JP2001139696A - Method for producing conductive resin molding and separator for fuel cell - Google Patents

Method for producing conductive resin molding and separator for fuel cell

Info

Publication number
JP2001139696A
JP2001139696A JP32549199A JP32549199A JP2001139696A JP 2001139696 A JP2001139696 A JP 2001139696A JP 32549199 A JP32549199 A JP 32549199A JP 32549199 A JP32549199 A JP 32549199A JP 2001139696 A JP2001139696 A JP 2001139696A
Authority
JP
Japan
Prior art keywords
graphite powder
resin
conductive resin
average particle
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32549199A
Other languages
Japanese (ja)
Inventor
Yoichi Kawano
陽一 川野
Koji Ono
浩嗣 小野
Hiroyuki Yano
博之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP32549199A priority Critical patent/JP2001139696A/en
Publication of JP2001139696A publication Critical patent/JP2001139696A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a conductive resin molding having low electric resistance suitable for a separator, etc., of a fuel cell. SOLUTION: The method for producing a conductive resin molding comprises kneading a graphite powder mixture comprising 100 pts.wt. graphite powder having an average particle diameter of 50-300 μm and 5-150 pts.wt. graphite powder having an average particle diameter of less than 50 μm with at most 15 pts.wt. thermosetting resin per 100 pts.wt. graphite powder mixture to form a uniform resin composition, pulverizing the resin composition, press molding the resultant pulverized product and hardening the resultant molding. The conductive resin molding or a separator for a fuel cell is obtained by the above method and has electrical resistance of at most 1×10-2 Ωcm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用のセパ
レータや帯電防止材等に有用な導電性樹脂成形品及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin molded article useful as a separator for a fuel cell, an antistatic material, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】カーボンブラックや黒鉛粉等の導電性粉
末を樹脂に添加し、導電性を付与した樹脂組成物は知ら
れている。カーボンブラックは導電性粉末として有用な
材料であり、導電性の性能を持つファーネスブラックや
アセチレンブラック等開発されている。また、黒鉛粉は
カーボンブラックより黒鉛化性が進んでおり、電気伝導
性が優れているために優れた導電性のフィラーとなる。
更に、樹脂にカーボンブラックと導電性材料(黒鉛粉
等)の2種類を併用し導電性を付与する方法も検討され
ている(特開昭57−200440号公報)。また、導
電性を上げるために樹脂に黒鉛粉と炭素繊維を配合する
方法も見出されている(特開平4−168147、特開
平4−214072号公報)。これらのカーボンブラッ
クや黒鉛粉は樹脂に多量に配合しなければ電気伝導性が
発現しない。しかしながら、樹脂に多量に配合した場合
は、混練物が高粘度となるために成形性が著しく低下す
る問題点があった。
2. Description of the Related Art There is known a resin composition in which a conductive powder such as carbon black or graphite powder is added to a resin to impart conductivity. Carbon black is a useful material as a conductive powder, and furnace black and acetylene black having conductive performance have been developed. In addition, graphite powder is more graphitizable than carbon black and has excellent electrical conductivity, so that it becomes an excellent conductive filler.
Further, a method of imparting conductivity by using two kinds of resins such as carbon black and a conductive material (e.g., graphite powder) has been studied (Japanese Patent Application Laid-Open No. 57-40040). Further, a method has been found in which graphite powder and carbon fiber are blended with a resin in order to increase conductivity (Japanese Patent Application Laid-Open Nos. 4-168147 and 4-214072). Unless these carbon blacks or graphite powders are blended in a large amount in a resin, no electrical conductivity is exhibited. However, when a large amount is mixed with the resin, there is a problem that the kneaded material has a high viscosity and the moldability is significantly reduced.

【0003】樹脂と炭素材組成物の電気比抵抗を下げる
ために以前から使用されている方法は、混練物を成形し
た後に焼成、黒鉛化する方法がある(例えば、特開昭6
3−64963、特開昭63−319251、特開平4
−214072号公報)。この方法は焼成、黒鉛化の熱
処理に費用がかかることや熱処理により揮発分が飛散す
るために組成物がポーラスになることが問題であり、こ
れを解決するため黒鉛化後に、更に樹脂を含浸する方法
も検討されている。
[0003] As a method which has been used in the past for reducing the electrical resistivity between a resin and a carbon material composition, there is a method in which a kneaded material is molded, then fired and graphitized (for example, Japanese Patent Application Laid-Open No.
3-64963, JP-A-63-319251, JP-A-Hei-4
JP-A-214072). This method is problematic in that the heat treatment for calcination and graphitization is expensive and the composition becomes porous because volatile components are scattered by the heat treatment. To solve this problem, the resin is further impregnated after graphitization. Methods are also being considered.

【0004】ところで、近年地球環境保全の見地から、
ガソリン等に替わるクリーンエネルギーとして、自動車
搭載用途等に利用される燃料電池が注目されている。こ
の燃料電池は、化学エネルギーを熱エネルギーに変換す
ることなく直接電気エネルギーとして利用するものであ
り、通常水素及び酸素の反応によって電気を取出す電池
をいう。こうした燃料電池には、リン酸型燃料電池、固
体電解質型燃料電池及び固体高分子型燃料電池(PEF
C)等いくつかの方式のものがあるが、その中で固体高
分子型燃料電池ではセパレータなどの導電性成形品が使
用されている。セパレータは、電極等と共に単位セルを
構成し、該単位セルを積層して使用されるものであっ
て、ガス(水素・酸素)を分離する一方で導電性を必要
とする。そのため、10×10-2Ωcm以下の高い電気
導電性が要求される他、気体透過率が低いこと、さらに
は耐酸化性、耐加水分解性、耐熱水性などが要求され
る。こうした燃料電池用セパレータとしては、ガラス状
カーボン製の成形品が一般に使われている。しかし、ガ
ラス状カーボン製の成形品は破損しやすいとか密着性に
劣るとかの問題があることが知られている。このため、
樹脂にケッチエンブラックのような導電性フィラーを配
合した樹脂組成物からなる成形品を使用することが提案
されている(特開平8‐31231号公報)が、更なる
導電性の向上が望まれている。
In recent years, from the viewpoint of global environmental protection,
As a clean energy alternative to gasoline and the like, a fuel cell used for an on-vehicle use or the like has attracted attention. This fuel cell directly utilizes chemical energy as electrical energy without converting it into thermal energy, and generally refers to a battery that extracts electricity by a reaction between hydrogen and oxygen. Such fuel cells include a phosphoric acid fuel cell, a solid electrolyte fuel cell, and a polymer electrolyte fuel cell (PEF).
There are several types such as C). Among them, in the polymer electrolyte fuel cell, a conductive molded product such as a separator is used. The separator constitutes a unit cell together with electrodes and the like, and is used by laminating the unit cells. The separator requires conductivity while separating gas (hydrogen and oxygen). Therefore, a high electrical conductivity of 10 × 10 −2 Ωcm or less is required, a low gas permeability is required, and oxidation resistance, hydrolysis resistance, hot water resistance, and the like are required. As such a fuel cell separator, a molded article made of glassy carbon is generally used. However, it is known that a molded article made of glassy carbon has a problem that it is easily broken or has poor adhesion. For this reason,
It has been proposed to use a molded article made of a resin composition in which a conductive filler such as ketchen black is blended into a resin (Japanese Patent Laid-Open No. 8-31231), but further improvement in conductivity is desired. ing.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、成形
性を損なうことなく緻密で導電性に優れた樹脂成形品の
製造方法を提供することにある。また、本発明の目的
は、燃料電池用のセパレータ等として適した導電性樹脂
成形体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a resin molded article which is dense and excellent in conductivity without impairing the moldability. Another object of the present invention is to provide a conductive resin molded article suitable as a fuel cell separator or the like.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記のよう
な課題を解決するため研究を行ない、少なくとも2種類
の平均粒径の異なる黒鉛粉末と樹脂と混練したのち、こ
れを微粉砕し、プレス成形をすれば、導電性に優れた樹
脂成形品が得られることを見出し、本発明を完成した。
Means for Solving the Problems The present inventors have conducted research to solve the above problems, kneaded at least two kinds of graphite powders having different average particle diameters and a resin, and then pulverized them. The present inventors have found that a resin molded article having excellent conductivity can be obtained by press molding, and have completed the present invention.

【0007】すなわち、本発明は、平均粒径50〜30
0μmの黒鉛粉100重量部に対し平均粒径50μm未
満の黒鉛粉5〜150重量部の割合とした黒鉛粉と、黒
鉛粉100重量部に対し15重量部以下の熱硬化性樹脂
とを混練し、均一な樹脂組成物としたのち、粉砕し、得
られた粉砕物をプレス成形、硬化することを特徴とする
導電性樹脂成形品の製造方法である。ここで、前記粉砕
物の平均粒径は、50μm未満とすることが好ましい。
また、本発明は、前記の製造方法で得られた導電性樹脂
成形品であって、電気比抵抗が1×10-2Ωcm以下で
あることを特徴とする導電性樹脂成形品である。更に、
本発明は、前記の製造方法で得られた導電性樹脂成形品
であって、電気比抵抗が1×10-2Ωcm以下であるこ
とを特徴とする燃料電池用のセパレータである。
[0007] That is, the present invention provides a method for producing a fine powder having an average particle size of 50 to 30.
A graphite powder having a ratio of 5 to 150 parts by weight of graphite powder having an average particle size of less than 50 μm to 100 parts by weight of graphite powder of 0 μm and a thermosetting resin of 15 parts by weight or less with respect to 100 parts by weight of graphite powder are kneaded. A method for producing a conductive resin molded article, comprising: forming a uniform resin composition, pulverizing the resultant, and press-molding and curing the obtained pulverized product. Here, the average particle size of the pulverized product is preferably less than 50 μm.
Further, the present invention is a conductive resin molded product obtained by the above-mentioned manufacturing method, wherein the electrical resistivity is 1 × 10 −2 Ωcm or less. Furthermore,
The present invention is a separator for a fuel cell, which is a conductive resin molded product obtained by the above manufacturing method, and has an electric resistivity of 1 × 10 −2 Ωcm or less.

【0008】[0008]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明で使用する黒鉛粉は高い導電性を示すものであれ
ば制限はなく、例えば、メソカーボンマイクロビーズな
どの炭素質を黒鉛化したもの、石炭系コークスや石油系
コークスを黒鉛化したもの、黒鉛電極や特殊炭素材料の
加工粉、天然黒鉛やキッシュ黒鉛の少なくとも1種類が
使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Graphite powder used in the present invention is not limited as long as it shows high conductivity, for example, those obtained by graphitizing carbonaceous materials such as mesocarbon microbeads, those obtained by graphitizing coal-based coke or petroleum-based coke, At least one of a graphite electrode, processed powder of a special carbon material, natural graphite and quiche graphite is used.

【0009】本発明で使用する黒鉛粉は、少なくとも2
種類の粒度分布を有する黒鉛粉である必要があり、平均
粒径50〜300μm、好ましくは平均粒径80〜15
0μmの黒鉛粉と平均粒径50μm未満、好ましくは平
均粒径1〜20μmの黒鉛粉からなる。その割合は、平
均粒径50〜300μmの黒鉛粉100重量部に対し、
平均粒径50μm未満の黒鉛粉5〜150重量部、好ま
しくは10〜120重量部の割合である。少なくとも2
種類の黒鉛粉を使用することにより、大きい粒子につい
ては、混練後の粉砕の際、粉砕されて新しいコークス面
が出るために、接触して導電パスができる一方、大きい
粒子は表面積が小さいため、少量の樹脂量でも混練を可
能とすることが期待される。小さい粒子については、黒
鉛粒子同士の接触性を高める一方、成形品の強度を高め
ることが期待される。
The graphite powder used in the present invention has at least 2
It must be a graphite powder having a different particle size distribution, and has an average particle size of 50 to 300 μm, preferably an average particle size of 80 to 15 μm.
It consists of graphite powder of 0 μm and graphite powder having an average particle diameter of less than 50 μm, preferably 1 to 20 μm. The proportion is based on 100 parts by weight of graphite powder having an average particle size of 50 to 300 μm.
The proportion is 5 to 150 parts by weight, preferably 10 to 120 parts by weight, of graphite powder having an average particle size of less than 50 μm. At least 2
By using different types of graphite powder, for large particles, during grinding after kneading, a new coke surface comes out, so that there is a conductive path in contact, while large particles have a small surface area, It is expected that kneading is possible even with a small amount of resin. For small particles, it is expected that the strength of the molded article will be increased while the contact between the graphite particles is increased.

【0010】本発明で使用する熱硬化性樹脂は、耐熱性
で、混練可能な程度に低粘度である熱硬化性の樹脂であ
れば特に制限はなく、例えばフェノール樹脂、フルフリ
ルアルコール樹脂、エポキシ樹脂、尿素樹脂、メラミン
樹脂等の樹脂を使用することができる。黒鉛粉に対して
樹脂量が少ないので、多くの熱硬化性樹脂が使用可能で
ある。また、熱硬化性樹脂は硬化剤や硬化促進剤等を使
用することがあるが、硬化した際、これらが熱硬化性樹
脂と反応して樹脂の一部となることが多いので、原則と
して、これらも樹脂として計算する。好ましい熱硬化性
樹脂としては、エポキシ樹脂があり、この場合の好まし
い硬化剤としては、多価フェノール系硬化剤があり、こ
れも樹脂として計算する。
The thermosetting resin used in the present invention is not particularly limited as long as it is heat-resistant and has a viscosity low enough to be kneaded. For example, a phenol resin, a furfuryl alcohol resin, an epoxy Resins such as resin, urea resin, and melamine resin can be used. Since the amount of resin is small relative to graphite powder, many thermosetting resins can be used. In addition, the thermosetting resin may use a curing agent or a curing accelerator, but when cured, these often react with the thermosetting resin and become a part of the resin. These are also calculated as resins. A preferred thermosetting resin is an epoxy resin, and a preferred curing agent in this case is a polyphenol-based curing agent, which is also calculated as a resin.

【0011】黒鉛粉と熱硬化性樹脂の配合割合は、黒鉛
粉を100重量部に対し、15重量部以下であることが
望ましい。より好ましくは12.5重量部以下とするの
が望ましい。熱硬化性樹脂の割合が多すぎると、黒鉛粉
同士の接触が阻害されて導電性が低下する。熱硬化性樹
脂の配合割合の下限は、所定の強度を有する成形体とす
るに必要な量であり、樹脂の種類等により異なるが、通
常、5重量部以上である。なお、黒鉛粉と熱硬化性樹脂
の混合は、これらを同時に混合してもよく、少なくとも
2種類の粒度分布を有する黒鉛粉を事前に混合したの
ち、熱硬化性樹脂と混合してもよいが、後者の方法が好
ましい。また、黒鉛粉と熱硬化性樹脂の他に、上記した
ような硬化剤、硬化促進剤や離型剤、他の導電性フィラ
ー等を本発明の効果を妨げない範囲で配合することもで
きる。
The mixing ratio of the graphite powder and the thermosetting resin is preferably 15 parts by weight or less based on 100 parts by weight of the graphite powder. More preferably, the content is 12.5 parts by weight or less. If the proportion of the thermosetting resin is too large, the contact between the graphite powders is hindered and the conductivity is reduced. The lower limit of the mixing ratio of the thermosetting resin is an amount necessary for forming a molded article having a predetermined strength, and varies depending on the type of the resin and the like, but is usually 5 parts by weight or more. The graphite powder and the thermosetting resin may be mixed at the same time, or may be mixed with the thermosetting resin after previously mixing graphite powders having at least two types of particle size distributions. The latter method is preferred. Further, in addition to the graphite powder and the thermosetting resin, the above-mentioned curing agent, curing accelerator, release agent, other conductive filler, and the like can be blended as long as the effects of the present invention are not impaired.

【0012】混練工程では、混練機を用いて混練する。
混練機としては、汎用の例えば、ニーダー、ロール等を
用いることができるが、これらに制限されるものではな
い。混練は、樹脂と黒鉛粉とが可及的に均一な組成物を
形成するように行う。混練中は樹脂の粘度を低下させる
目的で加熱したり、低沸点溶媒を添加したりすることも
できるが、硬化を完了させないことが必要である。
In the kneading step, kneading is performed using a kneader.
As the kneader, a general-purpose kneader, roll, or the like can be used, but is not limited thereto. The kneading is performed so that the resin and the graphite powder form a composition as uniform as possible. During kneading, the resin may be heated for the purpose of lowering the viscosity of the resin, or a low-boiling solvent may be added, but it is necessary that the curing is not completed.

【0013】次に、混練して得られた組成物を粉砕する
が、この工程が特に重要である。混練して得られた組成
物は、樹脂量が比較的少ないので、これを冷却したりす
れば、非粘着性の組成物となることが多いので、粉砕は
公知の粉砕機を使用して行うことができる。ここで使用
する粉砕機としては、例えばせん断粉砕としてパルペラ
イザー、圧縮粉砕としてディスクミルなどを挙げること
ができる。粉砕物の平均粒径は50μm以下、好ましく
は30μm以下とすることが有利である。50μm以上
であると成形体の電気比抵抗が十分に低下せず、また粒
径を小さくしすぎると粉砕費用が増大するために粉砕機
の能力と価格を勘案し、粒径を決定するのが好ましい。
この粉砕工程では平均粒径の異なる黒鉛粉の内、大きい
粒径の黒鉛粉が優先的に粉砕されて、樹脂の付着してい
ない面が生じるために、電気比抵抗を下げる効果が生じ
るものと推定される。そのため、原料として使用する平
均粒径が50〜300μmの黒鉛粉を選択的に粉砕して
50μm以下にし、平均粒径が50μmのの黒鉛粉はな
るべく粉砕しないようにすることが有利であり、必要以
上に粉砕し過ぎると、樹脂が十分に行き渡らなくなるた
め成形品の強度が低下してしまう恐れがある。
Next, the composition obtained by kneading is pulverized, and this step is particularly important. Since the composition obtained by kneading has a relatively small amount of resin, if it is cooled, it often becomes a non-adhesive composition, and the pulverization is performed using a known pulverizer. be able to. Examples of the pulverizer used here include a pulperizer as shear pulverization and a disc mill as compression pulverization. It is advantageous that the average particle size of the pulverized product is 50 μm or less, preferably 30 μm or less. When the particle size is 50 μm or more, the electrical resistivity of the molded product does not sufficiently decrease, and when the particle size is too small, the cost of grinding increases. Therefore, it is necessary to determine the particle size in consideration of the capacity and price of the grinding machine. preferable.
In this pulverization step, among graphite powders having different average particle diameters, graphite powder having a large particle diameter is preferentially pulverized, and a surface on which resin is not adhered is generated. Presumed. Therefore, it is advantageous to selectively pulverize graphite powder having an average particle diameter of 50 to 300 μm to be used as a raw material to 50 μm or less, and to minimize the pulverization of graphite powder having an average particle diameter of 50 μm. If the pulverization is excessive, the resin may not be sufficiently distributed, and the strength of the molded article may be reduced.

【0014】成形工程は、金型による加熱型のプレス成
形機などを使用する。この工程は成形することと熱硬化
性樹脂を硬化するために、100〜250℃、好ましく
は150〜200℃程度に保持することにより行うこと
ができる。温度は使用する樹脂によって適宜適正な温度
を決定するのがより好ましい。成形圧力は電気比抵抗を
下げるためには高いほうが好ましいが、圧力を高くする
と設備費用が増大するため、100〜1000Kg/c
2程度が適当である。
In the molding step, a press mold machine of a heating type using a mold or the like is used. This step can be performed by molding and holding the thermosetting resin at 100 to 250 ° C., preferably about 150 to 200 ° C. More preferably, the temperature is appropriately determined depending on the resin used. The molding pressure is preferably higher in order to reduce the electrical resistivity, but if the pressure is increased, the equipment cost increases.
About m 2 is appropriate.

【0015】本発明の導電性樹脂成形体は、緻密で機械
的強度が高く、導電性に優れた材料を得ることができ
る。また、燃料電池用セパレータに使用すれば、緻密で
ガス透過率が低く電気比抵抗が低い材料を、金型に溝を
加工したプレス成形をするだけで得ることができるた
め、これまでのような黒鉛材料を加工して使用しなくて
よく非常に効率的である。
The conductive resin molded article of the present invention can obtain a material which is dense, has high mechanical strength, and is excellent in conductivity. In addition, when used for a fuel cell separator, a dense material having a low gas permeability and a low electric resistivity can be obtained only by press-forming a groove in a mold. It is very efficient because there is no need to process and use graphite material.

【0016】[0016]

【実施例】以下、本発明の実施例に基づいて本発明を詳
細に説明する。 実施例1 平均粒径110μmの人造黒鉛粉100重量部と平均粒
径12μmのキッシュ黒鉛粉100重量部を混合した黒
鉛粉合計200重量部に、エポキシ樹脂(日本化薬(株)
製、商品名EOCN−1020)16.25重量部、硬
化剤としてフェノールノボラック(荒川化学工業(株)製
タマノル758)8.75重量部及び硬化促進剤として
トリフェニルホスフィン(北興化学工業(株)製)0.2
5重量部を配合した。これを、100℃に加熱したロー
ルで混練した。得られた混練物をディスクミルで平均粒
径16μmに粉砕した。得られた粉砕物を金型に入れ、
温度175℃、圧力350kg/cm2の条件で20分
間成形し、脱型した。この成形体の電気比抵抗を電圧降
下法で測定した。測定結果は0.96×10-2Ωcmで
あった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments of the present invention. Example 1 An epoxy resin (Nippon Kayaku Co., Ltd.) was added to a total of 200 parts by weight of a mixture of 100 parts by weight of artificial graphite powder having an average particle diameter of 110 μm and 100 parts by weight of Kish graphite powder having an average particle diameter of 12 μm.
16.25 parts by weight, trade name EOCN-1020), 8.75 parts by weight of phenol novolak (Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd.) as a curing agent and triphenylphosphine (Hokuko Chemical Industry Co., Ltd.) as a curing accelerator 0.2)
5 parts by weight were blended. This was kneaded with a roll heated to 100 ° C. The obtained kneaded product was pulverized with a disk mill to an average particle size of 16 μm. Put the obtained crushed material in a mold,
Molding was performed at a temperature of 175 ° C. and a pressure of 350 kg / cm 2 for 20 minutes, followed by demolding. The electrical resistivity of the molded body was measured by a voltage drop method. The measurement result was 0.96 × 10 −2 Ωcm.

【0017】比較例1 実施例1と同じ黒鉛粉、エポキシ樹脂、硬化剤及び硬化
促進剤を使用し、実施例1と同じ量を配合した。これ
を、実施例1と同様にして、混練したのち、混練物を粉
砕処理することなく、固まりをほぐしただけで、金型に
入れ、実施例1と同じ条件で成形し、脱型した。この成
形体の電気比抵抗を電圧降下法で測定結果は3×10-2
Ωcmであった。
Comparative Example 1 The same amount of graphite powder, epoxy resin, curing agent and curing accelerator as in Example 1 was used. This was kneaded in the same manner as in Example 1, and then the kneaded product was placed in a metal mold without pulverizing treatment, but only loosened, molded under the same conditions as in Example 1, and demolded. The measurement result of the electric resistivity of this molded product by the voltage drop method was 3 × 10 -2.
Ωcm.

【0018】比較例2 実施例1と同じ黒鉛粉、エポキシ樹脂、硬化剤及び硬化
促進剤を使用したが、平均粒径110μmの黒鉛粉を6
2.5重量部と平均粒径12μmのキッシュ黒鉛粉を6
2.5重量部を使用し、エポキシ樹脂、硬化剤及び硬化
促進剤は実施例1と同じ量を使用した。配合物を、実施
例1と同様にして、混練したのち、ディスクミルで平均
粒径16μmに粉砕し、これを金型に入れ、温度175
℃、圧力350kg/cm2の条件で20分間成形し、
脱型した。この成形体の電気比抵抗を電圧降下法で測定
した結果は2.9×10-2Ωcmであった。
Comparative Example 2 The same graphite powder, epoxy resin, curing agent and curing accelerator as in Example 1 were used.
2.5 parts by weight of quiche graphite powder having an average particle size of 12 μm
2.5 parts by weight were used, and the same amounts of epoxy resin, curing agent and curing accelerator as in Example 1 were used. The mixture was kneaded in the same manner as in Example 1 and then pulverized with a disk mill to an average particle size of 16 μm.
At 20 ° C. under a pressure of 350 kg / cm 2 for 20 minutes,
Demolded. The result of measuring the electrical resistivity of this molded product by a voltage drop method was 2.9 × 10 −2 Ωcm.

【0019】[0019]

【発明の効果】本発明によれば、電気比抵抗の低い導電
性樹脂成形品が焼成等の熱処理なしに得られるので、低
コスト化を行なえる効果がある。また、導電性が優れる
ので、燃料電池用のセパレータとしての価値が高い。
According to the present invention, since a conductive resin molded article having a low electric resistivity can be obtained without heat treatment such as firing, there is an effect that the cost can be reduced. In addition, since it has excellent conductivity, it has high value as a separator for a fuel cell.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01B 1/24 H01B 1/24 A (72)発明者 矢野 博之 福岡県北九州市戸畑区大字中原先の浜46番 地の80 新日鐵化学株式会社総合研究所内 Fターム(参考) 4F071 AA03 AA41 AB03 AC15 AD06 AE02 AE03 AF37Y AG05 AG22 AH15 BA01 BB03 4J002 CC031 CC161 CC181 CD001 DA026 DA027 GQ02 5G301 DA19 DA42 DA57 DD08 DD10 DE01 5G307 AA08 HA01 HB02 HC01 5H026 CX04 EE06 EE18 HH01 HH06──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) // H01B 1/24 H01B 1/24 A (72) Inventor Hiroyuki Yano Nakahara-San, Tobata-ku, Fukuoka Prefecture No. 46, No. 80, Nippon Steel Chemical Co., Ltd. F-term (reference) 4F071 AA03 AA41 AB03 AC15 AD06 AE02 AE03 AF37Y AG05 AG22 AH15 BA01 BB03 4J002 CC031 CC161 CC181 CD001 DA026 DA027 GQ02 5G301 DA19 DA42 DA57 DD08 DD10 DE01 5G307 AA08 HA01 HB02 HC01 5H026 CX04 EE06 EE18 HH01 HH06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径50〜300μmの黒鉛粉10
0重量部に対し平均粒径50μm未満の黒鉛粉5〜15
0重量部の割合からなる黒鉛粉と、黒鉛粉100重量部
に対し15重量部以下の熱硬化性樹脂とを混練し、均一
な樹脂組成物としたのち、粉砕し、得られた粉砕物をプ
レス成形、硬化することを特徴とする導電性樹脂成形品
の製造方法。
1. A graphite powder 10 having an average particle size of 50 to 300 μm.
5 to 15 parts by weight of graphite powder having an average particle size of less than 50 μm with respect to 0 parts by weight.
0 parts by weight of graphite powder and 100 parts by weight of graphite powder are kneaded with 15 parts by weight or less of a thermosetting resin to form a uniform resin composition, and then pulverized. A method for producing a conductive resin molded product, comprising press molding and curing.
【請求項2】 粉砕物の平均粒径が50μm未満である
請求項1記載の導電性樹脂成形品の製造方法。
2. The method for producing a conductive resin molded article according to claim 1, wherein the average particle size of the pulverized product is less than 50 μm.
【請求項3】 請求項1又は2記載の製造方法で得られ
た導電性樹脂成形品であって、電気比抵抗が1×10-2
Ωcm以下であることを特徴とする導電性樹脂成形品。
3. A conductive resin molded article obtained by the production method according to claim 1 or 2, wherein an electric resistivity is 1 × 10 −2.
A conductive resin molded product having an Ωcm or less.
【請求項4】 請求項1又は2記載の製造方法で得られ
た導電性樹脂成形品であって、電気比抵抗が1×10-2
Ωcm以下であることを特徴とする燃料電池用セパレー
タ。
4. A conductive resin molded product obtained by the production method according to claim 1 or 2, having an electric resistivity of 1 × 10 −2.
A separator for a fuel cell, which has a Ωcm or less.
JP32549199A 1999-11-16 1999-11-16 Method for producing conductive resin molding and separator for fuel cell Withdrawn JP2001139696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32549199A JP2001139696A (en) 1999-11-16 1999-11-16 Method for producing conductive resin molding and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32549199A JP2001139696A (en) 1999-11-16 1999-11-16 Method for producing conductive resin molding and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2001139696A true JP2001139696A (en) 2001-05-22

Family

ID=18177479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32549199A Withdrawn JP2001139696A (en) 1999-11-16 1999-11-16 Method for producing conductive resin molding and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2001139696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216976A (en) * 2000-02-03 2001-08-10 Nisshinbo Ind Inc Fuel cell separator and its production method
WO2002098623A1 (en) * 2001-06-01 2002-12-12 Graftech Inc. Molding of materials from graphite particles
WO2003094272A2 (en) * 2002-04-30 2003-11-13 Mosaic Energy, L.L.C. Polymer electrolyte membrane fuel cell separator plate composition
US6800551B2 (en) 2001-12-03 2004-10-05 Nec Electronics Corporation Chemical amplification type photoresist composition, method for producing a semiconductor device using the composition, and semiconductor substrate
US20090081436A1 (en) * 2005-04-22 2009-03-26 Katsuhiro Yusa Coating layer for thermal insulator, laminated body for thermal insulator, coating agent for thermal insulator, and method of producing coating agent for thermal insulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216976A (en) * 2000-02-03 2001-08-10 Nisshinbo Ind Inc Fuel cell separator and its production method
WO2002098623A1 (en) * 2001-06-01 2002-12-12 Graftech Inc. Molding of materials from graphite particles
US6800551B2 (en) 2001-12-03 2004-10-05 Nec Electronics Corporation Chemical amplification type photoresist composition, method for producing a semiconductor device using the composition, and semiconductor substrate
WO2003094272A2 (en) * 2002-04-30 2003-11-13 Mosaic Energy, L.L.C. Polymer electrolyte membrane fuel cell separator plate composition
WO2003094272A3 (en) * 2002-04-30 2004-12-09 Mosaic Energy L L C Polymer electrolyte membrane fuel cell separator plate composition
US20090081436A1 (en) * 2005-04-22 2009-03-26 Katsuhiro Yusa Coating layer for thermal insulator, laminated body for thermal insulator, coating agent for thermal insulator, and method of producing coating agent for thermal insulator

Similar Documents

Publication Publication Date Title
JP4743356B2 (en) Manufacturing method of fuel cell separator, fuel cell separator, and polymer electrolyte fuel cell
CA2421205A1 (en) Separator for fuel cell, process for producing the same, and material therefor
JP2001122677A (en) Method for manufacturing separator for fuel battery
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JP5249609B2 (en) Fuel cell separator and manufacturing method thereof
JPS61161666A (en) Electrochemical battery separator plate, manufacture thereofand fuel battery
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
JP2001139696A (en) Method for producing conductive resin molding and separator for fuel cell
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP3412141B2 (en) Method of manufacturing fuel cell separator
JP2002075394A (en) Separator member for fuel cell
JP5187475B2 (en) Method for producing polymer electrolyte fuel cell separator material
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
CN114653302A (en) Granulation method of artificial graphite, granulated material, artificial graphite, preparation method and application of artificial graphite, and secondary battery
JP3722965B2 (en) Carbon material for electric double layer capacitors
JP2007103282A (en) Separator material for fuel cell, and its manufacturing method
JP2004281261A (en) Separator for fuel cells and its manufacturing method
JPS62260709A (en) Formed carbon article and production thereof
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2005008436A (en) Graphite material, method for producing the same, and fuel cell separator
JPS62270412A (en) Production of carbon board
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
KR101144817B1 (en) Manufacturing method of separator for fuel cell using surface treatment and separator for fuel cell manufactured by the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206