JPH0542996B2 - - Google Patents

Info

Publication number
JPH0542996B2
JPH0542996B2 JP63246179A JP24617988A JPH0542996B2 JP H0542996 B2 JPH0542996 B2 JP H0542996B2 JP 63246179 A JP63246179 A JP 63246179A JP 24617988 A JP24617988 A JP 24617988A JP H0542996 B2 JPH0542996 B2 JP H0542996B2
Authority
JP
Japan
Prior art keywords
pitch
fine particles
optically anisotropic
anisotropic structure
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63246179A
Other languages
Japanese (ja)
Other versions
JPH01163290A (en
Inventor
Tomei Takegawa
Tetsuo Shiode
Yasuo Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP63246179A priority Critical patent/JPH01163290A/en
Publication of JPH01163290A publication Critical patent/JPH01163290A/en
Publication of JPH0542996B2 publication Critical patent/JPH0542996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、等方性高密度炭素材料、炭素・炭
素複合材料(C/Cコンポジツト)、UHP電極等
の製造に適した微細な光学的異方性構造を有する
ピツチ微粒体の製造方法に関する。 [従来の技術および課題] 一般に放電加工用電極材やアルミ蒸着用ルツボ
あるいは核融合炉用壁材として等方性高密度炭素
材料が使用されている。この高密度炭素材料を製
造する場合、一般に石油系コークスまたは石炭系
コークスを微粉砕して骨材として用いる。骨材そ
のものでは粘結性を持たないので、そのままで加
圧成形しても成形できないため、バインダーを使
用して成形される。この成形は、性状の等方性を
図るため通常冷間静水圧プレスが行われる。得ら
れた成形体は1〜10℃/Hrという非常に遅い昇
温速度で炭化されその後2000〜3000℃の間で黒鉛
化処理される。 また、上記2元系(骨材とバインダーピツチ)
に対してバルクメソフエーズやメソカーボンマイ
クロビーズ(以下、MCBと記す)を用いる一元
系の製造方法がある。バルクメソフエーズは、石
油系あるいは石炭系ピツチを400〜450℃の範囲で
熱処理して得られるもので、光学的異方性組織
(液晶)が全面的に展開したもので、等方性高密
度炭素材の原料としては微粉砕して用いられる
(特開昭59−164604号)。これは、自己焼結性を保
持しているため、成形することで、それ自身が相
互に融着するため、バインダー等の接着剤を添加
する必要がない。また他に、MCBを用いる方法
(特開昭49−2379号)が提案されている。MCB
は、各種ピツチを熱処理する過程で生成してくる
微小な10μm程度の直径を有する異方性小球体で
あり、所定の熱処理の後、多量の溶材を加えるこ
とによつて分離精製される。この方法によつて得
られるMCBは、それ自身は光学的異方性構造を
もつているが、その形状が球形であるため、成形
に際してはランダムに配向し、成形体としては等
方性を有し、しかも、MCB自身は自己焼結性が
あるためバインダーを使用することなく、所望す
る等方性性状の炭素材料が得られる。また、この
改良的方法として各粒子間の自己焼結性の向上や
点接触による高密度化の阻害を克服するため、ピ
ツチから分離する際に、熱処理ピツチのキノリン
可溶分からなるβ成分を主体とする成分を残存さ
せること(特開昭54−157791号)、また、このβ
成分を主体とする成分をMCBの表面に付着させ
ること(特開昭62−41707号)で炭素材料の高密
度化と機械強度の向上を図ることが提案されてい
る。 しかしながら、上記のものを原料とした等方性
高密度炭素材料には次のような問題がある。 (1) 2元系のフイラーとして用いられるコークス
は、光学的異方性の展開度合が大きいため、微
粉砕しても異方性の展開が微粉砕粒度以下にな
ることはない。したがつて、性状の等方性を確
保するためには、かなり細く微粉砕しなければ
ならず高価なものとなる。また、焼成時に要す
るバインダー量もそれに応じて多量となるた
め、高密度化が図りにくい。さらに2元系では
フイラーとマトリツクスの性状の差が大きく、
微視的なレベルでの等方性化には限界がある。 (2) バルクメソフエーズを用いた場合は、自己焼
結性のため、バインダーを加える必要は免がれ
るが、異方性の展開が微粉砕粒度以下に細く展
開することはなく、製品炭素材の等方性化を図
るためには、その等方性の度合に応じて微粉砕
を図らねばならない。 (3) 最近、特にメソカーボンマイクロビーズ
(MCB)が自己焼結性のある優れた原料として
脚光を浴びているが、光学的異方性組織が
MCBの粒子全体に一様に広がつているため、
得られる製品の等方的性状は(1)、(2)と同様に製
品に含有されるMCBの粒径(約10〜20μm)以
下では期待できない。そして、MCBの場合は
通常の熱処理による限りではその収率が原料ピ
ツチをベースとして高々15重量%位であるこ
と、又その単離のためMCBを含有したピツチ
100重量部に対して200重量部以上の溶剤を使用
しなければならないという欠点があり、等方性
高密度炭素材の原料としては高価となるため工
業的にはあまり適切なプロセスとは言えない。 一方、宇宙往環機用ノーズコーン、ロケツトノ
ズルブレーキ材等として炭素繊維複合材(以下、
c/cコンポジツトと記す)が使用されている。
c/cコンポジツトは、フイラーである炭素繊維
とマトリツクスとなる樹脂あるいはバインダーピ
ツチを原料として製造される。フイラーである炭
素繊維としては、高強度品、高弾性品、通常品の
いずれも用いられており、出発原料の種類は
PAN系、ピツチ系、レーヨン系が主体である。
また、形状はトウ状の長繊維あるいはフエルト状
の短繊維で使用されている。長繊維を用いて成形
体を作る方法は、一般的なFRP成形方法が適用
されており、繊維も一軸方向に引き揃えたシート
や織物に樹脂等のバインダーを含浸させてプリプ
レグを作り、これを積層し加圧成形する方法、フ
イラメントワインデイング法によつて繊維を巻き
つけ、加熱硬化する方法がある。また、3次元以
上の多次元の交体織物を作成し、樹脂を含浸硬化
させる方法などがある。また、短繊維を使用する
場合には、開織したのちインジエクト法やスプレ
ー法によりマトリツクス樹脂と混合する。一方、
マトリツクスとしては、フエノール樹脂、フラン
樹脂等の熱硬化性樹脂が良く用いられ、エポキシ
樹脂ポリフエニレン、ポリイミド等も検討されて
いる。また、炭素収率の高く、安価なマトリツク
スとしてピツチが良く用いられている。マトリツ
クスとして上記樹脂、ピツチを加えた後、通常不
活性雰囲気中で約1000℃で処理し、マトリツクス
樹脂を炭素化する。しかし、マトリツクス樹脂の
炭化収率は高々50〜60重量%であるため、これだ
けではc/cコンポシツトの崇密度は1.2〜1.3と
低くなる。そこで、この崇密度を向上させるため
に、含浸工程によりピツチ含浸と炭化処理を繰り
返す。その結果1.7〜1.8g/cm3の崇密度の製品が
最終的に得られる。 この崇密度を高める方法として、CVD等によ
る含浸方法及び高圧炭化法が実施されており、
CVD法では試料内部に温度勾配、圧力勾配をつ
けることで内部までの含浸を効果的に行う技術が
開発されている(W.V.Kotlemsky
“Chemistry and Physics of Carbon “9174
(1973))。また、炭化収率向上の一貫として電着
性を有した自己焼結性をもつ炭素微粉末を炭素繊
維基材中に均一に分散させる工夫もなされてい
る。 しかしながら、c/cコンポジツトには次のよ
うな問題がある。 よく使用されるフエノール樹脂等熱硬化性樹脂
は、炭化収率が高々50〜60重量%でありそれだけ
では崇密度が1.2〜1.3位にしかならない。このた
め含浸処理−炭化を4〜5回以上繰り返して行わ
なければならない。 また、上記フエノルー樹脂を炭化処理して得ら
れるマトリツクスは収縮が非常に大きく繊維の抜
け出しやマトリツクスに亀裂が発生しやすいなど
の問題点がある。このようなフエノール樹脂のマ
トリツクスは、高硬度であるために耐機械衝撃性
に弱く脆い。さらに炭化組織が等方性であるた
め、各種の化学反応性、あるいは中性子イオンに
よる損傷度合が高い。また、石油系、石炭系のピ
ツチを用いる方法があるがこの方法によるもので
は熱硬化性でないため熱間成形等を行うとピツチ
が流出してしまう欠点がある。さらに、その炭化
組織は、高度に発達した光学的異方性組織を示
す。このため製造したc/cコンポジツトを使用
する際に生成する亀裂は、発達した異方性組織に
沿つて伝幡するという欠点がある。 また、製鋼用UHP電極等の炭素・黒鉛電極に
用いる特殊炭素原料が開発されている。この特殊
炭素原料は、各種の電極材のうち製鋼用アーク炉
における電極の使用条件が極めて苛酷で高い電流
密度の中で、高度な耐熱、耐機械的衝撃性が要求
される。特に、最近UHP操業をはじめとする電
気製鋼技術の進歩によつて電極の品物に対する要
求特性が益々苛酷なものになつている。この炭
素・黒鉛電極の製造方法を簡単に説明すれば、石
油コークスなどのフイラーとピツチなどのバイン
ダーとを混合し、これを所定の形状に成形したの
ち熱処理によつて炭素・黒鉛化して製品を作る。
成形は、等方性高密度炭素材に用いるCIPとは異
なり、押し出しや型込めによつて行う。焼成炭化
過程でバインダーの約30〜40重量%は、揮散して
しまうため、また、フイラーコークス粒子中に開
気孔が存在することから、ピツチの含浸、再焼成
を実施している。 しかしながら、炭素・黒鉛電極の製造には次の
ような問題がある。すなわち、使用されるバイン
ダーの歩留は、高々60〜70%重量%であり、炭化
あるいは黒鉛化した後、再び含浸−炭化を繰り返
す必要がある。また、炭化組織は、高度に発達し
た光学的異方性組織を示すので、製造した電極を
使用する際に生成する亀裂は異方性組織に沿つて
伝幡するという欠点がある。 本発明はかかる点に鑑みてなされたものであ
り、等方性高密度炭素材用自己焼結性原料、C/
Cコンポジツトマトリツクス用原料、あるいは
UHP電極等の炭素・黒鉛電極のバインダー原料
として極めて有用な微細な異方性組織を持つ微小
粒体からなるピツチ微粒体の製造方法を提供する
ものである。 [課題を解決するための手段] 上記課題を解決するために、この発明は、第1
の態様において、原料ピツチを光学的異方性組織
が20容量%以上になるまで熱処理し、続いてこれ
を不活性ガスで噴霧して平均粒径1〜300μmの
微粒体とし、さらにこの微粒体を自己焼結性を損
なわない程度に不融化処理することを特徴とする
微細な光学的異方性構造を有するピツチ微粒体の
製造方法を提供し、および第2の態様において、
原料ピツチを水添した水添ピツチを光学的異方性
組織が20容量%以上になるまで熱処理し、続いて
これを不活性ガスで噴霧して平均粒径1〜300μ
mの微粒体とし、さらにこの微粒体を自己焼結性
を損なわない程度に不融化処理することを特徴と
する微細な光学的異方性構造を有するピツチ微粒
体の製造方法を提供する。 この発明によつて得られたピツチ微粒体は、微
細な光学的異方性構造がランダムに配置された微
細な光学的異方性構造を有する。 以下、この発明をさらに詳しく説明する。 上に述べたように、この発明のピツチ微粒体
は、その組織において、ピツチマトリツクス中に
微細な、ピツチ微粒子の径よりも小さな光学的異
方性構造体がランダムに配置された組織構造を有
している。この光学的異方性構造体の大きさは、
通常、1μm以下である。 この発明の微粒体の平均粒子径は、一般に1〜
300μmであり、好ましくは1〜50μmである。こ
の微粒体は、実質的に球形であることが好まし
い。 このピツチ微粒体を製造するには、この発明の
第1の態様によれば、光学的異方性組織含有率を
20容量%以上に調製した原料ピツチを不活性ガス
中で噴霧する。ピツチとしては、コールタール系
ピツチ、石油系ピツチ等いずれのピツチをも使用
することができる。このピツチを、約350℃ない
し約500℃の温度で、不活性ガス雰囲気下あるい
は不活性ガスを吹込みながら、熱処理することに
より光学的異方性組織含有率を20容量%以上に調
整できる。 上記のように光学的異方性組織含有率を調整し
た原料ピツチを、予熱槽に投入し、撹拌して光学
的異方性組織を呈するバルクメソフエーズと等方
性マトリツクスとを均一に混合した後、既知の二
流体ノズル等を用いて噴霧する。 この発明の特に好ましい第2の態様の方法にお
いて、ピツチ微粒体を製造するに当り、水添した
ピツチを原料とした光学的異方性組織含有率20容
量%以上の原料ピツチを不活性ガスで噴霧する。 高密度、高強度炭素材料を得るためには異方性
率を非常に高めた原料を用いることが好ましい
が、あまり光学的異方性組織含有率を高めると、
噴霧時のピツチの粘度が高くなり、微粒子化する
ことが困難になり、場合によつては球形化されず
に歪んだ形状となつたり、繊維化することもあ
る。特に、噴霧により微粒子化する際に光学的異
方性組織部分と光学的等方性部分をランダムに配
置することが困難なことがある。場合によつて
は、光学的異方性部分が浮島のように弧立した微
粒体となることもある。このことは、等方性高密
度炭素材料を製造する上で好ましくない。すなわ
ち、微細な光学的異方性組織がランダムに展開せ
ず異方性組織が浮島のように弧立した微粒体を等
方性高密度炭素材料の原料とした場合、異方性組
織の浮島部分が炭素材料成形物の中に残り、微小
部分では等方性を示さず、均一性を阻害し、例え
ば放電加工用電極としての利用を考えた場合、均
一な放電が起こらず、加工面粗度に悪影響を及ぼ
す。また、炭化焼成した場合、局在化した等方性
マトリツクス部分が熱分解し、気孔が偏在して発
生することがある。そのため、得られた等方性高
密度炭素材料は高強度のものとならない恐れがあ
る。また、使用するピツチ微粒体の形状が球形で
なく、短繊維状のものを含んでいると充填性が悪
く、炭化焼成したとき、収縮率が各粒子で異なる
ため亀裂が生じやすくなる場合もある。 これに対して、第2の態様による方法における
ように、原料ピツチとして、水添したピツチを原
料とした光学的異方性組織含有率20容量%以上の
ものを使用すると、水添しないピツチに比べて光
学的異方性組織含有率が高い割に粘度が低いバル
クメソフエーズ含有ピツチが得られる。このバル
クメソフエーズ含有ピツチは、粘度が低いため、
噴霧のために予熱槽における撹拌により、バルク
メソフエーズと等方性マトリツクスとの均一混合
が充分におこなわれ、また噴霧により短繊維状の
ものはできず、微細な光学的異方性組織がランダ
ムに展開配置した球状の微粒体がほぼ完全に得ら
れ、上記問題点が解決できるのである。 ここで使用する水添前のピツチは、第1の態様
による方法におけると同様のものである。水添
は、触媒を使用する方法または溶剤を使用する方
法のいずれの方法によつてもよい。いずれの方法
によつても、製品ピツチの水素含有率は原料ピツ
チの水素含有率の0.1〜0.5%の範囲で増加する程
度に水添をおこなうことが望ましい。 水添したピツチは、光学的異方性組織含有率を
調整するために、上記第1の態様による方法と同
様に熱処理するのであるが、この場合も、光学的
異方性組織の含有率は20容量%以上とすればよ
い。噴霧は、上記第1の態様による方法と同様に
おこなうことができる。 上記いずれの方法によつて得られたピツチ微粒
体でも、微細な光学的異方性組織を固定化するた
めに、不融化処理をおこなう。この不融化は、酸
化処理または溶剤抽出処理により達成することが
できる。いずれの場合にも、不融化処理は、ピツ
チ微粒体の自己焼結性を損なわない程度におこな
う。不融化処理に使用する酸化剤は、空気などの
気体酸化剤でもよいし、硝酸などの液体酸化剤で
もよい。また不融化処理に使用する溶剤として
は、キノリン、キノリンとトルエンとの混合溶
液、アントラセン油等の石炭系重質油留分、石油
系重質油留分等を用いることができる。 こうして得られるこの発明のピツチ微粒体は、
放電加工用電極材料やアルミ蒸着用ルツボあるい
は核融合炉用炉壁材として用いられる等方性高密
度炭素材料の原料あるいは宇宙往還機用ノーズコ
ーン、ロケツトノズル、ブレーキ材等として用い
られる炭素−炭素繊維複合材(C/Cコンポジツ
ト)用マトリツクス原料、さらには製鋼用UHP
電極等の炭素・黒鉛電極に用いる特殊炭素材料に
適用でき、従来よりも均質で緻密な高強度、高密
度の炭素材料を与えることができる。 [実施例] 以下、本発明の実施例について説明する。 実施例 1 光学的異方性組織含有率70容量%のピツチ1Kg
に対して、窒素ガス2Nm3の比率で噴霧して微細
な光学的異方性構造を持つ微粒体を製造し、その
後自己焼結性を不融化処理によつてコントロール
した。これを冷間等方圧装置により3T/cm2で成
形したところ崇密度1.37/cm3の直径62mm、長さ52
mmの円柱状の成形体が得られた。この成形体を昇
温速度6℃/時で室温より900℃まで加熱し、自
然放冷を図つた。得られた成形体を0.5℃/分で
室温から2200℃まで昇温し黒鉛化したところ、
1.96g/cm3の崇密度の黒鉛化製品が得られた。得
られた製品の曲げ強度は1000Kg/cm2で電気抵抗は
1.7×10-3Ωcmであつた。また、光学顕微鏡によつ
て製品の組織を観察したところ、第1図に示す如
く、異方性の大きさが1μm程度の微小粒体1が
点在していることが分つた。また等方比は、電気
抵抗値からみると1.01以下であつた。 実施例 2 実施例1で得た微小粒体をマトリツクスとし、
PAN系炭素繊維織物と積層させ、高温成形した。
この成形物をピツチにより含浸炭化を4開繰返し
たところ、崇密度1.98g/cm3、曲げ強度1500Kg/
cm2(CF含有率34容量%)のC/Cコンポジツト
が得られた。 比較例 1 軟化点120℃の石炭系ピツチで460℃まで昇温
し、20分間保持して光学的異方性小球体(MCB)
を出現させた。この異方性小球体を分離するため
に、得られた熱処理ピツチに200重量部の石炭系
溶剤(沸点370〜538℃)を加えて稀釈した。稀釈
したピツチと溶剤の混合物を加熱遠心分離機にか
けてMCBを分離した。収率は、供給ピツチ100重
量に対して5重量部であつた。このMCBを冷間
等方圧装置により3T/cm2で成形したところ、崇
密度1.34g/cm3の直径64mm、長さ56mmの円柱状の
成形体が得られた。 この成形体を実施例1と同様の条件で炭化・黒
鉛化したところ、1.80g/cm3の崇密度の製品が得
られた。得られた製品の曲げ強度は、877Kg/cm2
で電気抵抗値は1.42×10-3Ωcmであつた。また光
学顕微鏡によつて製品の組織を観察したところ第
2図に示すように散在する微粒体の異方性は20μ
m以上の大きなものであつた。 比較例 2 実施例2で、微小粒体の代りに、炭化収率85
%、軟化点300℃のピツチ系バインダーを用い、
同様に高温成形した後4回含浸・炭化をおこなつ
て得られたC/Cコンポジツトの崇密度は1.69
g/cm3、曲げ強度は900Kg/cm3(CF含有率31容量
%)であつた。これに比べて微小粒体を用いた実
施例2の方が収縮性が良く、実質的にはCF含有
率が高いことが別つた。 実施例 3 コールタールピツチを熱処理して軟化点300℃、
光学的異方性組織含有率70容量%のバルクメソフ
エーズ含有ピツチ(BP)を調製した。このBPを
窒素ガスで噴霧して平均粒径10μmの微粒体を得
た。この微粒体を光学偏光顕微鏡を用いて観察し
たところ、いずれの微粒体中においても1μm以
下の微細な光学的異方性組織ランダムに展開して
いることが認められた。 この微粒体を空気中で不融化処理した。 また、不融化処理した微粒体を径100mm、長さ
150mmのラバー袋に入れ、1トン/cm2の圧力で冷
間静水圧プレス(CIP)成形した。得られた成形
体の密度は1.34g/cm3であつた。 この成形品を6℃/時の速度で1000℃まで昇温
して炭化処理し、さらに30℃/時の速度で2000℃
まで昇温して黒鉛化処理をおこなつた。得られた
黒鉛化成形体Aは直径約60mm、長さ40mmの大きさ
であつた。この黒鉛化成形体の性状を下記表1に
示す。 比較例 3 比較のため、10μmに微粉砕したニードルコー
クスとバインダーを、ニードルコークス:バイン
ダー=60:40(重量比)で混合し、実施例3と同
様の条件でCIP成形、炭化処理および黒鉛化処理
をおこなつた。その結果直径50mm、長さ30mmの黒
鉛化成形体Bを得た。この成形体Bの性状を表1
に併記する。
[Industrial Application Field] The present invention is directed to a pitch film having a fine optically anisotropic structure suitable for the production of isotropic high-density carbon materials, carbon/carbon composite materials (C/C composites), UHP electrodes, etc. This invention relates to a method for producing fine particles. [Prior Art and Problems] Isotropic high-density carbon materials are generally used as electrode materials for electric discharge machining, crucibles for aluminum evaporation, or wall materials for nuclear fusion reactors. When producing this high-density carbon material, petroleum-based coke or coal-based coke is generally pulverized and used as an aggregate. Since aggregate itself does not have caking properties, it cannot be molded by pressure molding as it is, so a binder is used to mold it. This molding is usually performed by cold isostatic pressing in order to achieve isotropic properties. The obtained compact is carbonized at a very slow heating rate of 1 to 10°C/Hr, and then graphitized at a temperature of 2000 to 3000°C. In addition, the above binary system (aggregate and binder pitch)
On the other hand, there is a one-component production method using bulk mesophase or mesocarbon microbeads (hereinafter referred to as MCB). Bulk mesophase is obtained by heat-treating petroleum-based or coal-based pitch in the range of 400 to 450°C, and has a fully developed optically anisotropic structure (liquid crystal), which is highly isotropic. It is used after being finely pulverized as a raw material for density carbon material (Japanese Unexamined Patent Publication No. 164604/1983). Since it maintains self-sintering properties, it fuses itself to each other when molded, so there is no need to add an adhesive such as a binder. Additionally, a method using MCB (Japanese Patent Laid-Open No. 49-2379) has been proposed. MCB
are small anisotropic spherules with a diameter of about 10 μm that are produced during the heat treatment process of various pitches, and are separated and purified by adding a large amount of solvent after the specified heat treatment. The MCB obtained by this method itself has an optically anisotropic structure, but since its shape is spherical, it is randomly oriented during molding, and the molded product has isotropy. Moreover, since MCB itself has self-sintering properties, a carbon material with desired isotropic properties can be obtained without using a binder. In addition, as an improved method, in order to improve the self-sintering property between each particle and to overcome the inhibition of high density due to point contact, when separating from the pitch, the β component consisting of the quinoline-soluble component of the heat-treated pitch is mainly removed. This β
It has been proposed to increase the density of carbon materials and improve their mechanical strength by attaching components such as carbon dioxide to the surface of MCB (Japanese Unexamined Patent Publication No. 62-41707). However, isotropic high-density carbon materials made from the above materials have the following problems. (1) Coke used as a binary filler has a large degree of development of optical anisotropy, so even if it is pulverized, the development of anisotropy will not be lower than the size of the pulverized particles. Therefore, in order to ensure isotropy in properties, it must be pulverized into a very fine powder, which results in an expensive product. Furthermore, the amount of binder required during firing is correspondingly large, making it difficult to achieve high density. Furthermore, in binary systems, there is a large difference in the properties of the filler and matrix.
There are limits to isotropy at the microscopic level. (2) When bulk mesophase is used, it is self-sintering, so there is no need to add a binder, but the anisotropy does not develop below the finely pulverized particle size, and the product charcoal In order to make the material isotropic, it is necessary to pulverize it according to the degree of isotropy. (3) Recently, mesocarbon microbeads (MCB) in particular have been in the spotlight as an excellent raw material with self-sintering properties, but they have an optically anisotropic structure.
Because it is uniformly spread throughout the MCB particles,
Similar to (1) and (2), the isotropic properties of the obtained product cannot be expected if the particle size of the MCB contained in the product is less than (approximately 10 to 20 μm). In the case of MCB, as far as ordinary heat treatment is concerned, the yield is at most about 15% by weight based on the raw material pitch, and in order to isolate MCB, pitch containing MCB is
It has the disadvantage that more than 200 parts by weight of solvent must be used per 100 parts by weight, and it is expensive as a raw material for isotropic high-density carbon material, so it is not a very suitable process from an industrial perspective. . On the other hand, carbon fiber composite materials (hereinafter referred to as
c/c composite) is used.
C/C composites are manufactured using carbon fiber as a filler and resin or binder pitch as a matrix. High-strength, high-elasticity, and regular carbon fibers are used as fillers, and the types of starting materials vary.
The main materials are PAN, pitch, and rayon.
In addition, it is used in the form of tow-like long fibers or felt-like short fibers. The general FRP molding method is used to make molded objects using long fibers, and prepreg is created by impregnating a sheet or fabric with fibers aligned in a uniaxial direction with a binder such as resin. There are a method of laminating and press forming, and a method of winding fibers using a filament winding method and curing them by heating. Further, there is a method of creating a multidimensional interwoven fabric having three or more dimensions, and impregnating and curing the fabric with a resin. When short fibers are used, they are opened and then mixed with a matrix resin by an injection method or a spray method. on the other hand,
As the matrix, thermosetting resins such as phenol resins and furan resins are often used, and epoxy resins such as polyphenylene and polyimide are also being considered. In addition, pitch is often used as a matrix that has a high carbon yield and is inexpensive. After adding the above-mentioned resin and pitch as a matrix, the matrix resin is usually treated at about 1000° C. in an inert atmosphere to carbonize the matrix resin. However, since the carbonization yield of the matrix resin is at most 50 to 60% by weight, this alone results in the c/c composite having a low density of 1.2 to 1.3. Therefore, in order to improve this density, pitch impregnation and carbonization treatment are repeated in the impregnation process. As a result, a product with a density of 1.7 to 1.8 g/cm 3 is finally obtained. As a method to increase this density, impregnation methods such as CVD and high-pressure carbonization methods are being implemented.
In the CVD method, a technology has been developed that effectively impregnates the inside of the sample by creating a temperature and pressure gradient inside the sample (WV Kotlemsky
“Chemistry and Physics of Carbon “9174
(1973)). Furthermore, as part of the effort to improve the carbonization yield, efforts have been made to uniformly disperse carbon fine powder with electrodeposition and self-sintering properties into the carbon fiber base material. However, the c/c composite has the following problems. Commonly used thermosetting resins such as phenolic resins have a carbonization yield of at most 50 to 60% by weight, which alone results in a density of only 1.2 to 1.3. For this reason, the impregnation treatment and carbonization must be repeated 4 to 5 times or more. Furthermore, the matrix obtained by carbonizing the above-mentioned phenolic resin has problems such as very large shrinkage, which makes it easy for fibers to come out and cracks to occur in the matrix. Since such a phenolic resin matrix has high hardness, it has low mechanical impact resistance and is brittle. Furthermore, since the carbonized structure is isotropic, the degree of damage caused by various chemical reactivity or neutron ions is high. Further, there is a method using petroleum-based or coal-based pitch, but this method has the disadvantage that the pitch flows out when hot forming is performed because it is not thermosetting. Furthermore, the carbonized structure exhibits a highly developed optically anisotropic structure. Therefore, there is a drawback that cracks generated when using the manufactured C/C composite propagate along the developed anisotropic structure. Additionally, special carbon raw materials have been developed for use in carbon/graphite electrodes such as UHP electrodes for steelmaking. This special carbon raw material is required to have a high degree of heat resistance and mechanical shock resistance in the extremely severe and high current density of electrodes used in steelmaking arc furnaces among various electrode materials. In particular, with recent advances in electric steel manufacturing technology including UHP operations, the required characteristics for electrode products have become increasingly severe. The manufacturing method for carbon/graphite electrodes is simply explained by mixing a filler such as petroleum coke and a binder such as pitch, forming the mixture into a predetermined shape, and then heat-treating it to carbon/graphitize the product. make.
Unlike CIP, which is used for isotropic high-density carbon materials, molding is performed by extrusion or mold filling. Because approximately 30 to 40% by weight of the binder is volatilized during the firing and carbonization process, and because open pores exist in the filler coke particles, pitch is impregnated and re-fired. However, manufacturing carbon/graphite electrodes has the following problems. That is, the yield of the binder used is at most 60 to 70% by weight, and after carbonization or graphitization, it is necessary to repeat impregnation and carbonization again. Furthermore, since the carbonized structure exhibits a highly developed optically anisotropic structure, there is a drawback that cracks generated when using the manufactured electrode propagate along the anisotropic structure. The present invention has been made in view of these points, and provides a self-sintering raw material for isotropic high-density carbon material, C/
C raw material for composite matrix, or
The present invention provides a method for producing pitch fine particles having a fine anisotropic structure that is extremely useful as a binder raw material for carbon/graphite electrodes such as UHP electrodes. [Means for Solving the Problems] In order to solve the above problems, the present invention provides the first
In this embodiment, the raw material pitch is heat-treated until the optically anisotropic structure becomes 20% by volume or more, and then this is atomized with an inert gas to form fine particles with an average particle size of 1 to 300 μm, and the fine particles are In a second aspect, there is provided a method for producing pitch fine particles having a fine optically anisotropic structure, which is characterized by subjecting Pitch fine particles to an infusible treatment to an extent that does not impair self-sintering properties, and in a second aspect,
The hydrogenated pitch obtained by hydrogenating the raw material pitch is heat-treated until the optically anisotropic structure becomes 20% by volume or more, and then it is sprayed with an inert gas to obtain an average particle size of 1 to 300μ.
Provided is a method for producing pitch fine grains having a fine optically anisotropic structure, characterized in that the fine grains are made into fine grains having a diameter of m, and the fine grains are treated to be infusible to an extent that does not impair self-sintering properties. The pitch fine particles obtained by this invention have a fine optically anisotropic structure in which fine optically anisotropic structures are randomly arranged. This invention will be explained in more detail below. As mentioned above, the pitch fine particles of the present invention have a structure in which fine optically anisotropic structures smaller than the diameter of the pitch fine particles are randomly arranged in the pitch matrix. have. The size of this optically anisotropic structure is
Usually, it is 1 μm or less. The average particle diameter of the fine particles of this invention is generally 1 to 1.
The thickness is 300 μm, preferably 1 to 50 μm. Preferably, the fine particles are substantially spherical. According to the first aspect of the present invention, in order to produce the pitch fine particles, the optically anisotropic structure content is
A raw material pitch prepared to a volume of 20% or more is sprayed in an inert gas. As the pitch, any pitch such as coal tar pitch or petroleum pitch can be used. By heat-treating this pitch at a temperature of about 350° C. to about 500° C. in an inert gas atmosphere or while blowing inert gas, the optically anisotropic structure content can be adjusted to 20% by volume or more. The raw material pitch with the optically anisotropic structure content adjusted as described above is placed in a preheating tank and stirred to uniformly mix the bulk mesophase exhibiting an optically anisotropic structure and the isotropic matrix. After that, it is sprayed using a known two-fluid nozzle or the like. In the method of the second particularly preferred embodiment of the present invention, in producing pitch fine particles, raw pitch made from hydrogenated pitch and having an optically anisotropic structure content of 20% by volume or more is heated with an inert gas. Spray. In order to obtain a high-density, high-strength carbon material, it is preferable to use raw materials with extremely high anisotropy, but if the optically anisotropic structure content is increased too much,
The viscosity of the pitch during spraying becomes high, making it difficult to form fine particles, and in some cases, the particles may not become spherical but have a distorted shape or become fibrous. In particular, when atomizing particles by spraying, it may be difficult to randomly arrange optically anisotropic structural parts and optically isotropic parts. In some cases, the optically anisotropic portion may form fine grains that stand up like floating islands. This is not preferable in producing an isotropic high-density carbon material. In other words, when fine grains in which the fine optically anisotropic structure does not develop randomly and the anisotropic structure stands up like a floating island are used as a raw material for an isotropic high-density carbon material, floating islands with an anisotropic structure Some parts remain in the carbon material molded product, and the micro parts do not show isotropy, impeding uniformity. For example, when considering use as an electrode for electrical discharge machining, uniform discharge does not occur and the machined surface becomes rough. It has a negative impact on the degree. Furthermore, when carbonized and fired, localized isotropic matrix portions may be thermally decomposed and unevenly distributed pores may be generated. Therefore, the obtained isotropic high-density carbon material may not have high strength. In addition, if the shape of the pitch fine particles used is not spherical and contains short fibers, the filling properties will be poor, and when carbonized and fired, each particle may have a different shrinkage rate, making it easier to crack. . On the other hand, as in the method according to the second aspect, if hydrogenated pitch is used as the raw material pitch and the optically anisotropic structure content is 20% or more by volume, the pitch is not hydrogenated. In comparison, a bulk mesophase-containing pitch having a high content of optically anisotropic structure and a low viscosity can be obtained. This bulk mesophase-containing pitch has a low viscosity, so
By stirring in the preheating tank for spraying, the bulk mesophase and the isotropic matrix are sufficiently mixed, and short fibers are not formed by spraying, and a fine optically anisotropic structure is formed. Spherical fine particles randomly spread and arranged are almost completely obtained, and the above-mentioned problems can be solved. The pitch used here before hydrogenation is the same as in the method according to the first embodiment. Hydrogenation may be carried out by either a method using a catalyst or a method using a solvent. In either method, it is desirable to carry out hydrogenation to such an extent that the hydrogen content of the product pitch increases within the range of 0.1 to 0.5% of the hydrogen content of the raw material pitch. In order to adjust the content of the optically anisotropic structure, the hydrogenated pitch is heat treated in the same manner as in the method according to the first aspect, but in this case as well, the content of the optically anisotropic structure is It may be 20% by volume or more. Spraying can be performed in the same manner as in the method according to the first aspect. Pitch fine particles obtained by any of the above methods are subjected to infusibility treatment in order to fix the fine optically anisotropic structure. This infusibility can be achieved by oxidation treatment or solvent extraction treatment. In either case, the infusibility treatment is carried out to the extent that the self-sintering properties of the pitch fine particles are not impaired. The oxidizing agent used in the infusibility treatment may be a gaseous oxidizing agent such as air, or a liquid oxidizing agent such as nitric acid. Further, as the solvent used for the infusibility treatment, quinoline, a mixed solution of quinoline and toluene, a coal-based heavy oil fraction such as anthracene oil, a petroleum-based heavy oil fraction, etc. can be used. The pitch fine particles of this invention obtained in this way are:
Raw materials for isotropic high-density carbon materials used as electrode materials for electrical discharge machining, crucibles for aluminum evaporation, and wall materials for nuclear fusion reactors, and carbon-carbon used as nose cones for spacecraft, rocket nozzles, brake materials, etc. Matrix raw materials for fiber composite materials (C/C composites), and UHP for steel manufacturing
It can be applied to special carbon materials used in carbon/graphite electrodes, etc., and can provide carbon materials that are more homogeneous, dense, high strength, and high density than conventional ones. [Examples] Examples of the present invention will be described below. Example 1 1 kg of pitch with optically anisotropic structure content of 70% by volume
On the other hand, fine particles with a fine optically anisotropic structure were produced by spraying nitrogen gas at a ratio of 2Nm 3 , and then the self-sintering property was controlled by an infusibility treatment. This was molded at 3T/cm 2 using a cold isostatic pressure machine, resulting in a density of 1.37/cm 3 , a diameter of 62 mm, and a length of 52 mm.
A cylindrical molded body with a diameter of mm was obtained. This molded body was heated from room temperature to 900°C at a heating rate of 6°C/hour, and allowed to cool naturally. When the obtained molded body was heated from room temperature to 2200°C at a rate of 0.5°C/min and graphitized,
A graphitized product with a density of 1.96 g/cm 3 was obtained. The bending strength of the obtained product is 1000Kg/cm 2 and the electrical resistance is
It was 1.7×10 -3 Ωcm. Further, when the structure of the product was observed using an optical microscope, it was found that microscopic particles 1 having an anisotropy size of about 1 μm were scattered as shown in FIG. In addition, the isotropic ratio was 1.01 or less when viewed from the electrical resistance value. Example 2 The microparticles obtained in Example 1 were used as a matrix,
It was laminated with PAN-based carbon fiber fabric and molded at high temperature.
When this molded product was impregnated and carbonized 4 times using pitch, the density was 1.98 g/cm 3 and the bending strength was 1500 kg/cm 3 .
A C/C composite of cm 2 (CF content 34% by volume) was obtained. Comparative Example 1 A coal-based pitch with a softening point of 120°C was heated to 460°C and held for 20 minutes to form optically anisotropic microspheres (MCBs).
appeared. In order to separate the anisotropic spherules, the resulting heat-treated pitch was diluted with 200 parts by weight of a coal-based solvent (boiling point 370-538°C). A mixture of diluted pitch and solvent was applied to a heated centrifuge to separate MCB. The yield was 5 parts by weight based on 100 weight feed pitches. When this MCB was molded at 3T/cm 2 using a cold isostatic pressure device, a cylindrical molded body with a diameter of 64 mm and a length of 56 mm and a density of 1.34 g/cm 3 was obtained. When this molded body was carbonized and graphitized under the same conditions as in Example 1, a product with a density of 1.80 g/cm 3 was obtained. The bending strength of the obtained product is 877Kg/cm 2
The electrical resistance value was 1.42×10 -3 Ωcm. In addition, when the structure of the product was observed using an optical microscope, the anisotropy of the scattered fine particles was 20μ as shown in Figure 2.
It was larger than m. Comparative Example 2 In Example 2, instead of fine particles, carbonization yield of 85
%, using a pitch binder with a softening point of 300℃,
Similarly, the density of the C/C composite obtained by performing high-temperature molding and impregnation and carbonization four times was 1.69.
g/cm 3 , and the bending strength was 900 Kg/cm 3 (CF content: 31% by volume). In comparison, Example 2 using microparticles had better shrinkage and substantially higher CF content. Example 3 Coal tar pitch was heat-treated to a softening point of 300°C.
A bulk mesophase-containing pitch (BP) with an optically anisotropic structure content of 70% by volume was prepared. This BP was atomized with nitrogen gas to obtain fine particles with an average particle size of 10 μm. When these fine particles were observed using an optical polarization microscope, it was found that fine optical anisotropic structures of 1 μm or less were randomly developed in each of the fine particles. The fine particles were treated to be infusible in air. In addition, infusible fine particles with a diameter of 100 mm and a length of
It was placed in a 150 mm rubber bag and molded by cold isostatic pressing (CIP) at a pressure of 1 ton/cm 2 . The density of the obtained molded product was 1.34 g/cm 3 . This molded product was carbonized by increasing the temperature to 1000℃ at a rate of 6℃/hour, and then to 2000℃ at a rate of 30℃/hour.
Graphitization treatment was performed by raising the temperature to . The obtained graphitized molded body A had a diameter of about 60 mm and a length of 40 mm. The properties of this graphitized compact are shown in Table 1 below. Comparative Example 3 For comparison, needle coke finely pulverized to 10 μm and a binder were mixed at a needle coke:binder = 60:40 (weight ratio), and subjected to CIP molding, carbonization treatment, and graphitization under the same conditions as in Example 3. I processed it. As a result, a graphitized molded body B having a diameter of 50 mm and a length of 30 mm was obtained. Table 1 shows the properties of this molded body B.
Also listed in

【表】 また、黒鉛化成形体AおよびBを顕微鏡で比較
したところ、成形体Aは空隙が殆どなく、1μm
の微細な光学的異方性組織が展開しているのに対
し、成形体Bは光学的異方性組織の大きさが最大
10μmと大きく、気孔も多数生成していた。 比較例 4 中ピツチ(軟化点87℃)に350℃で3時間窒素
ガスを吹込みながら熱改質をおこなつた。得られ
た熱処理ピツチは光学的に等方性であつた。この
ピツチを、窒素ガスで噴霧して平均粒径10μmの
微粒体を得た。この微粒体を光学偏光顕微鏡で観
察したところ、実施例3の微粒体のような微細な
異方性組織がランダムに展開している状況が観察
できなく、その代りメソフエーズ小球体が点在し
ているのが観察された。 この微粒体を空気中にて0.2、および6時間そ
れぞれ不融化処理した。各不融化微粒体を実施例
3と同様にCIP成形、炭化処理、黒鉛化処理をお
こなつて黒鉛化成形体(C、D、E)を得た。こ
れら黒鉛化成形体の性状を下記表2に示す。
[Table] In addition, when graphitized molded products A and B were compared under a microscope, molded product A had almost no voids, with a diameter of 1 μm.
A fine optically anisotropic structure develops in the molded body B, whereas the optically anisotropic structure in the molded body B has the largest size.
It was large at 10 μm and had many pores. Comparative Example 4 Thermal reforming was carried out at 350°C while blowing nitrogen gas into medium pitch (softening point: 87°C) for 3 hours. The resulting heat-treated pitch was optically isotropic. This pitch was atomized with nitrogen gas to obtain fine particles with an average particle size of 10 μm. When this particulate material was observed with an optical polarization microscope, it was not possible to observe a situation in which a fine anisotropic structure was randomly developed as in the particulate material of Example 3, but instead, mesophase spherules were scattered. It was observed that there were. The fine particles were subjected to infusibility treatment in air for 0.2 and 6 hours, respectively. Each infusible fine particle was subjected to CIP molding, carbonization treatment, and graphitization treatment in the same manner as in Example 3 to obtain graphitized molded bodies (C, D, E). The properties of these graphitized molded bodies are shown in Table 2 below.

【表】 実施例 4 触媒水添したコールタール系ピツチ(軟化点
150℃)を、窒素を吹込みながら反応温度440℃で
熱処理し、光学的異方性組織含有率70%のバルク
メソフエーズ含有ピツチを調製した、このバルク
メソフエーズ含有ピツチを予熱し、これを、加熱
した窒素ガスで二流体ノズルを用いて噴霧した。
こうして、微細な光学的異方性組織がランダムに
展開した球状ピツチ微粒体(平均粒径10μm)を
得た。このピツチ微粒体を空気を酸化剤として不
融化処理し、その組織を固定化した。この酸化処
理したピツチ微粒体を用い、3T/cm2でCIP成形
し、直径50mm、長さ50mmの成形体を得た。 この成形体を6℃/時の速度で1000℃まで昇温
した後、高周波加熱で2200℃まで昇温し黒鉛化し
た。この黒鉛化成形体の曲げ強度は1200Kg/cm2
あつた。また、密度も1.97g/cm3であり、高強度
で高密度の等方性炭素材料が得られた。 実施例 5 溶剤水添した石油系ピツチ(軟化点120℃)を
窒素ガス雰囲気下で反応温度420℃で熱処理し、
光学的異方性組織含有率60容量%のバルクメソフ
エーズ含有ピツチを調製した。このピツチを、実
施例4と同様に噴霧、不融化処理し、微細な光学
的異方性組織がランダムに展開した微粒体を得
た。この不融化処理したピツチ微粒体を用い、
2T/cm2でCIP成形し、直径50mm、長さ50mmの成
形体を得た。 この成形体を6℃/時の速度で1000℃まで昇温
した後、高周波加熱で2200℃まで昇温し黒鉛化し
た。この黒鉛化成形体の曲げ強度は1000Kg/cm2
あつた。また、密度も1.93g/cm3であり、高強度
で高密度の等方性炭素材料が得られた。 [発明の効果] 以上述べたこの発明によれば、次のような効果
を奏する。 (1) 等方性高密度炭素材の原料として、本発明の
微粒体を適用することにより、製品の性状の高
度な等方性が図れ、放電加工用電極としての用
途範囲の拡大が図れる。 (2) 本発明の微粒体をC/Cコンポジツトのマト
リツクスに適用すると、そのマトリツクスの炭
化組織が光学的に微細な異方性組織を有するた
め、亀裂の伝幡を抑制することができ、高強度
高靭性のC/Cコンポジツトができる。 更に、通常のバインダーピツチ、樹脂に比べ
て炭化収率が高く92重量%の炭化収率が1000℃
の熱処理で得られることが確認されている。 (3) 本発明の微粒体を、UHP電極等、炭素・黒
鉛電極の製造工程におけるバインダーピツチ原
料として用いることにより、マトリツクスの光
学的異方性組織の展開を微細なものとすること
ができるため、製品の電極の機械強度の向上が
図れる。更に炭化収率を上げることができる。 (4) 特に、水添したピツチを原料とする本発明の
ピツチ微粒体の製造方法によれば、微細な光学
的異方性組織がランダムに展開したピツチ微粒
体を実質的に球の形態で効率よく製造すること
ができる。
[Table] Example 4 Catalytically hydrogenated coal tar pitch (softening point
150℃) was heat-treated at a reaction temperature of 440℃ while blowing nitrogen to prepare a bulk mesophase-containing pitch with an optically anisotropic structure content of 70%.This bulk mesophase-containing pitch was preheated, This was sprayed with heated nitrogen gas using a two-fluid nozzle.
In this way, spherical pitch fine particles (average particle size 10 μm) in which a fine optically anisotropic structure was randomly developed were obtained. The pitch fine particles were treated to be infusible using air as an oxidizing agent, and the structure thereof was fixed. The oxidized pitch fine particles were subjected to CIP molding at 3T/cm 2 to obtain a molded product with a diameter of 50 mm and a length of 50 mm. The temperature of this molded body was raised to 1000°C at a rate of 6°C/hour, and then the temperature was raised to 2200°C by high-frequency heating to graphitize it. The bending strength of this graphitized compact was 1200 Kg/cm 2 . Furthermore, the density was 1.97 g/cm 3 , and a high-strength, high-density isotropic carbon material was obtained. Example 5 Solvent hydrogenated petroleum pitch (softening point 120°C) was heat treated at a reaction temperature of 420°C in a nitrogen gas atmosphere,
A bulk mesophase containing pit with an optically anisotropic structure content of 60% by volume was prepared. This pitch was sprayed and treated to be infusible in the same manner as in Example 4 to obtain fine particles in which a fine optically anisotropic structure was randomly developed. Using this infusible Pitschi fine particles,
CIP molding was performed at 2T/cm 2 to obtain a molded product with a diameter of 50 mm and a length of 50 mm. The temperature of this molded body was raised to 1000°C at a rate of 6°C/hour, and then the temperature was raised to 2200°C by high-frequency heating to graphitize it. The bending strength of this graphitized compact was 1000 Kg/cm 2 . Furthermore, the density was 1.93 g/cm 3 , and a high-strength, high-density isotropic carbon material was obtained. [Effects of the Invention] According to the invention described above, the following effects are achieved. (1) By applying the fine particles of the present invention as a raw material for isotropic high-density carbon material, it is possible to achieve a high degree of isotropy in the properties of the product, and to expand the range of applications as electrodes for electrical discharge machining. (2) When the fine particles of the present invention are applied to the matrix of a C/C composite, the carbonized structure of the matrix has an optically fine anisotropic structure, so it is possible to suppress the propagation of cracks and increase the A C/C composite with high strength and high toughness can be produced. Furthermore, the carbonization yield is higher than that of ordinary binder pitch and resin, with a carbonization yield of 92% by weight at 1000℃.
It has been confirmed that it can be obtained by heat treatment. (3) By using the fine particles of the present invention as a binder pitch raw material in the manufacturing process of carbon/graphite electrodes such as UHP electrodes, the development of the optically anisotropic structure of the matrix can be made finer. , the mechanical strength of the product electrode can be improved. Furthermore, the carbonization yield can be increased. (4) In particular, according to the method for producing pitchi fine particles of the present invention using hydrogenated pitch as a raw material, pitchi fine particles in which a fine optically anisotropic structure is randomly developed can be made into a substantially spherical shape. It can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、ピツチ微粒体の微小粒
体の異方性の大きさを示す説明図である。 1,2……微小粒体。
FIG. 1 and FIG. 2 are explanatory diagrams showing the magnitude of anisotropy of microparticles of pitch microparticles. 1, 2...Minute particles.

Claims (1)

【特許請求の範囲】 1 原料ピツチを光学的異方性組織が20容量%以
上になるまで熱処理し、続いてこれを不活性ガス
で噴霧して平均粒径1〜300μmの微粒体とし、
さらにこの微粒体を自己焼結性を損なわない程度
に不融化処理することを特徴とする微細な光学的
異方性構造を有するピツチ微粒体の製造方法。 2 原料ピツチを水添した水添ピツチを光学的異
方性組織が20容量%以上になるまで熱処理し、続
いてこれを不活性ガスで噴霧して平均粒径1〜
300μmの微粒体とし、さらにこの微粒体を自己
焼結性を損なわない程度に不融化処理することを
特徴とする微細な光学的異方性構造を有するピツ
チ微粒体の製造方法。
[Claims] 1. A raw material pitch is heat-treated until the optically anisotropic structure becomes 20% by volume or more, and then atomized with an inert gas to form fine particles with an average particle size of 1 to 300 μm,
A method for producing pitch fine particles having a fine optically anisotropic structure, which further comprises subjecting the fine particles to an infusible treatment to an extent that does not impair self-sintering properties. 2. Hydrogenated raw material pitch is heat-treated until the optically anisotropic structure becomes 20% by volume or more, and then it is sprayed with an inert gas to reduce the average particle size to 1 to 10% by volume.
A method for producing pitch fine particles having a fine optically anisotropic structure, characterized by forming fine particles with a diameter of 300 μm, and further subjecting the fine particles to an infusible treatment to an extent that does not impair self-sintering properties.
JP63246179A 1987-09-30 1988-09-30 Fine particle of pitch having microscopic optically anisotropic structure and production thereof Granted JPH01163290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246179A JPH01163290A (en) 1987-09-30 1988-09-30 Fine particle of pitch having microscopic optically anisotropic structure and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24617087 1987-09-30
JP62-246170 1987-09-30
JP63246179A JPH01163290A (en) 1987-09-30 1988-09-30 Fine particle of pitch having microscopic optically anisotropic structure and production thereof

Publications (2)

Publication Number Publication Date
JPH01163290A JPH01163290A (en) 1989-06-27
JPH0542996B2 true JPH0542996B2 (en) 1993-06-30

Family

ID=17144553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246179A Granted JPH01163290A (en) 1987-09-30 1988-09-30 Fine particle of pitch having microscopic optically anisotropic structure and production thereof

Country Status (1)

Country Link
JP (1) JPH01163290A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395291A (en) * 1986-10-09 1988-04-26 Kawasaki Steel Corp Production of optically anisotropic spherule

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395291A (en) * 1986-10-09 1988-04-26 Kawasaki Steel Corp Production of optically anisotropic spherule

Also Published As

Publication number Publication date
JPH01163290A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JP3502490B2 (en) Carbon fiber material and method for producing the same
US4883617A (en) Method of forming binderless carbon materials
JP2004119386A (en) Carbon fiber material and its composite material
JPH0542996B2 (en)
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JPH05330915A (en) Production of carbon/carbon composite material
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
KR970008693B1 (en) Process for the preparation of carbon composite material
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63112463A (en) Manufacture of carbon fiber/carbon composite material
JPH0456788B2 (en)
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH0550468B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH0512398B2 (en)
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH05345666A (en) Production of formed carbon material
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH07215775A (en) Production of carbon-carbon composite material
JPS6236465A (en) Composition for formation of carbide having fine optical texture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees