炭素材原料を
大気圧下で400〜600’Cに加熱し、次いでこの加
熱された炭素材原料を前記温度第四に保持したままで5
0〜400 Kg/ ciの°圧力で加圧することによ
り所望形状に成形し、さらに得られた成形体を必要に応
じて焼成し黒鉛化することを特徴とするものである。
In order to achieve the above object, the method for producing a high-density carbon material according to the present invention involves heating a carbon material raw material consisting essentially of carbonaceous powder to 400 to 600'C under atmospheric pressure, and then heating the heated carbon material to 400 to 600'C. 5 while maintaining the carbon material raw material at the above temperature.
It is characterized in that it is molded into a desired shape by pressurizing at a pressure of 0 to 400 kg/ci, and then the resulting molded product is fired and graphitized as required.

本発明の方法によれば、従来法で得られるものよりもさ
らに一層高密度でかつ機械的強度のすぐれた炭素材を製
造することが可能となる。
According to the method of the present invention, it is possible to produce a carbon material with even higher density and superior mechanical strength than those obtained by conventional methods.

本発明により得られる高密度炭素材は、機械用炭素部品
や炭素電極その他の成形炭素材製品として広く利用可能
なものである。
The high-density carbon material obtained by the present invention can be widely used as mechanical carbon parts, carbon electrodes, and other shaped carbon material products.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明をさらに詳細に説明する。以下の記載にお
いて組成を表わす「%」は、特に断らない限り重量基準
とする。
The present invention will be explained in more detail below. In the following description, "%" representing the composition is based on weight unless otherwise specified.

本発明における炭素材の原料としては、バルクメソフェ
ーズ、メソカーボン・マイクロご一層、石油系もしくは
石炭系の生コークス等の自己焼結能を有する炭素質粉末
、またはこれら炭素質粉末の混合物が好ましく用いられ
る。また、炭素材原料中には、粘結性をより向上させる
ために、必要に応じてコールタールピッチ等のバインダ
ーを含有させることもできる。
As raw materials for the carbon material in the present invention, carbonaceous powders having self-sintering ability such as bulk mesophase, mesocarbon micro-layer, petroleum-based or coal-based raw coke, or mixtures of these carbonaceous powders are preferably used. It will be done. Moreover, in order to further improve the caking property, a binder such as coal tar pitch can be included in the carbon material raw material as necessary.

炭素材原料としての炭素質粉末としては、バルクメソフ
ェーズがより好ましく用いられるが、このバルクメソフ
ェーズとは、石油の常圧残油、減圧残油、接触分解のデ
カントオイル、熱分解タールなどの石油系重質油、石炭
タール、オイルサンド油などの炭化水素重質油を400
〜500℃の温度に加熱処理した際に熱処理ピッチ中に
生成するメソフェーズ小球体(メソカーボンマイクロビ
ーズ)を凝集合体させて母相ピッチから分離したものを
意味し、化学的、物理的な活性に富む物質である。
Bulk mesophase is more preferably used as a carbonaceous powder as a carbon material raw material, but this bulk mesophase is a petroleum-based material such as atmospheric residual oil of petroleum, vacuum residual oil, decant oil of catalytic cracking, and pyrolysis tar. 400% of hydrocarbon heavy oil such as heavy oil, coal tar, oil sand oil, etc.
Mesophase small spheres (mesocarbon microbeads) that are generated in heat-treated pitch when heat-treated to a temperature of ~500℃ are aggregated and separated from the matrix pitch, and are chemically and physically active. It is a rich substance.

このようなバルクメソフェーズの製造方法については、
本出願人に係る特開昭57− 200213号公報または特開昭59−30887号公
報等に開示されており、重質油を400〜500℃の温
度に加熱し重縮合反応を行なわせてメソフェーズ小球体
を含有するピッチを得たのら、該ピッチを250〜40
0 ’Cに冷却し、乱流を何与することによりメソフェ
ーズ小球体を凝集合体させ、これを母相から分離するこ
とによりバルクメソフェーズが1qられる。なお、この
ようなバルクメソフェーズを製造するための装置は、本
出願人に係る特開昭59−30887号公報に開示され
ている。 炭素質粉末としては、原料粉末中に含有され
ている揮発分が6〜14%、好ましくは8〜12%であ
り、キノリンネ溶分が70%以上、好ましくは90〜9
9%であることが望ましい。また、炭素質粉末の粒径は
、密度ならびに強度の向上を図るためには、約10μ以
細であることが好ましい。このような炭素質粉末を得る
ための粉砕方法は特に限定されるものではないが、ジェ
ットミルのようなIii撃式粉砕繍によるよりも@動ボ
ールミルなとの磨砕方式によって粉砕したものの方がよ
り好ましい。
Regarding the manufacturing method of such bulk mesophase,
It is disclosed in JP-A-57-200213 or JP-A-59-30887 filed by the present applicant, in which heavy oil is heated to a temperature of 400 to 500°C to carry out a polycondensation reaction to form a mesophase. Once the pitch containing small spheres is obtained, the pitch is 250-40
By cooling to 0'C and applying some turbulence, mesophase spherules are aggregated and coalesced, and 1q of bulk mesophase is obtained by separating them from the parent phase. Incidentally, an apparatus for producing such a bulk mesophase is disclosed in Japanese Patent Application Laid-Open No. 1983-30887, filed by the present applicant. As a carbonaceous powder, the volatile content contained in the raw material powder is 6 to 14%, preferably 8 to 12%, and the quinoline soluble content is 70% or more, preferably 90 to 9%.
It is desirable that it be 9%. Further, the particle size of the carbonaceous powder is preferably about 10 μm or smaller in order to improve density and strength. The pulverization method for obtaining such carbonaceous powder is not particularly limited, but it is better to use a grinding method such as a dynamic ball mill than with a three-stroke type pulverizer such as a jet mill. More preferred.

次いで、上記のような炭素材原料をホットプレス法によ
り加熱・加圧成形する。本発明の方法においては、上記
炭素材原料を所望のホットプレス用成形型に充填し、ま
ず大気圧下(非加圧下>r400〜600℃、好ましく
は450〜550°Cにまで昇温し、次いでこの温度に
保持した状態のままで50〜400 Kg/ cmの圧
力で加圧し、一定時間保持したのち常圧に戻して成形を
終える。
Next, the carbon material raw material as described above is heated and pressure-molded by a hot press method. In the method of the present invention, the above-mentioned carbon material raw material is filled into a desired hot press mold, first heated under atmospheric pressure (under no pressure > r400 to 600°C, preferably 450 to 550°C, Next, while maintaining this temperature, it is pressurized at a pressure of 50 to 400 kg/cm, held for a certain period of time, and then returned to normal pressure to complete the molding.

上記操作において、400〜600 ’Cまで非加圧下
で加熱することは、この温度範囲で膨張から収縮するこ
とによるクラックの発生を防止する上で肝要である。こ
のときの加熱温度ならびに昇温時間は、炭素材原料の材
質や得ようとする成形体の形状、大きさ等に応じて最適
の値を選択し得る。
In the above operation, heating to 400 to 600'C without pressure is essential to prevent cracks from occurring due to expansion to contraction in this temperature range. The heating temperature and heating time at this time can be optimally selected depending on the material of the carbon material raw material, the shape and size of the molded body to be obtained, and the like.

さらに、その後の加熱加圧工程における温度、加圧圧力
、加圧時間も、原料の材質、形状、大きざに適した値が
選択される。加圧時間は短時間であることが好ましく、
たとえば10分以下で行なわれ得る。
Furthermore, the temperature, pressurizing pressure, and pressurizing time in the subsequent heating and pressurizing step are also selected to values suitable for the material, shape, and size of the raw material. It is preferable that the pressurization time is short,
For example, it may take less than 10 minutes.

このように、本発明の方法は、従来のホットプレス操作
のように、1000℃またはそれ以上の温度に昇温する
と同時に加圧するのではなり、−旧人気圧下で所定温度
まで加熱したのらに短時間加圧し次いで常圧に戻すこと
によってホットプレス操作を行なうところに特徴を有し
ている。すなわち、焼結を強固にするための加圧は最初
から必要なのではなく、原料粉末がわすがかに軟化し塑
性を示す温度領域でのみ与えられれば良く、その温度が
本発明でいう所の400〜600℃である。
Thus, the method of the present invention does not involve raising the temperature to a temperature of 1000° C. or higher and simultaneously applying pressure, as in conventional hot press operations, but instead involves heating to a predetermined temperature under old human pressure and then applying pressure at the same time. The hot pressing operation is performed by applying pressure for a short time and then returning to normal pressure. In other words, pressure to strengthen sintering is not necessary from the beginning, but only needs to be applied in the temperature range where the raw material powder is slightly softened and exhibits plasticity, and that temperature is the temperature range defined by the present invention. The temperature is 400-600°C.

また、上記ホットプレス操作において400〜600℃
を越えてなお加圧を続けることは、その後の収縮による
クラックの発生や脆性破壊による強度の低下を招くこと
があるため好ましくない。
In addition, in the above hot press operation, the temperature
It is not preferable to continue applying pressure beyond this point because it may cause cracks to occur due to subsequent shrinkage or a decrease in strength due to brittle fracture.

このようにして成形体を得たのち、該成形体を、必要に
応じて、常法に従い、大気圧下において更に高温(たと
えば1000℃)で焼成する。さらに必要であれば、高
温炉において加熱し、黒鉛化することによって、かさ密
度が1゜98 / cd以上の高密度、高強度炭素材が
得られる。
After obtaining the molded body in this manner, the molded body is further fired at a high temperature (for example, 1000° C.) under atmospheric pressure according to a conventional method, if necessary. If necessary, a high-density, high-strength carbon material with a bulk density of 1°98/cd or more can be obtained by heating and graphitizing in a high-temperature furnace.

〔発明の実施例および比較例〕[Examples and comparative examples of the invention]

以下、実施例ならびに比較例により本発明の効果を具体
的に説明するが、本発明は下記の実施例に限定されもの
ではない。
EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

1鳳1 石油の接触分解油から得たバルクメソフェーズを、熱処
理後、さらに微粉砕することにより、揮発分8.0%、
キノリンネ溶分98.0%、平均粒度2.2μの炭素材
原料を調整した。この原料粉末を、内径3011Iiの
ホットプレスモールドへ充填し、加圧することなく大気
圧下において、500℃まで1時間で昇温した。500
℃へ到達した時点で、200 K9 / cMの圧力で
2分間加圧し、その後加圧をやめて室温まで放冷した。
1 Feng 1 Bulk mesophase obtained from catalytic cracking oil of petroleum is heat treated and further finely pulverized, resulting in a volatile content of 8.0%,
A carbon material raw material having a quinoline soluble content of 98.0% and an average particle size of 2.2 μm was prepared. This raw material powder was filled into a hot press mold with an inner diameter of 3011Ii, and the temperature was raised to 500° C. in 1 hour under atmospheric pressure without applying pressure. 500
When the temperature reached °C, pressure was applied for 2 minutes at a pressure of 200 K9/cM, and then the pressure was stopped and the mixture was allowed to cool to room temperature.

この成形体をモールドから取り出し、コークス中に埋め
こんで電気炉でi ooo℃へ焼成しさらに高温炉で2
000℃で焼成した。得られた炭素材のかさ密度は、1
 、95 g/ctd、曲げ強度950に9/cI11
1電気抵抗1.0X10−3Ω・cIRと高雷度、高強
度のものであった。
This compact was taken out of the mold, buried in coke, fired in an electric furnace to 100°C, and further heated in a high-temperature furnace to 2°C.
It was fired at 000°C. The bulk density of the obtained carbon material was 1
, 95 g/ctd, bending strength 950 to 9/cI11
It had high lightning resistance and high strength, with an electrical resistance of 1.0 x 10 -3 Ω·cIR.

L狡■ユ 上記実施例と同じ原料粉末をホットプレスモールドに充
填し、200に9/cIliに加圧したままの状態で2
000℃まで昇温した。冷却後、試料を取り出したとこ
ろ、収縮よるクラックのためバラバラに割れていた。
Fill a hot press mold with the same raw material powder as in the above example and pressurize it to 200 to 9/cIli.
The temperature was raised to 000°C. When the sample was taken out after cooling, it was found to have broken into pieces due to cracks caused by shrinkage.

比較例2 前記実施例と同じ原料粉末をホットプレスモールドに充
填し、20ON5F/iに加圧し400″Cまで加圧成
形した。その後これをモールドから取り出し、大気圧下
2000℃で焼成した。得られた炭素材は、かさ密度1
.7(1/l−d、曲げ強度520Kg/cm、電気抵
抗4.9X10−”Ω” cmと低品位なものであった
Comparative Example 2 The same raw material powder as in the above example was filled into a hot press mold and pressurized to 20ON5F/i to 400''C.Then, it was taken out of the mold and fired at 2000°C under atmospheric pressure. Obtained The carbon material has a bulk density of 1
.. 7 (1/l-d, bending strength of 520 Kg/cm, electrical resistance of 4.9×10-"Ω" cm, and was of low quality.

L較■ユ 前記実施例と同じ原料粉末を予め冷間静水圧プレスによ
って1000Kg/C#lで加圧成形し、これを600
℃で大気圧下において予備焼成した。しかる後に、この
成形体をホットプレスモールドヘセットし、200kg
/dの圧力をかけて2000℃の温度で加圧焼成した。
L comparison
Pre-calcination was carried out at °C under atmospheric pressure. After that, this molded body was set in a hot press mold and weighed 200 kg.
Pressure firing was performed at a temperature of 2000° C. by applying a pressure of /d.

得られた炭素材は、かさ密度が1.85y/7と比較的
良好であったが、曲げ強度は410Kg/−と低いもの
ぐあった。
The obtained carbon material had a relatively good bulk density of 1.85y/7, but had a low bending strength of 410 kg/-.

比較例4 前記実施例と同じ原料粉末を予め冷間静水圧プレスによ
って成形し、次いで大気圧下において2000℃の温度
で焼成した。得られた炭素材は、かさ密度1.74g/
Cd、曲げ強度は3451(g/cj1とホットプレス
法に比べて低品位のものであった。
Comparative Example 4 The same raw material powder as in the above example was molded in advance by cold isostatic pressing, and then fired at a temperature of 2000° C. under atmospheric pressure. The obtained carbon material had a bulk density of 1.74 g/
Cd and bending strength were 3451 (g/cj1), which was lower quality than that obtained by the hot press method.

′1頁の続き ・発明者 角1)三尚 鼾市高師浜2−121発 明 
者 北 嶋   栄 二 和泉市弥生町3−151発 
明 者 石 飛   利 文 和泉市弥生町2−29・
手続補正書 昭和59年 特許願 第2426−00号2 発明の名
称 高密度炭素材の製造方法 3 補正をする者 事件との関係  特許出願人 工業技術院長 等 々 力  達 (ほか1名) 4  代  理  人 ′t  w :rの内容 ll書第11頁下から第3行の「わすがか「わずかに」
と訂正する。
'Continued from page 1/Inventor 1) Sansho 2-121 Takashihama, Snoring City Invention
Person: Sakae Kitajima 2 3-151 Yayoi-cho, Izumi City
Author: Fumi Ishihito 2-29 Yayoi-cho, Izumi City
Procedural amendment document 1982 Patent application No. 2426-00 2 Name of the invention Method for manufacturing high-density carbon material 3 Relationship to the case of the person making the amendment Patent applicant Director of the Agency of Industrial Science and Technology Tatsu Todoroki (and 1 other person) 4th generationり人't w: Contents of r Book ll, page 11, 3rd line from the bottom, ``wasgaka ``slightly''
I am corrected.

細書第12頁第9行のrl、98/cd以上」を、rl
、95/cId以上」と訂正する。
rl, 98/cd or more on page 12, line 9 of the specification book, rl
, 95/cId or higher.''

(3)  明細書第12頁第14行の「限定されもの」
を、「限定されるもの」と訂正する。
(3) “Limited” on page 12, line 14 of the specification
be corrected to "limited".

(4)  明細書第13頁下から第6行の「収縮よる」
を、「収縮による」と訂正する。
(4) “By contraction” in the 6th line from the bottom of page 13 of the specification
is corrected to "due to contraction."

Claims (1)

【特許請求の範囲】 1、実質的に炭素質粉末からなる炭素材原料を大気圧下
で400〜600℃に加熱し、次いでこの加熱された炭
素材原料を前記温度範囲に保持したままで50〜400
Kg/cm^2の圧力で加圧することにより所望形状に
成形し、さらに得られた成形体を必要に応じて焼成し黒
鉛化することを特徴とする、高密度炭素材の製造方法。 2、前記炭素材原料の加熱温度が、450〜550℃で
ある、特許請求の範囲第1項に記載の方法。 3、前記炭素材原料が、バルクメソフェーズ、メソカー
ボンマイクロビーズ、石油系もしくは石炭系コークス等
の自己焼結能を有する炭素質粉末またはこれらの混合物
である、特許請求の範囲第1項または第2項に記載の方
法。 4、前記炭素材原料がバインダーを含有する、特許請求
の範囲第1項ないし第3項のいずれかに記載の方法。 5、前記炭素材原料が、バルクメソフェーズである、特
許請求の範囲第1項または第2項に記載の方法。
[Claims] 1. A carbon material raw material consisting essentially of carbonaceous powder is heated to 400 to 600°C under atmospheric pressure, and then this heated carbon material raw material is heated for 50 minutes while being maintained in the above temperature range. ~400
A method for producing a high-density carbon material, which comprises molding it into a desired shape by pressurizing it at a pressure of Kg/cm^2, and further firing and graphitizing the obtained molded body as necessary. 2. The method according to claim 1, wherein the heating temperature of the carbon material raw material is 450 to 550°C. 3. Claim 1 or 2, wherein the carbon material raw material is bulk mesophase, mesocarbon microbeads, carbonaceous powder having self-sintering ability such as petroleum-based or coal-based coke, or a mixture thereof. The method described in section. 4. The method according to any one of claims 1 to 3, wherein the carbon material raw material contains a binder. 5. The method according to claim 1 or 2, wherein the carbon material raw material is bulk mesophase.
JP59242600A 1984-11-16 1984-11-16 Production of high-density carbon material Granted JPS61122110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242600A JPS61122110A (en) 1984-11-16 1984-11-16 Production of high-density carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242600A JPS61122110A (en) 1984-11-16 1984-11-16 Production of high-density carbon material

Publications (2)

Publication Number Publication Date
JPS61122110A true JPS61122110A (en) 1986-06-10
JPH0132162B2 JPH0132162B2 (en) 1989-06-29

Family

ID=17091453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242600A Granted JPS61122110A (en) 1984-11-16 1984-11-16 Production of high-density carbon material

Country Status (1)

Country Link
JP (1) JPS61122110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127611A (en) * 1984-11-26 1986-06-14 Nippon Carbon Co Ltd Self-sintering carbon fine particle and its production
JPS63285367A (en) * 1987-05-18 1988-11-22 Toyo Tanso Kk Heat resisting property fluid sealing member
JPH01290559A (en) * 1988-05-17 1989-11-22 Kawasaki Steel Corp Production of high-density carbon material
JPH0214804A (en) * 1988-05-03 1990-01-18 Union Carbide Corp Production of high density carbon and graphite product
JPH08113668A (en) * 1994-10-14 1996-05-07 Osaka Gas Co Ltd Production of mesocarbon powder molding and production of carbon sinter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022045A1 (en) * 1997-10-28 1999-05-06 Toyo Tanso Co., Ltd. Electrode of an electrolytic bath for generating fluorine and isotropic carbonaceous block used therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127611A (en) * 1984-11-26 1986-06-14 Nippon Carbon Co Ltd Self-sintering carbon fine particle and its production
JPS63285367A (en) * 1987-05-18 1988-11-22 Toyo Tanso Kk Heat resisting property fluid sealing member
JPH0214804A (en) * 1988-05-03 1990-01-18 Union Carbide Corp Production of high density carbon and graphite product
JP2505880B2 (en) * 1988-05-03 1996-06-12 ユニオン、カーバイド、コーポレーション Method for producing high-density carbon and graphite products
JPH01290559A (en) * 1988-05-17 1989-11-22 Kawasaki Steel Corp Production of high-density carbon material
JPH08113668A (en) * 1994-10-14 1996-05-07 Osaka Gas Co Ltd Production of mesocarbon powder molding and production of carbon sinter

Also Published As

Publication number Publication date
JPH0132162B2 (en) 1989-06-29

Similar Documents

Publication Publication Date Title
CN101665251B (en) Preparing method of isotropic graphite
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
KR101618736B1 (en) Isotropic graphite article and and method of manufacturing the same
CN117088689A (en) Short-process preparation method of graphite and graphite product
JPS61122110A (en) Production of high-density carbon material
CN113816738A (en) By using nano TiO2Preparation of graphite material with ultrahigh conductive hot isostatic pressure and method thereof
JPS589879A (en) Manufacture of anisotropic carbon formed body
JP4311777B2 (en) Method for producing graphite material
CN109133926B (en) Sealing graphite and preparation method thereof
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
KR100213315B1 (en) Manufacturing method of carbon-sintered body
JPS5978914A (en) Manufacture of special carbonaceous material
CN115215656B (en) Preparation method of binder-free high-density graphite material and prepared graphite material
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH0158125B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH06102530B2 (en) Method for manufacturing graphite molded body
JP2924061B2 (en) Production method of raw material powder for carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS6213284B2 (en)
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
JPH0269357A (en) Production of isotropic graphite material having high density and high strength
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH05279005A (en) Production of high-density carbon material
CN115626641A (en) Preparation method of onion carbon fine particle isostatic pressing graphite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term