JPS6364963A - Carbon material and manufacture - Google Patents

Carbon material and manufacture

Info

Publication number
JPS6364963A
JPS6364963A JP61205525A JP20552586A JPS6364963A JP S6364963 A JPS6364963 A JP S6364963A JP 61205525 A JP61205525 A JP 61205525A JP 20552586 A JP20552586 A JP 20552586A JP S6364963 A JPS6364963 A JP S6364963A
Authority
JP
Japan
Prior art keywords
carbon material
carbon
graphitized
resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61205525A
Other languages
Japanese (ja)
Inventor
茂 高野
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61205525A priority Critical patent/JPS6364963A/en
Publication of JPS6364963A publication Critical patent/JPS6364963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、炭素材及びその製造方法に関し、特にりん酸
型燃料電池セパレーター用炭素材及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a carbon material and a method for producing the same, and particularly to a carbon material for a phosphoric acid fuel cell separator and a method for producing the same.

「従来の技術」 りん酸型燃料電池は、りん酸を保持した電解質層とその
両側に配置した白金触媒を担持した多孔質電極基板を単
位セルとし、各単位セルをセパレーターを介して積層し
たものである。
"Conventional technology" A phosphoric acid fuel cell is a unit cell consisting of an electrolyte layer holding phosphoric acid and a porous electrode substrate supporting a platinum catalyst placed on both sides of the electrolyte layer, and each unit cell is stacked with a separator in between. It is.

かかるセパレーターは、その両側面に形成する流通溝に
それぞれ供給される燃料ガスと酸化ガスを分離するため
の境界としての機能と単位セル間の接続導体としての機
能を必要とするため、その材料にはガス不透過性、電気
伝導性、機械的強度及び作動温度における耐りん酸性等
について優れた特性を有することが要求される。
Such a separator needs to function as a boundary to separate the fuel gas and oxidizing gas supplied to the flow grooves formed on both sides of the separator, and as a connecting conductor between unit cells. is required to have excellent properties such as gas impermeability, electrical conductivity, mechanical strength, and phosphoric acid resistance at operating temperatures.

従来、この種のセパレーター材料としての炭素材の製造
方法としては、フェノール樹脂等の熱硬化性樹脂と黒鉛
粉末を混練し、熱ロールまたは熱プレスにて成形したの
ち、炭化処理する方法が例えば特開昭59−12737
7号公報及び特開昭60−150559号公報に開示さ
れている。
Conventionally, as a method for producing carbon materials as separator materials of this kind, there has been a method in which a thermosetting resin such as a phenol resin and graphite powder are kneaded, molded using a hot roll or hot press, and then carbonized. Kaisho 59-12737
No. 7 and Japanese Unexamined Patent Publication No. 150559/1983.

「発明が解決しようとする間ツ点」 前記特開昭59−127377号公報及び特開昭60−
150559号公報に記載されている方法により製造さ
れた炭素材は、IIIINとしての熱硬化性樹脂の配合
割合が少ない場合は経時的にガス不遇過性が低下すると
いう問題があり、配合割合が多い場合は成形性が悪いた
め特殊な成形方法を必要とし、かつ焼成工程において亀
裂が入り易いという問題がある。
"The shortcomings that the invention attempts to solve"
The carbon material produced by the method described in Publication No. 150559 has a problem in that gas inconvenience decreases over time when the proportion of the thermosetting resin as IIIN is low, and the proportion of the thermosetting resin as IIIN is high. However, since the moldability is poor, a special molding method is required, and cracks tend to occur during the firing process.

また、機械的強度が劣るため、電池を製造する際に破損
しやすいという作業性の問題等がある。
In addition, since the mechanical strength is poor, there are problems with workability such as easy damage during battery manufacturing.

一方、フェノール樹脂等の熱硬化性樹脂そのものを板状
に成形したのち、焼成して炭素材とする方法も知られて
いる。しかし得られる炭素材はガス不透過性に優れたガ
ラス状の炭素質0ものであるが電気伝導性に問題がある
On the other hand, a method is also known in which a thermosetting resin such as a phenol resin itself is formed into a plate shape and then fired to obtain a carbon material. However, the obtained carbon material is a glass-like carbonaceous material with excellent gas impermeability, but has a problem in electrical conductivity.

さらに、本発明者に係る特願昭61−113270号に
は、熱硬化性樹脂30〜90重量%を結合材として、メ
ソカーボン小球体の黒鉛化物に配合し、これを板状に成
形し、炭化処理する炭素材の製造方法を提案しているが
、成形工程において細かい条件によるコントロールを必
要とするという問題点ををする。
Furthermore, in Japanese Patent Application No. 113270/1983 filed by the present inventor, 30 to 90% by weight of a thermosetting resin is blended as a binder into a graphitized mesocarbon small sphere, and this is formed into a plate shape. Although we have proposed a method for producing carbon materials that undergoes carbonization treatment, there is a problem in that the molding process requires detailed control of conditions.

本発明は、前記の問題点に着目してなされたもので、成
形性が良く、ガス不遇過性、電気伝導性、機械的強度、
耐りん酸性等に優れ、かつ焼成の際に亀裂を生じない燃
料電池セパレーター用炭素材及びその製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and has good moldability, gas-inhospitable property, electrical conductivity, mechanical strength, and
An object of the present invention is to provide a carbon material for a fuel cell separator that has excellent phosphoric acid resistance and does not cause cracks during firing, and a method for producing the same.

「問題点を解決するための手段」 本発明は、粒度が50μm以下の、メンカーボン小球体
の黒鉛化物とガラス状炭素質とからなり、黒鉛質炭素が
5〜60!I%である炭素材及びその製造方法である。
"Means for Solving the Problems" The present invention consists of graphitized mencarbon small spheres and glassy carbon having a particle size of 50 μm or less, and the graphitic carbon contains 5 to 60 μm. I% carbon material and its manufacturing method.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

本発明において用いるメソカーボン小球体の黒鉛化物は
、石油系または石炭系のピッチを熱処理して得られるメ
ソカーボン小球体をろ過し、必要に応じて洗浄したのち
約2500℃まで昇温加熱して黒鉛化したものである。
The graphitized mesocarbon spherules used in the present invention are obtained by filtering the mesocarbon spherules obtained by heat-treating petroleum-based or coal-based pitch, washing if necessary, and heating the mesocarbon spherules to approximately 2500°C. It is graphitized.

このメソカーボン小球体の黒鉛化物の粒度は50μm以
下であることが必要である。黒鉛化物の粒度が50AI
+mを超えると得られる炭素材の密度があがらず、ガス
不透過性、電気伝導性等の特性において満足したものに
ならない。
The particle size of the graphitized mesocarbon spherules must be 50 μm or less. Particle size of graphitized material is 50AI
If it exceeds +m, the density of the carbon material obtained will not increase and the properties such as gas impermeability and electrical conductivity will not be satisfactory.

黒鉛化物の一部が凝集している時は粉砕機で粉砕したの
ち、分級して粒度を50μm以下とするが通常は粉砕も
分級もしなくてよい。
When a part of the graphitized material is agglomerated, it is crushed in a crusher and then classified to a particle size of 50 μm or less, but usually neither crushing nor classification is necessary.

本発明の炭素材は、前記メソカーボン小球体の黒鉛化物
とガラス状炭素質とからなり、黒鉛質炭素が5〜60f
fif1%のもので、りん酸型燃料電池のセパレーター
用材料として優れた機能を有している。
The carbon material of the present invention is composed of a graphitized product of the mesocarbon small spheres and glassy carbon, and the graphitic carbon is 5 to 60 f.
It contains 1% fif and has an excellent function as a separator material for phosphoric acid fuel cells.

前記黒鉛質炭素が5重量%未膚のものは、電気伝導性が
不足し、60重量%を超えるものは、ガス不遇過性、耐
りん酸性が低下するためりん酸型燃料電池のセパレータ
ー用材料として十分な性能を有するものが得られない。
If the graphitic carbon content is less than 5% by weight, the electrical conductivity is insufficient, and if it exceeds 60% by weight, the gas inconvenience and phosphoric acid resistance decrease, so it is suitable for separator materials for phosphoric acid fuel cells. However, it is not possible to obtain a product with sufficient performance.

つぎに、本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.

本発明において用いる熱硬化性樹脂粉末は、フェノール
樹脂、フラン樹脂、キシレン樹脂等で、好ましくはフェ
ノール樹脂粉末であり、不活性ガス雰囲気下約1000
℃の温度で炭化処理した時にガラス状炭素質になるもの
をいい、粒度50μm以下、アスペクト比2以下である
ことが必要である0粒度50μm、アスペクト比2を超
えると、得られる炭素材の密度があがらず、ガス不遇過
性、電気伝導性等の特性が満足すべきものにならない。
The thermosetting resin powder used in the present invention is a phenol resin, a furan resin, a xylene resin, etc., preferably a phenol resin powder.
It refers to a material that becomes glassy carbonaceous when carbonized at a temperature of °C, and must have a particle size of 50 μm or less and an aspect ratio of 2 or less.If the particle size exceeds 50 μm and the aspect ratio is 2, the density of the resulting carbon material The temperature does not increase, and the properties such as gas inconvenience and electrical conductivity are not satisfactory.

また、本発明において用いる熱硬化性樹脂としては、好
ましくはフェノール樹脂であるが、その(ム、フラン樹
脂、キシレン樹脂、エポキシ樹脂、ポリイミド普封脂等
も使用可能である0通常、樹脂溶液または粉末状樹脂の
形で使用する。フェノール樹脂が好ましいのは成形体の
特性が優れていること、安価で取扱い易いこと等の理由
による。
The thermosetting resin used in the present invention is preferably a phenol resin, but other resins such as phenol resin, furan resin, xylene resin, epoxy resin, polyimide resin, etc. can also be used. Usually, a resin solution or It is used in the form of a powdered resin.Phenol resins are preferred because they have excellent properties when molded, are inexpensive, and are easy to handle.

まず、熱硬化性樹脂溶液中にメンカーボン小球体の黒鉛
化物及び熱硬化性樹脂粉末を添加して良く混合したのち
、室温で放置して乾燥する。
First, graphitized mencarbon spherules and thermosetting resin powder are added to a thermosetting resin solution, mixed well, and then left to dry at room temperature.

つぎに、前記混合物を熱ロールまたは熱プレス等を用い
て熱圧成形する。なお、望ましくは熱圧成形する前に前
記混合物を100℃前後の温度で加熱して予備硬化し、
これを粉砕してから前記熱圧成形するのがよい、また、
前記樹脂溶液のかわりに粉末状樹脂を用い、これとメソ
カーボン小球体の黒鉛化物及び熱硬化性樹脂粉末を混合
して熱圧成形してもよい。
Next, the mixture is hot-pressed using a hot roll, a hot press, or the like. Preferably, the mixture is pre-cured by heating at a temperature of around 100° C. before hot-pressing.
It is preferable to pulverize this and then carry out the above-mentioned hot press molding, and
A powdered resin may be used instead of the resin solution, and this may be mixed with a graphitized mesocarbon small sphere and a thermosetting resin powder, and the mixture may be hot-pressed.

つぎに、前記成形工程で製造された樹脂成形体を150
〜200℃の温度に加熱して完全に硬化させたのち、約
1000℃まで昇温加熱して炭化処理することにより炭
素材とする。
Next, the resin molded body manufactured in the above molding process was
After completely curing by heating to a temperature of ~200°C, the material is heated to approximately 1000°C and carbonized to obtain a carbon material.

「実施例」 以下、実施例により本発明をさらに詳細に説明する。"Example" Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 不揮発分56重量%、粘度100cpsのフェノール樹
脂溶液(群栄化学■製ニレシトツブPL−2211)と
、平均粒度が10μmであるメンカーボン小球体の黒鉛
化物及び平均粒度15μ■、アスペクト比1.2のフェ
ノール樹脂粉末を、得られる炭素材中の黒鉛質炭素が2
0重量%になるように配合し、攪拌機にて均一に混合し
たのち、室温に放置して乾燥した。
Example 1 A phenolic resin solution with a non-volatile content of 56% by weight and a viscosity of 100 cps (Nireshitotsubu PL-2211 manufactured by Gunei Chemical Co., Ltd.), a graphitized product of men carbon small spheres with an average particle size of 10 μm, and an average particle size of 15 μm and an aspect ratio of 1. The graphitic carbon in the carbon material obtained is 2.
The mixture was blended to a concentration of 0% by weight, mixed uniformly using a stirrer, and then left to dry at room temperature.

この混合物を乾燥機中で1時間加熱して予備硬化したの
ち粉砕した。この粉末を平板状の金型に供給し、熱プレ
スによりプレス温度160℃、プレス圧100眩/−で
熱圧成形し、厚さ0.8 m、幅300■、長さ300
籠の薄板にした。ついで、この薄板を180℃の温度で
10時間加熱してフェノール樹脂を硬化させたのち、黒
鉛板に挟んで10℃/時の昇温速度で1000℃まで昇
温して炭化処理し炭素材を得た。
This mixture was precured by heating in a dryer for 1 hour and then ground. This powder was supplied to a flat mold and hot pressed at a press temperature of 160°C and a press pressure of 100/- to form a mold with a thickness of 0.8 m, a width of 300 cm, and a length of 300 cm.
I made it into a thin board for the basket. Next, this thin plate was heated at a temperature of 180°C for 10 hours to harden the phenolic resin, and then placed between graphite plates and heated to 1000°C at a heating rate of 10°C/hour for carbonization treatment to form a carbon material. Obtained.

この炭素材の特性を第1表に示す、なお、成形時の成形
斑、炭化時の割れ等は発生しなかった。
The properties of this carbon material are shown in Table 1. Furthermore, no molding spots during molding, no cracking during carbonization, etc. occurred.

実施例2 粉末状フェノール樹脂(群栄化学■製ニレシトツブP(
G) A−2400)と、実施例1と同じ黒鉛化物及び
フェノール樹脂粉末を、得られるRs材中の黒鉛質炭素
が40重量%になるように配合し、均一に混合したのち
、熱ロールを用いてロール温度150℃、ロール周速度
0.2m/分でロール成形して厚さ0.8簡の薄板にし
た。この薄板を実施例1と同様に炭化処理して炭素材を
得た。この炭素材の特性を第1表に示す、なお、成形時
の成形斑、炭化時の割れ等は発生しなかった。
Example 2 Powdered phenol resin (Nireshitotsubu P manufactured by Gunei Chemical Co., Ltd.)
G) A-2400), the same graphitized material and phenolic resin powder as in Example 1 were blended so that the graphitic carbon in the resulting Rs material was 40% by weight, and after uniformly mixing, a hot roll was applied. A thin plate having a thickness of 0.8 sheets was formed by roll forming at a roll temperature of 150° C. and a roll circumferential speed of 0.2 m/min. This thin plate was carbonized in the same manner as in Example 1 to obtain a carbon material. The properties of this carbon material are shown in Table 1. It should be noted that no molding spots during molding or cracking during carbonization occurred.

比較例1 実施例1と同じフェノール樹脂溶液、メソカーボン小球
体の黒鉛化物及びフェノール樹脂粉末を、得られる炭素
材中の黒鉛質炭素が70重量0%になるように配合され
たものを実施例1と同様に処理して炭素材を得た。この
炭素材の特性を第1表に示す。
Comparative Example 1 An example in which the same phenolic resin solution, graphitized mesocarbon small spheres, and phenolic resin powder as in Example 1 were blended so that the graphitic carbon in the obtained carbon material was 70% by weight. A carbon material was obtained by processing in the same manner as in 1. The properties of this carbon material are shown in Table 1.

比較例2 実施例2と同じ粉末状フェノール樹脂に平均粒度300
μm、アスペクト比3のフェノール樹脂粉末30重量%
を配合し黒鉛質炭素なしで実施例2と同様に処理して炭
素材を得たやごの炭素材の特性を第1表に示す。
Comparative Example 2 The same powdered phenolic resin as in Example 2 with an average particle size of 300
μm, aspect ratio 3 phenolic resin powder 30% by weight
Table 1 shows the properties of the carbon material obtained by blending and processing in the same manner as in Example 2 without graphitic carbon.

第1表 「発明の効果」 以上述べた如く、本発明の炭素材は、球状をしたメソカ
ーボン小球体の黒鉛化物とガラス状炭素質とで構成した
ので、緻密で高強度ををし、りん酸型燃料電池のセパレ
ーター用材料として、ガス不透過性、電気伝導性、機械
的強度及び耐りん酸性の優れたものが得られた。また、
本発明の炭素材の製造方法は、球状をしたメソカーボン
小球体の黒鉛化物と熱硬化性樹脂粉末を骨材としている
ため、成形性に優れ、かつ焼成の際、亀裂や反り、を発
生しないので、安定して高品質の炭素材が製造できると
いう効果がある。
Table 1 "Effects of the Invention" As stated above, the carbon material of the present invention is composed of graphitized spherical mesocarbon small spheres and glassy carbon, so it is dense, has high strength, and is phosphorescent. A separator material for acid fuel cells with excellent gas impermeability, electrical conductivity, mechanical strength, and phosphoric acid resistance was obtained. Also,
The carbon material manufacturing method of the present invention uses graphitized spherical mesocarbon spherules and thermosetting resin powder as aggregates, so it has excellent moldability and does not cause cracks or warping during firing. Therefore, there is an effect that a high quality carbon material can be produced stably.

Claims (2)

【特許請求の範囲】[Claims] (1)粒度が50μm以下の、メソカーボン小球体の黒
鉛化物とガラス状炭素質とからなり、黒鉛質炭素が5〜
60重量%である炭素材。
(1) Consists of graphitized mesocarbon small spheres and glassy carbonaceous material with a particle size of 50 μm or less, with 5 to 50% of graphitic carbon.
The carbon material is 60% by weight.
(2)粒度が50μm以下であるメソカーボン小球体の
黒鉛化物と熱硬化性樹脂粉末と熱硬化性樹脂とを、得ら
れる炭素材中の黒鉛質炭素が5〜60重量%になるよう
に配合し、混練し、加圧、加熱下で成形し、150〜2
00℃の温度に加熱して硬化したのち炭化処理すること
を特徴とする炭素材の製造方法。
(2) Graphitized mesocarbon small spheres with a particle size of 50 μm or less, thermosetting resin powder, and thermosetting resin are blended so that the resulting carbon material contains 5 to 60% by weight of graphitic carbon. , kneaded, molded under pressure and heat,
A method for producing a carbon material, which comprises heating the material to a temperature of 0.000C to harden it, and then subjecting it to carbonization treatment.
JP61205525A 1986-09-01 1986-09-01 Carbon material and manufacture Pending JPS6364963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205525A JPS6364963A (en) 1986-09-01 1986-09-01 Carbon material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205525A JPS6364963A (en) 1986-09-01 1986-09-01 Carbon material and manufacture

Publications (1)

Publication Number Publication Date
JPS6364963A true JPS6364963A (en) 1988-03-23

Family

ID=16508325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205525A Pending JPS6364963A (en) 1986-09-01 1986-09-01 Carbon material and manufacture

Country Status (1)

Country Link
JP (1) JPS6364963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222072A (en) * 1987-03-12 1988-09-14 住友金属工業株式会社 Impermeable carbon material
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222072A (en) * 1987-03-12 1988-09-14 住友金属工業株式会社 Impermeable carbon material
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery

Similar Documents

Publication Publication Date Title
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JPS61161666A (en) Electrochemical battery separator plate, manufacture thereofand fuel battery
JPS6364963A (en) Carbon material and manufacture
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JPS62260709A (en) Formed carbon article and production thereof
JPS62270412A (en) Production of carbon board
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JPS6020471A (en) Manufacture of members for fuel cell
JP2002075394A (en) Separator member for fuel cell
JPH0157467B2 (en)
JPS60155516A (en) Preparation of thin plate of carbon
JPS59195514A (en) Molded impermeable carbon body and its manufacture
JPS62252308A (en) Production of carbon plate
JP2001139696A (en) Method for producing conductive resin molding and separator for fuel cell
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPS62171908A (en) Production of carbon plate
JPH0220589B2 (en)
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JP2003020278A (en) Carbonaceous thin plate
JPS63222072A (en) Impermeable carbon material
JPH02199010A (en) Production of thin sheetlike carbon material