JPH03103490A - Coal tar-based impregnating pitch and production thereof - Google Patents

Coal tar-based impregnating pitch and production thereof

Info

Publication number
JPH03103490A
JPH03103490A JP24054589A JP24054589A JPH03103490A JP H03103490 A JPH03103490 A JP H03103490A JP 24054589 A JP24054589 A JP 24054589A JP 24054589 A JP24054589 A JP 24054589A JP H03103490 A JPH03103490 A JP H03103490A
Authority
JP
Japan
Prior art keywords
pitch
benzene
insoluble
coal tar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24054589A
Other languages
Japanese (ja)
Inventor
Hidetaka Sugibe
英孝 杉辺
Taichi Ogawa
太一 小川
Hitomi Hatano
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24054589A priority Critical patent/JPH03103490A/en
Publication of JPH03103490A publication Critical patent/JPH03103490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To obtain the subject pitch used for producing carbonaceous materials, such as graphite electrodes, or carbon/carbon composite materials by regulating pitch so as to provide low contents of portions, soluble in hexane and insoluble in benzene without containing any portion insoluble in quinoline. CONSTITUTION:The subject pitch, obtained by adding and mixing (A) 1 pts.wt. coal tar with (B) >=2 pts.wt. one or more selected from benzene, toluene and xylene, allowing the resultant mixture to stand, separating the formed superna tant liquid and heat-treating the obtained supernatant liquid at a temperature within the range of 300-380 deg.C and having <5wt.% content of a portion soluble in hexane and <=5wt.% content of a portion insoluble in benzene substantially without containing any portion insoluble in quinoline.

Description

【発明の詳細な説明】 〈産業上の利川分野〉 本発明は、黒鉛電梅等の炭素材又は炭素/炭素復合材の
製造に使用されるコールクール系台浸川ピッチ及びその
製造方法に関するものである.〈従来の技術〉 一般に、含浸ビッチが人造黒鉛電極や、神々の炭素材、
炭素/炭素複合1fAの製造に必要不可欠である事は公
知である.人造黒鉛Tr!.極においては、先ず、それ
自身は融着粘結しないコークス粒子に対して、熱可塑性
を有するバインダー・ピッチが添加混坤され、焼成炭化
されるのであるが、焼成過程においてバインダー・ピン
チは芦発、或いは熱反応によって、その相当槍が気相中
に放出され、結果として得られる焼戒電極は嵩密度の小
さい多孔質体となっており、強度や種々の特性の面で充
分でない.この為、焼rli.’?J.極を更にピンチ
を用いて含浸セしめ、再度の焼戒を行い高密度化をさせ
る必要があり、この含浸/焼戒工程が製品特性が満たさ
れるまで繰り返される。かかる含浸及びそれに作う再焼
成の工程は、人造黒鉛電極のみならず、他の炭素材、炭
素/炭素珈合{Aの製造i6程においても必ラ■である
.何となれば、これらの製品はそれ自身は融着粘結しな
いコークス粒子や炭素繊維等を使川するが故に、最終製
品を得る為には必然的に可塑性を有するバインダーを配
合する必要があるからである.この際、バインダーとし
ては焼戒過程において炭化歩留の高い車が望ましいので
あるが、いづれにせよ、蒸発と熱反応は程度の差こそあ
れ進行するので、焼成品が多孔質体となる事は回避出来
ず、含浸工程が必要となるのである. 上記の説明から明らかなように、含浸材として具備すべ
き特性として、第一に固体粒子を含有しない事が挙げら
れる.即ち、多孔質体の空隙内部への浸透が、含漫材に
は要求されるのであり、もしも、含浸材に固体粒子が存
在すれば、含浸過程において空隙が閉塞され、内部への
含浸が阻害されるからである.また、第二には炭化歩留
の高い車が挙げられる.如何に内部に含浸が良好に進行
したとしても、含浸材の炭化歩留が低ければ、焼戒過程
において蒸発や熱分解による空隙生戒が共だしく、更に
多数回に及ぶ、含浸/焼戒工程の繰り返しが必要となる
からである.かかる理由から、比較的炭化歩留の高いピ
ッチが、事前に固体粒子除去の操作を施された後、工業
的に含浸材として使用されている.公知の含浸用ピンチ
の製造方法においては、空隙閉塞をもたらす固体粒子の
除去の観点から、種々の方法が検討されている.例えば
、特公昭49− 11609号公報には実質的に固体で
あるキノリン不溶分の低いタールまたはピッチを得る方
法として、溶剤と混合後、一工程の遠心分離で効率良く
、痕跡量または0.4%までキノリン不熔分を除去でき
ることが記載されている.また特開昭52−78201
号公報には、混合溶剤によりキノリン不溶分を含む粒子
を粗大化させ、沈降分離する方法が提案されている.ま
た、特開昭52−28501号公報には、溶剤混合によ
り、キノリン不溶分を除去し、キノリン不溶分を実質的
に痕跡量である0.1%未満にすることが提案されてい
る.なおキノリン不溶分の現行分析法では、0.1%未
満は分析値として誤差範囲とされている. かかる公知技術により得られる、キノリン不溶分を含有
しないか、或いは含有量の少ないコールタール等の重質
油系原料からピッチを製造すれば、空隙への浸透性の良
好なピッチが1¥}られるのであるが、含浸用ピッチと
しては未だ満足できる物ではない.この理山はピッチが
広範四の沸点分布を有す混合物である車を考えれば、容
易に理解されよう.即ち、空隙構造内に浸透した含浸ピ
ッチは、焼成炭化過程において昇温されるのであるが、
温度上昇につれて、先ず軟化溶融し、更に温度が上がれ
ばピッチ中の低沸点或分が気化をはじめる.この際に、
気化した低沸点威分のガスはt8融したピッチを空隙構
造から外部に押し出す車になるので、例え空隙構造の全
てが含浸用ピッチで充填されていたとしても、焼成過程
でその大部分は、空隙から排出されてしまう.この理山
から、含浸と焼成過程を多数回繰り返さざるを余儀なく
され、人造黒鉛電極や、種々の炭素材、炭素/炭素複合
材の製造において、経済的な不利益を甘受せざるを得な
かったのである. く発明が解決しようとする課題〉 かかる公知の含浸川ピッヂの問題点、即ち、焼成過程に
おける低沸点成分の気化による含浸ピフチの外部への排
出は、低沸点威分の含有最の少ない含浸川ピッチによっ
て解決されるのであるが、公知技術では製造し得なかっ
たのである.これは、下記の技術的課題が解決困難な為
であった.第一には、低沸点成分は分子量の比較的小さ
な物であるが故に、軟化温度、或いは熔融温度の低下へ
の寄与が大きく、完全に除去を進めれば、軟化温度、或
いは溶融温度の上昇を招き、同一温度においては粘度上
昇が起こる為に、微細空隙構造への含漫性が劣化するの
である.また公知の様に分子量の大きい高沸点或分ほど
、粘度上昇への寄与が大なので、低沸点成分の除去によ
る粘度上昇は、高沸点或分の霜を低減するl(により、
相殺する車が可能であるが、低沸点成分と高沸点成分の
除去を、同時に図る事は、相反する技術的方向であり、
公知技術によっては解決され得ない.一般的な工業的操
作である、蒸留、蒸発等によって低沸点分の除去を進行
させようとすれば、温度上昇が不可避であるが、温度が
上昇すれば、熱反応により重質化が進行するので、ピッ
ヂ中のベンゼン不溶分等の高粘度化成分量が増加するば
かりでなく、甚だしい場合には、キノリンに不溶で含浸
過程で空隙の閉塞を起こすメソフェーズ小Lj体が発生
ずるのである.逆に、重質化反応を抑制する温度条件下
で低沸点戒分の服揮を進めようとすれば、その除去は不
十分とならざるを得なかったのである。
[Detailed Description of the Invention] <Industrial Field of Icheon> The present invention relates to a coal-cooled base pitch used in the production of carbon materials such as graphite denmei or carbon/carbon composite materials, and a method for producing the same. It is. <Conventional technology> In general, impregnated bitch is used for artificial graphite electrodes, divine carbon materials,
It is well known that it is essential for the production of carbon/carbon composite 1fA. Artificial graphite Tr! .. At the pole, first, a thermoplastic binder pitch is added to coke particles that do not fuse and bind by themselves, and the mixture is fired and carbonized. During the firing process, the binder pinch is Alternatively, due to a thermal reaction, the corresponding amount is released into the gas phase, and the resulting burning electrode is a porous body with low bulk density, which is insufficient in terms of strength and various properties. For this reason, burn rli. '? J. It is necessary to further impregnate and set the electrode using a pinch and burn it again to densify it, and this impregnation/burn process is repeated until the product properties are met. Such impregnation and re-firing steps are essential not only for artificial graphite electrodes, but also for the production of other carbon materials and carbon/carbon composites. This is because these products use coke particles, carbon fibers, etc. that do not fuse and bind themselves, so in order to obtain the final product, it is necessary to mix a binder with plasticity. It is. At this time, it is desirable to use a binder with a high carbonization yield during the firing process, but in any case, evaporation and thermal reactions proceed to varying degrees, so it is unlikely that the fired product will become porous. This cannot be avoided and an impregnation process is required. As is clear from the above explanation, the first characteristic that an impregnating material should have is that it does not contain solid particles. In other words, the impregnating material is required to penetrate into the pores of the porous material, and if solid particles are present in the impregnating material, the pores will be blocked during the impregnation process and impregnation into the interior will be inhibited. This is because it is done. The second type is a car with a high carbonization yield. No matter how well the impregnation progresses inside, if the carbonization yield of the impregnated material is low, void formation due to evaporation and thermal decomposition will occur during the burning process, resulting in repeated impregnation/burning. This is because the process needs to be repeated. For this reason, pitch with a relatively high carbonization yield is used industrially as an impregnating material after being subjected to an operation to remove solid particles. In known methods for manufacturing pinches for impregnation, various methods have been studied from the viewpoint of removing solid particles that cause void clogging. For example, Japanese Patent Publication No. 49-11609 describes a method for obtaining substantially solid tar or pitch with low quinoline insoluble content, which can be efficiently mixed with a solvent and then centrifuged in one step, in trace amounts or 0.4%. It is stated that it is possible to remove up to % of quinoline infusible matter. Also, JP-A-52-78201
The publication proposes a method in which particles containing insoluble quinoline are coarsened using a mixed solvent and then separated by sedimentation. Further, JP-A No. 52-28501 proposes that quinoline insolubles be removed by solvent mixing to reduce the quinoline insolubles to a substantially trace amount of less than 0.1%. In addition, in the current analytical method for quinoline insoluble content, less than 0.1% is considered to be within the error range for analytical values. If pitch is produced from a heavy oil-based raw material such as coal tar that does not contain or contains only a small amount of quinoline insoluble matter obtained by such known technology, pitch with good permeability into voids can be obtained. However, it is still not satisfactory as a pitch for impregnation. This rationale can be easily understood if we consider a car, which is a mixture with a boiling point distribution of four pitches. In other words, the temperature of the impregnated pitch that has penetrated into the pore structure is raised during the calcination carbonization process.
As the temperature rises, the pitch first softens and melts, and as the temperature rises further, some of the low boiling point in the pitch begins to vaporize. At this time,
The vaporized low boiling point gas acts as a vehicle to push the molten pitch out of the void structure, so even if the void structure is all filled with pitch for impregnation, most of it will be lost during the firing process. It is expelled from the void. As a result of this process, we were forced to repeat the impregnation and firing process multiple times, and were forced to accept economic disadvantages in the production of artificial graphite electrodes, various carbon materials, and carbon/carbon composites. It is. Problems to be Solved by the Invention> The problem with the known impregnated pift, namely, the discharge to the outside of the impregnated pift due to the vaporization of low-boiling components during the firing process, can be solved by The problem was solved by using pitch, but it could not be manufactured using known technology. This was because the following technical issues were difficult to solve. First, because low-boiling components have relatively small molecular weights, they make a large contribution to lowering the softening temperature or melting temperature, and if they are completely removed, the softening temperature or melting temperature will increase. This leads to an increase in viscosity at the same temperature, which deteriorates the inclusion property in the microporous structure. In addition, as is well known, the higher the molecular weight and the higher the boiling point, the greater the contribution to the increase in viscosity, so the increase in viscosity due to the removal of low boiling point components reduces the frost at the high boiling point.
Although it is possible to eliminate low-boiling point components and high-boiling point components at the same time, it is a contradictory technical direction.
This problem cannot be solved using known technology. If you try to remove low-boiling components by distillation, evaporation, etc., which are common industrial operations, it is inevitable that the temperature will rise, but if the temperature rises, it will become heavier due to thermal reaction. Therefore, not only does the amount of high-viscosity components such as benzene-insoluble components in the pidge increase, but in extreme cases, mesophase small Lj bodies are generated which are insoluble in quinoline and cause pore blockage during the impregnation process. On the other hand, if one were to proceed with the removal of low-boiling point substances under temperature conditions that suppressed the heavy-boiling reaction, their removal would inevitably be insufficient.

本発明は、この技術的課題に鑑み、低沸点成分の含有量
が少なく、かつ低粘度である含浸川ピッチ及びその製造
方法を提イ』(することを目的とするものである。
In view of this technical problem, the present invention aims to provide impregnated river pitch with a low content of low-boiling components and low viscosity, and a method for producing the same.

〈課題解決のための手段〉 本発明で提Utずる高性能含浸川ピッチは、実質的に;
トノリン不溶分を含まず、ヘキサン可溶分が5%未満で
あり、かつベンゼン不溶分が5%未満であることを特徴
とするコールタール系含浸用ピッチであり、その製造方
法は、コールタール1重ffi部に対して、ベンゼン、
 トルエン及びキシレンから選ばれた1種又は2種以上
を2重量部以上の比率で添加混合し、ff?’Wずるこ
とにより生じた上澄み液を分離し、次いで該上澄み液を
300〜380゜Cの温度範囲で熱処理することを特徴
とするものである. 〈作用〉 次に本発明を更に詳細に説明する. 本発明者らは、実質的に固体であるキノリン不溶分の除
去方法として知られている、コールクールに対する溶剤
添加による静置分離操作が、適切な条件さえ設定すれば
、キノリン不溶分の除去のみならず、重?[分或いは、
熱反応により容易に重質化しうる威分の除去にも有効な
事を見出したのである.即ち、コールクールに対する溶
剤の混合比率を変化させる事により、静置分翔上澄み中
の重質成分或いは、熱反応により容易に重質化しうる成
分の濃度を低減させる車ができた.この車は、高性能含
浸川ピッチの製造において必要とされる低沸点成分の脱
揮操作において、必然的に進行するであろう重質化反応
の量を低減せしめる車であり、従って、過度のrrX質
化、即ち製品ピッチの高粘度化をもたらす車なく、低沸
点成分の除去を可能とするのである. 本発明者らは、コールタール桔製設備には、ベンゼン,
トルエン.キシレン等の蒸留設備が多くの場合に付シ1
Fしている車を鑑み、これらの芳香族系溶剤単味、或い
はこれらの混合溶剤による静置分離につき、研究を行っ
たのであるが、適切なる処理条件として、コールクール
1重足部に対して211部以上の上記溶剤の添加混合が
必要である】1τを見出したのである.即ち、コールタ
ール1重里部に対して2重里部未満の上記溶剤の添加攪
ではベンゼン不溶分で代表されるコールタール中の重質
成分は、溶剤に対して不溶化・吐ずに上澄み液中に溶解
しており、後の脱揮過程での温度雰囲気下において濃縮
されて高粘度化の原因となり好ましくなく、また、この
条件下では重質化しやすい成分が多鼠に溶解している為
に、脱揮過程での温度雰囲気下におい゜ζベンゼン不溶
分が新たに生成して、ピノチの高粘度化を招き、好まし
くない。
<Means for Solving the Problems> The high performance impregnated river pitch proposed by the present invention substantially has the following features:
A coal tar-based pitch for impregnation characterized by containing no tonoline insoluble matter, a hexane soluble matter of less than 5%, and a benzene insoluble matter of less than 5%. For the heavy ffi part, benzene,
One or more selected from toluene and xylene are added and mixed in a ratio of 2 parts by weight or more, and ff? The method is characterized in that the supernatant liquid produced by the heating process is separated, and then the supernatant liquid is heat-treated in a temperature range of 300 to 380°C. <Operation> Next, the present invention will be explained in more detail. The present inventors have discovered that a static separation operation by adding a solvent to coal-cool, which is known as a method for removing substantially solid quinoline-insoluble components, can only remove quinoline-insoluble components if appropriate conditions are set. Not heavy? [minute or
They discovered that it is also effective in removing impurities that can easily become heavy due to thermal reactions. In other words, by changing the mixing ratio of solvent to coal cool, we have created a vehicle that reduces the concentration of heavy components in the supernatant of static fractionation, or components that can easily become heavy due to thermal reactions. This vehicle is a vehicle that reduces the amount of heavy reaction that would inevitably occur in the devolatilization operation of low-boiling components required in the production of high-performance impregnated river pitch, and therefore This makes it possible to remove low boiling point components without causing rrX quality, that is, high viscosity of the product pitch. The present inventors have discovered that benzene,
toluene. Distillation equipment for xylene, etc. is often attached to
In view of the fact that cars with F Therefore, they found that it is necessary to add and mix 211 parts or more of the above solvent]1τ. In other words, when less than 2 parts of the above-mentioned solvent is added and stirred to 1 part of coal tar, the heavy components in the coal tar, represented by benzene-insoluble components, are not insolubilized or vomited to the solvent, but are dissolved in the supernatant liquid. It is undesirable because it is dissolved and becomes concentrated in the temperature atmosphere during the devolatilization process, causing high viscosity. Also, under these conditions, many components that tend to become heavy are dissolved. Under the temperature atmosphere during the devolatilization process, ゜ζbenzene insoluble matter is newly generated, which leads to an increase in the viscosity of Pinochi, which is undesirable.

このように、溶剤の添加混合比の増加につれて上澄み液
中のベンゼン不溶分は減少して行くのであるが、コール
タールlfftffi部に対して2重量部以上の上記溶
剤の添加量となった時に、上澄み液として回収されるコ
ールクール中のベンゼン不溶分が0.5%以下となるの
である. 一方、低沸点成分を、本発明ではへキサン可溶戊分とし
て定義されるのであるが、5%未満となるように蒸発さ
せようとするならば、300”C以上の温度が必要であ
る.300゜C未満の温度では、ヘキサン可溶分で代表
される低沸点或分の蒸気圧が低い為、蒸留、真空ポンプ
等を用いた滅圧華留等の通常の熱処理操作では、5%未
満に隨去できない.しかしながら、逆に温度を380゜
Cを超えて上昇セ・しめれば、熱反応が極めて急速に進
{テし、ベンゼン不溶分で代表される重質分が急激に増
加するため、本発明の目的とするところのベンゼン不溶
分が5%未満のピッチは得られない。ここで容易に理解
される様に、原料中のベンゼン不溶分がもともと多けれ
ば、低沸点戒分の脱揮にイ1′.う濃縮の為に、ベンゼ
ン不溶分が5%未満のピンチは得られないのである.ま
た、300゜C以上380゜C以下の温度範囲では、ベ
ンゼン不溶分で代表される重質分の生威は緩慢ではある
が、原料中にベンゼン不溶分に転化しやすい成分が多く
あれば、新規にベンゼン不溶分が生威し、ベンゼン不溶
分が5%未満のピッチを得ることは困難である.かかる
理由から、本発明では、上澄み液のベンゼン不溶分を0
.5%以下にすることが望ましい.上記手段によって、
初めてヘキサン可溶分とベンゼン不溶分が、共に5%未
満の実質的にキノリン不溶分を含まないコールタールピ
ッチが得られるのであるが、この組成のピッチにより、
初めて含浸川ビ7ヂとしての高杜能な品位が提供される
のである.即ち、低沸点成分であるところのヘキサン可
溶分が5%未満となる事によって、含浸後の焼戒過程に
おける低沸点戒分の気化による、ピッチの空隙からの押
し出し、流出が低減されるのである.焼成過程で昇温に
伴う気化は溶融ピッチ中での微細気泡の発生に始まり、
これらの気泡の合体による大気泡化が続き、大気泡の連
続化による外部への通路が形威される.ヘキサン可溶分
が5%未満の場合には、気泡の生戒速度が緩慢な為に、
気化によるピッチの膨張の前に、外部への通路が形威さ
れるので、それ以降に発生したガスは、この通路を通っ
て排出される為に、ピッチの流出は低減されるのである
.しかしながら、ヘキサン可溶分が5%以上の時は、気
泡の生戒速度が急激となる為に、外部への通路が形成さ
れる前に、気化したガスによる膨張によって、ピッチの
大半が外部に押し出されてしまうのである. また、高粘度化或分であるところのベンゼン不溶分が5
%未満となる車によって、含浸用ピッチとして要求され
る粘度特性が満足されるのである.即ち、本発明による
含浸川ピンチは、低沸点成分であるところのへキサン可
溶分の低減により、焼戒遇程におけるピッチ流出を低下
せしめるものであるが、低沸点成分の除去は必然的に粘
度上昇をもたらすために、ベンゼン不溶分に代表される
高粘度化をもたらす威分を低減する事によって含浸川ピ
ッチとして要求される粘度特性を維持する車が可能とな
るのである.ベンゼン不溶分が5%未満の場合には、ヘ
キサン可溶分低減による粘度上昇を相殺しうるのである
が、ベンゼン不溶分が5%以上となると、高粘度化は回
避不可能となり、含浸温度を上昇せしめ、粘度低下を図
る事で、含漫性の確保が必要となる.しかしながら、含
浸湛度の上昇は、含漫温度におけるピッチ構成戒分の蒸
気圧を増加せしめる事であり、例え被含浸材の空隙が真
空に保たれたとしても、含浸ピッチを含浸装置に導入し
た時点で、ピッチの蒸気圧が高くなるので、空隙への含
漫が不良となると言う欠点を有する.この理山から、ベ
ンゼン不溶分は5%未満に限定される. 〈実施例〉 以下に、実施例に基づいて、具体的に説明する.実施例
! 表lに示した性状の通常のコールタールlmffi部に
対して、3重量部のベンゼンを加えて、高さ2mとなる
まで容器に装入し、2口間静匿せしめ、その後、上澄み
液を取り出し、含有されるベンゼンを蒸留によって上澄
み液から除去した.この、静置分離により清浄化された
コールタールの分析値は表2に示す如くであり、実質的
に固体であるキノリン不溶分は検出されず、分析の下限
値以下であった.また、ベンゼン不溶分は、0.5%以
下であった. (ffiffl%) 表2に示した性状のコールタールを、ステンレス製反応
容器内に装入し、液温が室温から340℃となるまで、
3℃/分の昇温速度で昇温し、340℃に到達後、2時
間保持した.この熱処理過程において、蒸発した成分は
、反応器上部に接続した技管を通して反応容器外へ留出
せしめた.この操作によって反応容器内の残留物として
、表3に示す性状のピッチが得られた.そのへキサン可
溶分は5%未満であり、またベンゼン不溶分も5%未満
であり、キノリン不溶分の生戒は認められなかった.ま
た、軟化点も市販の含浸ビッチと同等であり、高粘度化
は認められない. このピッチの含t!!/焼戒特性を評価する為に、次の
実験を実施した.即ち、予め市販の石油系コークスと市
販のバインダー・ピッチから試験用の焼威電極を作成し
、この焼或電極へ含浸、しかる後に焼成する事により、
ピッチの含浸/焼戒特性を試験した. 試験用の焼威電極は、粒径1+wが90%以上となるよ
うに粉砕した石油コークス1重量部に対し、軟化点93
℃の市販のバインダー・ピッチ0.30重量部を加え、
160℃の温度において煉合した後に、ピストンにより
戚型した直径2.5cmの生電極を、電気炉を用いて、
a終温度950゜Cで焼成炭化したものである.この試
験電極の嵩密度は、1.04〜1、12g /cdであ
った.この試験用焼成電極を、ステンレス製容器に装入
後、密閉し160℃の温度に保ち、真空ボンブによって
排気して、5ミリ水銀柱まで減圧した.かかる後に、予
め160゜Cに余熱された、表3に示したピッチを導入
して、導入後1時間保持した後に容器内を常圧に戻し、
溶融ピッチ液内に沈降した試験m極を引き上げた.この
含浸された試験電極を、電気炉を用いて最終温度105
0℃で焼威し、その嵩密度を測定した.この試験を3回
行い、その平均値をもって評価した.本発明のピッチを
用いた場合、表4に示すように、0.20B/cdの嵩
密度の向上が認められた.比較例! 実施例1で調整したのと同一の表2に示す消浄コールタ
ールを用い、熱処理の諸条件も最終温度を280゜Cと
変更した以外は実施例1と同一として、ピッチを製造し
た.得られたピッチの性状を表5に示す. ピッチを製造した.得られたピッチの性状を表7に示す
. このピッチを、実施例lと同一の条件で、試験電極に対
する含漫/焼成試験を実施したところ、表8に示すよう
に、嵩密度の向上幅は、表4の実施例の結果に比べて著
しく低いものであった.このピッチを、実施例lと同一
の条件で、試験電極に対する含浸/焼成試験を実施した
ところ、表6に示すように、嵩密度の向上幅は、表4の
実施例の結果に比べて著しく低いものであった.比較例
2 実施例1で調整したのと同一の表2に示す清浄コールタ
ールを川い、熱処理の諸条件も最終温度を390゜Cと
変更した以外は実施例1と同一として、実施例2 あらかじめ、表7に示した性状のピッチと市販のPAN
系高強度炭素虱維布(1方向)とを用い、下記の条件で
、炭素/炭素織維焼成体を作製した。
In this way, as the addition and mixing ratio of the solvent increases, the benzene-insoluble content in the supernatant liquid decreases, but when the amount of the solvent added is 2 parts by weight or more relative to lfftffi parts of coal tar, The amount of benzene insoluble in the coal cool, which is recovered as a supernatant, is less than 0.5%. On the other hand, if low-boiling components, which are defined as hexane-soluble fractions in the present invention, are to be evaporated to less than 5%, a temperature of 300"C or higher is required. At temperatures below 300°C, the vapor pressure of low-boiling components, such as those soluble in hexane, is low. However, if the temperature is raised above 380°C, the thermal reaction will proceed extremely rapidly, and the heavy content represented by the benzene-insoluble content will increase rapidly. Therefore, pitch with a benzene insoluble content of less than 5%, which is the objective of the present invention, cannot be obtained.As can be easily understood here, if the benzene insoluble content in the raw material is originally large, the low boiling point Due to the concentration required for devolatilization, it is impossible to obtain a pinch of less than 5% benzene-insoluble matter.Also, in the temperature range of 300°C to 380°C, benzene-insoluble matter is typical. Although the production of heavy components is slow, if there are many components in the raw material that are easily converted to benzene-insoluble components, new benzene-insoluble components will be produced and a pitch with a benzene-insoluble component of less than 5% can be obtained. For this reason, in the present invention, the benzene-insoluble content of the supernatant liquid is reduced to zero.
.. It is desirable to keep it below 5%. By the above means,
For the first time, coal tar pitch containing substantially no quinoline insoluble matter, with both hexane soluble content and benzene insoluble content being less than 5%, can be obtained, but with pitch of this composition,
For the first time, the high quality quality of impregnated river beer 7ji is offered. In other words, by reducing the hexane soluble content, which is a low boiling point component, to less than 5%, the extrusion and outflow from the pitch voids due to the vaporization of the low boiling point component during the burning process after impregnation is reduced. be. Vaporization as the temperature rises during the firing process begins with the generation of fine bubbles in the molten pitch.
These bubbles continue to coalesce to form large bubbles, and a passage to the outside is established by making the large bubbles continuous. When the hexane soluble content is less than 5%, the rate of bubble formation is slow;
Before the pitch expands due to evaporation, a passage to the outside is formed, and the gas generated thereafter is exhausted through this passage, thereby reducing pitch outflow. However, when the hexane soluble content is 5% or more, the rate of bubble growth becomes rapid, and most of the pitch is expanded to the outside by the vaporized gas before a passage to the outside is formed. They are pushed out. In addition, the benzene insoluble content, which causes high viscosity, is 5%.
The viscosity characteristics required for pitch for impregnation are satisfied by the car with less than %. That is, the impregnated river pinch according to the present invention reduces the pitch outflow during the burning process by reducing the hexane soluble content, which is a low boiling point component, but the removal of the low boiling point component necessarily By reducing the components that cause high viscosity, such as benzene-insoluble components, it becomes possible to create a vehicle that maintains the viscosity characteristics required for impregnated pitch. If the benzene insoluble content is less than 5%, the increase in viscosity due to the reduction in hexane soluble content can be offset, but if the benzene insoluble content exceeds 5%, high viscosity cannot be avoided, and the impregnation temperature must be adjusted. It is necessary to ensure the inclusion property by increasing the viscosity and decreasing the viscosity. However, an increase in the impregnating degree increases the vapor pressure of the pitch components at the impregnating temperature, and even if the voids in the material to be impregnated are kept in a vacuum, the impregnated pitch cannot be introduced into the impregnation equipment. Since the vapor pressure of the pitch increases at this point, it has the disadvantage of poor inclusion into the voids. From this rationale, the benzene insoluble content is limited to less than 5%. <Example> The following is a detailed explanation based on an example. Example! 3 parts by weight of benzene was added to 1 mffi part of ordinary coal tar having the properties shown in Table 1, and the mixture was charged into a container to a height of 2 m, allowed to stand still for 2 mouths, and then the supernatant liquid was drained. The benzene contained in the supernatant was removed from the supernatant by distillation. The analytical values of this coal tar cleaned by static separation are as shown in Table 2, and no substantially solid quinoline-insoluble matter was detected, which was below the lower limit of analysis. Furthermore, the benzene insoluble content was 0.5% or less. (ffiffl%) Coal tar having the properties shown in Table 2 was charged into a stainless steel reaction vessel and heated until the liquid temperature rose from room temperature to 340°C.
The temperature was raised at a rate of 3°C/min, and after reaching 340°C, it was held for 2 hours. During this heat treatment process, the evaporated components were distilled out of the reaction vessel through a technical pipe connected to the top of the reactor. Through this operation, pitch with the properties shown in Table 3 was obtained as a residue in the reaction vessel. The hexane soluble content was less than 5%, the benzene insoluble content was also less than 5%, and no adverse effects on quinoline insoluble content were observed. In addition, the softening point is the same as commercially available impregnated bitch, and no increase in viscosity is observed. The content of this pitch! ! /In order to evaluate the burning command characteristics, the following experiment was conducted. That is, by preparing a test firing electrode in advance from commercially available petroleum-based coke and commercially available binder pitch, impregnating this firing electrode, and then firing it,
The impregnation/burning characteristics of the pitch were tested. The incineration electrode used for the test was made with a softening point of 93% for 1 part by weight of petroleum coke crushed so that the particle size 1+w was 90% or more.
Add 0.30 parts by weight of a commercially available binder pitch at
After kneading at a temperature of 160°C, a green electrode with a diameter of 2.5 cm was molded with a piston using an electric furnace.
a) It was fired and carbonized at a final temperature of 950°C. The bulk density of this test electrode was 1.04-1.12 g/cd. This test fired electrode was placed in a stainless steel container, which was then sealed tightly and maintained at a temperature of 160°C, and evacuated using a vacuum bomb to reduce the pressure to 5 millimeters of mercury. After this, the pitch shown in Table 3, which had been preheated to 160°C, was introduced, and after being held for 1 hour after introduction, the inside of the container was returned to normal pressure.
The test m pole that had settled in the molten pitch liquid was pulled up. This impregnated test electrode was heated to a final temperature of 105% using an electric furnace.
It was burned at 0°C and its bulk density was measured. This test was conducted three times and the average value was used for evaluation. When the pitch of the present invention was used, as shown in Table 4, an improvement in bulk density of 0.20 B/cd was observed. Comparative example! Pitch was produced using the same slaked coal tar shown in Table 2 as prepared in Example 1, and the heat treatment conditions were the same as in Example 1, except that the final temperature was changed to 280°C. Table 5 shows the properties of the pitch obtained. Manufactured pitch. Table 7 shows the properties of the obtained pitch. When this pitch was subjected to an impregnating/firing test on a test electrode under the same conditions as in Example 1, as shown in Table 8, the bulk density was improved compared to the results of the Example in Table 4. It was extremely low. When this pitch was subjected to an impregnation/firing test on a test electrode under the same conditions as in Example 1, as shown in Table 6, the improvement in bulk density was significantly greater than in the results of the Example shown in Table 4. It was low. Comparative Example 2 Example 2 was prepared using the same clean coal tar shown in Table 2 as prepared in Example 1 and using the same heat treatment conditions as Example 1 except that the final temperature was changed to 390°C. In advance, the pitch with the properties shown in Table 7 and the commercially available PAN
A carbon/carbon woven fiber fired body was produced using high-strength carbon fiber fabric (one direction) under the following conditions.

即ら、ピッチと炭素繊維布を体積比率で7:3として、
交互にlirr!!シ、220゜Cの温度で加圧戒型し
、その後、室温に冷却後、室温から650゜Cまで3゜
C/分の昇温速度で界温し、650℃に到達後は5時間
保持した。この、炭素/炭素繊維焼成体の嵩密度は、1
.32 (g /c+1)であった。
That is, the volume ratio of pitch and carbon fiber cloth is 7:3,
Take turns lirr! ! After that, pressurize and mold at a temperature of 220°C, then cool to room temperature, and heat at a rate of 3°C/min from room temperature to 650°C, and hold for 5 hours after reaching 650°C. did. The bulk density of this carbon/carbon fiber fired body is 1
.. 32 (g/c+1).

この試験用焼成体を、ステンレス製容器に装入後、密閉
し160゜Cの温度に保ち、真空ポンプによってn[気
して、5ミ,,水銀柱まで減圧した.かかる後に、予め
lGO’cに余熱された、表3に示したピッチを導入し
て、導入後1時間保持した後に容器内を堂圧に戻し、溶
融ピッチ液内に沈降した試験焼成体を引き上げた.この
含浸された試験焼成体を、電気炉を用いて最終温度10
50゜Cで焼威し、その嵩密度と、炭素繊維方向の萌げ
強度を測定した.この試験を3回行い、その平均値をも
って評価した.本発明のピッチを用いた場合、表9に示
すように、O−18g /ctlの嵩密度の向上が認め
られ、また、曲げ強度は940 (kg/cd)に達し
た.表9 比較例3 表5に示した性状のピッチを用いて、実施例2と同一の
条件で、試験焼成体に対する含浸/焼戒試験を実施した
ところ、表10に示すように、嵩密度の向上幅は、表9
の実施例の結果に比べて著しく低いものであった.また
、含浸/焼戒後の強度も、表9の実施例の水単よりも低
いものであった.表l0 比較例4 表7に示した性状のピッチを用いて、実施例2と同一の
条件で、試験焼成体に対する含浸/焼戒試験を実施した
ところ、表11に示すように、嵩密度の向上幅は、表9
の実施例の結果に比べて著しく低いものであった.また
、含浸/焼成後の強度も表9の実施例の水11Bよりも
低いものであった.表11 く発明の効果〉 近年、炭素製品の製造分野において、高性能な含浸材が
要求されていたが、本発明は、安価なコールクールを原
料に用いた含浸材であり、また、含浸工程回数の削減な
らびに製品の高密度高強度化を可能とするものであり、
関連産業分野に奏する効果は大きいものがある。
This test fired body was placed in a stainless steel container, which was then sealed tightly and maintained at a temperature of 160°C, and the pressure was reduced to 5 mm of mercury using a vacuum pump. After this, the pitch shown in Table 3, which had been preheated to lGO'c, was introduced, and after being held for 1 hour after introduction, the inside of the container was returned to room pressure, and the test fired body that had settled in the molten pitch liquid was pulled out. Ta. This impregnated test fired body was heated to a final temperature of 10% using an electric furnace.
It was burned at 50°C and its bulk density and sprouting strength in the carbon fiber direction were measured. This test was conducted three times and the average value was used for evaluation. When the pitch of the present invention was used, as shown in Table 9, an improvement in bulk density of O-18 g/ctl was observed, and the bending strength reached 940 (kg/cd). Table 9 Comparative Example 3 Using the pitch with the properties shown in Table 5, an impregnation/burning test was conducted on the test fired body under the same conditions as in Example 2. As shown in Table 10, the bulk density was The improvement range is shown in Table 9.
This was significantly lower than the results of the examples. In addition, the strength after impregnation/burning was also lower than that of the hydrocarbons of the Examples in Table 9. Table 10 Comparative Example 4 Using the pitch with the properties shown in Table 7, an impregnation/burning test was conducted on the test fired body under the same conditions as in Example 2. As shown in Table 11, the bulk density was The improvement range is shown in Table 9.
This was significantly lower than the results of the examples. Further, the strength after impregnation/calcination was also lower than that of water 11B of Example in Table 9. Table 11 Effects of the invention> In recent years, there has been a demand for high-performance impregnating materials in the field of manufacturing carbon products. This makes it possible to reduce the number of times and increase the density and strength of the product.
The effects on related industrial fields are significant.

Claims (1)

【特許請求の範囲】 1、実質的にキノリン不溶分を含まず、ヘキサン可溶分
が5%未満であり、かつベンゼン不溶分が5%未満であ
ることを特徴とするコールタール系含浸用ピッチ。 2、コールタール1重量部に対して、ベンゼン、トルエ
ン及びキシレンから選ばれた1種又は2種以上を2重量
部以上の比率で添加混合し、静置することにより生じた
上澄み液を分離し、次いで該上澄み液を300〜380
℃の温度範囲で熱処理することを特徴とするコールター
ル系含浸用ピッチの製造方法。
[Scope of Claims] 1. A coal tar-based impregnating pitch characterized by substantially no quinoline-insoluble content, less than 5% hexane-soluble content, and less than 5% benzene-insoluble content. . 2. Add and mix one or more selected from benzene, toluene, and xylene at a ratio of 2 parts by weight or more to 1 part by weight of coal tar, and separate the resulting supernatant liquid by standing. Then, the supernatant liquid was heated to 300 to 380
A method for producing coal tar-based pitch for impregnation, characterized by heat treatment at a temperature range of ℃.
JP24054589A 1989-09-19 1989-09-19 Coal tar-based impregnating pitch and production thereof Pending JPH03103490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24054589A JPH03103490A (en) 1989-09-19 1989-09-19 Coal tar-based impregnating pitch and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24054589A JPH03103490A (en) 1989-09-19 1989-09-19 Coal tar-based impregnating pitch and production thereof

Publications (1)

Publication Number Publication Date
JPH03103490A true JPH03103490A (en) 1991-04-30

Family

ID=17061123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24054589A Pending JPH03103490A (en) 1989-09-19 1989-09-19 Coal tar-based impregnating pitch and production thereof

Country Status (1)

Country Link
JP (1) JPH03103490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168761A (en) * 2010-02-19 2011-09-01 Res Inst Of Natl Defence Method for producing pitch for impregnating carbon-carbon composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168761A (en) * 2010-02-19 2011-09-01 Res Inst Of Natl Defence Method for producing pitch for impregnating carbon-carbon composite material

Similar Documents

Publication Publication Date Title
US3917806A (en) Method for the preparation of carbon moldings and activated carbon molding therefrom
US5501788A (en) Self-stabilizing pitch for carbon fiber manufacture
US3035308A (en) Production of graphitizable pitch coke and graphite products
US7781370B2 (en) Process for producing spherical activated carbon
JPH0233679B2 (en)
JPH0511049B2 (en)
US4883617A (en) Method of forming binderless carbon materials
KR101423512B1 (en) Method for purifying impurities from Tar or Pitch and apparatus thereof
JPH03103490A (en) Coal tar-based impregnating pitch and production thereof
US4986895A (en) Process for treating coal tar or coal tar pitch
US5283045A (en) Sinterable carbon powder and method of its production
US5017358A (en) Preparation of elastic graphite materials
KR20230163484A (en) Improved pitch products, processes for manufacturing them, and uses
CA2238024C (en) Self-stabilizing pitch for carbon fiber manufacture
JPS58156023A (en) Production of carbon fiber
KR102583031B1 (en) Method for manufacturing hetero-phase binder pitch and hetero-phase binder pitch manufactured therefrom
CN115404090B (en) Method for preparing needle coke by compounding coal-based and petroleum-based components
JP6518626B2 (en) Method of manufacturing binder pitch
JPH10204441A (en) Production of impregnation pitch and its production apparatus
WO2023139287A1 (en) Improved thermoplastic carbon precursor material for application in coating, binding, and impregnation processes for the manufacturing of electrodes for steel and aluminum production and batteries.
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JPH04283293A (en) Preparation of coke for isotropic high-density carbon material
JPH07172917A (en) Production of carbonaceous material having optically anisotropic fine texture
JP2003286019A (en) Carbon foam and graphite foam
JPH07157547A (en) Starting powder for carbonaceous material of high density and high strength, and production of carbonaceous material