JPH05279005A - Production of high-density carbon material - Google Patents

Production of high-density carbon material

Info

Publication number
JPH05279005A
JPH05279005A JP4074130A JP7413092A JPH05279005A JP H05279005 A JPH05279005 A JP H05279005A JP 4074130 A JP4074130 A JP 4074130A JP 7413092 A JP7413092 A JP 7413092A JP H05279005 A JPH05279005 A JP H05279005A
Authority
JP
Japan
Prior art keywords
powder
carbon material
mesophase
raw material
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4074130A
Other languages
Japanese (ja)
Inventor
Masato Kano
正人 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4074130A priority Critical patent/JPH05279005A/en
Publication of JPH05279005A publication Critical patent/JPH05279005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To relatively easily produce a high-density carbon material low in porosity. CONSTITUTION:A powder obtained by compacting and then crushing a carbonaceous material contg. mesophase powder is recompacted and fired. Alternatively, the powder obtained by compacting and then crushing a carbonaceous material is further mixed with a powder contg. mesophase powder to form a raw powder for the carbon material, which is recompacted and fired. Meanwhile, the pressure to compact a carbonaceous material contg. mesophase powder can be made lower than the recompacting pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度な炭素材の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density carbon material.

【0002】[0002]

【従来の技術】炭素材は電気、熱の良導体であること、
非酸化性雰囲気では超高温まで安定であり、熱間強度が
大きいこと、酸、アルカリに侵されにくいこと、機械加
工が容易であること等の優れた特性を有する。その中で
も高密度炭素材は機械、電気、化学的特性に特に優れて
おり、半導体製造用黒鉛ルツボ、ヒーター、メカニカル
シール材、摺動集電材、放電加工用電極、金属溶解用ル
ツボ等様々な分野で使用されている。
2. Description of the Related Art Carbon materials are good conductors of electricity and heat,
In a non-oxidizing atmosphere, it is stable up to ultrahigh temperatures, and has excellent properties such as high hot strength, resistance to acid and alkali, and easy machining. Among them, high-density carbon materials are particularly excellent in mechanical, electrical, and chemical properties, and are used in various fields such as graphite crucibles for semiconductor manufacturing, heaters, mechanical seal materials, sliding current collectors, electrical discharge machining electrodes, and metal melting crucibles. Used in.

【0003】炭素材は、気孔率が小さいほど、炭素材表
面からの化学的な反応を抑制できるため、耐酸化性、耐
薬品性が著しく向上する。このため、近年の工業の発展
とともに、炭素材の品質に対する要求水準が厳しくなる
につれ、より高密度な炭素材のニーズが高まっている。
The smaller the porosity of the carbon material, the more the chemical reaction from the surface of the carbon material can be suppressed, so that the oxidation resistance and the chemical resistance are remarkably improved. For this reason, with the recent development of industry, the demand level for the quality of carbon materials has become stricter, and the need for higher density carbon materials has increased.

【0004】従来、このような高密度炭素材は、骨材コ
ークス等を微粉砕し、これにコールタールピッチ、樹脂
等のバインダーを加え、熱間混練した後、再び粉砕し、
成形、焼成、さらにタール、ピッチ等の含浸、再焼成を
繰り返して、嵩密度1.8 程度の炭素材として製造される
もので、工程がきわめて複雑で手間のかかるものであっ
た。また、骨材コークス自身が多孔性であるとともに、
バインダーに使用するコールタールピッチ、樹脂等の揮
発分が多く、焼成に際して多量の気孔を生成するため、
生成した気孔をタール、ピッチ等の含浸、再焼成により
埋めることにより高密度化するのであるが、タール、ピ
ッチ自身も焼成に際して多量の気孔を生成するため、高
密度化は困難であった。また上記含浸、再焼成の繰り返
しにより高密度化を図るにしても、その効率は繰り返し
の度に順次低下する傾向があった。
Conventionally, in such a high-density carbon material, aggregate coke and the like are finely pulverized, coal tar pitch, a binder such as a resin are added thereto, and the mixture is hot kneaded and then pulverized again.
It was manufactured as a carbon material with a bulk density of about 1.8 by repeating molding, firing, impregnation with tar, pitch, etc., and re-firing, and the process was extremely complicated and laborious. In addition, the aggregate coke itself is porous,
Coal tar pitch used in the binder, a large amount of volatile components such as resin, to generate a large amount of pores during firing,
Although the generated pores are densified by impregnating tar and pitch, etc. and filling by re-baking, the densification is difficult because tar and pitch themselves also generate a large number of pores during baking. Further, even if the densification is attempted by repeating the above-mentioned impregnation and re-firing, the efficiency thereof tends to be decreased sequentially with each repetition.

【0005】このような欠点を解消するため、近年原料
粉自身が自己焼結性を有する、すなわち骨材とバインダ
ーの両性質を兼ね備えた炭素材原料を使用することによ
って、気孔の発生を防ぎ高強度、高密度黒鉛材を製造す
る試みがなされている。
In order to solve such a defect, the raw material powder itself has recently been self-sintering, that is, by using a carbon material raw material having both properties of an aggregate and a binder, generation of pores is prevented and high Attempts have been made to produce strong, high density graphite materials.

【0006】例えば、特公平1-58125 号では、特定の炭
素材含有率、揮発分、成形体の線収縮率をもつ炭素質原
料を比較的粗い粒度に粉砕した後、成形し、焼成するこ
とによる高密度高強度炭素材の製造方法を開示してい
る。
[0006] For example, in Japanese Examined Patent Publication No. 1-58125, a carbonaceous raw material having a specific carbon material content, volatile content, and linear shrinkage of a compact is crushed to a relatively coarse grain size, and then molded and fired. Discloses a method for producing a high-density and high-strength carbon material.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記公報に開
示されたような自己焼結性を持たせた炭素材を使用すれ
ば、高密度な炭素材ができるが、原料を1回の焼成で高
密度化を達成しようとしているので、反応ガスが充分に
抜けきれず、微細な気孔が発生し、高密度化に限界があ
った。
However, if a carbon material having self-sinterability as disclosed in the above publication is used, a high-density carbon material can be obtained, but the raw material can be fired once. Since the densification is attempted to be achieved, the reaction gas cannot be fully exhausted, and fine pores are generated, so that the densification is limited.

【0008】本発明は、このような従来の問題点を解決
し、従来以上の高密度で気孔率の小さい炭素材を比較的
容易に製造する方法を提供することを課題とする。
An object of the present invention is to provide a method for solving such a conventional problem and relatively easily producing a carbon material having a higher density and a smaller porosity than the conventional one.

【0009】[0009]

【課題を解決するための手段】上記課題は、メソフェー
ズ粉を含む炭素質原料をで成形し粉砕した粉末を、再成
形した後、焼成することで解決できる。
Means for Solving the Problems The above problems can be solved by molding a carbonaceous raw material containing a mesophase powder, crushing the powder, and then firing the powder.

【0010】また、メソフェーズ粉を含む炭素質原料を
成形し粉砕した粉末に、さらにメソフェーズ粉を含む粉
末を配合した炭素材用原料粉末を、再成形した後、焼成
することもできる。これらの場合において、メソフェー
ズ粉を含む炭素質原料を成形する際の成形圧が、再成形
圧より小さくすることができる。
It is also possible to re-form the carbonaceous material raw material powder obtained by molding and pulverizing the carbonaceous raw material containing the mesophase powder with the powder containing the mesophase powder, and then firing it. In these cases, the molding pressure when molding the carbonaceous raw material containing the mesophase powder can be made smaller than the remolding pressure.

【0011】[0011]

【作用】本発明者は、メソフェーズ粉を含む炭素質原料
を成形し粉砕した粉末を含む炭素材原料粉末を、再成形
した後、焼成すると、焼成後の炭素材の密度が増加する
ことを知見した。また、この場合、本発明により製造し
た炭素材の気孔分布が、メソフェーズ粉を含む炭素質原
料をそのまま成形した炭素材の気孔分布と異なることも
発見した。
The present inventor has found that when the carbon material raw material powder containing the powder obtained by molding and pulverizing the carbonaceous material containing the mesophase powder is reshaped and then fired, the density of the carbon material after firing increases. did. Further, in this case, it was also discovered that the pore distribution of the carbon material produced by the present invention is different from the pore distribution of the carbon material obtained by directly molding the carbonaceous raw material containing the mesophase powder.

【0012】図1に、水銀ポロシメータを用いて水銀圧
入法で測定した気孔分布の一例を示す。この図は横軸に
気孔径を、縦軸に横軸に示された気孔径以上の気孔の容
積を積算した値を示す。図1より、本発明法により製造
した炭素材では、気孔容積の積算値は気孔が大きくなる
にしたがいなめらかに減少する。これに対し、比較例と
して示した、メソフェーズ粉を含む炭素質原料をそのま
ま成形した炭素材の気孔容積の積算値は、ある気孔径付
近で急激に減少する。
FIG. 1 shows an example of pore distribution measured by a mercury porosimetry using a mercury porosimeter. In this figure, the horizontal axis shows the pore diameter, and the vertical axis shows the value obtained by integrating the volume of the pores having the pore diameter shown on the horizontal axis or more. From FIG. 1, in the carbon material manufactured by the method of the present invention, the integrated value of the pore volume decreases smoothly as the pores become larger. On the other hand, the integrated value of the pore volume of the carbon material obtained by directly molding the carbonaceous raw material containing the mesophase powder, which is shown as a comparative example, sharply decreases near a certain pore diameter.

【0013】このことは、本発明の製造法により製造し
た炭素材が小さい気孔から比較的大きな気孔までなだら
かな分布を示し、比較例では比較的小さな気孔径に集中
した分布を示すことを表している。
This means that the carbon material produced by the production method of the present invention shows a smooth distribution from small pores to relatively large pores, and the comparative example shows a distribution concentrated in relatively small pore diameters. There is.

【0014】上記のように比較的小さな気孔径が集中し
た分布を持つ場合、焼成時に発生するガスはこのような
気孔を通り抜けていく際の抵抗が大きい。このため膨れ
や割れが発生しやすいばかりでなく、ガスが十分抜けき
らないため密度の増加が妨げられる。
In the case where the relatively small pore diameter has a concentrated distribution as described above, the gas generated during firing has a large resistance when passing through such pores. For this reason, not only swelling and cracking are likely to occur, but also the increase in density is hindered because the gas does not escape sufficiently.

【0015】これに対して、本発明法により製造された
炭素材は、小さい気孔から比較的大きな気孔までなだら
かな分布をもつので、焼成時に発生するガスが小さな気
孔から次第に大きな気孔を抜けていくため、抵抗が小さ
くガス抜けが促進され、気孔率が小さくなり、密度が増
加する。
On the other hand, since the carbon material produced by the method of the present invention has a gentle distribution from small pores to relatively large pores, the gas generated during firing gradually escapes from the small pores to the large pores. Therefore, the resistance is small, gas escape is promoted, the porosity is reduced, and the density is increased.

【0016】本発明法により製造した炭素材が小さい気
孔から比較的大きな気孔までなだらかな分布を示す理由
は明らかではないが、メソフェーズ粉を含む炭素質原料
を成形し、粉砕した粉末を含む炭素材原料用粉末を再成
形する際に、炭素材原料用粉末の接着界面に小さな連続
した気孔が残ることと関連していると考えられる。
Although it is not clear why the carbon material produced by the method of the present invention has a smooth distribution from small pores to relatively large pores, a carbonaceous material containing powder obtained by molding and grinding a carbonaceous raw material containing mesophase powder. It is considered that this is related to the fact that small continuous pores remain at the bonding interface of the carbon material raw material powder when the raw material powder is reshaped.

【0017】なお、平均気孔径とは、水銀ポロシメータ
を用いて水銀圧入法で測定した気孔分布より求めた値を
意味する。また、気孔率とは炭素材に占める気孔の体積
割合であり、水銀ポロシメータを用いて水銀圧入法で測
定した気孔容積より求めた値を意味する。
The average pore diameter means the value obtained from the pore distribution measured by the mercury porosimetry using a mercury porosimeter. The porosity is the volume ratio of the pores in the carbon material, and means the value obtained from the pore volume measured by the mercury porosimetry using a mercury porosimeter.

【0018】メソフェーズ粉は、石炭系または石油系の
重質油を約400 〜500 ℃で熱処理することにより得られ
る、自己焼結性の炭素質原料の粉砕物である。メソフェ
ーズは、軟化溶融時に生成した縮合多環有機芳香族化合
物が固化時に層状に積層してなる、光学的異方性を示す
小球体またはその合体した相を有し、7〜20%の揮発分
を含んでいる。
The mesophase powder is a pulverized product of a self-sintering carbonaceous raw material obtained by heat-treating a heavy oil of coal or petroleum type at about 400 to 500 ° C. The mesophase has microspheres exhibiting optical anisotropy, which are formed by layering condensed polycyclic organic aromatic compounds produced during softening and melting during solidification, or their combined phases, and have a volatile content of 7 to 20%. Is included.

【0019】メソフェーズ粉を使用した製造法では、小
さな平均気孔径の黒鉛材を含浸、焼成工程の繰り返しな
ど煩雑な工程を省略できる。
In the manufacturing method using the mesophase powder, complicated steps such as impregnation of a graphite material having a small average pore diameter and repeated firing steps can be omitted.

【0020】本発明ではメソフェーズ粉を含む炭素質原
料を成形し、粉砕した粉末に、コークス粉、黒鉛粉、ピ
ッチ、メソフェーズ粉等の炭素質粉末を配合し炭素材原
料とすることが可能であるが、粒を結合し、かつ焼成時
のガスの発生による膨れを防止するという点から、適度
な揮発分を有し、焼成時にバインダーとして粒を結合す
る性質をもつメゾフェーズ粉を配合することが望まし
い。
In the present invention, it is possible to form a carbonaceous raw material containing mesophase powder, and to mix the pulverized powder with carbonaceous powder such as coke powder, graphite powder, pitch and mesophase powder to prepare a carbonaceous material raw material. However, from the viewpoint of binding particles and preventing swelling due to the generation of gas during firing, it is possible to blend mesophase powder having an appropriate volatile content and having the property of binding the particles as a binder during firing. desirable.

【0021】炭素質原料中に、メソフェーズ粉は20%以
上、さらに好ましくは50%以上含むことが好ましい。そ
れ未満の含有量では成形体の結合力が弱くなり、粉砕す
る際に、粒径を制御することが困難である。また、メソ
フェーズ粉のみを炭素質原料として用いることも可能で
ある。
It is preferable that the carbonaceous raw material contains 20% or more, more preferably 50% or more of mesophase powder. If the content is less than that, the binding force of the molded body becomes weak, and it is difficult to control the particle size during pulverization. It is also possible to use only mesophase powder as a carbonaceous raw material.

【0022】成形後粉砕したメソフェーズ粉を含む炭素
質原料は再成形時に40%以上含むことが好ましい。これ
より配合量が少ないとガス抜けが促進されにくく、焼成
体を高密度とするための気孔分布が得られにくい。
It is preferable that the carbonaceous raw material containing the mesophase powder crushed after molding contains 40% or more at the time of remolding. If the blending amount is smaller than this, outgassing is less likely to be promoted, and it is difficult to obtain the pore distribution for making the fired body high density.

【0023】また、この粉砕した粉末に平均粒径20μm
以下のメソフェーズ粉を含む粉末を配合する際には、こ
れを20%以上含むように配合すれば成形体の粒子の結合
力を強化し、焼成時の膨れを防ぐために好適である。
The crushed powder has an average particle size of 20 μm.
When a powder containing the following mesophase powder is blended, if it is blended so as to contain 20% or more, it is suitable for strengthening the binding force of the particles of the molded body and preventing swelling during firing.

【0024】メソフェーズ粉を含む炭素質原料を成形し
た後の粉砕粒は、平均粒径20μm以上、100 μm以下、
これに配合するメソフェーズ粉を含む粉末の平均粒径は
20μm以下にすることが望ましい。これは、ガスの抜け
を促進し焼成体を高密度にするために理想的な気孔分布
を得るためである。なお、粉砕粒の平均粒径が100 μm
を超えると再成形時に粒子間に大きな気孔ができ、焼成
による収縮によっても小さくならないため好ましくな
い。
The crushed particles after molding the carbonaceous raw material containing the mesophase powder have an average particle size of 20 μm or more and 100 μm or less,
The average particle size of the powder containing mesophase powder blended with this is
It is desirable that the thickness be 20 μm or less. This is to obtain an ideal pore distribution for promoting the escape of gas and increasing the density of the fired body. The average particle size of the crushed particles is 100 μm
If it exceeds, large pores are formed between particles during re-molding, and the size does not become small even by shrinkage due to firing, which is not preferable.

【0025】メソフェーズ粉を含む炭素質原料を成形す
る際の成形圧は、再成形圧より小さいことが望ましい。
これは、メソフェーズ粉を含む炭素質原料を成形し、粉
砕した粒子も再成形の際に収縮し、粉砕粒同士、あるい
は粉砕粒と再成形前に配合されたメソフェーズ粉との密
着性が向上し、焼成体の密度も向上するからである。
The molding pressure when molding the carbonaceous raw material containing the mesophase powder is preferably smaller than the remolding pressure.
This is because the carbonaceous material containing the mesophase powder is molded, and the crushed particles also shrink during remolding, improving the adhesion between the crushed particles or between the crushed particles and the mesophase powder blended before remolding. This is because the density of the fired body is also improved.

【0026】成形圧は対象とする製品との関係で適宜選
択できるが、第1の成形圧としては0.3 〜1.5 ton/cm3
が好適であり、再成形圧としては、第1の成形圧より大
きいこと、望ましくは1.5 倍以上であることが好適であ
る。
The molding pressure can be appropriately selected depending on the relationship with the target product, but the first molding pressure is 0.3 to 1.5 ton / cm 3
Is preferable, and the re-molding pressure is preferably higher than the first molding pressure, preferably 1.5 times or more.

【0027】メソフェーズ粉を含む炭素質原料を成形
し、粉砕する際の粉砕方法は、ハンマーミル、振動ボー
ルミル、ロータリーミル、ジェットミル等のいずれの方
法でもよく、特に限定するものではない。
The carbonaceous raw material containing the mesophase powder may be molded and pulverized by any of a hammer mill, a vibrating ball mill, a rotary mill, a jet mill and the like, without any particular limitation.

【0028】焼成温度としては、1000℃程度の炭化処理
でも高密度化するが、2000〜3000℃の黒鉛化処理を行う
ことで、より高密度となり好適である。
As for the firing temperature, the carbonization treatment at about 1000 ° C. increases the density, but the graphitization treatment at 2000 to 3000 ° C. makes the density higher, which is preferable.

【0029】本発明で用いる炭素質原料としては、メソ
フェーズ粉の他にピッチや石炭などを1000℃程度で炭化
処理したコークス粉、樹脂を炭化して得られる炭素材の
粉末、炭素繊維チョップ、カーボンブラック、人造もし
くは天然の黒鉛粉等の粉末状炭素または黒鉛粉などを用
いることができる。
As the carbonaceous raw material used in the present invention, in addition to mesophase powder, coke powder obtained by carbonizing pitch, coal, etc. at about 1000 ° C., carbon material powder obtained by carbonizing resin, carbon fiber chop, carbon Powdered carbon such as black, artificial or natural graphite powder, or graphite powder can be used.

【0030】[0030]

【実施例】次に実施例により本発明の効果を明らかにす
る。コールタールを真空度50Torr、430 ℃で約3時間熱
処理することにより得られた揮発分18.2%のメソフェー
ズをハンマーミルにより微粉砕して平均粒径15μmを示
すメソフェーズ粉を調整し作成した。次にこのメソフェ
ーズ粉70 vol%に対し、平均粒径16μmの人造黒鉛粉末
を30vol%配合し、内径100 mm高さ100 mmのゴム製のラ
バーに充填し、所定の圧力で静水圧成形を行った。この
成形体を粗粉砕した後、ハンマーミルで平均粒径58μm
に粉砕した。実施例1、2では、この粉砕粉のみを上記
ゴム製ラバーに充填し、所定の圧力で静水圧成形を行っ
た。なお、成形体には30vol %の人造黒鉛が配合されて
いる。また実施例3〜5では、上記粉砕粉75 vol%に対
し、上記メソフェーズ粉を25vol%配合し、上記ゴム製
ラバーに充填し、所定の圧力で静水圧成形を行った。
EXAMPLES Next, the effects of the present invention will be clarified by examples. The mesophase having a volatile content of 18.2% obtained by heat-treating coal tar at 430 ° C. at a vacuum degree of 50 Torr for about 3 hours was finely pulverized with a hammer mill to prepare mesophase powder having an average particle size of 15 μm. Next, 30 vol% artificial graphite powder with an average particle size of 16 μm was mixed with 70 vol% of this mesophase powder, filled in a rubber rubber with an inner diameter of 100 mm and a height of 100 mm, and subjected to isostatic pressing at a predetermined pressure. It was After coarsely crushing this molded body, average diameter 58 μm with a hammer mill
Crushed into In Examples 1 and 2, only the pulverized powder was filled in the rubber rubber, and hydrostatic molding was performed at a predetermined pressure. The molded body contains 30 vol% artificial graphite. Further, in Examples 3 to 5, 25 vol% of the mesophase powder was mixed with 75 vol% of the pulverized powder, the rubber rubber was filled, and the isostatic molding was performed at a predetermined pressure.

【0031】なお、成形体には約19%の人造黒鉛粉が配
合されたことになる。
It should be noted that about 19% of the artificial graphite powder was blended in the molded body.

【0032】得られた成形体を窒素雰囲気の電気炉に入
れ、1000℃まで加熱して炭化を行った後、得られた炭素
材をAr雰囲気の黒鉛化炉で2500℃まで加熱し黒鉛化を
行った。得られた黒鉛材の嵩密度と気孔率を表1に示
す。
The obtained molded body is placed in an electric furnace in a nitrogen atmosphere and carbonized by heating to 1000 ° C., and then the obtained carbon material is heated to 2500 ° C. in a graphitizing furnace in an Ar atmosphere for graphitization. went. Table 1 shows the bulk density and porosity of the obtained graphite material.

【0033】[0033]

【表1】 [Table 1]

【0034】(比較例)表1には比較例として、上記メ
ソフェーズ粉に同様の人造黒鉛粉を30vol %配合あるい
は、19 vol%配合した原料粉をゴム製ラバーに充填し、
成形圧1500kg/cm3で静水圧成形を行い、同様に炭化、黒
鉛化を行った黒鉛材の嵩密度と気孔率を示す。
(Comparative Example) In Table 1, as a comparative example, a raw rubber powder containing the above mesophase powder and the same artificial graphite powder in an amount of 30 vol% or 19 vol% was filled in a rubber rubber,
The bulk density and porosity of the graphite material which was subjected to isostatic pressing at a molding pressure of 1500 kg / cm 3 and similarly carbonized and graphitized are shown.

【0035】表1から明らかなように、本発明の製造方
法により製造された黒鉛材は、比較例に示される従来の
製造方法により製造された黒鉛材よりも気孔率が小さく
なり、高密度となっている。
As is clear from Table 1, the graphite material manufactured by the manufacturing method of the present invention has a lower porosity and a higher density than the graphite material manufactured by the conventional manufacturing method shown in the comparative example. Is becoming

【0036】[0036]

【発明の効果】以上の通り、本発明によれば、メソフェ
ーズ粉を含む炭素質原料を成形し粉砕した粉末を含む炭
素材原料用粉末を再成形、焼成することにより、従来以
上に高密度で気孔率の小さい炭素材を製造することがで
きる。
As described above, according to the present invention, the carbonaceous raw material powder containing the mesophase powder is molded and pulverized, and the powder for the carbonaceous material raw material is reshaped and fired, so that the density is higher than ever before. A carbon material having a low porosity can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法により得られた炭素材料の気孔分布を
従来法との比較して示した図である。
FIG. 1 is a diagram showing a pore distribution of a carbon material obtained by a method of the present invention in comparison with a conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】メソフェーズ粉を含む炭素質原料を成形し
粉砕した粉末を、再成形した後、焼成することを特徴と
する高密度炭素材の製造方法。
1. A method for producing a high-density carbon material, which comprises molding a carbonaceous raw material containing mesophase powder, pulverizing the powder, re-molding the powder, and then firing the powder.
【請求項2】メソフェーズ粉を含む炭素質原料を成形し
粉砕した粉末に、さらにメソフェーズ粉を含む粉末を配
合した炭素材用原料粉末を、再成形した後、焼成するこ
とを特徴とする高密度炭素材の製造方法。
2. A high-density carbon material raw material powder comprising a carbonaceous raw material containing mesophase powder, which is formed and crushed, and a powder containing carbon powder containing mesophase powder. Carbon material manufacturing method.
【請求項3】メソフェーズ粉を含む炭素質原料を成形す
る際の成形圧が、再成形圧より小さい請求項1または2
記載の高密度炭素材の製造方法。
3. The molding pressure for molding a carbonaceous raw material containing mesophase powder is smaller than the remolding pressure.
A method for producing the high-density carbon material described.
JP4074130A 1992-03-30 1992-03-30 Production of high-density carbon material Pending JPH05279005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074130A JPH05279005A (en) 1992-03-30 1992-03-30 Production of high-density carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074130A JPH05279005A (en) 1992-03-30 1992-03-30 Production of high-density carbon material

Publications (1)

Publication Number Publication Date
JPH05279005A true JPH05279005A (en) 1993-10-26

Family

ID=13538305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074130A Pending JPH05279005A (en) 1992-03-30 1992-03-30 Production of high-density carbon material

Country Status (1)

Country Link
JP (1) JPH05279005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings
CN105074243A (en) * 2013-04-01 2015-11-18 东洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings
JPWO2014162692A1 (en) * 2013-04-01 2017-02-16 東洋炭素株式会社 Carbon material for bearing and sliding member made of carbon material for bearing
US9902839B2 (en) 2013-04-01 2018-02-27 Toyo Tanso Co., Ltd. Carbon material for bearings and sliding member made of carbon material for bearings

Similar Documents

Publication Publication Date Title
JP4734674B2 (en) Low CTE isotropic graphite
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
JP2010507550A (en) High purity nuclear graphite
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JP3765840B2 (en) Carbon material manufacturing method
JP2000007436A (en) Graphite material and its production
JPH05279005A (en) Production of high-density carbon material
US5283045A (en) Sinterable carbon powder and method of its production
JPS5978914A (en) Manufacture of special carbonaceous material
JPS61122110A (en) Production of high-density carbon material
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
JPH0692269B2 (en) Impermeable carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0158125B2 (en)
JPH05229810A (en) Production of isotropic high density graphite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH04104954A (en) Production of oxidation resistant high-density carbon material
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH09208314A (en) Production of carbonaceous material
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH0687654A (en) Boron carbide/carbon composite material and production thereof
KR20230084801A (en) Manufacturing method of carbonized blocks used for manufacturing isotropic graphite