JP3599062B2 - Method for producing carbon material having fine optically anisotropic structure - Google Patents

Method for producing carbon material having fine optically anisotropic structure Download PDF

Info

Publication number
JP3599062B2
JP3599062B2 JP31676793A JP31676793A JP3599062B2 JP 3599062 B2 JP3599062 B2 JP 3599062B2 JP 31676793 A JP31676793 A JP 31676793A JP 31676793 A JP31676793 A JP 31676793A JP 3599062 B2 JP3599062 B2 JP 3599062B2
Authority
JP
Japan
Prior art keywords
carbon material
weight
insoluble
pyridine
mesophase pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31676793A
Other languages
Japanese (ja)
Other versions
JPH07172917A (en
Inventor
勲 持田
隆次 藤浦
孝 小島
斉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP31676793A priority Critical patent/JP3599062B2/en
Priority to US08/350,679 priority patent/US5484520A/en
Priority to DE69417522T priority patent/DE69417522T2/en
Priority to EP94309144A priority patent/EP0657400B1/en
Publication of JPH07172917A publication Critical patent/JPH07172917A/en
Priority to US08/529,439 priority patent/US5609800A/en
Application granted granted Critical
Publication of JP3599062B2 publication Critical patent/JP3599062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は微細な光学的異方性組織を有する炭素材料の製造方法に関する。詳しくはサブミクロンレベルの光学的異方性単位がランダムに展開している組織を有する高密度炭素材料や炭素複合材料の製造方法に関する。
【0002】
【従来の技術】
近年、特殊炭素材料ならびに炭素複合材料の性能向上に対する要求はますます強いものになっており、炭素の構造と組織を制御することは製品の物理的化学的特性を決定し一層の高性能化を実現する上で極めて重要である。
特殊炭素材料分野においては、製品の高密度化・高強度化に加え、物理性状の等方性化を図るために、原料粉体の形状やサイズをコントロールすることによって製品炭素材料組織を微細モザイク化しようとする多くの研究と開発がなされている。
【0003】
このような物理性状の等方性化を図る方法としては、たとえばメソカーボンマイクロビーズを製造原料とする方法、すなわちコールタールや石油系重質油等を熱処理する過程で生成する光学的異方性小球体を溶剤によってピッチマトリックスから分離、乾燥し、これを加圧成型後、焼成する方法が知られている。しかしながらこうした方法では、得られる炭素材料の組織サイズはメソ球晶の粒径(10〜20μm)以下とはならず、これ以上の微細化ができないことが特開平1−239058号に指摘されている。
また特公平1−58124 号に記載されているバルクメソフェーズの粉砕物を利用する方法においても、バルクメソフェーズの異方性サイズは粉砕された粒度以下に細かく展開することはないことが特開平1−239058号に指摘されている。
【0004】
一方、原料粉体をあらかじめ微細モザイク組織に改質する試みも多数報告されている。たとえば特許公報昭58−58284号には、1μm以下のきわめて微細な単位からなるモザイク構造の半成コークスを成型原料として利用する方法が開示されている。しかしながらこの方法は、原料石炭を水素ガス存在下にて溶剤抽出し分離後、この抽出物をさらに熱処理するなどの複雑な工程を要する。
【0005】
また特公平3−64448 号にはピッチにカーボンブッラクを添加する方法が記載されており、特開平1−239058号にはピッチにレジンを配合したのち粉砕し、バインダーを用いることなく成型、焼成することによって均質なモザイク構造を有する等方性黒鉛材を製造する方法が記載されている。しかしながらこのような方法も、混合、混練、再粉砕といった煩雑な工程を経なければならない。また得られる炭素材料は嵩密度も低く、必ずしも満足すべき性能は得られていない。
【0006】
炭素複合材料分野においても、優れた耐熱衝撃性と高い機械的強度の発現に関して微細モザイク構造を有するマトリックス炭素の優位性が International Symposium on Carbon; Toyohashi, Extended Abstract, p.196(1982) などに報告されており、ピッチ/フェノール樹脂系については『CARBON』vol.28,p.559(1990)などに、ピッチ/カーボンブッラク系については『CARBON』vol.28,p.143(1990)など見られるように、相互作用や炭化性について広く研究が行なわれている。
【0007】
【発明が解決しようとする課題】
炭素組織の制御は製品の高性能化と均質化にとって極めて重要なファクターとなる。しかしながら従来の方法では、上記の如く様々な難点がある。
本発明の目的は、特定のメソフェーズピッチから、微細な光学的異方性組織を有する高性能の炭素材料を、きわめて簡便な方法で安価に且つ安定して製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記の目的を実現すべく鋭意検討した結果、超強酸フッ化水素・三フッ化ホウ素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られるメソフェーズピッチを熱処理あるいは酸化処理することによって調製される自己融着性炭素質粉体を、成型した後、焼成、必要に応じて黒鉛化することによって炭素材料を製造するに際し、成型体の炭素化初期過程における昇温速度のコントロールによって、得られる炭素材料の光学組織を均質な微細モザイク構造に改質できることを見い出し、本発明に至った。
【0009】
すなわち本発明は、フッ化水素・三フッ化ホウ素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られるメソフェーズピッチを非酸化性雰囲気下にて熱処理することによって調製される、キノリンに可溶でピリジンに不溶な成分0.5〜1.5重量%、キノリンに不溶な成分97重量%以上を含有する自己融着性炭素質粉体、または該メソフェーズピッチを酸化性雰囲気下にて酸化処理することによって調製される、ピリジンに可溶でベンゼンに不溶な成分5.0〜20.0重量%、ピリジンに不溶な成分78重量%以上を含有する自己融着性炭素質粉体を成型した後、400℃から600℃までの昇温速度を20℃/h以下で焼成することを特徴とする微細な光学的異方性組織を有する炭素材料の製造方法である。
【0010】
本発明において用いられる自己融着性炭素質粉体の前駆体は、超強酸であるフッ化水素・三フッ化ホウ素の存在下で、縮合多環炭化水素またはこれを含有する物質を重合させて得られるメソフェーズピッチである。このメソフェーズピッチは、特に特開昭63−146920 号、特開平1−139621号、特開平1−254796号などに示されるように、ナフタレン、アントラセン、フェナントレン、アセナフテン、アセナフチレン、ピレン等の縮合多環炭化水素およびこれらを含有する物質を、超強酸触媒であるフッ化水素・三フッ化ホウ素の存在下で重合させて得られる。
本発明において用いられる自己融着性炭素質粉体は、この合成メソフェーズピッチから二通りの方法、すなわちメソフェ−ズピッチの熱処理あるいは酸化処理することによって調製される。
【0011】
まず熱処理の場合は、上記の合成メソフェーズピッチを引き続き非酸化性雰囲気下において熱処理したのち、これを粉砕することによって自己融着性炭素質粉体が得られる。熱処理条件については特に限定されないが、キノリンに可溶でピリジンに不溶な成分を 0.5〜1.5 重量% 、且つキノリンに不溶な成分を97重量% 以上となるような処理条件が選択される。熱処理温度は一般には 470〜490 ℃である。このようにして処理された熱改質ピッチは粉末状する。この粉末化方法、粉体形状および粒度分布は特に限定されない。
【0012】
酸化処理の場合は、上述の合成メソフェーズピッチを引き続き粉砕したのち、このピッチ粉体を酸化性雰囲気下で酸化処理することによって自己融着性炭素質粉体が得られる。粉末化方法ならびに粉体形状は特に限定されない。酸化条件は合成メソフェーズピッチの性状と酸化反応性を充分に考慮に入れ、酸化処理されたメソフェーズピッチ粉体のピリジンに可溶でベンゼンに不溶な成分が 5.0〜20.0重量% 、且つピリジンに不溶な成分が78重量% 以上となるように適切に選択することが肝要である。一般には 170〜350 ℃の範囲で酸化処理される。
【0013】
これら操作を経て得られた自己融着性炭素質粉体、すなわち熱改質メソフェーズピッチ粉体または酸化改質メソフェーズピッチ粉体は、加圧成型、好ましくは等方加圧成型により成型される。この際バインダーは特に不要である。成型体形状については、目的、用途等に応じて自由に選択できる。成型は常温で行なわれる場合と、自己融着性炭素質粉体が軟化あるいは溶融する温度域で行なわれる場合があり、これは要求される形状、性能およびコストに応じて決定される。
【0014】
成型体は引続き焼成することによって炭素材料が製造される。焼成工程は非酸化性雰囲気下、成型体を 600〜1700℃の温度に加熱して炭化することによって行われる。さらに必要に応じて、この炭化物はより高温にて黒鉛化される。従って本発明には成型体を 600〜1700℃の温度に加熱して炭化することによって得られた炭素材料と、更に高温にて黒鉛化することによって得られる炭素材料が含まれる。
【0015】
焼成後に微細なモザイク組織を具備する炭素材料を得るためには、上記自己融着性炭素質粉体からなるグリーン成型体を焼成するに際し 400℃から 600℃までの炭素化初期過程において20℃/h以下、好ましくは 5〜15℃/hの昇温速度を適用することが極めて重要である。
このように焼成することによって、焼成前の粒子がドメイン組織であるにもかかわらず、焼成後にはサブミクロンレベルの光学的異方性単位がランダムに展開した均質な微細モザイク組織に改質できる。こうして形成された組織は光学組織サイズが極めて微小であるので、黒鉛化の過程におけるクラックの発生と進展を防止でき、炭素材料の一層の高性能化と諸物性の等方性化が図られる。
【0016】
グリーン成型体を焼成するに際し 400℃から 600℃までの炭素化初期過程における昇温が20℃/hより速い場合には微細なモザイク組織は形成されず、成型体の大部分の領域は焼成前の粒子径程度の異方性単位から構成される粗く不均質な組織となる。またさらに黒鉛化すると多数のクラックが生成し、所望の光学組織が得られない。
【0017】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。ただし本発明はこれらの実施例により制限されるものではない。なお各実施例および比較例の結果を示す光学組織写真 (図1〜4)の倍率は全て同一である。
【0018】
実施例1
ナフタレン 7.0モル、フッ化水素 2.4モル、三フッ化ホウ素0.74モルを3リットルの耐酸オートクレーブに仕込み、反応圧を 25kg/cm に保ちながら 290℃に昇温後 4時間反応させた。その後オートクレーブの放出弁を開けて、常圧において実質的に全量のフッ化水素、三フッ化ホウ素をガス状で回収した。その後、窒素を吹き込みながら低沸点成分を除去したメソフェーズピッチを得た。ピッチ収率は70重量%(原料ナフタレン基準)であった。また得られたメソフェーズピッチの軟化点は 250℃、光学的異方性相含有率は100%、H/C原子比は0.60、炭化収率は87重量% であった。
【0019】
この合成メソフェーズピッチを窒素雰囲気下で 480℃まで昇温し、この温度で1時間の熱処理を行なった。得られた熱処理ピッチは、キノリンに可溶でピリジンに不溶な成分を1.0wt%、キノリンに不溶な成分を98.5wt% 含有していた。この熱処理ピッチを粉砕し、平均粒径 7μmの粉体としたのち、成型圧1.5tf/cmで室温にてプレート状(35mmx40mmx10mm) に成型した。このグリーン成型体を窒素流通下、室温から 400℃までは 300℃/hの速度で、 400℃から 600℃までは12℃/hの速度で昇温し 600℃で 2時間保持した。
【0020】
得られた炭化物は樹脂埋め後研磨し光学観察を行った。この結果、図1に示されるように炭化後の組織は均質であり、且つサブミクロンレベルの異方性単位がランダムに展開したファイン−モザイク構造であった。この炭化物の嵩密度は1.35g/cm、圧縮強度は15.6kgf/mm、曲げ強度は 7.8kgf/mm であった。
さらにこの炭化物をアルゴン流通下 300℃/hの速度で1900℃まで昇温し、この温度で 2時間持することによって黒鉛化物を得た。黒鉛化後の光学組織は図2に示されるように一層均質化し、異方性サイズの微細化が一層促進された。クラックの生成は全く認められなかった。この黒鉛化物の嵩密度は2.04g/cm、圧縮強度は25.7kgf/mm、曲げ強度は13.7kgf/mmであった。
【0021】
実施例2
実施例1と同一の合成メソフェーズピッチを粉砕し、平均粒径 7μmの粉体としたのち、空気流通下 220℃で 2時間の酸化処理を行なった。この酸化処理粉体はピリジンに可溶でベンゼンに不溶な成分を11.0重量% 、ピリジンに不溶な成分を88.5重量% 含有していた。この酸化処理粉体を実施例1と同様の条件で成型、炭化した。得られた炭化物の光学組織は実施例1の場合と同様であり、サブミクロンレベルの異方性単位がランダムに展開したファイン−モザイク構造を示していた。この炭化物の嵩密度は1.35g/cm、圧縮強度は15.6kgf/mm、曲げ強度は 7.8kgf/mmであった。
得られた炭化物ならびに黒鉛化物の光学組織は実施例1の場合と同様であり、光学組織のの微細化が一層促進され、クラックの生成は全く認められなかった。この黒鉛化物の嵩密度は2.01g/cm、圧縮強度は25.1kgf/mm、曲げ強度は13.9kgf/mmであった。
【0022】
比較例1
実施例1と同一の熱改質メソフェーズピッチ粉体を実施例1と同様な条件で成型した。このグリーン成型体を室温から 600℃まで 300℃/hの速度で昇温し、 600℃で 2時間保持した。こうして得られた炭化物の光学組織は図3に示されるように不均質であり、異方性サイズも大きく、粉砕された粒度を保持している領域が多く観察された。この炭化物の嵩密度は1.32g/cm、圧縮強度は12.9kgf/mm、曲げ強度は 6.0kgf/mmであった。
さらにこの炭化物をアルゴン流通下 300℃/hの速度で1900℃まで昇温しこの温度で 2時間持することによって黒鉛化物を得た。黒鉛化後の光学組織は図4に示されるように不均質であった。また光学的異方性サイズの比較的大きな領域にはクラックの生成が観察された。この黒鉛化物の嵩密度は1.97g/cm、圧縮強度は14.3kgf/mm、曲げ強度は 5.9kgf/mmであった。
【0023】
比較例2
実施例2と同一の酸化改質メソフェーズピッチ粉体を実施例1と同様な条件で成型した。得られたグリーン成型体を室温から 600℃まで 300℃/hの速度で昇温し 600℃で 2時間保持した。さらにこの炭化物をアルゴン流通下 300℃/hの速度で1900℃まで昇温しこの温度で 2時間保持した。
得られた炭化物の組織は、比較例1の場合と同様に不均質であり、組織サイズも大きく、粉砕時の粒径を維持していた。この炭化物の嵩密度は1.31g/cm、圧縮強度は12.7kgf/mm、曲げ強度は 5.9kgf/mmであった。
黒鉛化物の光学組織も不均質で、異方性サイズの比較的大きな領域には比較例1の場合と同様にクラックの生成が観察された。この黒鉛化物の嵩密度は1.97g/cm、圧縮強度は14.0kgf/mm、曲げ強度は 5.7kgf/mmであった。
【0024】
【発明の効果】
以上述の如く本発明の方法により成型体の炭素化初期過程における昇温速度をコントロールすることによって、炭素材料の光学組織を容易に均質な微細モザイク構造に改質できる。この結果、炭素材料製品の機械的等方性化が図られ、炭素材料製品の性能向上に寄与する。
【図面の簡単な説明】
【図1】実施例1において得られた炭化物の光学組織写真である。
【図2】実施例1において得られた黒鉛化物の光学組織写真である。
【図3】比較例1において得られた炭化物の光学組織写真である。
【図4】比較例1において得られた黒鉛化物の光学組織写真である。
[0001]
[Industrial applications]
The present invention relates to a method for producing a carbon material having a fine optically anisotropic structure. More specifically, the present invention relates to a method for producing a high-density carbon material or a carbon composite material having a structure in which optically anisotropic units at a submicron level are developed randomly.
[0002]
[Prior art]
In recent years, the demand for improved performance of specialty carbon materials and carbon composite materials has become increasingly strong, and controlling the structure and organization of carbon determines the physicochemical properties of products and further enhances their performance. It is extremely important in realizing it.
In the specialty carbon materials field, in addition to increasing the density and strength of products, the shape and size of the raw material powders are controlled to achieve a fine mosaic by controlling the shape and size of the raw material powder. There is a lot of research and development going on.
[0003]
As a method for achieving such isotropic physical properties, for example, a method using mesocarbon microbeads as a raw material, that is, an optical anisotropy generated in a process of heat-treating coal tar or petroleum heavy oil, etc. There is known a method in which small spheres are separated from a pitch matrix by a solvent, dried, pressed, and then fired. However, in such a method, it is pointed out in Japanese Patent Application Laid-Open No. 1-239058 that the texture size of the obtained carbon material does not become smaller than the grain size of meso-spherulite (10 to 20 μm), and further refinement cannot be performed. .
Also, in the method using a bulk mesophase pulverized product described in Japanese Patent Publication No. 1-58124, it has been found that the anisotropic size of the bulk mesophase does not develop finely below the pulverized particle size. No. 239058.
[0004]
On the other hand, many attempts have been made to modify the raw material powder into a fine mosaic structure in advance. For example, Japanese Patent Publication No. 58-58284 discloses a method in which semi-coke having a mosaic structure composed of extremely fine units of 1 μm or less is used as a raw material for molding. However, this method requires complicated steps such as solvent extraction and separation of raw coal in the presence of hydrogen gas, followed by further heat treatment of the extract.
[0005]
Japanese Patent Publication No. 3-64448 describes a method of adding carbon black to a pitch. Japanese Patent Application Laid-Open No. 1-239058 discloses a method of blending a resin with a pitch, followed by pulverization, molding and firing without using a binder. Thus, a method for producing an isotropic graphite material having a homogeneous mosaic structure is described. However, such a method also requires complicated steps such as mixing, kneading, and re-grinding. Further, the obtained carbon material has a low bulk density, and satisfactory performance has not always been obtained.
[0006]
In the field of carbon composite materials as well, the superiority of matrix carbon having a fine mosaic structure with respect to the development of excellent thermal shock resistance and high mechanical strength is demonstrated by International Symposium on Carbon; Toyohashi, Extended Abstract, p. 196 (1982), and the pitch / phenol resin system is described in "Carbon" vol. 28, p. 559 (1990), for a pitch / carbon black system, see “Carbon” vol. 28, p. 143 (1990) and the like, extensive research has been conducted on the interaction and carbonization.
[0007]
[Problems to be solved by the invention]
Control of carbon structure is a very important factor for high performance and homogenization of products. However, the conventional method has various disadvantages as described above.
An object of the present invention is to provide a method for producing a high-performance carbon material having a fine optically anisotropic structure from a specific mesophase pitch at low cost and stably by an extremely simple method.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and consequently found that a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of superstrong hydrogen oxyfluoride / boron trifluoride. In the process of forming a carbon material by forming a self-fusing carbonaceous powder prepared by heat-treating or oxidizing, then firing and, if necessary, graphitizing, the carbonization initial process of the molded body It has been found that the optical structure of the obtained carbon material can be modified into a uniform fine mosaic structure by controlling the heating rate in the above, and the present invention has been achieved.
[0009]
That is, the present invention is prepared by heat-treating a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride in a non-oxidizing atmosphere. Self-fusing carbonaceous powder containing 0.5 to 1.5% by weight of a component soluble in quinoline and insoluble in pyridine and 97% by weight or more of a component insoluble in quinoline, Self-fusing carbon prepared by oxidizing under an atmosphere, containing 5.0 to 20.0% by weight of a component soluble in pyridine and insoluble in benzene and 78% by weight or more of a component insoluble in pyridine. This is a method for producing a carbon material having a fine optically anisotropic structure, characterized by firing a powder at 400 ° C. to 600 ° C. at a heating rate of 20 ° C./h or less after molding.
[0010]
The precursor of the self-fusing carbonaceous powder used in the present invention is obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid. The resulting mesophase pitch. As described in JP-A-63-146920, JP-A-1-139621 and JP-A-1-254796, condensed polycyclic rings such as naphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, and pyrene are particularly preferred. It is obtained by polymerizing a hydrocarbon and a substance containing these in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid catalyst.
The self-fusing carbonaceous powder used in the present invention is prepared from this synthetic mesophase pitch by two methods, that is, heat treatment or oxidation treatment of the mesophase pitch.
[0011]
First, in the case of heat treatment, the above-mentioned synthetic mesophase pitch is successively heat-treated in a non-oxidizing atmosphere, and then crushed to obtain a self-fusing carbonaceous powder. The heat treatment conditions are not particularly limited, but treatment conditions are selected such that the components soluble in quinoline and insoluble in pyridine are 0.5 to 1.5% by weight and the components insoluble in quinoline are 97% by weight or more. You. The heat treatment temperature is generally 470-490 ° C. The heat-modified pitch thus treated is in the form of powder. The powdering method, powder shape and particle size distribution are not particularly limited.
[0012]
In the case of the oxidation treatment, the above-mentioned synthetic mesophase pitch is continuously pulverized, and then the pitch powder is subjected to an oxidation treatment in an oxidizing atmosphere to obtain a self-bonding carbonaceous powder. The powdering method and powder shape are not particularly limited. Oxidation conditions take into account the properties and oxidation reactivity of the synthesized mesophase pitch, and the components of oxidized mesophase pitch powder that are soluble in pyridine and insoluble in benzene are 5.0 to 20.0% by weight, and It is important to appropriately select the components that are insoluble in pyridine to be at least 78% by weight. Generally, the oxidation treatment is performed at a temperature in the range of 170 to 350 ° C.
[0013]
The self-fusing carbonaceous powder obtained through these operations, that is, the heat-modified mesophase pitch powder or the oxidation-modified mesophase pitch powder is molded by pressure molding, preferably isotropic pressure molding. In this case, no binder is particularly required. The shape of the molded body can be freely selected depending on the purpose, application, and the like. The molding may be performed at room temperature or in a temperature range where the self-fusing carbonaceous powder softens or melts, and is determined according to the required shape, performance and cost.
[0014]
The molded body is subsequently fired to produce a carbon material. The firing step is performed by heating the molded body to a temperature of 600 to 1700 ° C. in a non-oxidizing atmosphere to carbonize. Further, if necessary, the carbide is graphitized at a higher temperature. Therefore, the present invention includes a carbon material obtained by heating a molded body to a temperature of 600 to 1700 ° C. and carbonizing, and a carbon material obtained by graphitizing at a higher temperature.
[0015]
In order to obtain a carbon material having a fine mosaic structure after firing, when firing the green molded body made of the self-fusing carbonaceous powder, the carbonization is performed at a temperature of 20 ° C / It is very important to apply a heating rate of not more than h, preferably 5 to 15 ° C./h.
By sintering in this way, even though the particles before sintering have a domain structure, after the sintering, a submicron-level optically anisotropic unit can be modified into a homogeneous fine mosaic structure randomly developed. Since the structure thus formed has a very small optical structure size, the generation and progress of cracks during the graphitization process can be prevented, and the carbon material can be further enhanced in performance and isotropic in various physical properties.
[0016]
If the temperature rise in the initial carbonization process from 400 ° C. to 600 ° C. is faster than 20 ° C./h when firing the green molded body, a fine mosaic structure is not formed, and most of the area of the molded body is before firing. A coarse and heterogeneous structure composed of anisotropic units having a particle diameter of about Further, graphitization further generates a large number of cracks, and a desired optical structure cannot be obtained.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples. The magnifications of the optical structure photographs (FIGS. 1 to 4) showing the results of the examples and comparative examples are all the same.
[0018]
Example 1
7.0 mol of naphthalene, 2.4 mol of hydrogen fluoride, and 0.74 mol of boron trifluoride were charged into a 3 liter acid-resistant autoclave, and the temperature was raised to 290 ° C. while maintaining the reaction pressure at 25 kg / cm 2 , followed by a reaction for 4 hours. I let it. Thereafter, the release valve of the autoclave was opened, and substantially all of hydrogen fluoride and boron trifluoride were recovered in gaseous form at normal pressure. Thereafter, a mesophase pitch from which low-boiling components were removed while blowing nitrogen was obtained. The pitch yield was 70% by weight (based on the raw material naphthalene). The obtained mesophase pitch had a softening point of 250 ° C., an optically anisotropic phase content of 100%, an H / C atomic ratio of 0.60, and a carbonization yield of 87% by weight.
[0019]
The temperature of the synthesized mesophase pitch was raised to 480 ° C. in a nitrogen atmosphere, and a heat treatment was performed at this temperature for 1 hour. The resulting heat-treated pitch contained 1.0 wt% of a component soluble in quinoline and insoluble in pyridine and 98.5 wt% of a component insoluble in quinoline. This heat treatment pitch was pulverized to obtain a powder having an average particle diameter of 7 μm, and then molded into a plate (35 mm × 40 mm × 10 mm) at a molding pressure of 1.5 tf / cm 2 at room temperature. The green molded body was heated at a rate of 300 ° C./h from room temperature to 400 ° C. and at a rate of 12 ° C./h from 400 ° C. to 600 ° C. under nitrogen flow, and kept at 600 ° C. for 2 hours.
[0020]
The obtained carbide was polished after filling with a resin, and optical observation was performed. As a result, as shown in FIG. 1, the structure after carbonization was homogeneous, and had a fine-mosaic structure in which anisotropic units at the submicron level were developed at random. The bulk density of the carbides 1.35 g / cm 3, compressive strength 15.6kgf / mm 2, bending strength was 7.8kgf / mm 2.
Further, this carbide was heated to 1900 ° C. at a rate of 300 ° C./h under a flow of argon, and maintained at this temperature for 2 hours to obtain a graphitized product. As shown in FIG. 2, the optical structure after the graphitization was further homogenized, and the miniaturization of the anisotropic size was further promoted. No crack formation was observed. The bulk density of this graphitized product was 2.04 g / cm 3 , the compressive strength was 25.7 kgf / mm 2 , and the bending strength was 13.7 kgf / mm 2 .
[0021]
Example 2
The same synthetic mesophase pitch as in Example 1 was pulverized to obtain a powder having an average particle diameter of 7 μm, and then subjected to an oxidation treatment at 220 ° C. for 2 hours under flowing air. This oxidized powder contained 11.0% by weight of a component soluble in pyridine and insoluble in benzene, and 88.5% by weight of a component insoluble in pyridine. This oxidized powder was molded and carbonized under the same conditions as in Example 1. The optical structure of the obtained carbide was the same as in Example 1, and showed a fine-mosaic structure in which anisotropic units at the submicron level were developed at random. The bulk density of the carbides 1.35 g / cm 3, compressive strength 15.6kgf / mm 2, bending strength was 7.8kgf / mm 2.
The optical structures of the obtained carbides and graphitized products were the same as those in Example 1, and the miniaturization of the optical structure was further promoted, and no generation of cracks was observed. The bulk density of this graphitized product was 2.01 g / cm 3 , the compressive strength was 25.1 kgf / mm 2 , and the bending strength was 13.9 kgf / mm 2 .
[0022]
Comparative Example 1
The same thermally modified mesophase pitch powder as in Example 1 was molded under the same conditions as in Example 1. The green molded body was heated from room temperature to 600 ° C. at a rate of 300 ° C./h, and kept at 600 ° C. for 2 hours. As shown in FIG. 3, the optical structure of the carbide thus obtained was heterogeneous, had a large anisotropic size, and many regions retaining the pulverized particle size were observed. The bulk density of this carbide was 1.32 g / cm 3 , the compressive strength was 12.9 kgf / mm 2 , and the bending strength was 6.0 kgf / mm 2 .
Further, this carbide was heated to 1900 ° C. at a rate of 300 ° C./h under a flow of argon and maintained at this temperature for 2 hours to obtain a graphitized product. The optical structure after graphitization was heterogeneous as shown in FIG. Further, cracks were observed in a region having a relatively large optically anisotropic size. The bulk density of this graphitized product was 1.97 g / cm 3 , the compressive strength was 14.3 kgf / mm 2 , and the bending strength was 5.9 kgf / mm 2 .
[0023]
Comparative Example 2
The same oxidation-modified mesophase pitch powder as in Example 2 was molded under the same conditions as in Example 1. The obtained green molded body was heated from room temperature to 600 ° C. at a rate of 300 ° C./h, and kept at 600 ° C. for 2 hours. Further, this carbide was heated to 1900 ° C. at a rate of 300 ° C./h under a flow of argon and kept at this temperature for 2 hours.
The obtained carbide structure was heterogeneous as in Comparative Example 1, the structure size was large, and the particle size at the time of pulverization was maintained. The bulk density of this carbide was 1.31 g / cm 3 , the compressive strength was 12.7 kgf / mm 2 , and the bending strength was 5.9 kgf / mm 2 .
The optical structure of the graphitized material was also inhomogeneous, and crack formation was observed in a region having a relatively large anisotropic size as in Comparative Example 1. The bulk density of this graphitized product was 1.97 g / cm 3 , the compressive strength was 14.0 kgf / mm 2 , and the bending strength was 5.7 kgf / mm 2 .
[0024]
【The invention's effect】
As described above, the optical structure of the carbon material can be easily modified into a uniform fine mosaic structure by controlling the rate of temperature rise in the initial stage of carbonization of the molded article by the method of the present invention. As a result, the carbon material product is made mechanically isotropic, and contributes to the performance improvement of the carbon material product.
[Brief description of the drawings]
FIG. 1 is a photograph of an optical structure of a carbide obtained in Example 1.
FIG. 2 is an optical structure photograph of the graphitized product obtained in Example 1.
FIG. 3 is a photograph of an optical structure of a carbide obtained in Comparative Example 1.
FIG. 4 is an optical structure photograph of the graphitized product obtained in Comparative Example 1.

Claims (1)

フッ化水素・三フッ化ホウ素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られるメソフェーズピッチを非酸化性雰囲気下にて熱処理することによって調製される、キノリンに可溶でピリジンに不溶な成分0.5〜1.5重量%、キノリンに不溶な成分97重量%以上を含有する自己融着性炭素質粉体、または該メソフェーズピッチを酸化性雰囲気下にて酸化処理することによって調製される、ピリジンに可溶でベンゼンに不溶な成分5.0〜20.0重量%、ピリジンに不溶な成分78重量%以上を含有する自己融着性炭素質粉体を成型した後、400℃から600℃までの昇温速度を20℃/h以下で焼成することを特徴とする微細な光学的異方性組織を有する炭素材料の製造方法。It is prepared by heat-treating mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride in a non-oxidizing atmosphere. Self-fusing carbonaceous powder containing 0.5 to 1.5% by weight of a soluble pyridine-insoluble component and 97% by weight or more of a quinoline-insoluble component, or oxidizes the mesophase pitch in an oxidizing atmosphere. A self-fusing carbonaceous powder prepared by the treatment and containing 5.0 to 20.0% by weight of a component soluble in pyridine and insoluble in benzene and 78% by weight or more of a component insoluble in pyridine. And then calcining at a heating rate of 400 ° C. to 600 ° C. at a rate of 20 ° C./h or less. A method for producing a carbon material having a fine optically anisotropic structure.
JP31676793A 1993-12-09 1993-12-16 Method for producing carbon material having fine optically anisotropic structure Expired - Fee Related JP3599062B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31676793A JP3599062B2 (en) 1993-12-16 1993-12-16 Method for producing carbon material having fine optically anisotropic structure
US08/350,679 US5484520A (en) 1993-12-09 1994-12-07 Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
DE69417522T DE69417522T2 (en) 1993-12-09 1994-12-08 Process for the production of high-density and high-strength objects made of carbon using self-adhesive, granular carbon materials
EP94309144A EP0657400B1 (en) 1993-12-09 1994-12-08 Process for producing high-density and high-strength carbon artifacts from self-adhesive carbonaceous grains
US08/529,439 US5609800A (en) 1993-12-09 1995-09-18 Process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31676793A JP3599062B2 (en) 1993-12-16 1993-12-16 Method for producing carbon material having fine optically anisotropic structure

Publications (2)

Publication Number Publication Date
JPH07172917A JPH07172917A (en) 1995-07-11
JP3599062B2 true JP3599062B2 (en) 2004-12-08

Family

ID=18080704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31676793A Expired - Fee Related JP3599062B2 (en) 1993-12-09 1993-12-16 Method for producing carbon material having fine optically anisotropic structure

Country Status (1)

Country Link
JP (1) JP3599062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517563B2 (en) * 2002-01-07 2010-08-04 三菱瓦斯化学株式会社 Production method of carbon foam and graphite foam

Also Published As

Publication number Publication date
JPH07172917A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
Mochida et al. Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains
US4883617A (en) Method of forming binderless carbon materials
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
EP0157586A2 (en) A method for producing sintered silicon carbide articles
US5547654A (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
US5484520A (en) Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JP2824824B2 (en) Spherical carbon powder, spheroidal graphite powder and production method thereof
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0158124B2 (en)
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH0158125B2 (en)
EP1127842B1 (en) Carbon material comprising particles having a coarsely granular surface and process for the production thereof
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH0550468B2 (en)
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JP2924062B2 (en) Production method of raw material powder for carbon material
JPS6235964B2 (en)
JPH0542996B2 (en)
JPH0735299B2 (en) Method for producing isotropic high strength carbon material having low coefficient of thermal expansion
JPS6153104A (en) Production of high-strength carbon material
JPH08133714A (en) Production of self-sintering carbon and carbon material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

LAPS Cancellation because of no payment of annual fees