JPH04295060A - Production of heat resistant inorganic substance-carbon composite material - Google Patents

Production of heat resistant inorganic substance-carbon composite material

Info

Publication number
JPH04295060A
JPH04295060A JP3058708A JP5870891A JPH04295060A JP H04295060 A JPH04295060 A JP H04295060A JP 3058708 A JP3058708 A JP 3058708A JP 5870891 A JP5870891 A JP 5870891A JP H04295060 A JPH04295060 A JP H04295060A
Authority
JP
Japan
Prior art keywords
heat
resistant inorganic
composite material
carbon composite
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3058708A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sutani
酢谷 潔
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3058708A priority Critical patent/JPH04295060A/en
Publication of JPH04295060A publication Critical patent/JPH04295060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a heat resistant inorg. substance-carbon composite material having high bending strength at a low cost. CONSTITUTION:Starting material contg. 1-60vol.% powder of one or more kinds of heat resistant inorg. substances selected among alumina, silicon carbide, silicon dioxide, boron carbide, silicon nitride, boron nitride, silicon and boron and 15-35vol.% pitch binder is mixed, press-molded at 480-600 deg.C and fired under ordinary pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、機械工具品、たとえば
自動車などのクラッチ、ブレーキなどに使用される耐熱
・耐摩擦・耐酸化性等に優れた非鉄金属焼結炭素材につ
き、曲げ強度の飛躍的向上を図った耐熱性無機物質/炭
素複合材の製造方法に関する。
[Industrial Application Field] The present invention relates to a nonferrous metal sintered carbon material with excellent heat resistance, friction resistance, oxidation resistance, etc. used in mechanical tools such as clutches and brakes of automobiles, etc. This invention relates to a method for producing a heat-resistant inorganic material/carbon composite material that has been dramatically improved.

【0002】0002

【従来の技術】従来より、耐熱性、耐摩擦性および耐酸
化性に優れた耐熱性無機物質または炭素複合材の製造方
法としては各種のものが提案されている。たとえば、第
1の方法としては、特開昭52−105917号公報に
コークスと炭化ホウ素を200kg/cm2以上の加圧
下で、かつ2000℃以上で焼結する方法の開示がある
。また、第2の方法としては、特開昭54−81315
号公報に炭化ホウ素25〜60体積%、遊離炭素50〜
5体積%からなり、熱硬化性樹脂で結合された密度1.
4〜1.8g/cm3 の炭化ホウ素/炭素複合材の製
造方法の開示がある。また、第3の方法としては、特開
昭62−108767号公報にピッチを熱処理して生成
したメソフェーズ小球体100重量部と、耐熱性無機材
質粒子(炭化ホウ素B4 C)1〜50重量部を常温で
成型後、焼成する方法の開示がある。さらに、第4の方
法としては、第3の方法の改良方法に係り、特開平1−
100063号公報にメソフェーズ小球体を粉砕して微
粉化するとともに、焼成時に減圧し、焼結助材として人
造黒鉛を添加して強度増加を図る方法の開示がある。
BACKGROUND OF THE INVENTION Various methods have been proposed so far for producing heat-resistant inorganic materials or carbon composite materials having excellent heat resistance, friction resistance, and oxidation resistance. For example, as a first method, JP-A-52-105917 discloses a method in which coke and boron carbide are sintered under pressure of 200 kg/cm 2 or more and at 2000° C. or more. In addition, as a second method, Japanese Patent Application Laid-Open No. 54-81315
The publication contains 25-60% by volume of boron carbide and 50-60% of free carbon.
5% by volume, bonded with thermosetting resin, density 1.
There is a disclosure of a method for producing a boron carbide/carbon composite with a weight of 4 to 1.8 g/cm3. In addition, as a third method, 100 parts by weight of mesophase small spheres produced by heat-treating pitch and 1 to 50 parts by weight of heat-resistant inorganic material particles (boron carbide B4C) are disclosed in JP-A-62-108767. There is a disclosure of a method of molding at room temperature and then firing. Furthermore, the fourth method relates to an improved method of the third method, and is
Japanese Patent No. 100063 discloses a method in which mesophase small spheres are pulverized into fine powder, pressure is reduced during firing, and artificial graphite is added as a sintering aid to increase strength.

【0003】0003

【発明が解決しようとする課題】しかし、前記第1の方
法の場合には2000℃以上の超温度で加圧成型する必
要があり、この加圧加熱成型設備が極めて高価であるた
め経済的でないなどの問題を有する。また第2〜第4の
方法によって得られる複合材では、高々曲げ強度500
kg/cm2程度のものしか製造できず、飛躍的な強度
増加を望めるものではなかった。
[Problems to be Solved by the Invention] However, in the case of the first method, it is necessary to perform pressure molding at an ultra-high temperature of 2000°C or higher, and this pressure and heat molding equipment is extremely expensive, making it uneconomical. It has problems such as. Moreover, the composite materials obtained by the second to fourth methods have a bending strength of at most 500
It was only possible to manufacture products with a weight of about kg/cm2, and it was not possible to expect a dramatic increase in strength.

【0004】そこで、本発明の主たる課題は、耐摩擦性
・耐熱および耐酸化性材料等として好適な耐熱性無機/
炭素複合材につき、曲げ強度の飛躍的向上を図った炭素
複合材を廉価に製造し得る方法を提供するものである。
Therefore, the main object of the present invention is to develop a heat-resistant inorganic material suitable as a friction-resistant, heat-resistant, and oxidation-resistant material.
The present invention provides a method for manufacturing carbon composite materials at a low cost with dramatically improved bending strength.

【0005】[0005]

【課題を解決するための手段】前記課題は、耐熱性無機
物質の粉末1〜60体積%と、バインダーピッチ15〜
35体積%とを主体とする原料を混合し、480〜60
0℃以下の温度で加圧加熱成型後、非加圧下で焼成する
ことで解決できる。
[Means for Solving the Problems] The above-mentioned problem consists of powder of a heat-resistant inorganic substance of 1 to 60% by volume and a binder pitch of 15 to 60% by volume.
Mixing raw materials mainly containing 35% by volume, 480-60%
This can be solved by pressurizing and heating molding at a temperature of 0° C. or lower and then firing without applying pressure.

【0006】[0006]

【作用】本発明においては、バインダーとして、加熱時
溶融する低揮発分のバインダーピッチを使用する。これ
により、従来のメソフェーズ小球体やコークスをマトリ
ックスとする場合に比べ、ピッチの流動性が良好なため
耐熱性無機物質粉に対する接着力が改善され、複合材の
強度が向上する。バインダーピッチとしては、コールタ
ールピッチや石油ピッチを熱処理して得られる、高軟化
点でかつ流動性を有する低揮発分のバインダーピッチが
、耐熱性無機物質に対する接着性と炭化収率両立の面か
ら好ましく、より具体的には島津製作所(株)製高化式
フローテスターで測定した軟化点230℃以上で、流動
点350℃以下、揮発分25%以下のものが好ましい。 また、その添加量は15〜35体積%とされる。15体
積%未満の場合には十分な接着力が得られず強度増加が
望めない。また35体積%を超えるとバインダー過剰で
成型性が悪化し強度が低下する。
[Operation] In the present invention, a binder pitch with a low volatile content that melts when heated is used as the binder. As a result, compared to the case where conventional mesophase small spheres or coke are used as a matrix, the fluidity of the pitch is good, so the adhesive force to the heat-resistant inorganic substance powder is improved, and the strength of the composite material is improved. As a binder pitch, a binder pitch with a high softening point and fluidity and low volatile content, which is obtained by heat treating coal tar pitch or petroleum pitch, is recommended in terms of adhesion to heat-resistant inorganic substances and carbonization yield. Preferably, and more specifically, those having a softening point of 230° C. or higher, a pour point of 350° C. or lower, and a volatile content of 25% or lower as measured with a Koka type flow tester manufactured by Shimadzu Corporation are preferable. Further, the amount added is 15 to 35% by volume. If it is less than 15% by volume, sufficient adhesive strength cannot be obtained and no increase in strength can be expected. Moreover, if it exceeds 35% by volume, the binder will be excessive, resulting in poor moldability and reduced strength.

【0007】また、前記耐熱性無機物質粉とバインダー
ピッチに加え、さらに炭素繊維、アルミナ繊維等のセラ
ミックス繊維を添加することも可能である。前記繊維の
添加により成型から焼成時の割れの抑制や、製品として
の靱性を向上することができる。
In addition to the heat-resistant inorganic powder and binder pitch, it is also possible to add ceramic fibers such as carbon fibers and alumina fibers. The addition of the fibers can suppress cracking during molding and firing and improve the toughness of the product.

【0008】一方、本発明に係る耐熱性無機物質粉とし
ては、アルミナ、炭化ケイ素、二酸化ケイ素、炭化ホウ
素、窒化ケイ素、窒化ホウ素、ケイ素およびホウ素の一
種または二種以上の組合せたもの等を使用することがで
き、この耐熱性無機物質粉の添加率は、1〜60体積%
とされる。添加率が1体積%未満の場合には、耐酸化性
改善効果が十分に発現し得ない。また黒鉛等と比べると
熱伝導率が低いため、60体積%を超えると、複合材と
しての熱伝導率が低くなり耐熱衝撃性が悪化する。また
、耐熱性無機物質粉の粒径は、大き過ぎると複合材の強
度が著しく低下するため、好ましくは平均粒径で20μ
m以下、より好ましくは10μm以下とされる。
On the other hand, as the heat-resistant inorganic powder according to the present invention, one or a combination of two or more of alumina, silicon carbide, silicon dioxide, boron carbide, silicon nitride, boron nitride, silicon, and boron is used. The addition rate of this heat-resistant inorganic substance powder is 1 to 60% by volume.
It is said that If the addition rate is less than 1% by volume, the effect of improving oxidation resistance cannot be sufficiently exhibited. Furthermore, since it has a lower thermal conductivity than graphite or the like, if it exceeds 60% by volume, the thermal conductivity of the composite material will be low and the thermal shock resistance will deteriorate. In addition, if the particle size of the heat-resistant inorganic substance powder is too large, the strength of the composite material will decrease significantly, so the average particle size is preferably 20 μm.
m or less, more preferably 10 μm or less.

【0009】他方、加圧加熱成型の目的は、ピッチの発
泡による低密度化抑制であり、加圧はピッチが溶融〜固
化する温度域のみで行えばよいため、本発明の場合には
480〜600℃以下の温度で加圧加熱成型し、その後
非圧下で高温焼成する。ピッチが固化するためには少な
くとも480℃以上、好ましくは500℃以上の温度が
必要であり、600℃を超えるとピッチの収縮に伴う成
型体の収縮が大きくなり、加圧拘束下では成型体に割れ
が生じ易くなるため好ましくない。
On the other hand, the purpose of pressure and heat molding is to suppress the density reduction due to foaming of the pitch, and pressurization only needs to be carried out in the temperature range where the pitch melts and solidifies. Pressure and heat molding is performed at a temperature of 600°C or less, and then high temperature firing is performed without pressure. In order for the pitch to solidify, a temperature of at least 480°C or higher, preferably 500°C or higher, is required. If the temperature exceeds 600°C, the shrinkage of the molded product will increase due to the shrinkage of the pitch, and the molded product will shrink under pressure restraint. This is not preferable because cracks are likely to occur.

【0010】本発明での加圧成型は、加圧による焼結促
進というよりもピッチの発泡を抑制し、緻密化するとい
うものであるため、高々数十〜数百kg/cm2程度あ
れば十分であり、具体的には好ましくは20kg/cm
2以上、より好ましくは60kg/cm2以上とされる
。ここで、加圧する温度範囲については、室温状態から
加圧加熱最高温度までの全範囲である必要はなく、最高
温度に達するまでの一部の温度範囲、具体的にはピッチ
が固化する500℃近傍の温度域において加圧するだけ
でも、加圧加熱成型しない場合に比して製品複合材の強
度、耐摩耗性が著しく改善される。
[0010] The pressure molding in the present invention suppresses foaming of the pitch and densifies it rather than promoting sintering by pressure, so it is sufficient that the pressure molding is about several tens to several hundred kg/cm2 at most. , specifically preferably 20 kg/cm
2 or more, more preferably 60 kg/cm2 or more. Here, the temperature range to be pressurized does not need to be the entire range from room temperature to the maximum pressure heating temperature, but a part of the temperature range until the maximum temperature is reached, specifically 500 ° C where the pitch solidifies. Even by applying pressure in a similar temperature range, the strength and abrasion resistance of the product composite material are significantly improved compared to the case where pressure and heat molding is not performed.

【0011】加圧加熱成型で得られた成型体を、その後
非加圧下で焼成するが、焼成時の雰囲気は、複合材中の
炭素の酸化を抑制するため、酸化性ガスを含まないこと
が望ましい。具体的には、窒素、アルゴン等の不活性ガ
ス、水素等の還元ガス、あるいは真空雰囲気で行うこと
が望ましい。
[0011] The molded body obtained by pressurized and heated molding is then fired under non-pressurized conditions, and the atmosphere at the time of firing should not contain oxidizing gases in order to suppress the oxidation of carbon in the composite material. desirable. Specifically, it is desirable to carry out the process using an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a vacuum atmosphere.

【0012】以上の方法により製造される耐熱性無機物
質/炭素複合材は、従来の常温焼結法や、樹脂マトリッ
クス法と比べて、高い強度を有し耐摩耗性に優れる。ま
た、加圧加熱成型温度は、600℃以下の温度で足りる
ため、従来のような1600℃程度の超高温域まで加熱
し加圧するホットプレス成型と比べて、加圧加熱成型装
置設備が非常に安価となり経済的に有利となる。
[0012] The heat-resistant inorganic material/carbon composite material produced by the above method has high strength and excellent wear resistance compared to conventional cold sintering methods and resin matrix methods. In addition, since the pressure and heat molding temperature only needs to be below 600°C, the pressure and heat molding equipment is much more expensive compared to conventional hot press molding, which heats and pressurizes to an extremely high temperature range of around 1600°C. It is inexpensive and economically advantageous.

【0013】[0013]

【実施例】以下、本発明の効果を実施例に基づき詳説す
る。 (実施例1)公称粒径5μmの酸化アルミニウム粉45
wt%、コールタールを50Torrの減圧下440℃
で熱処理して得られた軟化点255℃、流動点310℃
、揮発分21%の高軟化点ピッチAを20wt%、レギ
ュラーグレード石油コークスを1000℃で炭化後、平
均粒径10μmに粉砕したコークス粉Bを35wt%を
原料として用いて本発明に係る耐熱性無機物質/炭素複
合材を製造した。
[Examples] Hereinafter, the effects of the present invention will be explained in detail based on examples. (Example 1) Aluminum oxide powder 45 with a nominal particle size of 5 μm
wt%, coal tar at 440°C under reduced pressure of 50 Torr
Softening point: 255°C, pour point: 310°C
, 20 wt% of high softening point pitch A with 21% volatile content and 35 wt% of coke powder B, which is obtained by carbonizing regular grade petroleum coke at 1000°C and pulverizing it to an average particle size of 10 μm, were used as raw materials to produce the heat resistance according to the present invention. An inorganic material/carbon composite was produced.

【0014】具体的には酸化アルミニウム粉を90g、
高軟化点ピッチAを40g、石油コークスを70gを秤
量後、内容積2lのポリ製広口ビンに入れ、5分間激し
く振って混合し、この混合原料を図1に示される加圧加
熱成型装置の内径100mmのステンレス製金枠5に仕
込み、加圧加熱成型を行った。
Specifically, 90g of aluminum oxide powder,
After weighing 40 g of high softening point pitch A and 70 g of petroleum coke, they were placed in a wide-mouth polyethylene bottle with an internal volume of 2 liters, and mixed by shaking vigorously for 5 minutes. It was placed in a stainless steel metal frame 5 with an inner diameter of 100 mm, and pressurized and heated.

【0015】前記加圧加熱成型装置は、金枠5の上下開
口に嵌合する上下金型3、4により成型材料6を押圧成
型するとともに、前記上下金型3、4と上下プレスヘッ
ド1、2との間に熱板7、7およびその断熱材8、8を
介在させることによって加圧と同時に加熱できるように
なっている。
The pressurized and heated molding apparatus presses and molds the molding material 6 with the upper and lower molds 3 and 4 that fit into the upper and lower openings of the metal frame 5, and also presses and molds the molding material 6 with the upper and lower molds 3 and 4 and the upper and lower press heads 1, By interposing the hot plates 7, 7 and their heat insulating materials 8, 8 between the two, it is possible to pressurize and heat at the same time.

【0016】前記加圧加熱成型装置により加圧加熱成型
に際しては、室温から300℃までは1kg/cm2の
プレス圧の下で5℃/分の昇温速度で昇温させ、300
℃〜520℃までは80kg/cm2のプレス圧の下で
5℃/Hrの昇温速度で昇温し、1時間その状態を保持
した後、冷却し成型体を得、この成型体を、粉コークス
に詰め、窒素ガス雰囲気中で15℃/Hrの昇温速度で
1200℃まで昇温し、4時間保持後放冷して炭化する
。こうして得られた耐熱性無機物質/炭素複合材から寸
法10mm×10mm×60mmの試験片を切り出し、
見掛け密度および曲げ強度(スパン40mm)の試験を
行った。その試験結果を表1に示す。
When performing pressure and heat molding using the pressure and heat molding apparatus, the temperature is raised from room temperature to 300°C at a temperature increase rate of 5°C/min under a press pressure of 1 kg/cm2.
℃ to 520℃ under a press pressure of 80 kg/cm2 at a rate of temperature increase of 5℃/Hr, held at that state for 1 hour, cooled to obtain a molded body, and this molded body was transformed into powder. It is packed in coke, heated to 1200° C. at a heating rate of 15° C./Hr in a nitrogen gas atmosphere, held for 4 hours, and then left to cool to carbonize. A test piece with dimensions of 10 mm x 10 mm x 60 mm was cut out from the heat-resistant inorganic material/carbon composite material obtained in this way,
Apparent density and bending strength (span 40 mm) tests were conducted. The test results are shown in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】上記表1より明らかとなるように、公知の
製造方法(特開昭54−81315号公報、特開平1−
100063 号公報)の場合には前述の如く、高々5
00kg/cm2程度であるのに対して、本発明法によ
る耐熱性無機物質/炭素複合材の場合には、1200k
g/cm2程度の曲げ強度を確保することができ、優れ
た強度性を有することが判明される。
As is clear from Table 1 above, known manufacturing methods (JP-A No. 54-81315, JP-A No. 1-1999)
100063), as mentioned above, at most 5
00kg/cm2, whereas in the case of the heat-resistant inorganic material/carbon composite material made by the method of the present invention, the weight is about 1200kg/cm2.
It was found that a bending strength of approximately g/cm2 can be ensured, and that the material has excellent strength.

【0019】(実施例2)耐熱性無機物質として、公称
粒径10μm以下、ホウ素含有率75wt%以上、炭素
含有率20〜25wt%の試薬炭化ホウ素粉と、実施例
1において使用した高軟化点ピッチAと、同じく実施例
1において使用したコークス粉Bとを原料として本発明
に係る耐熱性無機物質/炭素複合材を製造した。
(Example 2) As a heat-resistant inorganic substance, a reagent boron carbide powder with a nominal particle size of 10 μm or less, a boron content of 75 wt% or more, and a carbon content of 20 to 25 wt% and the high softening point used in Example 1 were used. A heat-resistant inorganic material/carbon composite material according to the present invention was manufactured using pitch A and coke powder B, which was also used in Example 1, as raw materials.

【0020】具体的には炭化ホウ素粉を120g、高軟
化点ピッチAを50g、石油コークスを60gを秤量後
、内容積2lのプラスチック製広口ビンに入れ、5分間
激しく振って混合し、この混合原料を図1に示される加
圧加熱成型装置の内径100mmのステンレス製金枠5
に仕込み、加圧加熱成型を行った。
Specifically, after weighing 120 g of boron carbide powder, 50 g of high softening point pitch A, and 60 g of petroleum coke, they were placed in a plastic wide-mouth bottle with an internal volume of 2 liters, and mixed by shaking vigorously for 5 minutes. The raw material is transferred to a stainless steel metal frame 5 with an inner diameter of 100 mm in the pressurized and heated molding apparatus shown in FIG.
The material was then heated and pressure molded.

【0021】前記加圧加熱成型装置による加圧加熱成型
に際しては、実施例と同様に、室温から300℃までは
1kg/cm2のプレス圧の下で5℃/分の昇温速度で
昇温させ、300℃〜520℃までは80kg/cm2
のプレス圧の下で5℃/Hrの昇温速度で昇温し、1時
間その状態を保持した後、冷却し成型体を得る。そして
この成型体を粉コークスに詰め、窒素ガス雰囲気中で1
5℃/Hrの昇温速度で1000℃まで昇温し、4時間
保持後放冷して炭化する。次にこの炭化した成型体を、
150mmφの黒鉛化炉を用いてアルゴン気流中10℃
/分の昇温速度で2000℃まで昇温して黒鉛化する。 こうして得られた耐熱性無機物質/炭素複合材から寸法
10mm×10mm×60mmの試験片を切り出し、見
掛け密度および曲げ強度(スパン40mm)試験を行っ
た。その試験結果を表2に示す。
[0021] When performing pressure and heat molding using the pressure and heat molding apparatus, the temperature was raised from room temperature to 300°C at a temperature increase rate of 5°C/min under a press pressure of 1 kg/cm2, as in the example. , 80kg/cm2 from 300℃ to 520℃
The temperature was raised at a temperature increase rate of 5° C./Hr under a press pressure of 5° C./Hr, and this state was maintained for 1 hour, and then cooled to obtain a molded body. Then, this molded body was packed in coke powder and heated in a nitrogen gas atmosphere.
The temperature is raised to 1000°C at a heating rate of 5°C/Hr, held for 4 hours, and then left to cool to carbonize. Next, this carbonized molded body is
10°C in an argon stream using a 150mmφ graphitization furnace
The temperature is increased to 2000° C. at a heating rate of /min to graphitize. A test piece with dimensions of 10 mm x 10 mm x 60 mm was cut out from the heat-resistant inorganic substance/carbon composite material thus obtained, and an apparent density and bending strength (span 40 mm) test was conducted. The test results are shown in Table 2.

【0022】[0022]

【表2】[Table 2]

【0023】実施例2の場合には、実施例1に示す耐熱
性無機物質/炭素複合材よりもさらに高曲げ強度の複合
材を得ることができた。
In the case of Example 2, a composite material having even higher bending strength than the heat-resistant inorganic material/carbon composite material shown in Example 1 could be obtained.

【0024】[0024]

【発明の効果】以上詳説のとおり、本発明に係る耐熱性
無機物質/炭素複合材の場合には、炭素素材の持つ優れ
た耐摩耗性、耐熱性等の特性とともに、従来の炭素材に
比して、高い曲げ強度と耐酸化性を得ることができるた
め、酸化性ガス雰囲気下等の条件下で使用される強度材
、耐摩耗性材料として優れた性能を発揮する。また、極
めて低温域での加熱成型であるため加圧加熱成型装置が
簡単かつ廉価となり、それがもたらす経済効果も多大で
ある。
[Effects of the Invention] As explained in detail above, the heat-resistant inorganic material/carbon composite material according to the present invention has excellent properties such as abrasion resistance and heat resistance of the carbon material, and is superior to conventional carbon materials. As a result, high bending strength and oxidation resistance can be obtained, so it exhibits excellent performance as a strength material and a wear-resistant material used under conditions such as an oxidizing gas atmosphere. In addition, since the heat molding is performed in an extremely low temperature range, the pressure and heat molding equipment is simple and inexpensive, and the economic effects brought about by this are also significant.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例で使用した加圧加熱成型装置の縦断面図
である。
FIG. 1 is a longitudinal cross-sectional view of a pressure and heat molding apparatus used in Examples.

【符号の説明】[Explanation of symbols]

1…上プレスヘッド、2…下プレスヘッド、3…上金型
、4…下金型、5…金枠、6…成型材料、7…熱板、8
…断熱材
1... Upper press head, 2... Lower press head, 3... Upper mold, 4... Lower mold, 5... Metal frame, 6... Molding material, 7... Hot plate, 8
…Insulation material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】耐熱性無機物質の粉末1〜60体積%と、
バインダーピッチ15〜35体積%とを主体とする原料
を混合し、480〜600℃以下の温度で加圧加熱成型
後、非加圧下で焼成することを特徴とする耐熱性無機物
質/炭素複合材の製造方法。
Claim 1: 1 to 60% by volume of a powder of a heat-resistant inorganic substance;
A heat-resistant inorganic substance/carbon composite material characterized by mixing raw materials mainly consisting of 15-35% by volume of binder pitch, pressurizing and heating molding at a temperature of 480-600°C or less, and then firing without pressure. manufacturing method.
【請求項2】耐熱性無機物質がアルミナ、炭化ケイ素、
二酸化ケイ素、炭化ホウ素、窒化ケイ素、窒化ホウ素、
ケイ素およびホウ素の一種または二種以上の組合せであ
る請求項1記載の耐熱性無機物質/炭素複合材の製造方
法。
Claim 2: The heat-resistant inorganic substance is alumina, silicon carbide,
silicon dioxide, boron carbide, silicon nitride, boron nitride,
The method for producing a heat-resistant inorganic material/carbon composite material according to claim 1, wherein the material is one or a combination of two or more of silicon and boron.
JP3058708A 1991-03-22 1991-03-22 Production of heat resistant inorganic substance-carbon composite material Pending JPH04295060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058708A JPH04295060A (en) 1991-03-22 1991-03-22 Production of heat resistant inorganic substance-carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058708A JPH04295060A (en) 1991-03-22 1991-03-22 Production of heat resistant inorganic substance-carbon composite material

Publications (1)

Publication Number Publication Date
JPH04295060A true JPH04295060A (en) 1992-10-20

Family

ID=13092001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058708A Pending JPH04295060A (en) 1991-03-22 1991-03-22 Production of heat resistant inorganic substance-carbon composite material

Country Status (1)

Country Link
JP (1) JPH04295060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767403B1 (en) * 2001-04-30 2007-10-17 주식회사 포스코 Method for manufacturing Alumina-Silicon Carbide-Carbon brick having oxidation-resistance and expansibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767403B1 (en) * 2001-04-30 2007-10-17 주식회사 포스코 Method for manufacturing Alumina-Silicon Carbide-Carbon brick having oxidation-resistance and expansibility

Similar Documents

Publication Publication Date Title
KR101367347B1 (en) Biphasic nanoporous vitreous carbon material and method of making the same
EP1940532B1 (en) Filter device for molten metal filtration and method for producing such filters
JP4782416B2 (en) Fiber reinforced filter for filtering molten metal and method for producing such a filter
EP1323685A2 (en) Method of production of shaped bodies out of fibre reinforced ceramic materials
JPS6141862B2 (en)
JPH04295060A (en) Production of heat resistant inorganic substance-carbon composite material
JPS5831729A (en) Manufacture of composite material and composite material obtained through said method
JPH0132162B2 (en)
JP2633107B2 (en) Method for producing boron / carbon composite neutron shielding material
KR101865571B1 (en) Ceramic joining material for repairing carbonaceous block
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JP3038489B2 (en) Method for producing metal composite carbon material
JP3297977B2 (en) Manufacturing method of carbon material
JPH0687654A (en) Boron carbide/carbon composite material and production thereof
RU2084426C1 (en) Method of preparing blend for moldings containing silicon carbide
JPS63297833A (en) Brake member using carbon fiber reinforced composite as base material
JPH07215775A (en) Production of carbon-carbon composite material
JPH08198678A (en) Production of carbon material
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JPH06102530B2 (en) Method for manufacturing graphite molded body
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH1190579A (en) Heat-shock resistant graphite die, and its manufacture
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3094502B2 (en) Manufacturing method of carbon material
JPH06305832A (en) Production of short fiber-reinforced c/c composite