JP3060449B2 - Raw material powder for high-density and high-strength carbon material and method for producing carbon material - Google Patents

Raw material powder for high-density and high-strength carbon material and method for producing carbon material

Info

Publication number
JP3060449B2
JP3060449B2 JP5309382A JP30938293A JP3060449B2 JP 3060449 B2 JP3060449 B2 JP 3060449B2 JP 5309382 A JP5309382 A JP 5309382A JP 30938293 A JP30938293 A JP 30938293A JP 3060449 B2 JP3060449 B2 JP 3060449B2
Authority
JP
Japan
Prior art keywords
quinoline
raw material
carbon material
density
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5309382A
Other languages
Japanese (ja)
Other versions
JPH07157547A (en
Inventor
勲 持田
隆次 藤浦
孝 小島
斉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5309382A priority Critical patent/JP3060449B2/en
Priority to US08/350,679 priority patent/US5484520A/en
Priority to EP94309144A priority patent/EP0657400B1/en
Priority to DE69417522T priority patent/DE69417522T2/en
Publication of JPH07157547A publication Critical patent/JPH07157547A/en
Priority to US08/529,439 priority patent/US5609800A/en
Application granted granted Critical
Publication of JP3060449B2 publication Critical patent/JP3060449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高密度高強度炭素材料に
好適な自己融着性を有する炭素質粉体および炭素材料の
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous powder having a self-fusing property suitable for a high-density, high-strength carbon material and a method for producing the carbon material.

【0002】[0002]

【従来の技術】従来、高密度炭素材料については多くの
製造方法が知られている。一般にこれは、コークス粉
末、天然黒鉛、カーボンブラックなどの骨材とコールタ
ールピッチなどの粘結材を混練した後、成型、焼成する
ことによって得られる。この方法では粘結材の残炭率が
非常に低いために一回の炭化では成型体密度は非常に小
さく、密度を上げるために含浸・炭化工程を何度も繰り
返しながら緻密化しなければならない。また炭化過程に
おいては粘結材中の多量の軽質成分が揮発するので成型
体内部に不均質気孔を残存すると共に成型体の膨張を引
き起こして組織破壊を招きやすい。このような悪影響を
防ぐために一般に炭化工程では 2〜10℃/hという極めて
緩慢な昇温が行なわれるので 3〜4 週間の製造期間が必
要となる。この炭化工程を経た成型体は用途に応じて更
に2500〜3000℃で黒鉛化されるが、この工程においても
一般に 2〜3 週間の製造期間を要する。従ってコークス
などの骨材とコールタールピッチなどのバインダーから
複雑な工程を経て黒鉛質の炭素材料を製造するこの方法
では 2〜3 月の長い製造期間が必要である。
2. Description of the Related Art Conventionally, many production methods have been known for high-density carbon materials. Generally, this is obtained by kneading an aggregate such as coke powder, natural graphite, and carbon black and a binder such as coal tar pitch, followed by molding and firing. In this method, since the residual carbon ratio of the binder is very low, the density of the molded body is extremely small in one carbonization, and the density must be increased by repeating the impregnation / carbonization process many times in order to increase the density. In addition, during the carbonization process, a large amount of light components in the binder are volatilized, so that heterogeneous pores remain inside the molded body, and the molded body is expanded to easily cause tissue destruction. In order to prevent such adverse effects, the carbonization step generally involves a very slow temperature increase of 2 to 10 ° C./h, so that a production period of 3 to 4 weeks is required. The molded body that has undergone this carbonization step is further graphitized at 2500 to 3000 ° C. depending on the application, but this step also generally requires a production period of 2 to 3 weeks. Therefore, this method of producing a graphitic carbon material through a complicated process from an aggregate such as coke and a binder such as coal tar pitch requires a long production period of two to three months.

【0003】一方、バインダーを必要としない高密度炭
素材料用原料として、光学的異方性小球体を利用する方
法が知られている。即ちこの方法は、コールタールピッ
チや石油系重質油等を 350〜500 ℃で熱処理する過程で
生成するメソフェーズ球晶を溶剤によってピッチマトリ
ックスから分離、乾燥して得られたメソカーボンマイク
ロビーズを原料とし、これを加圧成型後、焼成する方法
である。しかしながら、この方法では球晶の分離工程で
きわめて多量の抽出溶媒を必要とし、何度も繰り返して
溶剤分別を行なわなければならない。更に得られた球晶
から完全に残存溶剤を除くことは困難であるため、後の
炭化工程において成型体の割れや膨張の原因になりやす
い。しかもこのような球晶溶剤抽出法では分離収率が極
端に低いことに加えて、生成する球晶の性状コントロー
ルが容易でなく、一定品質の原料を安定して製造するに
は工業的に問題が多い。
On the other hand, there is known a method in which optically anisotropic small spheres are used as a raw material for a high-density carbon material that does not require a binder. That is, in this method, mesophase microbeads obtained by separating and drying mesophase spherulites generated in the process of heat-treating coal tar pitch or petroleum heavy oil at 350 to 500 ° C from a pitch matrix with a solvent are used as raw materials. This is a method of baking after pressure molding. However, this method requires an extremely large amount of extraction solvent in the spherulite separation step, and the solvent fractionation must be repeated many times. Further, since it is difficult to completely remove the residual solvent from the obtained spherulites, it tends to cause cracks and expansion of the molded body in the subsequent carbonization step. In addition, in such a spherulite solvent extraction method, in addition to extremely low separation yield, it is not easy to control the properties of the generated spherulites, and there is an industrial problem in stably producing raw materials of a constant quality. There are many.

【0004】また、炭素前駆体として特定性状のバルク
メソフェーズを利用する方法も試みられている(特公平
1-58124 号)。しかしながら、このようなバルクメソフ
ェーズ粉砕物を原料として製造された炭素材料は嵩密度
が低く、必ずしも満足すべき性能が得られていない。ま
たこの方法では、メソカーボンマイクロビーズの合体凝
集の結果得られるバルクメソフェーズをピッチマトリッ
クスから分離する工程が必要であり、所定性状のバルク
メソフェーズへ加工されるまでには,多くの煩雑な工程
を経なければならない。
Further, a method of using a bulk mesophase having a specific property as a carbon precursor has also been attempted (Japanese Patent Application Publication No. Hei.
1-58124). However, a carbon material produced from such a bulk mesophase pulverized material has a low bulk density and does not always provide satisfactory performance. In addition, this method requires a step of separating the bulk mesophase obtained as a result of the coalescence of the mesocarbon microbeads from the pitch matrix, and requires many complicated steps before being processed into a bulk mesophase having a predetermined property. There must be.

【0005】[0005]

【発明が解決しようとする課題】高密度炭素材料を製造
するプロセスは上記の如く極めて煩雑であり、且つ非常
に長い製造期間を要することから、従来の方法によって
製造される炭素材料は高価なものとなり、その利用分野
に大きな制約を受けている。従って高密度炭素材料の製
造工程を大幅に簡略化し、且つ製造期間を短縮すること
は、炭素工業における大きな課題となっている。本発明
の目的は、高密度且つ高強度の炭素材料を短時間で安価
に製造できる優れた炭素材料用原料粉体および炭素材料
の製造法を提供することにある。
Since the process for producing a high-density carbon material is extremely complicated as described above and requires a very long production period, the carbon material produced by the conventional method is expensive. And the field of use is greatly restricted. Therefore, it is a major challenge in the carbon industry to greatly simplify the manufacturing process of the high-density carbon material and shorten the manufacturing period. An object of the present invention is to provide an excellent raw material powder for a carbon material and a method for producing the carbon material, which can produce a high-density and high-strength carbon material in a short time and at low cost.

【0006】[0006]

【問題を解決するための手段】本発明者らは上記の如き
課題を有する高密度炭素材料の製造法について鋭意検討
した結果、縮合多環炭化水素またはこれを含有する物質
を超強酸であるフッ化水素・三フッ化ホウ素の存在下で
重合させて得られたメソフェーズピッチを熱処理するこ
とによって調製される、特定範囲のキノリン可溶/ピリ
ジン不溶分および特定範囲のキノリン不溶成分から構成
される熱改質ピッチ粉体が、炭素化過程において形状安
定性を維持しながら優れた融着性を有することから、こ
のような熱改質メソフェーズピッチ粉体を原料として使
用することによってバインダーを添加する必要が無く、
高密度で高強度の炭素材料が短時間で安定して安価に得
られることを見い出し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for producing a high-density carbon material having the above-mentioned problems, and as a result, have found that condensed polycyclic hydrocarbon or a substance containing the same is a super-strong acid. Heat composed of a specific range of quinoline-soluble / pyridine-insoluble components and a specific range of quinoline-insoluble components, prepared by heat-treating mesophase pitch obtained by polymerization in the presence of hydrogen hydride / boron trifluoride Since the modified pitch powder has excellent fusion property while maintaining shape stability in the carbonization process, it is necessary to add a binder by using such a thermally modified mesophase pitch powder as a raw material. Without
The present inventors have found that a high-density, high-strength carbon material can be stably obtained at a low cost in a short time, and have reached the present invention.

【0007】即ち本発明は、超強酸フッ化水素・三フッ
化ホウ素の存在下で縮合多環炭化水素またはこれを含有
する物質を重合させて得られたメソフェーズピッチを非
酸化性雰囲気下にて熱処理することによって調製され
る、キノリン可溶でピリジン不溶成分が 0.5〜1.5 重量
%、キノリン不溶成分が97重量%以上含有することを特
徴とする高密度高強度炭素材料用原料粉体、および該原
料粉体を加圧成形後、焼成することを特徴とする炭素材
料の製造法である。
That is, the present invention relates to a method for producing a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of superstrong hydrogen oxyfluoride / boron trifluoride in a non-oxidizing atmosphere. A raw material powder for a high-density and high-strength carbon material, which is prepared by heat treatment and contains quinoline-soluble and pyridine-insoluble components in an amount of 0.5 to 1.5% by weight and a quinoline-insoluble component in an amount of 97% by weight or more; This is a method for producing a carbon material, comprising firing a raw material powder after pressure molding.

【0008】本発明の高密度高強度炭素材料用原料粉体
の前駆体は、超強酸であるフッ化水素・三フッ化ホウ素
の存在下で、縮合多環炭化水素またはこれを含有する物
質を重合させて得られるメソフェーズピッチである。こ
のメソフェーズピッチは、特開昭63-146920 号、特開平
1-139621号、特開平1-254796号などに示されるように、
ナフタレン、アントラセン、フェナントレン、アセナフ
テン、アセナフチレン、ピレン等の縮合多環炭化水素お
よびこれらを含有する物質を、超強酸触媒であるフッ化
水素・三フッ化ホウ素の存在下で重合させて得られる。
[0008] The precursor of the raw material powder for high-density and high-strength carbon material of the present invention is obtained by preparing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid. It is a mesophase pitch obtained by polymerization. This mesophase pitch is disclosed in JP-A-63-146920,
No. 1-139621, as shown in JP-A-1-254796,
It is obtained by polymerizing condensed polycyclic hydrocarbons such as naphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, and pyrene and substances containing these in the presence of hydrogen fluoride / boron trifluoride as a super strong acid catalyst.

【0009】フッ化水素は三フッ化ホウ素と共存させる
ことにより強力なプロトン酸を形成し、塩基である縮合
多環炭化水素とコンプレックスを形成する。このフッ化
水素は溶媒としても作用し、生成したコンプレックスは
過剰に使用されるフッ化水素に溶解しコンプレックス溶
液を形成する。重合反応はこのフッ化水素溶液において
温和な条件できわめて円滑に進行する。このように過剰
に使用されるフッ化水素は、触媒としての機能ととも
に、反応溶媒としての重要な機能を果たす。
Hydrogen fluoride forms a strong protonic acid by coexisting with boron trifluoride, and forms a complex with a condensed polycyclic hydrocarbon which is a base. The hydrogen fluoride also acts as a solvent, and the resulting complex dissolves in excess hydrogen fluoride to form a complex solution. The polymerization reaction proceeds very smoothly in this hydrogen fluoride solution under mild conditions. The hydrogen fluoride used in excess in this way plays an important role as a reaction solvent as well as a function as a catalyst.

【0010】また超強酸フッ化水素・三フッ化ホウ素を
重合触媒とする方法では、反応時間や温度、原料の縮合
多環炭化水素/フッ化水素/三フッ化ホウ素のモル比、
原料種等の重合条件の選定によって生成するメソフェー
ズピッチの性状がコントロールできる。通常はナフタレ
ンを原料モノマーとして 200〜300 ℃で数時間重合反応
を進行させる。この触媒の沸点は極めて低いため生成ピ
ッチから完全に分離されるので、得られるメソフェーズ
ピッチはきわめて高い純度を示す。
In the method using superstrong hydrogen oxyfluoride / boron trifluoride as a polymerization catalyst, the reaction time and temperature, the molar ratio of condensed polycyclic hydrocarbon / hydrogen fluoride / boron trifluoride,
The properties of the generated mesophase pitch can be controlled by selecting the polymerization conditions such as the kind of the raw material. Usually, the polymerization reaction is allowed to proceed for several hours at 200 to 300 ° C. using naphthalene as a starting monomer. The boiling point of this catalyst is so low that it is completely separated from the product pitch, so that the mesophase pitch obtained has a very high purity.

【0011】このメソフェーズピッチは、脱水素を殆ど
伴わないカチオン重合で得られるので、ナフテン水素や
脂肪族水素の含有率の高い特徴ある構造を有している
〔『炭素』 155号,p.370(1992)〕。従って本発明に用い
られるメソフェーズピッチは、従来の石炭系や石油系の
メソフェーズピッチ、すなわち石炭・石油化学プロセス
において副生するコールタールや石油残渣などの熱処理
による縮重合を経て得られるメソフェーズピッチや、特
公平1-58124 号などに記載されているバルクメソフェー
ズピッチとは構造的に明確に異なるものである。
Since this mesophase pitch is obtained by cationic polymerization almost without dehydrogenation, it has a characteristic structure having a high content of naphthene hydrogen and aliphatic hydrogen [“Carbon” No. 155, p. 370. (1992)]. Therefore, the mesophase pitch used in the present invention is a conventional coal-based or petroleum-based mesophase pitch, i.e., a mesophase pitch obtained through condensation polymerization by heat treatment of coal tar or petroleum residue by-produced in a coal or petrochemical process, It is structurally distinct from the bulk mesophase pitch described in Japanese Patent Publication No. 1-58124.

【0012】本発明の高密度炭素材料用原料粉体は上記
のメソフェーズピッチを非酸化性雰囲気にて熱処理する
ことによって製造される。このときの熱処理条件は特に
限定されないが、一般には 470〜490 ℃の温度で熱処理
される。キノリンに可溶でピリジンに不溶な成分を 0.5
〜1.5 重量% 、好ましくは 0.7〜1.3 重量% とし、且つ
キノリン不溶成分を97重量% 以上、好ましくは98重量%
以上となるような熱処理条件を選択することが肝要であ
る。このピリジンによる分別はソックスレー抽出によっ
て行なわれ、キノリンによる分別はJIS-K2425(遠心法)
に基づいて行なわれる。
The raw material powder for a high-density carbon material of the present invention is produced by heat-treating the above mesophase pitch in a non-oxidizing atmosphere. The heat treatment conditions at this time are not particularly limited, but the heat treatment is generally performed at a temperature of 470 to 490 ° C. 0.5 components that are soluble in quinoline and insoluble in pyridine
To 1.5% by weight, preferably 0.7 to 1.3% by weight, and the quinoline-insoluble component is 97% by weight or more, preferably 98% by weight.
It is important to select such heat treatment conditions. The fractionation with pyridine is performed by Soxhlet extraction, and the fractionation with quinoline is JIS-K2425 (centrifugation method).
It is performed based on.

【0013】本発明では上記のメソフェーズピッチをキ
ノリンに可溶でピリジンに不溶な成分を 0.5〜1.5 重量
% 、且つキノリン不溶成分を97重量% 以上含有するよう
に熱改質することによって優れた成型性が確保され、且
つ炭化工程において割れや膨張を誘発することなく高密
度・高強度が達成される。すなわち適度の熱処理により
熱改質ピッチ中のバインダー成分に相当するキノリン可
溶・ピリジン不溶成分および高炭化収率を保証するキノ
リン不溶成分をこの範囲に調節することによって次のよ
うな原料特性が発現する。
In the present invention, the mesophase pitch is dissolved in quinoline and insoluble in pyridine in an amount of 0.5 to 1.5% by weight.
% And a quinoline-insoluble component in an amount of 97% by weight or more to ensure excellent moldability and achieve high density and high strength without inducing cracking or expansion in the carbonization process. . In other words, by adjusting the quinoline-soluble / pyridine-insoluble component corresponding to the binder component in the thermally modified pitch and the quinoline-insoluble component that guarantees a high carbonization yield to this range by moderate heat treatment, the following raw material characteristics are exhibited. I do.

【0014】すなわち本発明の原料粉体は、常温加圧下
での適度の粒子変形性を有するため密充填が達成され、
室温でも優れた成型性が得られる。この成型体は焼成前
でも通常のハンドリングに対しては充分耐える強度を有
している。またこの原料粉体は成型体の炭素化初期過程
において成型体としての形状は維持しながらも適度の溶
融流動性を示すため、原料粒子同士が極めて強固に結合
してファイン−モザイク構造を形成し、高密度・高強度
が達成される。更にこの原料粉体はキノリン不溶成分が
97重量% 以上を含有するので、炭化収率が極めて高く炭
化過程での揮発ガスによる気孔は殆ど生成しない。この
結果、実施例に示されるように、焼成体は均質且つ緻密
な組織となり、高密度且つ高強度を発現する。
That is, since the raw material powder of the present invention has a proper particle deformability under normal-temperature pressurization, dense packing is achieved.
Excellent moldability can be obtained even at room temperature. This molded body has strength enough to withstand normal handling even before firing. In addition, since the raw material powder shows an appropriate melt fluidity while maintaining the shape of the molded body in the initial stage of carbonization of the molded body, the raw material particles are extremely strongly bonded to each other to form a fine-mosaic structure. , High density and high strength are achieved. Furthermore, this raw material powder contains quinoline-insoluble components.
Since it contains 97% by weight or more, the carbonization yield is extremely high, and almost no pores are generated by the volatile gas in the carbonization process. As a result, as shown in the examples, the fired body has a homogeneous and dense structure, and exhibits high density and high strength.

【0015】熱改質ピッチ中のバインダー成分相当のキ
ノリンに可溶でピリジンに不溶な成分が 1.5重量% を超
える場合には、成型体の炭素化初期過程において原料粒
子の溶融流動性が過剰になり、部分的に流れ構造を示す
ようになり、炭素化後期の収縮の際に多数のクラックを
生じる。更にキノリンに可溶でピリジンに不溶な成分が
著しく増加すると、成型体の膨張、ひいては発泡を引き
起こす。またキノリンに可溶でピリジンに不溶な成分量
とキノリンに不溶な成分量は連動して変化するので、キ
ノリンに可溶でピリジンに不溶な成分が 1.5重量% を超
える場合には、キノリンに不溶な成分も97重量% を下回
ることになり、炭化収率も同時に減少する。従って揮発
ガスも増加する方向となり、焼成体中の気孔数が増加す
る。このようにキノリンに可溶でピリジンに不溶な成分
が 1.5重量% を超える系では、焼成体中のクラックおよ
び気孔の数共に増加するので、焼成体嵩密度、機械的強
度共に低下する(比較例1)。
If the amount of the component soluble in quinoline equivalent to the binder component and insoluble in pyridine in the thermally modified pitch exceeds 1.5% by weight, the melt fluidity of the raw material particles in the initial stage of carbonization of the molded product becomes excessive. And a partial flow structure is exhibited, and a large number of cracks are generated during contraction at the late stage of carbonization. Further, when the amount of components soluble in quinoline and insoluble in pyridine is significantly increased, expansion of the molded body and eventually foaming are caused. In addition, the amount of components soluble in quinoline and insoluble in pyridine and the amount of components insoluble in quinoline change in conjunction, so if the amount of components soluble in quinoline and insoluble in pyridine exceeds 1.5% by weight, insoluble in quinoline Major components will be less than 97% by weight, and the carbonization yield will be reduced at the same time. Therefore, the amount of volatile gas also increases, and the number of pores in the fired body increases. As described above, in a system in which the component soluble in quinoline and insoluble in pyridine exceeds 1.5% by weight, the number of cracks and pores in the fired body increases, so that both the bulk density and the mechanical strength of the fired body decrease (Comparative Example). 1).

【0016】一方、キノリンに可溶でピリジンに不溶な
成分が 0.5重量% より少ない場合には、成型体の炭素化
初期過程において原料粒子の溶融流動性が不足となり、
原料粒子間の結合力は低下する。この結果、炭化後期に
おいて個々の粒子が収縮する際、多数の空隙が生成する
と同時に、光学的異方性サイズの比較的大きな粒子内に
はクラックを生じやすい。従って焼成体組織は空隙およ
びクラックの多い不均質なものとなるので、嵩密度およ
び機械的強度共に減少する(比較例2)。
On the other hand, when the amount of the component soluble in quinoline and insoluble in pyridine is less than 0.5% by weight, the melt fluidity of the raw material particles becomes insufficient in the initial stage of carbonization of the molded product,
The bonding force between the raw material particles decreases. As a result, when individual particles shrink in the later stage of carbonization, a large number of voids are generated, and at the same time, cracks are likely to occur in particles having a relatively large optically anisotropic size. Therefore, since the fired body structure becomes heterogeneous with many voids and cracks, both the bulk density and the mechanical strength decrease (Comparative Example 2).

【0017】すなわちキノリンに可溶でピリジンに不溶
な成分およびキノリンに不溶な成分が上記範囲を満足す
るようにメソフェーズピッチを熱改質することによっ
て、メソフェーズピッチ粉体の優れた自己融着性と成型
性を確保し、炭化収率を一層高めることができるので、
一回の焼成のみで均質且つ緻密な組織を有する高密度高
強度の炭素材料が製造できる。
That is, the mesophase pitch is thermally reformed so that the components soluble in quinoline and insoluble in pyridine and the components insoluble in quinoline satisfy the above-mentioned ranges. Since the moldability can be secured and the carbonization yield can be further increased,
Only one firing can produce a high-density, high-strength carbon material having a homogeneous and dense structure.

【0018】本発明の原料粉体から高密度、高強度の炭
素材料を得るためには、先ずこのようにして熱処理され
たメソフェーズピッチを粉末状にする。粉末化方法なら
びに粉体形状は特に限定されない。粒度分布についても
特に限定されないが、成型の際の充填密度をできるだけ
大きくするような粒度分布が好ましく、通常 1〜200μm
、さらに好ましくは 1〜20μm の粉体で成型に用いら
れる。
In order to obtain a high-density, high-strength carbon material from the raw material powder of the present invention, first, the mesophase pitch heat-treated in this manner is formed into a powder. The powdering method and powder shape are not particularly limited. Although there is no particular limitation on the particle size distribution, a particle size distribution that maximizes the packing density during molding is preferable, and is usually 1 to 200 μm.
More preferably, it is used for molding with a powder of 1 to 20 μm.

【0019】次にこの熱改質ピッチ粉体を加圧成型す
る。この加圧成型は等方加圧成型することが好ましく、
この際バインダーは特に必要としない。成型体形状につ
いては、目的および用途等に応じて自由に選択できる。
成型は常温で行なう場合と、熱改質粉体が軟化あるいは
溶融する温度域で行なう場合があり、これは要求される
形状、性能およびコストに応じて決定される。
Next, the thermally modified pitch powder is molded under pressure. This pressure molding is preferably performed by isotropic pressure molding,
At this time, no binder is particularly required. The shape of the molded body can be freely selected according to the purpose and use.
The molding may be performed at room temperature or in a temperature range where the thermally modified powder is softened or melted, which is determined according to the required shape, performance and cost.

【0020】この成型体は引き続き焼成することによっ
て所望の炭素材料が製造される。焼成工程は、非酸化性
雰囲気下、成型体を 600〜1700℃の温度に加熱して炭化
することによって行なわれる。さらに必要に応じて、こ
の炭化物は更に高温で黒鉛化することもできる。
The desired carbon material is manufactured by subsequently firing this molded body. The firing step is performed by heating the molded body to a temperature of 600 to 1700 ° C. in a non-oxidizing atmosphere to carbonize. Further, if necessary, the carbide can be graphitized at a higher temperature.

【0021】[0021]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し本発明はこれらの実施例により制限され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by these examples.

【0022】実施例1 ナフタレン 7.0モル、フッ化水素 3.7モル、三フッ化ホ
ウ素1.05モルを3リットル耐酸オートクレーブに仕込
み、反応圧を27kgf/cm2 に保ちながら 265℃に昇温後 4
時間反応させた。次にオートクレーブの放出弁を開け
て、常圧において実質的に全量のフッ化水素、三フッ化
ホウ素をガス状で回収した。その後、窒素を吹き込みな
がら低沸点成分を除去したメソフェーズピッチを得た。
ピッチ収率は75重量%(原料ナフタレン基準)であった。
またこのピッチの光学的異方性相含有率は100%であり、
軟化点は 240℃、H/C原子比は0.65であった。
Example 1 7.0 mol of naphthalene, 3.7 mol of hydrogen fluoride and 1.05 mol of boron trifluoride were charged into a 3 liter acid-resistant autoclave, and heated to 265 ° C. while maintaining the reaction pressure at 27 kgf / cm 2.
Allowed to react for hours. Next, the discharge valve of the autoclave was opened, and substantially all of hydrogen fluoride and boron trifluoride were recovered in gaseous form at normal pressure. Thereafter, a mesophase pitch from which low-boiling components were removed while blowing nitrogen was obtained.
The pitch yield was 75% by weight (based on the raw material naphthalene).
The optical anisotropic phase content of this pitch is 100%,
The softening point was 240 ° C and the H / C atomic ratio was 0.65.

【0023】この合成メソフェーズピッチを窒素雰囲気
下 300℃/hで 480℃まで昇温し、この温度で1時間の加
熱処理を行ない、均質な熱処理ピッチを得た。この熱処
理ピッチは、キノリンに可溶でピリジンに不溶な成分が
1.3wt%、キノリンに不溶な成分が 98.1wt%含有してい
た。この熱処理ピッチをボールミルで粉砕し平均粒径 6
μm の粉体にしたのち、成型圧1.5tf/cm2 で室温にてプ
レ−ト状 (35mm×40mm×10mm) に成型した。この成型体
をアルゴン流通下1200℃まで昇温し、この温度で2時間
保持した。このときの炭化収率は 93.2%であった。さら
にこの炭化品を2000℃で 2時間焼成し黒鉛化品を得た。
こうして得られた炭化品ならびに黒鉛化品の物性を表1
に示す。
This synthetic mesophase pitch was heated to 480 ° C. at a rate of 300 ° C./h in a nitrogen atmosphere and subjected to a heat treatment at this temperature for 1 hour to obtain a uniform heat-treated pitch. This heat-treated pitch contains components that are soluble in quinoline and insoluble in pyridine.
It contained 1.3 wt% and 98.1 wt% of components insoluble in quinoline. This heat-treated pitch is pulverized with a ball mill to obtain an average particle size of 6
After forming into a μm powder, the mixture was molded into a plate (35 mm × 40 mm × 10 mm) at a molding pressure of 1.5 tf / cm 2 at room temperature. The molded body was heated to 1200 ° C. under a flow of argon and kept at this temperature for 2 hours. The carbonization yield at this time was 93.2%. The carbonized product was fired at 2000 ° C for 2 hours to obtain a graphitized product.
Table 1 shows the physical properties of the carbonized and graphitized products thus obtained.
Shown in

【0024】比較例1 実施例1と同一のメソフェーズピッチを窒素雰囲気下 3
00℃/hで 465℃まで昇温し、この温度で1時間の加熱処
理を行ない均質な熱処理ピッチを得た。この熱処理ピッ
チは、キノリンに可溶でピリジンに不溶な成分が1.8wt
%、キノリンに不溶な成分が 96.4wt%含有していた。こ
の熱処理ピッチを実施例と同一の条件で焼成を行なっ
た。この比較例では熱処理ピッチ中のキノリンに可溶で
ピリジンに不溶な成分が多いので、表1に示すように高
性能の炭素材料は得られなかった。
Comparative Example 1 The same mesophase pitch as in Example 1 was used under a nitrogen atmosphere.
The temperature was raised to 465 ° C. at 00 ° C./h, and heat treatment was performed at this temperature for 1 hour to obtain a uniform heat treatment pitch. The pitch of this heat treatment is 1.8wt%, which is soluble in quinoline and insoluble in pyridine.
%, And 96.4 wt% of a component insoluble in quinoline. This heat treatment pitch was fired under the same conditions as in the example. In this comparative example, there were many components soluble in quinoline and insoluble in pyridine in the heat-treated pitch, so that a high-performance carbon material could not be obtained as shown in Table 1.

【0025】比較例2 実施例と同一のメソフェーズピッチを窒素雰囲気下 300
℃/hで 500℃まで昇温し、この温度で1時間の加熱処理
を行ない均質な熱処理ピッチを得た。この熱処理ピッチ
は、キノリンに可溶でピリジンに不溶な成分が0.1wt%、
キノリンに不溶な成分が 99.8wt%含有していた。この熱
処理ピッチを実施例と同一の手順で焼成を行なった。本
比較例では,熱処理ピッチ中のキノリンに可溶でピリジ
ンに不溶な成分が少ないので、表1に示すように高性能
の炭素材料は得られなかった。
COMPARATIVE EXAMPLE 2 The same mesophase pitch as in the example was applied under a nitrogen atmosphere.
The temperature was raised to 500 ° C at a rate of ° C / h, and a heat treatment was performed at this temperature for 1 hour to obtain a uniform heat treatment pitch. This heat-treated pitch contains 0.1 wt% of a component that is soluble in quinoline and insoluble in pyridine.
It contained 99.8% by weight of a component insoluble in quinoline. This heat treatment pitch was fired in the same procedure as in the example. In this comparative example, a high-performance carbon material was not obtained as shown in Table 1 because there were few components soluble in quinoline and insoluble in pyridine in the heat-treated pitch.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の原料粉体は、常温加圧下での良
好な粒子変形性、成型体としての形状安定性、炭素化初
期過程における適度の溶融流動性、優れた炭化・黒鉛化
性、そして極めて高い炭素化収率を具備していることか
ら、高密度・高強度炭素材料の一元系製造原料として、
特に優れた性能を発揮する。またメソフェーズピッチに
由来する焼成体組織は光学的異方性を示し、緻密、均
質、且つ高純度であるため、形成されるカーボンボンド
が非常に強固である。このカーボンボンドは、高温での
焼成により黒鉛化度が向上し、且つ収縮により緻密化が
一層促進されるので、カーボンボンドは更に強くなる。
更にメソフェーズピッチの適度の熱改質によって製造さ
れる本発明の原料粉体は、自己融着性を有しているので
バインダーは不要である。従って本発明の原料粉体を用
いて高密度・高強度炭素材料を容易に短時間で安価に製
造できる。
The raw material powder of the present invention has good particle deformability under normal-temperature pressurization, shape stability as a molded product, moderate melt fluidity in the initial stage of carbonization, and excellent carbonization and graphitization properties. , And with an extremely high carbonization yield, it is used as a primary raw material for high-density and high-strength carbon materials.
Demonstrates particularly excellent performance. In addition, the fired body structure derived from the mesophase pitch exhibits optical anisotropy and is dense, homogeneous, and high-purity, so that the carbon bond formed is very strong. Since the degree of graphitization of the carbon bond is improved by firing at a high temperature, and densification is further promoted by shrinkage, the carbon bond is further strengthened.
Further, since the raw material powder of the present invention produced by moderate thermal reforming of the mesophase pitch has self-fusing properties, a binder is unnecessary. Therefore, a high-density and high-strength carbon material can be easily produced in a short time and at low cost using the raw material powder of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−144812(JP,A) 特開 平6−145669(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/02 C08G 61/00 - 61/10 C10C 3/02 - 3/04 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-144812 (JP, A) JP-A-6-145669 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/02 C08G 61/00-61/10 C10C 3/02-3/04 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超強酸フッ化水素・三フッ化ホウ素の存在
下で縮合多環炭化水素またはこれを含有する物質を重合
させて得られたメソフェーズピッチを非酸化性雰囲気下
にて熱処理することによって調製される、キノリン可溶
でピリジン不溶成分を 0.5〜1.5 重量%、キノリン不溶
成分を97重量%以上含有することを特徴とする高密度高
強度炭素材料用原料粉体。
1. A heat treatment of a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of super-strong hydrogen oxyfluoride / boron trifluoride in a non-oxidizing atmosphere. Raw material powder for high-density and high-strength carbon materials, characterized in that the raw material powder contains 0.5 to 1.5% by weight of a quinoline-soluble and pyridine-insoluble component and 97% by weight or more of a quinoline-insoluble component.
【請求項2】超強酸フッ化水素・三フッ化ホウ素の存在
下で縮合多環炭化水素またはこれを含有する物質を重合
させて得られたメソフェーズピッチを非酸化性雰囲気下
にて熱処理することによって調製される、キノリン可溶
でピリジン不溶成分を 0.5〜1.5 重量%、キノリン不溶
成分を97重量%以上含有する原料粉体を加圧成形後、焼
成することを特徴とする炭素材料の製造法
2. A mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of super-strong hydrogen oxyfluoride / boron trifluoride and heat-treating the same in a non-oxidizing atmosphere. A raw material powder containing 0.5 to 1.5% by weight of a quinoline-soluble and pyridine-insoluble component and 97% by weight or more of a quinoline-insoluble component prepared by the method described above, followed by calcining, followed by firing.
JP5309382A 1993-12-09 1993-12-09 Raw material powder for high-density and high-strength carbon material and method for producing carbon material Expired - Lifetime JP3060449B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5309382A JP3060449B2 (en) 1993-12-09 1993-12-09 Raw material powder for high-density and high-strength carbon material and method for producing carbon material
US08/350,679 US5484520A (en) 1993-12-09 1994-12-07 Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
EP94309144A EP0657400B1 (en) 1993-12-09 1994-12-08 Process for producing high-density and high-strength carbon artifacts from self-adhesive carbonaceous grains
DE69417522T DE69417522T2 (en) 1993-12-09 1994-12-08 Process for the production of high-density and high-strength objects made of carbon using self-adhesive, granular carbon materials
US08/529,439 US5609800A (en) 1993-12-09 1995-09-18 Process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309382A JP3060449B2 (en) 1993-12-09 1993-12-09 Raw material powder for high-density and high-strength carbon material and method for producing carbon material

Publications (2)

Publication Number Publication Date
JPH07157547A JPH07157547A (en) 1995-06-20
JP3060449B2 true JP3060449B2 (en) 2000-07-10

Family

ID=17992339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309382A Expired - Lifetime JP3060449B2 (en) 1993-12-09 1993-12-09 Raw material powder for high-density and high-strength carbon material and method for producing carbon material

Country Status (1)

Country Link
JP (1) JP3060449B2 (en)

Also Published As

Publication number Publication date
JPH07157547A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
Mochida et al. Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains
US4883617A (en) Method of forming binderless carbon materials
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
US5547654A (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
US5484520A (en) Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
CA2086858C (en) Sinterable carbon powder
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH0132162B2 (en)
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPH0151441B2 (en)
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPS63112463A (en) Manufacture of carbon fiber/carbon composite material
JPH0158125B2 (en)
JPH0158124B2 (en)
JPH03103490A (en) Coal tar-based impregnating pitch and production thereof
JPH07215775A (en) Production of carbon-carbon composite material
JPS63242911A (en) Production of raw material for carbon material
JPH08133713A (en) Low porosity carbon material and its production
JPH01308815A (en) Production of raw material of carbon material