JP2004119346A - Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator - Google Patents

Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator Download PDF

Info

Publication number
JP2004119346A
JP2004119346A JP2002285082A JP2002285082A JP2004119346A JP 2004119346 A JP2004119346 A JP 2004119346A JP 2002285082 A JP2002285082 A JP 2002285082A JP 2002285082 A JP2002285082 A JP 2002285082A JP 2004119346 A JP2004119346 A JP 2004119346A
Authority
JP
Japan
Prior art keywords
graphite
fuel cell
molding material
cell separator
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285082A
Other languages
Japanese (ja)
Inventor
Hideki Murayama
村山 英樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002285082A priority Critical patent/JP2004119346A/en
Publication of JP2004119346A publication Critical patent/JP2004119346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding material for a solid polymer type fuel cell separator excellent in moldability, conductivity and mechanical strength; to provide its manufacturing method; and to provide the solid polymer type fuel cell separator. <P>SOLUTION: This molding material for a solid polymer type fuel cell separator is characterized by containing a thermosetting resin and graphite, and by containing 40-70 wt.% of flake graphite in the total graphite. Graphite other than the flake graphite is preferably graphite having an aspect ratio not more than 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術的分野】
本発明は固体高分子形燃料電池セパレーター用成形材料とその製造方法、及び固体高分子形燃料電池セパレーターに関するものである。
【0002】
【従来の技術】
固体高分子形固燃料電池は燃料ガスと酸化ガスとの電気化学的反応によって生ずる電気を取り出す一種の発電装置である。セパレーターとは電極の間で燃料ガス及び酸化ガスの流路を形成すると共に、両ガスを隔てる分離板である。また、発生した電気を集める集電板としての役割も果たしている。従って、セパレーターには高導電性とガス不透過性が要求される。また、通常必要な電圧を得るためにセパレーター、膜・電極接合体、ガス拡散層などからなる単セルを数百枚積層する。その際、各部材の接触抵抗を小さくし、ガスシール性を確保するために、強い力で締め付けられる。そのため積層の締め付け力に耐えうる機械的強度と高度な成形厚み精度が必要となる
【0003】
固体高分子形燃料電池セパレーターの製造方法としては、カーボン粉末にフェノール樹脂をバインダーとして加え、混練、成形した後に炭化及び黒鉛化する方法が知られている(例えば、特許文献1参照。)。しかし、この方法の場合、1000〜3000℃の高温で長時間加熱を行う焼成の工程とともに、焼成したカーボン板にガス流路を切削加工する工程を含むために、製造に時間を要しコストが高くなるという問題があった。或いは、金属板などに溝をプレス加工した上で樹脂コートを行うなどの金属樹脂コンポジットを素材とする方法(例えば、特許文献2、非特許文献1参照。)などにより製作が試みられてきたが、使用される環境における金属と樹脂との界面層での層剥離及び金属板の腐食問題等が解決せず、品質と価格で適切なセパレーターを供給する目処が立っていない。
【0004】
このため、更に種々の試みがなされており、黒鉛やカーボンブラック等の導電性炭素系基材を樹脂でバインドして成形材料化し、これを加熱成形することにより溝形状を付与するモールド成形法が、コストと特性の両立する手法として有望視されている(例えば、特許文献3参照。)。この手法ではセパレーターとして高導電性を得るために、成形材料中の黒鉛粒子の配合量を多くする必要がある。しかし、黒鉛粒子をこのように大量に配合した場合、材料の流動性が十分でないために充填不足となったり、燃料ガスや酸化ガスが透過してしまったり、基材同士を結びつけるバインダーとしての樹脂量が少ないために機械的強度が不足するなどの問題が発生してしまう。従って、成形性と導電性及び機械的強度の三つの特性を両立させるための技術が必要となる。これまで黒鉛の粒子形状を最適化するなお、種々の試みがなされてきた。
【0005】
例えば、黒鉛粒子のアスペクト比を小さくし、粒径を揃える試み(例えば、特許文献3参照。)は導電性には優れるが、黒鉛配合量が多い。言い換えると、樹脂配合量が少ないために流動性が不十分で、機械的強度や成形精度に問題が起こる可能性がある。これを解決するために黒鉛粒子のアスペクト比を大きくして充填性を改良する試み(例えば、特許文献4参照。)がある。しかし、この方法では成形時に黒鉛が面内に配向し、貫通方向の導電性が低下する問題があった。
【0006】
【特許文献1】
特開平08−222241号公報
【特許文献2】
特開平11−345618号公報
【特許文献3】
特公昭64−000340号広報
【特許文献4】
WO99/05737号公報
【非特許文献1】
平成12年度固体高分子形燃料電池研究開発成果報告会要旨集,「II.高効率燃料電池システム実用化技術開発 II−2固体高分子形燃料電池システム実用化技術開発」,新エネルギー産業技術総合開発機構 水素・アルコール・バイオマス技術開発室,平成13年3月,P70
【0007】
【発明が解決しようとする課題】
本発明は、成形性、導電性及び機械的強度に優れた固体高分子形燃料電池セパレーター用成形材料とその製造方法、及び固体高分子形燃料電池セパレーターを提供するものである。
【0008】
【課題を解決するための手段】
このような目的は、下記の本発明(1)〜(10)によって達成される。
(1)熱硬化性樹脂と黒鉛とを含有し、前記黒鉛全体に対して、鱗片状黒鉛40〜70重量%を含有することを特徴とする固体高分子形燃料電池セパレーター用成形材料。
(2)前記鱗片状黒鉛は、c軸層面間距離が0.3354〜0.3356nmである上記(1)に記載の固体高分子形燃料電池セパレーター用成形材料。
(3)前記鱗片状黒鉛は、平均粒径が30〜100μmである上記(1)又は(2)に記載の固体高分子形燃料電池セパレーター用成形材料。
(4)前記鱗片状黒鉛以外の黒鉛は、アスペクト比が3以下の黒鉛である上記(1)ないし(3)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。
(5)前記アスペクト比が3以下の黒鉛は、前記黒鉛全体に対して、30〜50重量%である上記(1)ないし(4)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。
(6)前記アスペクト比が3以下の黒鉛は、平均粒径が30〜150μmである上記(1)ないし(5)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。
(7)前記熱硬化性樹脂100重量部に対して、前記黒鉛を合計200〜400重量部含有する上記(1)ないし(6)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。
(8)上記(1)ないし(7)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料を成形してなる固体高分子形燃料電池セパレーター。
(9)上記(1)ないし(7)のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料を製造する方法であって、熱硬化性樹脂と黒鉛とを含有する原材料混合物を溶融混練することを特徴とする固体高分子形燃料電池セパレーター用成形材料の製造方法。
(10)上記(9)に記載の固体高分子形燃料電池セパレーター用成形材料の製造方法により得られた成形材料を成形してなる固体高分子形燃料電池セパレーター。
【0009】
【発明の実施の形態】
以下、本発明の固体高分子形燃料電池セパレーター用成形材料とその製造方法、及び固体高分子形燃料電池セパレーターについて説明する。
本発明の固体高分子形燃料電池セパレーター用成形材料(以下、単に「成形材料」ということがある)は、熱硬化性樹脂と黒鉛とを含有し、前記黒鉛全体に対して鱗片状黒鉛40〜70重量%を含有することを特徴とする。
また、本発明の固体高分子形燃料電池セパレーター用成形材料の製造方法(以下、単に「製造方法」ということがある)は、上記本発明の成形材料を製造する方法であって、熱硬化性樹脂と黒鉛とを含有する原材料混合物を溶融混練することを特徴とする。
そして、本発明の固体高分子形燃料電池セパレーター(以下、単に「セパレーター」ということがある)は、前記成形材料及び前記製造方法により得られた成形材料を成形してなるものである。
まず、本発明の成形材料について詳しく述べる。
【0010】
本発明の成形材料で用いられる熱硬化性樹脂としては特に限定されないが、例えば、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、ジアリルフタレート樹脂、シリコン樹脂などが挙げられる。これらの中でも、フェノール樹脂、エポキシ樹脂を用いた場合は、耐熱性、機械的強度、電気的特性、価格などにおいて優れている。また、ベースとなる樹脂を低分子量のものから選択することができるため、黒鉛の配合比率が高い本発明の成形材料においても、成形材料製造時の材料粘度を調整しやすく、さらに、成形時に流動性を付与しやすいという点でも好ましいものである。
【0011】
本発明の成形材料には、黒鉛を配合する。これにより、成形品に導電性を付与することができる。
本発明の成形材料には、黒鉛全体に対して鱗片状黒鉛40〜70重量%を含有することを特徴とする。
これにより、成形材料に流動性を付与することができる。鱗片状黒鉛としては特に限定されないが、例えば、天然黒鉛や高結晶性の人造黒鉛が挙げられる。
また、鱗片状黒鉛は特に限定されないが、X線解析による格子定数精密法で求めるc軸(002)層面間距離(d002)が0.3354〜0.3356nmであることが好ましい。かかるc軸層面間距離を有した黒鉛は結晶化度(黒鉛化度)が高く、面方向の導電性が非常に高いものであり、導電性を付与する効果を高めることができる。
鱗片状黒鉛の平均粒径についても特に限定されないが、30〜100μmであることが好ましい。平均粒径が前記下限値より小さいと十分な導電性が得られないことがあり、前記上限値より大きいとセパレーターの機械的強度が低下することがある。
【0012】
本発明の成形材料には、上記鱗片状黒鉛のほか、これ以外の黒鉛を配合する。鱗片状黒鉛以外の黒鉛としては特に限定されないが、土壌黒鉛などの天然黒鉛、石炭系コークス又は石油系コークスを黒鉛化した人造黒鉛などが挙げられ、形状としては、鱗状、針状、塊状、球状、凝集体のものがある。
これらの黒鉛の中でも、アスペクト比が3以下である黒鉛(以下、「低アスペクト比黒鉛」ということがある)を用いることが好ましい。このような形状の黒鉛は、成形時の材料流動時にも配向しにくく、セパレーターに成形した場合に厚み方向においても所定の導電性を確保することができる。アスペクト比が3よりも大きいと、成形時にセパレーターの面方向に配向するようになるので、貫通方向の導電性が低下するようになる。なお、ここでアスペクト比とは、黒鉛の長径(A)と短径(B)との比(A/B)で表される値である。
低アスペクト比黒鉛としては特に限定されないが、例えば、塊状コークスを原料とする塊状黒鉛、針状コークスを原料とする人造黒鉛を粉砕してアスペクト比を小さくしたものなどがこれに相当し、これらを2種類以上併用することもできる。
【0013】
上記低アスペクト比黒鉛は特に限定されないが、平均粒径が30〜150μmであることが好ましい。さらに好ましくは80〜120μmである。これにより、導電性をより高くすることができる。平均粒径が前記下限値未満であると、鱗片状黒鉛の配向を妨げる効果が不充分となることがあり、成形材料の流動性も低下するようになる。また、前記上限値を越えると、成形品の厚み精度や表面平滑性が低下することがある。
【0014】
本発明の成形材料に使用される鱗片状黒鉛は、天然黒鉛に代表されるような、黒鉛化度が高く、非常に導電性に優れたフレーク状の黒鉛である。このような鱗片状黒鉛は導電性の異方性が強いため、鱗片の層内では金属並に抵抗値が小さいが、垂直方向(層間)では層内よりも抵抗値が2桁程度高いといわれている。従って、成形材料に鱗片状黒鉛を単独で配合すると、成形時に樹脂の流動により、鱗片状黒鉛がセパレーターの面方向に配向するために、導電経路が面方向のみに発達し、セパレーターの貫通方向に対しては抵抗値が高くなり、必要特性を満足することが難しくなる。
一方、低アスペクト比黒鉛を単独で用いた場合は、導電性の異方性は鱗片状黒鉛よりは小さいが、十分な貫通方向の導電性を得るために配合量を増やすと流動性が低下するという問題がある。
【0015】
本発明の成形材料において、鱗片状黒鉛とともに、好ましくは低アスペクト比黒鉛を併用した場合、下記の効果が発現すると考えられる。
すなわち、鱗片状黒鉛と低アスペクト比黒鉛とを併用した成形材料を加圧成形する場合、鱗片状黒鉛は、低アスペクト比黒鉛粒子と互いに衝突しながら流動するために、面方向の動きを阻害される。このため、鱗片状黒鉛は面方向だけに流動することができなくなり、ランダムに配向するようになる。この結果、成形品の厚み方向に対しても、高い導電性を有する鱗片状黒鉛によって充分な導電経路が形成されるようになり、セパレーターの貫通方向の導電性を高くすることができると考えられる。
【0016】
本発明の成形材料において、鱗片状黒鉛とともに低アスペクト比黒鉛を併用した場合、その配合量としては特に限定されないが、黒鉛全体に対し、低アスペクト比黒鉛が30〜50重量%とすることが好ましい。さらに好ましくは35〜45重量%である。これにより、成形材料の流動性を大きく低下させることなく、鱗片状黒鉛の配向をランダムにする効果を付与することができる。低アスペクト比黒鉛の配合量が前記下限値未満では、鱗片状黒鉛の配向を妨げる効果が不充分となり、成形品の導電性が低下することがある。また、前記上限値を超えると、成形材料の流動性が低下することがある。
【0017】
本発明の成形材料において、黒鉛の配合量としては特に限定されないが、熱硬化性樹脂100重量部に対して、黒鉛の合計が200〜400重量部であることが好ましい。黒鉛の配合量が前記上限値を上回ると、成形時の流動性が不足するようになるので、高い厚み精度でセパレーターを成形するのが難しいことがある。一方、前記下限値を下回ると、セパレーターとして要求される導電性が十分でなくなることがある。これは、成形品内において熱硬化性樹脂が占有する体積が増えることで、黒鉛粒子間に絶縁層である樹脂が多く存在する確率が高くなり、結果として絶縁体部分が増えて導電性を低下させるものと考えられる。
【0018】
なお、本発明の成形材料には、これまで説明した熱硬化性樹脂、黒鉛以外にも、本発明の目的および効果に反しない範囲内において、セパレーター用成形材料として一般的に用いられる滑材、離型剤、着色剤、硬化促進剤、難燃剤などを用いることができる。
【0019】
一般的にセパレーター用の熱硬化性樹脂成形材料においては、熱硬化性樹脂が本来絶縁物であるため、成形品の導電性を向上させるためには、導電性基材である黒鉛などを高比率で配合する必要がある。しかし、成形品内、特に厚み方向においては、成形時に、導電異方性を有する黒鉛が成形品面内方向に配向するために十分な導電性が得られない。このため、成形材料の流動性、あるいは成形品の機械的強度とともに、貫通方向の導電性に優れた成形品を得ることは容易ではない。
本発明の成形材料においては、好ましくは成形材料の流動性を確保できる量の熱硬化性樹脂を配合するとともに、さらに鱗片状黒鉛を多く用いることにより流動性を付与するので、成形性や機械的強度に優れた成形品を得ることができる。さらに、鱗片状黒鉛と好ましくは低アスペクト比黒鉛とを所定の比率で併用することにより、成形品内部において鱗片状黒鉛を成形品の厚み方向にも配向させ、鱗片状黒鉛の有する高い導電性を生かし、成形品の貫通抵抗値を低下させることができたものである。
【0020】
次に、本発明の成形材料の製造方法について説明する。
本発明の成形材料の製造方法としては特に限定されないが、例えば、熱硬化性樹脂と黒鉛とを含有する原材料混合物を粉砕し、ヘンシェルミキサー等の撹拌混合装置を用いて混合する方法、熱硬化性樹脂を有機溶剤に溶解し、これに黒鉛等の成分を分散させた後、溶剤を除去する方法、あるいは、熱硬化性樹脂と黒鉛とを含有する原材料混合物を、溶融混練装置を用いて混練する方法、などが挙げられる。これらの中でも、熱硬化性樹脂と黒鉛とを含有する原材料混合物を、溶融混練装置を用いて混練する方法が好ましい。これにより、原材料混合物の均一混合性を高めることができ、熱硬化性樹脂と黒鉛との濡れ性、密着性を高めることができるので、成形品の成形性、導電性、機械的強度などの特性を良好なものにすることができる。
溶融混練装置としては特に限定されないが、二軸ニーダー、二軸押出機、単軸押出機、ロール混練装置などの公知のものを用いることができる。混練条件としても特に限定されず、用いる黒鉛の粒度分布・性状、溶融混練装置の種類、成形材料の組成・性状、及び成形材料中の黒鉛の粒度分布などを考慮し、最適な混練条件を選定して用いることができる。
【0021】
次に、本発明のセパレーターについて説明する。本発明のセパレーターは、前記成形材料、あるいは前記製造方法により得られた成形材料を成形してなるものである。
本発明のセパレーターの成形方法としては特に限定されないが、通常、圧縮成形やトランスファー成形が用いられる。圧縮成形を用いる場合は、タブレットを用いて成形することができる。圧縮成形の一例を挙げると、圧力200〜1500kg/cm、温度150〜200℃、時間1〜30分間で成形することにより、セパレーター用成形品を得ることができる。
【0022】
【実施例】
以下、実施例により本発明を説明する。
【0023】
1.成形材料の製造
表1に示した原料配合比で、原料混合物をヘンシェルミキサー(三井鉱山社製・FM20B)を用い、室温で350rpmで混合した後、引き続き、二軸押出機(東芝機械製・TEM−50)を用い、80℃で混練し、造粒して成形材料を得た。
【0024】
2.セパレーター用材料としての諸特性評価(その1)
(1)貫通方向抵抗率の測定
図1に示した方法で行った。
実施例及び比較例で得られた成形材料を用いて、金型温度170℃、成形圧力300kg/cm、成形時間3分間で圧縮成形して、80×80×15mmの試料3、及び80×80×5mmの試料4を得た。これらの試料を用いて貫通方向の抵抗値を測定した。即ち、厚さの異なる2枚の試料3、4を組み合わせて、カーボンペーパー2を介して電極1にセットし、成形体の厚みが異なった状態での抵抗値より、貫通方向の固有抵抗を求めた。
【0025】
3.セパレーター用素材としての諸特性評価(その2)
実施例及び比較例で得られた成形材料を用いて、金型温度170℃、成形圧力400kg/cm、成形時間3分間で圧縮成形して、300×300×2mmの大きさの成形品を得た。この成形品およびこれより切り出したテストピースを用いて評価を行った。
(1)曲げ強度:JIS−K6911に準じて行った。
(2)厚み精度:300×300×2mmの大きさの成形品を用い、ミツトヨ社製・3次元測定器を用いて等間隔に16ヶ所の厚みを測定し、最大値と最小値の差を厚み精度とした。
【0026】
実施例、比較例における原材料の配合、成形材料ならびに成形品の評価結果を表1に示す。
【表1】

Figure 2004119346
【0027】
(表の注)
(1)フェノール樹脂:以下の方法により製造したものを用いた。
2リットルフラスコにホルムアルデヒド(F)とフェノール(P)をモル比(F/P)=1.7で仕込み、ナフテン酸亜鉛と蓚酸を用いてPHを5.5に調整し、120rpmで攪拌しながら4時間反応させた。次に常圧のまま120℃まで脱水昇温したあと、減圧下で脱水しながら160℃まで昇温した後、フラスコから取り出してレゾール型フェノール樹脂(フリーフェノール除外平均分子量=864)を得た。
(2)エポキシ樹脂:ジャパンエポキシレジン社製・エピコート1001(ビスフェノールA型エポキシ樹脂、数平均分子量900)
(3)硬化剤:四国化成工業社製・2MZ
(4)離型剤:東亜化成社製・カルナバワックス(平均炭素数26、融点83℃)
(5)鱗片状黒鉛:
▲1▼日本黒鉛社製・天然黒鉛SP−20(d002=0.3356nm、平均粒径36μm)
▲2▼TIMCAL社製・高結晶性人造黒鉛SFG−150(d002=0.3355nm、平均粒径60μm)
(6)低アスペクト比黒鉛:
▲1▼日本黒鉛社製・PAG−120(平均粒径120μm、アスペクト比2.5)
▲2▼日本黒鉛社製・PAG−5(平均粒径30μm、アスペクト比2.5)
【0028】
実施例1〜9は、熱硬化性樹脂と黒鉛とを含有し、黒鉛全体に対して、鱗片状黒鉛40〜70重量%を含有する本発明の成形材料であり、この成形品は、成形性、導電性及び機械的強度のいずれにおいても優れたものであった。特に実施例1〜5は、鱗片状黒鉛とともに用いた黒鉛の性状や配合量が最適であったため、特にそのバランスに優れたものとなった。
一方、比較例1は鱗片状黒鉛を用いなかった成形材料であるが、成形品の導電性は低いものであり、比較例2では鱗片状黒鉛のみを用いたが、厚み精度は良好であったものの導電性は大きく低下した。
【0029】
【発明の効果】
本発明は、熱硬化性樹脂と黒鉛とを含有し、前記黒鉛全体に対して、鱗片状黒鉛40〜70重量%を含有し、好ましくは鱗片状黒鉛以外の黒鉛としてアスペクト比が3以下の黒鉛を併用することを特徴とする成形材料である。本発明の成形材料を用い、成形性、導電性及び機械的強度に優れた成形品を成形することができる。従って本発明は、固体高分子形燃料電池セパレーター用成形材料として好適である。
【図面の簡単な説明】
【図1】本発明の実施例における貫通方向抵抗率の測定方法を示す概略図
【符号の説明】
1 電極
2 カーボンペーパー
3 本発明の成形材料の成形物(厚さ15mm)
4 本発明の成形材料の成形物(厚さ5mm)
5 定電流装置
6 電圧計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molding material for a polymer electrolyte fuel cell separator, a method for producing the same, and a polymer electrolyte fuel cell separator.
[0002]
[Prior art]
A polymer electrolyte fuel cell is a type of power generation device that extracts electricity generated by an electrochemical reaction between a fuel gas and an oxidizing gas. The separator is a separator that forms a flow path for the fuel gas and the oxidizing gas between the electrodes and separates the two gases. It also plays a role as a current collecting plate for collecting generated electricity. Therefore, the separator is required to have high conductivity and gas impermeability. In order to obtain a necessary voltage, several hundred single cells each composed of a separator, a membrane / electrode assembly, a gas diffusion layer and the like are usually laminated. At this time, the members are tightened with a strong force in order to reduce the contact resistance of each member and secure gas sealing. Therefore, mechanical strength that can withstand the tightening force of the laminate and high molding thickness accuracy are required.
As a method for producing a polymer electrolyte fuel cell separator, a method is known in which a phenol resin is added to carbon powder as a binder, kneaded, molded, and then carbonized and graphitized (for example, see Patent Document 1). However, in the case of this method, in addition to the firing step in which heating is performed at a high temperature of 1000 to 3000 ° C. for a long time, a step of cutting a gas flow path in the fired carbon plate is included, so that time is required for manufacturing and cost is increased. There was a problem of becoming expensive. Alternatively, production has been attempted by a method using a metal resin composite as a material, such as performing resin coating after pressing a groove in a metal plate or the like (for example, see Patent Document 2 and Non-Patent Document 1). In addition, the problem of delamination at the interface layer between the metal and the resin in the environment in which it is used and the problem of corrosion of the metal plate have not been solved, and there is no prospect of supplying an appropriate separator with quality and price.
[0004]
For this reason, various attempts have been made, and a molding method in which a conductive carbon-based substrate such as graphite or carbon black is bound with a resin to form a molding material, and this is heated and molded to impart a groove shape is proposed. It is considered promising as a technique that balances cost and characteristics (for example, see Patent Document 3). In this method, in order to obtain high conductivity as a separator, it is necessary to increase the amount of graphite particles in the molding material. However, when graphite particles are blended in such a large amount, the fluidity of the material is insufficient, resulting in insufficient filling, permeation of fuel gas and oxidizing gas, and resin as a binder for binding the base materials. Problems such as insufficient mechanical strength occur due to the small amount. Therefore, a technique is required to achieve the three characteristics of moldability, conductivity, and mechanical strength. Until now, various attempts have been made to optimize the particle shape of graphite.
[0005]
For example, in an attempt to reduce the aspect ratio of graphite particles and make the particle size uniform (for example, see Patent Document 3), the conductivity is excellent, but the amount of graphite is large. In other words, the flowability is insufficient due to a small amount of the resin compounding, and there is a possibility that a problem occurs in mechanical strength and molding accuracy. In order to solve this, there is an attempt to improve the filling property by increasing the aspect ratio of graphite particles (for example, see Patent Document 4). However, this method has a problem that graphite is oriented in a plane during molding, and the conductivity in the penetrating direction is reduced.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 08-222241 [Patent Document 2]
JP-A-11-345618 [Patent Document 3]
Public information of Japanese Patent Publication No. 64-000340 [Patent Document 4]
WO 99/05737 [Non-Patent Document 1]
Abstracts of 2000 R & D Achievements of Polymer Electrolyte Fuel Cell, “II. Development of High Efficiency Fuel Cell System Practical Technology II-2, Development of Practical Technology for Polymer Electrolyte Fuel Cell System”, New Energy Industrial Technology Development Organization Hydrogen / Alcohol / Biomass Technology Development Office, March 2001, P70
[0007]
[Problems to be solved by the invention]
The present invention provides a molding material for a polymer electrolyte fuel cell separator having excellent moldability, conductivity, and mechanical strength, a method for producing the same, and a polymer electrolyte fuel cell separator.
[0008]
[Means for Solving the Problems]
Such an object is achieved by the following present inventions (1) to (10).
(1) A molding material for a polymer electrolyte fuel cell separator, comprising a thermosetting resin and graphite, and containing 40 to 70% by weight of flake graphite based on the entire graphite.
(2) The molding material for a polymer electrolyte fuel cell separator according to the above (1), wherein the flake graphite has a c-axis layer surface distance of 0.3354 to 0.3356 nm.
(3) The molding material for a polymer electrolyte fuel cell separator according to the above (1) or (2), wherein the flaky graphite has an average particle size of 30 to 100 μm.
(4) The molding material for a polymer electrolyte fuel cell separator according to any one of the above (1) to (3), wherein the graphite other than the flaky graphite is graphite having an aspect ratio of 3 or less.
(5) The molding for a polymer electrolyte fuel cell separator according to any one of the above (1) to (4), wherein the graphite having an aspect ratio of 3 or less is 30 to 50% by weight based on the entire graphite. material.
(6) The molding material for a polymer electrolyte fuel cell separator according to any of (1) to (5) above, wherein the graphite having an aspect ratio of 3 or less has an average particle size of 30 to 150 μm.
(7) The molding material for a polymer electrolyte fuel cell separator according to any one of the above (1) to (6), wherein the total amount of the graphite is 200 to 400 parts by weight based on 100 parts by weight of the thermosetting resin. .
(8) A polymer electrolyte fuel cell separator formed by molding the molding material for a polymer electrolyte fuel cell separator according to any one of (1) to (7).
(9) A method for producing a molding material for a polymer electrolyte fuel cell separator according to any one of the above (1) to (7), wherein a raw material mixture containing a thermosetting resin and graphite is melt-kneaded. A method for producing a molding material for a polymer electrolyte fuel cell separator.
(10) A polymer electrolyte fuel cell separator obtained by molding the molding material obtained by the method for producing a molding material for a polymer electrolyte fuel cell separator according to (9).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the molding material for a polymer electrolyte fuel cell separator of the present invention, a method for producing the same, and the polymer electrolyte fuel cell separator will be described.
The molding material for a polymer electrolyte fuel cell separator of the present invention (hereinafter, may be simply referred to as a “molding material”) contains a thermosetting resin and graphite, and the entire graphite is flake graphite 40 to 40%. It is characterized by containing 70% by weight.
The method for producing a molding material for a polymer electrolyte fuel cell separator of the present invention (hereinafter, may be simply referred to as “production method”) is a method for producing the molding material of the present invention, wherein It is characterized in that a raw material mixture containing a resin and graphite is melt-kneaded.
The polymer electrolyte fuel cell separator of the present invention (hereinafter sometimes simply referred to as “separator”) is obtained by molding the molding material and the molding material obtained by the production method.
First, the molding material of the present invention will be described in detail.
[0010]
The thermosetting resin used in the molding material of the present invention is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, a polyester resin, a diallyl phthalate resin, and a silicone resin. Among these, when a phenol resin or an epoxy resin is used, heat resistance, mechanical strength, electrical characteristics, price, and the like are excellent. Further, since the base resin can be selected from those having a low molecular weight, even in the molding material of the present invention having a high compounding ratio of graphite, it is easy to adjust the material viscosity during the production of the molding material, and furthermore, the fluidity during molding can be improved. It is also preferable in that the property can be easily imparted.
[0011]
The molding material of the present invention contains graphite. Thereby, conductivity can be imparted to the molded product.
The molding material of the present invention is characterized by containing 40 to 70% by weight of flaky graphite with respect to the entire graphite.
Thereby, fluidity can be given to the molding material. The flaky graphite is not particularly limited, and examples thereof include natural graphite and highly crystalline artificial graphite.
The flake graphite is not particularly limited, but the c-axis (002) layer-to-layer distance (d 002 ) determined by the lattice constant precision method by X-ray analysis is preferably 0.3354 to 0.3356 nm. Graphite having such a distance between the c-axis layers has a high degree of crystallinity (graphitization degree) and extremely high conductivity in the plane direction, and can enhance the effect of imparting conductivity.
The average particle size of the flaky graphite is not particularly limited, but is preferably 30 to 100 μm. If the average particle size is smaller than the lower limit, sufficient conductivity may not be obtained, and if the average particle size is larger than the upper limit, the mechanical strength of the separator may decrease.
[0012]
In the molding material of the present invention, in addition to the flaky graphite, other graphites are blended. Graphite other than flaky graphite is not particularly limited, but natural graphite such as soil graphite, artificial graphite obtained by graphitizing coal-based coke or petroleum-based coke, and the like, in the form of a scale, needle-like, massive, spherical , Aggregates.
Among these graphites, it is preferable to use graphite having an aspect ratio of 3 or less (hereinafter sometimes referred to as “low aspect ratio graphite”). Graphite having such a shape is unlikely to be oriented even when the material flows during molding, and when molded into a separator, predetermined conductivity can be ensured even in the thickness direction. If the aspect ratio is larger than 3, the separator will be oriented in the plane direction of the separator during molding, so that the conductivity in the penetrating direction will be reduced. Here, the aspect ratio is a value represented by the ratio (A / B) between the major axis (A) and the minor axis (B) of graphite.
The low aspect ratio graphite is not particularly limited, for example, lump graphite made of lump coke as a raw material, artificial graphite made of acicular coke as a raw material, and the like having a reduced aspect ratio, etc., correspond to these. Two or more types can be used in combination.
[0013]
The low aspect ratio graphite is not particularly limited, but preferably has an average particle size of 30 to 150 μm. More preferably, it is 80 to 120 μm. Thereby, the conductivity can be further increased. When the average particle size is less than the lower limit, the effect of hindering the orientation of the flaky graphite may be insufficient, and the fluidity of the molding material may be reduced. If the upper limit is exceeded, the thickness accuracy and surface smoothness of the molded product may be reduced.
[0014]
The flaky graphite used in the molding material of the present invention is a flake-like graphite having a high degree of graphitization and very excellent conductivity, as represented by natural graphite. Such flaky graphite has strong conductivity anisotropy, and thus has a resistance as small as metal in the scale layer, but has a resistance about two orders of magnitude higher in the vertical direction (interlayer) than in the layer. ing. Therefore, when flaky graphite alone is blended into the molding material, the flow of the resin at the time of molding causes the flaky graphite to be oriented in the plane direction of the separator, so that the conductive path develops only in the plane direction, and in the penetration direction of the separator. On the other hand, the resistance value becomes high, and it becomes difficult to satisfy required characteristics.
On the other hand, when low aspect ratio graphite is used alone, the conductivity anisotropy is smaller than that of flake graphite, but the fluidity decreases when the blending amount is increased to obtain sufficient conductivity in the penetrating direction. There is a problem.
[0015]
In the molding material of the present invention, it is considered that the following effects are exhibited when the graphite having a low aspect ratio is used together with the flaky graphite.
That is, when pressure-molding a molding material that uses a combination of flaky graphite and low aspect ratio graphite, the flaky graphite is flown while colliding with the low aspect ratio graphite particles, and movement in the plane direction is hindered. You. For this reason, the flaky graphite cannot flow only in the plane direction, and is oriented randomly. As a result, even in the thickness direction of the molded product, a sufficient conductive path is formed by the flaky graphite having high conductivity, and it is considered that the conductivity in the through direction of the separator can be increased. .
[0016]
In the molding material of the present invention, when the low aspect ratio graphite is used together with the flaky graphite, the blending amount is not particularly limited, but it is preferable that the low aspect ratio graphite is 30 to 50% by weight based on the entire graphite. . More preferably, it is 35 to 45% by weight. Thereby, the effect of randomizing the orientation of the flaky graphite can be imparted without greatly reducing the fluidity of the molding material. If the amount of the low aspect ratio graphite is less than the lower limit, the effect of hindering the orientation of the flaky graphite becomes insufficient, and the conductivity of the molded product may decrease. If the ratio exceeds the upper limit, the fluidity of the molding material may be reduced.
[0017]
In the molding material of the present invention, the amount of graphite is not particularly limited, but the total amount of graphite is preferably 200 to 400 parts by weight based on 100 parts by weight of the thermosetting resin. If the amount of graphite exceeds the upper limit, fluidity during molding becomes insufficient, and it may be difficult to mold the separator with high thickness accuracy. On the other hand, below the lower limit, the conductivity required for the separator may not be sufficient. This is because the volume occupied by the thermosetting resin in the molded article increases, and the probability that the resin serving as the insulating layer exists between the graphite particles increases, resulting in an increase in the insulator portion and a decrease in conductivity. It is thought to cause.
[0018]
In addition, the molding material of the present invention, other than the thermosetting resin and graphite described so far, as long as the object and effects of the present invention are not violated, a lubricant generally used as a molding material for a separator, A release agent, a coloring agent, a curing accelerator, a flame retardant, and the like can be used.
[0019]
In general, in thermosetting resin molding materials for separators, the thermosetting resin is essentially an insulator, so in order to improve the conductivity of the molded product, a high ratio of graphite, which is a conductive base material, is used. It is necessary to mix in. However, in the molded product, particularly in the thickness direction, sufficient conductivity cannot be obtained because graphite having conductive anisotropy is oriented in the in-plane direction of the molded product during molding. For this reason, it is not easy to obtain a molded product excellent in the fluidity of the molding material or the mechanical strength of the molded product as well as the conductivity in the penetrating direction.
In the molding material of the present invention, it is preferable to mix a thermosetting resin in an amount capable of securing the fluidity of the molding material, and to impart fluidity by further using a large amount of flake graphite. A molded article having excellent strength can be obtained. Furthermore, by using flaky graphite and preferably low aspect ratio graphite in combination at a predetermined ratio, the flaky graphite is also oriented in the thickness direction of the molded product inside the molded product, and the high conductivity of the flaky graphite is obtained. Utilizing this, the penetration resistance value of the molded article could be reduced.
[0020]
Next, a method for producing the molding material of the present invention will be described.
The method for producing the molding material of the present invention is not particularly limited.For example, a method of pulverizing a raw material mixture containing a thermosetting resin and graphite and mixing them using a stirring and mixing device such as a Henschel mixer, After dissolving the resin in the organic solvent and dispersing the components such as graphite therein, a method of removing the solvent, or a raw material mixture containing a thermosetting resin and graphite is kneaded using a melt kneading apparatus. Method, and the like. Among these, a method of kneading a raw material mixture containing a thermosetting resin and graphite using a melt kneading apparatus is preferable. As a result, the uniform mixing property of the raw material mixture can be improved, and the wettability and adhesion between the thermosetting resin and the graphite can be improved, so that properties such as moldability, conductivity, and mechanical strength of a molded product can be improved. Can be improved.
The melt-kneading apparatus is not particularly limited, but a known apparatus such as a twin-screw kneader, a twin-screw extruder, a single-screw extruder, and a roll kneader can be used. The kneading conditions are not particularly limited, and the optimal kneading conditions are selected in consideration of the particle size distribution and properties of the graphite to be used, the type of the melt kneading apparatus, the composition and properties of the molding material, and the particle size distribution of graphite in the molding material. Can be used.
[0021]
Next, the separator of the present invention will be described. The separator of the present invention is obtained by molding the molding material or the molding material obtained by the production method.
The method for forming the separator of the present invention is not particularly limited, but usually, compression molding or transfer molding is used. When compression molding is used, it can be molded using a tablet. As an example of compression molding, a molded product for a separator can be obtained by molding at a pressure of 200 to 1500 kg / cm 2 , a temperature of 150 to 200 ° C., and a time of 1 to 30 minutes.
[0022]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0023]
1. Production of molding material The raw material mixture was mixed at 350 rpm at room temperature using a Henschel mixer (FM20B, manufactured by Mitsui Mining Co., Ltd.) at the raw material mixing ratio shown in Table 1, and then the twin screw extruder (made by Toshiba Machinery, TEM) Using -50), the mixture was kneaded at 80 ° C and granulated to obtain a molding material.
[0024]
2. Evaluation of various properties as separator material (1)
(1) Measurement of resistivity in the through direction The measurement was performed by the method shown in FIG.
Using the molding materials obtained in the examples and the comparative examples, compression molding was performed at a mold temperature of 170 ° C., a molding pressure of 300 kg / cm 2 , and a molding time of 3 minutes, and a sample 3 of 80 × 80 × 15 mm and 80 × A sample 4 of 80 × 5 mm was obtained. The resistance value in the penetration direction was measured using these samples. That is, two samples 3 and 4 having different thicknesses are combined, set on the electrode 1 via the carbon paper 2, and the specific resistance in the penetration direction is determined from the resistance value when the thickness of the molded body is different. Was.
[0025]
3. Evaluation of various properties as a material for separators (Part 2)
Using the molding materials obtained in Examples and Comparative Examples, compression molding was performed at a mold temperature of 170 ° C., a molding pressure of 400 kg / cm 2 , and a molding time of 3 minutes to obtain a molded product having a size of 300 × 300 × 2 mm. Obtained. Evaluation was performed using this molded product and a test piece cut out therefrom.
(1) Flexural strength: Performed according to JIS-K6911.
(2) Thickness accuracy: Using a molded product having a size of 300 × 300 × 2 mm, using a three-dimensional measuring device manufactured by Mitutoyo Corporation, measure thicknesses at 16 locations at equal intervals, and determine the difference between the maximum value and the minimum value. The thickness accuracy was set.
[0026]
Table 1 shows the blending of the raw materials, the molding materials, and the evaluation results of the molded products in Examples and Comparative Examples.
[Table 1]
Figure 2004119346
[0027]
(Note in the table)
(1) Phenol resin: A resin produced by the following method was used.
A 2-liter flask was charged with formaldehyde (F) and phenol (P) at a molar ratio (F / P) of 1.7, the pH was adjusted to 5.5 with zinc naphthenate and oxalic acid, and the mixture was stirred at 120 rpm. The reaction was performed for 4 hours. Next, after dehydrating and raising the temperature to 120 ° C. under normal pressure, the temperature was raised to 160 ° C. while dehydrating under reduced pressure, and then taken out of the flask to obtain a resol-type phenol resin (average molecular weight excluding free phenol = 864).
(2) Epoxy resin: Epicoat 1001 manufactured by Japan Epoxy Resin (bisphenol A type epoxy resin, number average molecular weight 900)
(3) Curing agent: 2MZ manufactured by Shikoku Chemicals
(4) Release agent: Carnauba wax manufactured by Toa Kasei Co., Ltd. (average carbon number 26, melting point 83 ° C)
(5) Scale-like graphite:
(1) Natural graphite SP-20 manufactured by Nippon Graphite Co., Ltd. (d 002 = 0.3356 nm, average particle size 36 μm)
(2) Highly crystalline artificial graphite SFG-150 manufactured by TIMCAL (d 002 = 0.3355 nm, average particle size 60 μm)
(6) Low aspect ratio graphite:
(1) PAG-120 manufactured by Nippon Graphite Co., Ltd. (average particle size 120 μm, aspect ratio 2.5)
(2) PAG-5 manufactured by Nippon Graphite Co., Ltd. (average particle size 30 μm, aspect ratio 2.5)
[0028]
Examples 1 to 9 are molding materials of the present invention containing a thermosetting resin and graphite, and containing 40 to 70% by weight of flaky graphite with respect to the entire graphite. , Electrical conductivity and mechanical strength. Particularly, in Examples 1 to 5, the properties and blending amount of the graphite used together with the flaky graphite were optimal, and thus the balance was particularly excellent.
On the other hand, Comparative Example 1 was a molding material that did not use flaky graphite, but the conductivity of the molded product was low. In Comparative Example 2, only flaky graphite was used, but the thickness accuracy was good. However, the conductivity was greatly reduced.
[0029]
【The invention's effect】
The present invention contains a thermosetting resin and graphite, and contains 40 to 70% by weight of flaky graphite with respect to the entire graphite, preferably graphite having an aspect ratio of 3 or less as graphite other than flaky graphite. A molding material characterized by using a combination thereof. By using the molding material of the present invention, a molded article excellent in moldability, conductivity and mechanical strength can be molded. Therefore, the present invention is suitable as a molding material for a polymer electrolyte fuel cell separator.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for measuring the through-direction resistivity in an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Electrode 2 Carbon paper 3 Molded product (15 mm in thickness) of the molding material of the present invention
4. Molded product of the molding material of the present invention (5 mm thick)
5 Constant current device 6 Voltmeter

Claims (10)

熱硬化性樹脂と黒鉛とを含有し、前記黒鉛全体に対して、鱗片状黒鉛40〜70重量%を含有することを特徴とする固体高分子形燃料電池セパレーター用成形材料。A molding material for a polymer electrolyte fuel cell separator, comprising: a thermosetting resin and graphite; and 40 to 70% by weight of flake graphite based on the entire graphite. 前記鱗片状黒鉛は、c軸層面間距離が0.3354〜0.3356nmである請求項1に記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to claim 1, wherein the flake graphite has a distance between c-axis layer surfaces of 0.3354 to 0.3356 nm. 前記鱗片状黒鉛は、平均粒径が30〜100μmである請求項1又は2に記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to claim 1 or 2, wherein the flaky graphite has an average particle size of 30 to 100 µm. 前記鱗片状黒鉛以外の黒鉛は、アスペクト比が3以下の黒鉛である請求項1ないし3のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to any one of claims 1 to 3, wherein the graphite other than the flaky graphite is graphite having an aspect ratio of 3 or less. 前記アスペクト比が3以下の黒鉛は、前記黒鉛全体に対して、30〜50重量%である請求項1ないし4のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to any one of claims 1 to 4, wherein the graphite having an aspect ratio of 3 or less is 30 to 50% by weight based on the entire graphite. 前記アスペクト比が3以下の黒鉛は、平均粒径が30〜150μmである請求項1ないし5のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to any one of claims 1 to 5, wherein the graphite having an aspect ratio of 3 or less has an average particle size of 30 to 150 µm. 前記熱硬化性樹脂100重量部に対して、前記黒鉛を合計200〜400重量部含有する請求項1ないし6のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料。The molding material for a polymer electrolyte fuel cell separator according to any one of claims 1 to 6, comprising a total of 200 to 400 parts by weight of the graphite based on 100 parts by weight of the thermosetting resin. 請求項1ないし7のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料を成形してなる固体高分子形燃料電池セパレーター。A polymer electrolyte fuel cell separator formed by molding the molding material for a polymer electrolyte fuel cell separator according to claim 1. 請求項1ないし7のいずれかに記載の固体高分子形燃料電池セパレーター用成形材料を製造する方法であって、熱硬化性樹脂と黒鉛とを含有する原材料混合物を溶融混練することを特徴とする固体高分子形燃料電池セパレーター用成形材料の製造方法。A method for producing a molding material for a polymer electrolyte fuel cell separator according to any one of claims 1 to 7, wherein a raw material mixture containing a thermosetting resin and graphite is melt-kneaded. A method for producing a molding material for a polymer electrolyte fuel cell separator. 請求項9に記載の固体高分子形燃料電池セパレーター用成形材料の製造方法により得られた成形材料を成形してなる固体高分子形燃料電池セパレーター。A polymer electrolyte fuel cell separator obtained by molding a molding material obtained by the method for producing a polymer electrolyte fuel cell separator molding material according to claim 9.
JP2002285082A 2002-09-30 2002-09-30 Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator Pending JP2004119346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285082A JP2004119346A (en) 2002-09-30 2002-09-30 Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285082A JP2004119346A (en) 2002-09-30 2002-09-30 Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator

Publications (1)

Publication Number Publication Date
JP2004119346A true JP2004119346A (en) 2004-04-15

Family

ID=32278475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285082A Pending JP2004119346A (en) 2002-09-30 2002-09-30 Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator

Country Status (1)

Country Link
JP (1) JP2004119346A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
JP2005332661A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
WO2007072745A1 (en) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. Separator material for solid polymer electrolyte fuel cell and process for producing the same
WO2011010689A1 (en) 2009-07-24 2011-01-27 日清紡ケミカル株式会社 Fuel cell separator
WO2012023959A1 (en) * 2010-08-16 2012-02-23 Utc Power Corporation Fuel cell separator plate
CN112204782A (en) * 2018-05-23 2021-01-08 丰田车体株式会社 Separator for fuel cell and method for manufacturing separator for fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
JP2005332661A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator
JP4586415B2 (en) * 2004-05-19 2010-11-24 日産自動車株式会社 Manufacturing method of fuel cell separator
US8758958B2 (en) 2004-12-29 2014-06-24 Clearedge Power, Llc Fuel cell separator plate assembly
WO2007072745A1 (en) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. Separator material for solid polymer electrolyte fuel cell and process for producing the same
JP2007172956A (en) * 2005-12-21 2007-07-05 Tokai Carbon Co Ltd Separator member for polymer electrolyte fuel cell and its manufacturing method
TWI416786B (en) * 2005-12-21 2013-11-21 Tokai Carbon Kk Isolated material for solid polymer fuel cell and manufacturing method thereof
WO2011010689A1 (en) 2009-07-24 2011-01-27 日清紡ケミカル株式会社 Fuel cell separator
US8372192B2 (en) 2009-07-24 2013-02-12 Nisshinbo Chemical Inc. Fuel cell separator
WO2012023959A1 (en) * 2010-08-16 2012-02-23 Utc Power Corporation Fuel cell separator plate
CN112204782A (en) * 2018-05-23 2021-01-08 丰田车体株式会社 Separator for fuel cell and method for manufacturing separator for fuel cell

Similar Documents

Publication Publication Date Title
JP2010123564A (en) Molding material for fuel cell separator
TW200405599A (en) Mesh reinforced fuel cell separator plate
JP2002260682A (en) Composition for fuel cell separator, the fuel cell separator, method of manufacture and solid high polymer fuel cell
WO2002021620A1 (en) Separator for fuel cell, process for producing the same, and material therefor
KR20180135344A (en) The control of carbon materials structure on bipolar plate for fuel cell and its manufacturing method
JP5600158B2 (en) Separation plate for fuel cell and fuel cell including the same
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
Mathew et al. Novel copper fiber-filled polymer composites for enhancing the properties of bipolar plates for polymer electrolyte membrane fuel cells
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP6332579B1 (en) Resin composition for fuel cell dense separator
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
Hui et al. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells
JP5842142B2 (en) Resin composition for fuel cell separator, sheet for molding fuel cell separator, and fuel cell separator
Mathew et al. Development of novel composite bipolar plates using surface‐modified conductive carbon filler materials for polymer electrolyte membrane fuel cells
JP2004075954A (en) Epoxy resin composition for fuel cell separator
JP2004055375A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP5486276B2 (en) Resin composition for fuel cell separator, sheet for molding fuel cell separator, and fuel cell separator
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP2002075394A (en) Separator member for fuel cell
JP4254698B2 (en) Resin composition for fuel cell separator and fuel cell separator
JP2005339953A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it
JP2003242995A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP2004281261A (en) Separator for fuel cells and its manufacturing method