JP2009249195A - Method for producing carbon molded product - Google Patents

Method for producing carbon molded product Download PDF

Info

Publication number
JP2009249195A
JP2009249195A JP2008095717A JP2008095717A JP2009249195A JP 2009249195 A JP2009249195 A JP 2009249195A JP 2008095717 A JP2008095717 A JP 2008095717A JP 2008095717 A JP2008095717 A JP 2008095717A JP 2009249195 A JP2009249195 A JP 2009249195A
Authority
JP
Japan
Prior art keywords
molding
powder
resin
carbon
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095717A
Other languages
Japanese (ja)
Inventor
Takushi Iida
卓志 飯田
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2008095717A priority Critical patent/JP2009249195A/en
Publication of JP2009249195A publication Critical patent/JP2009249195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon molded product having a small shrinkage anisotropy at the time of burning and a reduced anisotropy of physical properties by reducing the anisotropy of the molded product accompanying a flow of a molding compound at the time of injection molding and suppressing the distortion due to the shrinkage at the time of burning. <P>SOLUTION: Carbon powder containing 0.01-5 pts.wt. of an organic compound or a synthetic resin compound is subjected to mechanical grinding to smooth a particle surface. 100 pts.wt. of the carbon powder and a resin solution in which 10-40 pts.wt. of a thermosetting resin solid content having a residual carbon ratio of 40% or more are mixed and kneaded , and the resulting mixture is dried, and thereafter crushed to obtain a molding powder. The molding powder is molded by injection molding, injection compression molding, or transfer moulding. The resulting molded product is cured at a temperature of 180-280°C and then burned at a temperature of 800°C or higher in a non-oxidizing atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、射出成形、射出圧縮成形あるいはトランスファ成形によって作製した成形体を焼成する炭素材料の製造方法に関し、特に、焼成後の炭素材料内での物性のばらつきを低減化した炭素成形体の製造方法に関する。   The present invention relates to a method for producing a carbon material for firing a molded body produced by injection molding, injection compression molding or transfer molding, and in particular, production of a carbon molded body with reduced variation in physical properties within the carbon material after firing. Regarding the method.

更に、目標とする最終製品形状に近似した炭素成形体を製造することができ、例えば、帯電防止材、電磁波シールド材、摺動部材、放熱基盤、遠赤外線放射体、発熱体、電磁誘導および直火に限らず調理器用の発熱体、容器など、異形状、立体複雑形状の炭素成形体を製造する際にも、後処理的に機械加工する部分を極力少なくできる炭素成形体の製造方法に関する。   Furthermore, it is possible to produce a carbon molded body approximating the target final product shape, for example, an antistatic material, an electromagnetic shielding material, a sliding member, a heat radiation base, a far-infrared radiator, a heating element, an electromagnetic induction and a direct current. The present invention relates to a method for producing a carbon molded body that can reduce the number of parts to be machined in post-processing as much as possible even when producing a carbon molded body having an irregular shape or a three-dimensional complex shape, such as a heating element and a container for a cooker.

炭素材料は、非酸化性雰囲気において優れた耐熱性や高温強度を有し、また導電性、熱伝導性および化学的安定性も高く、このような特異な性質から電気、電子、機械、冶金、化学などの幅広い分野で広く使用されている。この炭素材料は、従来からコークス粉末などの炭素質粉末を骨材として、ピッチやタールなどの結合材を配合して加熱混練したのち混練物を粉砕して原料粉を作製し、原料粉を押出し成形や冷間静水圧プレスなどによって成形し、これを焼成、更にピッチ含浸、再焼成を繰り返し、必要に応じ黒鉛化を行いブロック状の炭素材として製造されている。   Carbon materials have excellent heat resistance and high temperature strength in a non-oxidizing atmosphere, and also have high electrical conductivity, thermal conductivity and chemical stability, and from such unique properties, electric, electronic, mechanical, metallurgical, Widely used in a wide range of fields such as chemistry. Conventionally, this carbon material is made of carbonaceous powder such as coke powder, blended with a binder such as pitch or tar, heated and kneaded, then pulverized to produce the raw material powder, and the raw material powder is extruded. It is molded by molding, cold isostatic pressing or the like, and is fired, further pitch impregnated, and refired repeatedly, and graphitized as necessary to produce a block-like carbon material.

この製造プロセスは工程が複雑で、特に焼成工程では主に結合材に由来する多量の揮発性ガスが発生し、発生したガスが成形体から円滑に揮散、排出されないと、膨れなどの変形や割れが生じ易い。そのため、焼成過程における昇温速度を極めて緩やかに加熱する必要があり、通常、焼成サイクルは1ヶ月以上もの長期間を要している。また、立体形状の最終製品を得るためにはブロック状の炭素材から所望の形状に機械加工するので、高価なものとなるなどの問題がある。   This manufacturing process is complicated, and especially in the firing process, a large amount of volatile gas derived mainly from the binder is generated, and if the generated gas is not smoothly volatilized and discharged from the molded body, deformation such as blistering and cracking will occur. Is likely to occur. Therefore, it is necessary to heat the heating rate very slowly during the firing process, and the firing cycle usually requires a long period of one month or more. In addition, in order to obtain a final product having a three-dimensional shape, machining is performed from a block-shaped carbon material to a desired shape, so that there is a problem that it becomes expensive.

このような問題を解消し、最終製品形状に近似した炭素成形体を得るために、黒鉛などの炭素粉末と比較的炭化率の高い熱硬化性樹脂を結合材として混合、混練した後、乾燥、粉砕して成形粉とし、この成形粉を射出成形、トランスファ成形、圧縮成形などの成形法により所望形状に成形した成形体を焼成、炭化、必要に応じ黒鉛化する方法がある。この成形方法により、特に複雑形状の成形体を作製することができ、成形サイクル時間の短い射出成形法が有用されている。   In order to eliminate such a problem and obtain a carbon molded body approximate to the final product shape, carbon powder such as graphite and a thermosetting resin having a relatively high carbonization rate are mixed and kneaded as a binder, then dried, There is a method of pulverizing into a molding powder and firing, carbonizing, and optionally graphitizing a molded body obtained by molding the molding powder into a desired shape by a molding method such as injection molding, transfer molding or compression molding. By this molding method, a molded body having a particularly complicated shape can be produced, and an injection molding method having a short molding cycle time is useful.

例えば、特許文献1には炭素微粉末と熱硬化性樹脂を混合する際に、高い機械的エネルギーを加えてメカノケミカル現象により炭素微粉末の粒子表面に樹脂が高度に結合したペースト状組成物を得、この組成物を注型成形または射出成形して、焼成する製造方法が開示されている。   For example, Patent Document 1 discloses a paste-like composition in which a resin is highly bonded to the particle surface of carbon fine powder due to a mechanochemical phenomenon by adding high mechanical energy when carbon fine powder and a thermosetting resin are mixed. A manufacturing method is disclosed in which the composition is cast or injection molded and fired.

しかし、成形時にペースト状組成物の流動性が重要であり、特に射出成形では流動性を高く保持する必要があるため熱硬化性樹脂量が多くならざるを得ない。例えば、上記特許文献1では、炭素粉末の平均粒径が100μm以下の微粉末であることもあって、結合材である熱硬化性樹脂量も30〜95%と多くなり、成形体の表面には樹脂リッチ層が形成され易く、特に3mm以上の肉厚の厚い炭素製品では焼成時の分解ガスの排出が円滑に行われ難いため、焼成時に膨れや割れが生じ易く、肉厚の厚い炭素製品を製造することは困難である。   However, the fluidity of the paste-like composition is important at the time of molding, and the amount of thermosetting resin is inevitably increased because it is necessary to maintain high fluidity particularly in injection molding. For example, in Patent Document 1, the average particle size of the carbon powder may be a fine powder of 100 μm or less, and the amount of thermosetting resin that is a binder is increased to 30 to 95%, and the surface of the molded body is increased. Is easy to form a resin-rich layer, especially in thick carbon products with a thickness of 3 mm or more, it is difficult to discharge the decomposition gas during firing. It is difficult to manufacture.

そこで、特許文献2では炭素粉末100重量部にベンジリックエーテル型フェノール樹脂10〜50重量部を添加混練し、この混練物を射出成形または押出成形して成形体をつくり、これを非酸化性雰囲気下、600℃以上の温度で熱処理する炭素成形体の製造法が提案されている。   Therefore, in Patent Document 2, 10 to 50 parts by weight of a benzylic ether type phenol resin is added to and kneaded with 100 parts by weight of carbon powder, and this kneaded product is injection molded or extruded to form a molded body, which is made into a non-oxidizing atmosphere. A method for producing a carbon molded body that is heat-treated at a temperature of 600 ° C. or higher has been proposed.

特許文献2は樹脂の添加量が少なくても流動性のよい混練物が得られるベンジリックエーテル型フェノール樹脂を使用するもので、射出成形により複雑形状の成形体を効率よく作製できるとするものである。しかし、樹脂量が少ないために射出材料が金型キャビティに入り込む際に広がりながらエアを抱き込んで充填され、更に後から充填されてくる材料によって抱き込んだエアを押しつぶすように充填されるので、焼成後の炭素材料は射出方向に強度が低く(電気抵抗が高く)、その直角方向に強度が高い(電気抵抗が低い)という物性の異方性が生じる。   Patent Document 2 uses a benzylic ether type phenolic resin that can obtain a kneaded material having good fluidity even if the amount of resin added is small, and it is said that a molded body having a complicated shape can be efficiently produced by injection molding. is there. However, because the amount of resin is small, the injection material spreads when it enters the mold cavity and is filled with air, and further filled so as to crush the air embraced by the material filled later, The carbon material after firing has anisotropy of physical properties such as low strength in the injection direction (high electrical resistance) and high strength in the perpendicular direction (low electrical resistance).

また、射出成形体は、高い圧力で金型内に強引に充填されるので、成形体には大きな残留応力が蓄積されており、その後の硬化、焼成過程で残留応力が開放されてスプリングバックによって射出流れ方向に大きく膨張し、硬化、焼成時にゆがみを生じ、割れる場合もある。   In addition, since the injection molded product is forcibly filled in the mold at a high pressure, a large residual stress is accumulated in the molded product, and the residual stress is released during the subsequent curing and firing processes, and is caused by springback. It may expand greatly in the injection flow direction, and may be distorted and cracked during curing and firing.

特許文献3にはメソカーボン粉末と有機バインダーとの均一混合物を加熱し、射出成形するメソカーボン粉末成形体の製造方法が開示されている。しかし、使用するメソカーボン粉末の粒径が1〜80μmと小さく、成形時の流動性を改善するために可塑剤を配合するので、焼成過程で発生するガス量も多くなりカーボン焼結体の密度や強度が低くなる欠点がある。   Patent Document 3 discloses a method for producing a mesocarbon powder molded body in which a uniform mixture of mesocarbon powder and an organic binder is heated and injection molded. However, since the mesocarbon powder used has a small particle size of 1 to 80 μm and a plasticizer is added to improve the fluidity during molding, the amount of gas generated during the firing process increases, and the density of the carbon sintered body There is a drawback that the strength is lowered.

また、特許文献4にはオルト位結合/パラ位結合存在比が3以上のノボラック系フェノール樹脂50〜95質量%と、炭素質材料50〜5質量%とを主成分とする樹脂組成物を射出成形した成形体を炭化焼成したアモルファスカーボン成形体が開示されているが、炭素質材料の粒径が100μm以下の微粉を用いるので、樹脂組成物の樹脂量比が高く、焼成時に発生するガス量も多くなり、膨れや割れが発生する難点がある。
特開昭59−195515号公報 特開平01−115869号公報 特開平08−113668号公報 特開2004−131527号公報
Patent Document 4 injects a resin composition mainly composed of 50 to 95% by mass of a novolac phenol resin having an ortho bond / para bond abundance ratio of 3 or more and 50 to 5% by mass of a carbonaceous material. An amorphous carbon molded body obtained by carbonizing and firing a molded body is disclosed, but since a fine powder having a carbonaceous material particle size of 100 μm or less is used, the resin amount ratio of the resin composition is high, and the amount of gas generated during firing However, there is a problem that blisters and cracks occur.
JP 59-195515 A Japanese Patent Laid-Open No. 01-115869 Japanese Patent Laid-Open No. 08-113668 JP 2004-131527 A

そこで、発明者らは上記の問題、すなわち射出成形時の射出材料の流動に伴う成形体の異方性を抑制し、また焼成時の収縮による歪みを抑制して膨れや割れのない炭素成形体を得るために射出成形材料について種々の面から鋭意検討した。   Therefore, the inventors suppress the above problems, that is, the anisotropy of the molded body due to the flow of the injection material at the time of injection molding, and suppress the distortion due to shrinkage at the time of firing, thereby preventing the carbon molded body from being swollen or cracked. In order to achieve this, the injection molding material was intensively studied from various aspects.

そして、原料である黒鉛粉末に合成樹脂化合物を添加、混合して、熱処理等によりその樹脂混合黒鉛粉末を硬化、不融化処理した後、機械的摩砕処理を行い、凝集して二次粒子となった該混合炭素粉末を破砕し、該混合炭素粉末の表面を平滑にして丸みを帯びた形状にすると、丸みをおびた炭素粉末粒子の樹脂バインダー中での充填性が向上し、成形性が飛躍的に向上することを見出した。   Then, a synthetic resin compound is added to and mixed with the raw material graphite powder, and the resin-mixed graphite powder is cured and infusibilized by heat treatment or the like, and then mechanically milled to agglomerate secondary particles. When the mixed carbon powder is crushed and the surface of the mixed carbon powder is smoothed to have a rounded shape, the filling property of the rounded carbon powder particles in the resin binder is improved, and the moldability is improved. I found that it improved dramatically.

その結果、焼成時に膨れや割れを発生することなく、焼成した炭素成形体内の物性のばらつきが少なく、更に機械加工が殆んど不要な立体形状のネットシェイプの炭素成形体が得られることを確認した。   As a result, it is confirmed that there is little variation in the physical properties of the fired carbon molded body without causing blistering or cracking during firing, and that a three-dimensional net-shaped carbon molded body requiring almost no machining is obtained. did.

本発明はこれらの知見に基いて開発したものであって、射出成形時などにおいて成形材料の流動に伴う成形体の異方性を低減し、また焼成時の収縮による歪みを抑制して焼成時の収縮異方性が小さく、炭素材料の物性の異方性を低減化した炭素成形体の製造方法を提供するとともに、さらには焼成時の歪みを小さくして機械的強度や熱伝導率などの熱的特性を向上させることを目的としている。   The present invention was developed based on these findings, and reduces the anisotropy of the molded body due to the flow of the molding material at the time of injection molding and the like, and suppresses distortion due to shrinkage at the time of firing. In addition to providing a method for producing a carbon molded body in which the shrinkage anisotropy of the carbon material is small and the anisotropy of the physical properties of the carbon material is reduced, the strain at the time of firing is reduced to reduce the mechanical strength, thermal conductivity, etc. The purpose is to improve the thermal properties.

更に、本発明は、異形、複雑形状の炭素成形体を製造する際にも、後処理的に機械加工する部分が極力少ない最終製品形状に近似した炭素材料の製造方法、また、焼成時に発生する膨れや割れなどの現象を低減化することのできる炭素成形体の製造方法を提供することを目的とする。   Furthermore, the present invention is a method for producing a carbon material that approximates the shape of a final product and has a portion that is machined in a post-processing as much as possible even when producing a deformed or complex shaped carbon molded body, and also occurs during firing. It aims at providing the manufacturing method of the carbon molded object which can reduce phenomena, such as a swelling and a crack.

上記目的を達成するための本発明に係る炭素成形体の製造方法は、合成樹脂化合物を0.01〜10重量部混合した黒鉛粉末を硬化(不融化)処理した後、該樹脂混合黒鉛粉末を機械的摩砕処理して粒子表面を平滑にし、摩砕処理後の該粉末と、該粉末100重量部に対し残炭率40%以上の熱硬化性樹脂固形分10〜40重量部を溶解した樹脂溶液と混合、混練し、乾燥後、粉砕した成形粉を、射出成形、射出圧縮成形或いはトランスファ成形により成形し、得られた成形体を180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを構成上の特徴とする。   In order to achieve the above object, the method for producing a carbon molded body according to the present invention comprises: curing (infusibilizing) a graphite powder mixed with 0.01 to 10 parts by weight of a synthetic resin compound; The surface of the particles was smoothed by mechanical grinding, and the powder after grinding and 10 to 40 parts by weight of a thermosetting resin solid content having a residual carbon ratio of 40% or more with respect to 100 parts by weight of the powder were dissolved. After mixing with a resin solution, kneading and drying, the pulverized molding powder is molded by injection molding, injection compression molding or transfer molding, and the resulting molded body is cured at a temperature of 180 to 280 ° C. A structural feature is that a baking treatment is performed at a temperature of 800 ° C. or higher in an oxidizing atmosphere.

なお、合成樹脂化合物は、熱硬化性樹脂、熱可塑性樹脂、ピッチ、もしくは、これら2種類以上の混合物が好適に用いられる。   As the synthetic resin compound, a thermosetting resin, a thermoplastic resin, pitch, or a mixture of two or more of these is preferably used.

本発明によれば、射出成形時に成形材料の流動に伴う成形体の異方性を低減し、また焼成時の収縮による歪みを抑制して焼成時の収縮異方性が小さく、その結果物性の異方性が小さく、更に、後処理的に機械加工する部分が極力少ない最終製品形状に近似した炭素成形体を製造することができる。   According to the present invention, the anisotropy of the molded body due to the flow of the molding material at the time of injection molding is reduced, and the distortion due to the shrinkage at the time of firing is suppressed, so that the shrinkage anisotropy at the time of firing is small. It is possible to produce a carbon molded body that has a small anisotropy and that approximates the final product shape with as few as possible parts to be machined in post-processing.

そして、本発明により製造された炭素成形体は、例えば、帯電防止材、電磁波シールド材、摺動部材、放熱基盤、遠赤外線放射体、電磁誘導などの発熱体をはじめ各種発熱体、容器など広い用途分野で使用することができる。   The carbon molded body produced according to the present invention includes a wide variety of heating elements such as antistatic materials, electromagnetic wave shielding materials, sliding members, heat dissipation bases, far-infrared radiators, electromagnetic induction, and various heating elements and containers. Can be used in application fields.

原料粉末には、機械的強度と熱伝導性を向上させることが求められているので、黒鉛粉末が適用され、黒鉛化度の高い黒鉛粉末は射出時の流動性が高く、成形性が良好で、ノズル詰まりやショートショットが少ないので、成形性の観点から人造黒鉛粉末や天然黒鉛粉末が好適である。   Since raw material powder is required to improve mechanical strength and thermal conductivity, graphite powder is applied, and graphite powder with high degree of graphitization has high fluidity at injection and good moldability. Since there is little nozzle clogging or short shot, artificial graphite powder or natural graphite powder is preferred from the viewpoint of moldability.

黒鉛粉末は、適宜な粉砕機で粉砕して平均粒子径を0.05〜2mmに粒度調整したものが好適に用いられる。平均粒子径が0.05mmを下回ると混練物の流動性が低下して射出成形性が悪化し、射出性を向上させるために樹脂量を増やすと射出した成形体が緻密となり、焼成中に発生するガス量も増大するので、製造した炭素成形体に膨れや割れが発生する原因となる。また、平均粒子径が2mmより大きくなると炭素成形体の強度が低下し、更に射出成形時に金型のゲート付近で詰りが発生し易くなる。   As the graphite powder, one having an average particle size adjusted to 0.05 to 2 mm by pulverization with an appropriate pulverizer is preferably used. If the average particle size is less than 0.05 mm, the fluidity of the kneaded product is lowered and the injection moldability is deteriorated. If the amount of resin is increased in order to improve the injection property, the injected molded body becomes dense and occurs during firing. Since the amount of gas to be increased also increases, it causes swelling and cracking in the produced carbon molded body. Further, when the average particle diameter is larger than 2 mm, the strength of the carbon molded body is lowered, and clogging is likely to occur near the gate of the mold during injection molding.

黒鉛粉末には合成樹脂化合物を添加して、適当な混合機で混合する。このときには大きなシェアはかけずに混ぜ合わせる程度とし、この混合物を熱処理等によって硬化、不融化処理した後、機械的摩砕処理する。合成樹脂化合物としては、熱硬化性樹脂、熱可塑性樹脂、ピッチ、もしくはこれら2種類以上の混合物が好ましく用いられる。   A synthetic resin compound is added to the graphite powder and mixed with an appropriate mixer. At this time, mixing is performed without applying a large share, and the mixture is cured and infusibilized by heat treatment or the like, and then mechanically ground. As the synthetic resin compound, a thermosetting resin, a thermoplastic resin, pitch, or a mixture of two or more of these is preferably used.

具体的には、熱可塑性樹脂としてはポリエチレン、ポリプロピレン、フッ素樹脂、ポリアミド、ポリアセタール、飽和ポリエステル、ポリ塩化ビニル、ポリビニルブチラール、ポリブニルアルコール、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルホルマール、ポリビニルアセタール、ポリスチレン、AS樹脂、ABS樹脂、メタクリル樹脂、ポリカーボネート、ポリフェニレンオキサイド、ポリスルホン、セルロイドなどを例示することができる。   Specifically, as the thermoplastic resin, polyethylene, polypropylene, fluororesin, polyamide, polyacetal, saturated polyester, polyvinyl chloride, polyvinyl butyral, polybutyl alcohol, polyvinylidene chloride, polyvinyl acetate, polyvinyl formal, polyvinyl acetal, Examples thereof include polystyrene, AS resin, ABS resin, methacrylic resin, polycarbonate, polyphenylene oxide, polysulfone, and celluloid.

熱硬化性樹脂としてはフェノール樹脂、エポキシ樹脂、ポリイミド、フラン樹脂、不飽和ポリエステルなどが、またピッチ粉末としては石油系ピッチ、石炭系ピッチ、合成ピッチ、コールタールピッチ、軟ピッチ、硬ピッチなどが例示できる。   Examples of thermosetting resins include phenolic resin, epoxy resin, polyimide, furan resin, and unsaturated polyester. Examples of pitch powder include petroleum pitch, coal pitch, synthetic pitch, coal tar pitch, soft pitch, and hard pitch. It can be illustrated.

これらの合成樹脂化合物は、黒鉛粉末に対して、0.01〜10重量部の割合で添加混合する。0.01部より少ない場合は、射出成型品を焼成した際に収縮の異方性が出て割れたり、強度、熱伝導率などの物性が低くなる。10重量部を超えた場合には、分解成分が多くなるので、焼成時に膨れや割れを起こし易くなるばかりでなく、機械的摩砕処理時に合成樹脂化合物が黒鉛粉から剥がれ落ちて、細かく粉砕され、射出成形時の流動性を低下させて、ショートショットになり易い。   These synthetic resin compounds are added and mixed at a ratio of 0.01 to 10 parts by weight with respect to the graphite powder. When the amount is less than 0.01 part, shrinkage anisotropy occurs when the injection-molded product is baked, and the physical properties such as strength and thermal conductivity are lowered. When the amount exceeds 10 parts by weight, the decomposition components increase, so that not only blisters and cracks are likely to occur during firing, but the synthetic resin compound peels off from the graphite powder during mechanical grinding and is finely pulverized. , The fluidity at the time of injection molding is lowered, and a short shot tends to occur.

これら合成樹脂化合物を添加、混合して硬化処理した黒鉛粉末は、機械的摩砕処理を行い、合成樹脂化合物の硬化物によって凝集した黒鉛粉を一次粒子を壊しながら、合成樹脂化合物が付着した黒鉛粉末の粒子表面を平滑化し、丸みを帯びた形状にする。通常、黒鉛粉末は角張った形状をしており、射出成形する材料である樹脂との混練物は炭素粉末粒子間の距離が短く、高圧で射出する際に射出方向、特にゲート付近では粒子間距離が接近した状態で射出されるので、成形体には大きな残留応力が存在する。   The graphite powder obtained by adding, mixing and curing these synthetic resin compounds is subjected to mechanical grinding treatment, and the graphite powder aggregated by the cured product of the synthetic resin compound breaks the primary particles while the synthetic resin compound adheres to the graphite powder. Smooth the particle surface of the powder to make it round. Normally, graphite powder has an angular shape, and a kneaded product with resin, which is a material to be injection-molded, has a short distance between carbon powder particles, and in the injection direction when injecting at a high pressure, particularly the interparticle distance in the vicinity of the gate. Is injected in a close state, so that a large residual stress exists in the molded body.

したがって、成形体を硬化、焼成した場合、バインダー樹脂の結合力が弱まったときに残留応力が緩和されていわゆるスプリングバックが起こり、射出方向に膨張して焼成時に収縮異方性が増大する。   Therefore, when the molded body is cured and fired, the residual stress is relaxed when the binding force of the binder resin is weakened, so-called springback occurs, and the shrinkage anisotropy increases during firing by expanding in the injection direction.

これに対し、合成樹脂化合物を添加、混合、硬化処理してさらに機械的摩砕処理をした黒鉛粉末の粒子表面を平滑化し、丸みを帯びた形状にした場合には、合成樹脂化合物を黒鉛粉末と混合、硬化処理すると、黒鉛粉表面の凹凸を覆い、この混合物を機械的摩砕処理して球形化していくと、付着した合成樹脂化合物の硬化物が強力に付着した状態で丸みを帯びて平滑になってより射出成形時の充填性が向上して、硬化した合成樹脂化合物が付着した状態で球形化されているので、金型キャビティに大きな力で充填されたときに、黒鉛粒子の破壊も抑えられ、スプリングバックを起こしずらく、異方性も著しく小さくなる。
さらに、黒鉛粉末は、射出成形時のバインダーとなる残炭率40%以上の熱硬化性樹脂とは濡れ性が悪いが、合成樹脂化合物硬化物が付着した黒鉛粉末は機械的摩砕処理のメカノケミカル変化によって、射出成形バインダーとなる熱硬化性樹脂との濡れ性を向上させて、結果的に機械的特性、熱的特性が向上する。
On the other hand, when the synthetic resin compound is added, mixed, and cured, and the particle surface of the graphite powder that has been mechanically milled is smoothed and rounded, the synthetic resin compound is converted into graphite powder. When mixed and cured, the unevenness of the graphite powder surface is covered, and when this mixture is mechanically milled and spheronized, the cured product of the attached synthetic resin compound is rounded with strong adhesion. Since it becomes smoother and the filling property at the time of injection molding is improved and it is spheroidized with the hardened synthetic resin compound attached, the graphite particles are destroyed when filled in the mold cavity with a large force Is suppressed, springback hardly occurs, and anisotropy is remarkably reduced.
In addition, graphite powder has poor wettability with thermosetting resin with a residual carbon ratio of 40% or more, which becomes a binder during injection molding, but graphite powder with a synthetic resin compound cured product is a mechano-mechanical material for mechanical grinding treatment. The chemical change improves the wettability with the thermosetting resin as the injection molding binder, and as a result, the mechanical characteristics and the thermal characteristics are improved.

更に、射出成形時にシリンダーノズルから出た瞬間の成形材料の広がりが小さくなるので、成形時に抱き込むエア量が減少することになり、成形体の異方性が低下し、また強度も改善することができる。   Furthermore, since the spread of the molding material at the moment of exiting from the cylinder nozzle during injection molding is reduced, the amount of air that is embraced during molding is reduced, the anisotropy of the molded product is reduced, and the strength is also improved. Can do.

機械的摩砕処理の方法は、炭素粉末の角が除去され、粒子表面が丸みを帯びた形状に平滑化できれば特に限定されず、例えば衝撃力を主体に、粒子の相互作用を含めた圧縮、摩擦、せん断力などの機械的作用を繰り返し与える装置を用いることができ、ケーシング内部に多数のブレードを設置したローターを有し、ローターが高速回転することによって、内部に導入された炭素粉末に衝撃圧縮、摩擦、せん断力などの機械的作用を繰り返し与える装置が好適に使用することができる。   The method of the mechanical attrition treatment is not particularly limited as long as the corners of the carbon powder can be removed and the particle surface can be smoothed into a rounded shape, for example, compression mainly including impact force, including particle interaction, A device that repeatedly gives mechanical action such as friction and shearing force can be used, and it has a rotor with a large number of blades installed inside the casing. When the rotor rotates at high speed, it impacts the carbon powder introduced inside. A device that repeatedly gives mechanical action such as compression, friction, and shearing force can be preferably used.

具体的には、(株)奈良機械製作所製のハイブリダイゼーションシステム、ホソカワミクロン(株)製のメカノフュージョン装置などを挙げることができる。   Specific examples include a hybridization system manufactured by Nara Machinery Co., Ltd., a mechanofusion apparatus manufactured by Hosokawa Micron Corporation, and the like.

このように、合成樹脂化合物を0.01〜10重量部添加、混合し、硬化処理した黒鉛粉末に機械的摩砕処理を行った炭素粉末を100重量部と、残炭率40%以上の熱硬化性樹脂を樹脂の固形分が10〜40重量部の割合で有機溶剤に溶解した樹脂溶液とを混合する。   In this way, 0.01 to 10 parts by weight of the synthetic resin compound was added, mixed, and 100 parts by weight of the carbon powder obtained by mechanically grinding the hardened graphite powder and a heat with a residual carbon ratio of 40% or more. A curable resin is mixed with a resin solution in which the solid content of the resin is 10 to 40 parts by weight in an organic solvent.

熱硬化性樹脂は炭素粉末の結合材となるもので、残炭率が40%以上のフェノール樹脂、エポキシ樹脂、ポリイミド、フラン樹脂、不飽和ポリエステルなどが使用され、成形性や価格面からフェノール樹脂或いはエポキシ樹脂が好適である。   Thermosetting resin is a binder for carbon powder, and phenol resin, epoxy resin, polyimide, furan resin, unsaturated polyester, etc. with a residual carbon ratio of 40% or more are used. Or an epoxy resin is suitable.

なお、残炭率はルツボにサンプルを入れ、135℃で1時間加熱、さらに250℃で5時間加熱後、磁製ルツボに蓋をして非酸化性雰囲気中でさらに1000℃で30分間加熱した後のサンプルの重量を、磁製ルツボに投入したサンプルの重量で除すことにより測定される。   The residual charcoal rate was measured by placing a sample in a crucible, heating at 135 ° C. for 1 hour, further heating at 250 ° C. for 5 hours, then covering the magnetic crucible and heating at 1000 ° C. for 30 minutes in a non-oxidizing atmosphere. It is measured by dividing the weight of the later sample by the weight of the sample put in the porcelain crucible.

有機溶剤にはアセトン、アルコールなど樹脂を溶解可能な適宜な溶剤が用いられ、炭素粉末と樹脂溶液とはニーダー、加圧型ニーダー、2軸スクリュー式混練機などの適宜な混練機により十分に混練する。その後、真空乾燥或いは風乾などにより乾燥して有機溶剤や低温度で揮散する揮発性成分を除去した後、粉砕して成形粉を得る。   As the organic solvent, an appropriate solvent capable of dissolving a resin such as acetone or alcohol is used, and the carbon powder and the resin solution are sufficiently kneaded by an appropriate kneader such as a kneader, a pressure type kneader, or a twin screw kneader. . Then, after drying by vacuum drying or air drying to remove the organic solvent and volatile components that volatilize at a low temperature, the powder is pulverized to obtain a molding powder.

なお、樹脂溶液中の樹脂固形分が10重量部未満では射出成形時の成形粉の流動性が低下して均質な成形体を得ることが難しく、一方、樹脂固形分が40重量部を越えると成形性は良好となるが、射出成形時にガス抜けが悪く焼成時に膨れや割れが発生し易くなる。   In addition, when the resin solid content in the resin solution is less than 10 parts by weight, it is difficult to obtain a uniform molded product due to the decrease in fluidity of the molding powder at the time of injection molding, while when the resin solid content exceeds 40 parts by weight. Although the moldability is good, gas outflow is poor during injection molding, and blisters and cracks are likely to occur during firing.

成形粉は5mm以下の粒度に粉砕することが好ましく、成形粉は射出成形、射出圧縮成形、トランスファ成形などにより成形するが、生産性や金型構造を考慮すると射出成形が好ましい。   The molding powder is preferably pulverized to a particle size of 5 mm or less, and the molding powder is molded by injection molding, injection compression molding, transfer molding, or the like. In consideration of productivity and mold structure, injection molding is preferable.

なお、成形粉を作製する際に、射出成形時の流動性、成形性、離型性などを向上させる成形助剤、焼成過程で熱硬化性樹脂が分解する前に揮散して消失する焼成助剤を添加することもできる。   It should be noted that when producing molding powder, a molding aid that improves fluidity, moldability, releasability, etc. during injection molding, and a firing aid that volatilizes and disappears before the thermosetting resin decomposes during the firing process. An agent can also be added.

成形助剤はステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックスなどの脂肪酸系の化合物、有機リン酸エステル、架橋ポリオレフィンなどが例示でき、0.1〜5重量部の割合で添加することが好ましい。0.1重量部未満では成形粉の流動性が低下してショートショットになり易く、離型性も悪化する。また5重量部を越えると焼成時の分解成分が多くなり、膨れや割れが発生し易くなる。   Examples of the molding aid include fatty acid compounds such as stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, organic phosphate esters, cross-linked polyolefins, and the like, and is added at a ratio of 0.1 to 5 parts by weight. It is preferable. If the amount is less than 0.1 parts by weight, the fluidity of the molding powder is reduced and short shots are likely to occur, and the releasability is also deteriorated. On the other hand, if the amount exceeds 5 parts by weight, the decomposition components during firing increase, and blisters and cracks are likely to occur.

焼成助剤としてはセルロース、レーヨンなどの繊維、ポリメタクリル酸メチルなどのアクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などが例示でき、焼成時に膨れや割れが発生しない場合には必ずしも添加は必要でないが、添加する場合には10重量部未満が好適である。   Examples of firing aids include fibers such as cellulose and rayon, acrylic resins such as polymethylmethacrylate, polystyrene resins, corn starch, walnut powder, etc. Addition is always necessary if no swelling or cracking occurs during firing. However, when added, the amount is preferably less than 10 parts by weight.

なお、このようにして得られた成形体の表層面には樹脂分のリッチな層が形成され易く、この樹脂リッチ層は焼成処理時に樹脂分が炭化して組織が緻密なカーボン層(ガラス状カーボン層)に転化する。このカーボン層は硬化処理および焼成処理、特に焼成処理時に樹脂成分の炭化に伴って発生する樹脂の分解ガス、および成形助剤や焼成助剤から揮散されるガスの透過を妨げ、炭素材料の膨れや割れの原因となる。そこで、これらのガスの揮散を円滑に行うために成形体の表層面の一部を除去して樹脂リッチ層を予め取り除いておくことが好ましい。   In addition, a resin-rich layer is easily formed on the surface layer of the molded body thus obtained, and this resin-rich layer is a carbon layer (glass-like) whose structure is dense due to carbonization of the resin during firing. Carbon layer). This carbon layer prevents the permeation of the resin decomposition gas generated by the carbonization of the resin component during the curing treatment and the firing treatment, and the gas emitted from the molding aid and firing aid, and the swelling of the carbon material. Cause cracks. Therefore, in order to smoothly volatilize these gases, it is preferable to remove a part of the surface layer of the molded body and remove the resin rich layer in advance.

樹脂リッチ層の除去は、成形体の作製条件、成形体の大きさ、硬化処理、焼成処理などの条件にもよるが、通常、表層面を10μm以上、好適には40〜50μm程度除去すればよく、また、樹脂リッチ層の除去はサンドペーパーやサンドブラストなどによる研磨や研削による方法、あるいはバーナーなどで表面樹脂層を焼き飛ばす方法でも行うことができる。   The removal of the resin-rich layer depends on the conditions for forming the molded body, the size of the molded body, the curing process, the firing process, etc., but usually the surface of the surface layer is removed by 10 μm or more, preferably about 40-50 μm. The removal of the resin-rich layer can also be carried out by polishing or grinding with sandpaper or sandblast, or by burning the surface resin layer with a burner or the like.

成形体の表層面に形成された樹脂リッチ層を除去した後、常法により180〜280℃の温度に加熱して樹脂成分を硬化処理し、次いで、不活性ガスや窒素ガスなどの非酸化性雰囲気下で800℃以上の温度に加熱して樹脂成分を焼成処理して炭化することにより炭素成形体が製造される。なお、用途目的によっては更に3000℃程度の温度にまで加熱処理して黒鉛化する。   After removing the resin-rich layer formed on the surface of the molded body, the resin component is cured by heating to a temperature of 180 to 280 ° C. by a conventional method, and then non-oxidizing such as inert gas or nitrogen gas A carbon molded body is manufactured by heating to a temperature of 800 ° C. or higher in an atmosphere and baking the resin component to carbonize. Depending on the purpose of use, it is further graphitized by heat treatment to a temperature of about 3000 ° C.

以下、実施例と比較例とにより、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples and comparative examples.

実施例1〜3、比較例1〜4
炭素粉末として人造黒鉛を粉砕して粒度調整した黒鉛粉末を用い、この黒鉛粉末にステアリン酸を異なる量比で添加した。但し、比較例1、4では未添加とした。
Examples 1-3, Comparative Examples 1-4
As the carbon powder, graphite powder obtained by pulverizing artificial graphite and adjusting the particle size was used, and stearic acid was added to this graphite powder at different ratios. However, in Comparative Examples 1 and 4, it was not added.

この黒鉛粉末を奈良機械製作所製のハイブリダイゼーションシステムを用いて、回転数6000rpmで3分間の条件で機械的摩砕処理を行った。   This graphite powder was mechanically ground using a hybridization system manufactured by Nara Machinery Co., Ltd. at a rotational speed of 6000 rpm for 3 minutes.

これらの黒鉛粉末について、JIS R1628によりタッピング密度を測定した。
タッピング密度は、タッピングセルに黒鉛粉末を充填し、タップ時のストローク長を10mm、タッピング回数を1000回の条件で測定した。
About these graphite powder, the tapping density was measured by JISR1628.
The tapping density was measured under the condition that the tapping cell was filled with graphite powder, the stroke length at tapping was 10 mm, and the tapping frequency was 1000 times.

また、黒鉛粉末の平均粒径を、レーザー回折式粒度分布測定装置(島津製作所製、SALD−2100)を用いて測定した。   Moreover, the average particle diameter of the graphite powder was measured using a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-2100).

熱硬化性樹脂には残炭率50%のフェノール樹脂(群栄化学工業製、レヂトップPG−2411)を用い、樹脂濃度が50wt%となるようにアセトンに溶解して、樹脂溶液を作製した。   A phenol resin having a residual carbon ratio of 50% (manufactured by Gunei Chemical Industry Co., Ltd., Residtop PG-2411) was used as the thermosetting resin, and dissolved in acetone so that the resin concentration was 50 wt% to prepare a resin solution.

黒鉛粉末に樹脂溶液を異なる量比で加えて、2軸ニーダーで60分間混練した。その際フェノール樹脂の硬化剤としてヘキサミンを樹脂固形分に対して10%加えた。その後、室温で風乾してアセトンや揮発性成分を除去し、粉砕して粒度3mm以下の成形粉を作製した。この成形粉の作製条件を表1に示した。   The resin solution was added to the graphite powder in different quantitative ratios and kneaded for 60 minutes with a biaxial kneader. At that time, 10% of hexamine was added to the resin solid content as a phenol resin curing agent. Thereafter, it was air-dried at room temperature to remove acetone and volatile components, and pulverized to produce a molding powder having a particle size of 3 mm or less. The production conditions for this molding powder are shown in Table 1.

Figure 2009249195
Figure 2009249195

次に、これらの成形粉を150t汎用型の射出成形機を用いて、150×150×5tmmの金型により平板1枚取りの射出成形を行った。射出成形条件はシリンダ温度90℃、金型温度170℃、射出圧力および速度は成形粉の原料組成に合わせて最適条件を選択した。なお、成形体の表層面を1000番の紙ヤスリで研削して、表層面に形成された樹脂リッチ層を30μm研削除去した。   Next, these molding powders were injection-molded by taking a single plate with a 150 × 150 × 5 tmm mold using a 150-t general-purpose injection molding machine. The injection molding conditions were a cylinder temperature of 90 ° C., a mold temperature of 170 ° C., and the injection pressure and speed were selected in accordance with the raw material composition of the molding powder. The surface layer surface of the molded body was ground with a # 1000 paper file, and the resin-rich layer formed on the surface layer surface was removed by 30 μm.

次いで、250℃の温度で5時間加熱して硬化処理した後、一旦常温に戻し、窒素雰囲気中で1000℃の温度で5時間加熱して焼成処理して炭素成形体を製造した。   Next, after curing by heating at a temperature of 250 ° C. for 5 hours, the temperature was once returned to normal temperature, and then heated at 1000 ° C. for 5 hours in a nitrogen atmosphere to perform a baking treatment to produce a carbon molded body.

次に、これらの炭素成形体について、下記の方法で嵩比重、曲げ強度、固有抵抗および熱伝導率などを測定した。なお、物性の異方性を評価するために1枚の面内から射出方向のテストピースと、射出方向に対して直角方向のテストピースとを切出して、射出方向(X方向)と、射出方向と直角方向(Y方向)の物性を各測定した。その結果を表2に示した。   Next, these carbon molded bodies were measured for bulk specific gravity, bending strength, specific resistance, thermal conductivity and the like by the following methods. In order to evaluate the anisotropy of physical properties, a test piece in the injection direction and a test piece in a direction perpendicular to the injection direction are cut out from one plane, and the injection direction (X direction) and the injection direction And the physical properties in the direction perpendicular to (Y direction) were measured. The results are shown in Table 2.

嵩比重 ;
アルキメデス法により、試料の乾燥重量および水中での重量を測定(室温25℃)して求めた。
Bulk specific gravity;
It was determined by measuring the dry weight of the sample and the weight in water (at room temperature of 25 ° C.) by the Archimedes method.

曲げ強度(MPa);
JIS K7203により、試験片サイズ90×10×5t(mm)、支点間距離80mm、クロスヘッドスピード0.5mm/分の条件で3点曲げ試験を行った。
Bending strength (MPa);
A three-point bending test was performed according to JIS K7203 under the conditions of a test piece size of 90 × 10 × 5 t (mm), a fulcrum distance of 80 mm, and a crosshead speed of 0.5 mm / min.

固有抵抗 (mΩ・cm);
JIS R7202の電圧降下法により、試験片サイズ90×10×5t(mm)の長手方向に直流電流0.5Aを流して、端子間距離67mmの電圧降下を測定(室温25℃)して算出した。
Specific resistance (mΩ · cm);
Calculated by measuring the voltage drop at a terminal distance of 67 mm (room temperature 25 ° C.) by passing a direct current of 0.5 A in the longitudinal direction of the test piece size of 90 × 10 × 5 t (mm) by the voltage drop method of JIS R7202. .

熱伝導率(Wm−1−1);
レーザーフラッシュ法により測定した。測定装置は真空理工株式会社製TC−7000型を用い、試験片サイズ10φ×2t(mm)に所定エネルギーのレーザー光を当て、試験片の温度変化およびレーザー光と投射面の裏面の温度変化より、比熱容量および厚さ方向の熱拡散率を測定し、熱伝導率=比熱容量×熱拡散率×密度より算出した。
Thermal conductivity (Wm −1 K −1 );
Measured by laser flash method. TC-7000 type manufactured by Vacuum Riko Co., Ltd. is used as the measuring device. A laser beam with a predetermined energy is applied to a test piece size of 10φ × 2t (mm). From the temperature change of the test piece and the temperature change of the laser light and the back surface of the projection surface The specific heat capacity and the thermal diffusivity in the thickness direction were measured and calculated from thermal conductivity = specific heat capacity × thermal diffusivity × density.

Figure 2009249195
Figure 2009249195

実施例1、2では黒鉛粉末にステアリン酸を1重量部添加し、実施例3では0.03重量部添加して、機械的摩砕処理を施した。実施例1〜3は成形性が良好で、また焼成中の収縮の異方性が抑制され、炭素成形体の物性の異方性が小さかった。   In Examples 1 and 2, 1 part by weight of stearic acid was added to the graphite powder, and in Example 3, 0.03 part by weight was added to perform mechanical grinding. In Examples 1 to 3, the moldability was good, the anisotropy of shrinkage during firing was suppressed, and the anisotropy of the physical properties of the carbon molded body was small.

ステアリン酸を添加せず、また機械的摩砕処理を行わなかった比較例1は、成形性および炭素成形体の外観は良好であったが、硬化、焼成時にスプリングバック現象により射出方向に膨張を起こして、炭素成形体の収縮異方性が大きくなった。また、射出成形時に成形材料の広がりを抑制できず、エア抱き込みにより炭素成形体の物性の異方性が大きくなった。   In Comparative Example 1 in which stearic acid was not added and the mechanical grinding treatment was not performed, the moldability and the appearance of the carbon molded body were good, but it expanded in the injection direction due to the springback phenomenon during curing and firing. As a result, the shrinkage anisotropy of the carbon molded body increased. In addition, the spread of the molding material could not be suppressed during injection molding, and the anisotropy of the physical properties of the carbon molded body increased due to air inclusion.

ステアリン酸の添加量が6重量部と多い比較例2では、成形性は良好であったが、ステアリン酸の分解成分が多くなり、焼成時に膨れが発生した。   In Comparative Example 2 where the amount of stearic acid added was as large as 6 parts by weight, the moldability was good, but the decomposition component of stearic acid increased and swelling occurred during firing.

比較例3は粒径の小さい黒鉛粉末を使用し、成形材料の流動性を確保するためにフェノール樹脂量を多くしたため、成形性は良好であったが射出成形体が緻密となり、焼成時に発生する樹脂の分解ガスの透過、揮散が十分に行われず、炭素成形体に膨れ、割れが発生した。   Comparative Example 3 uses graphite powder with a small particle size and increased the amount of phenolic resin in order to ensure the fluidity of the molding material. Therefore, the moldability was good, but the injection-molded body became dense and generated during firing. Permeation and volatilization of the decomposition gas of the resin were not sufficiently performed, and the carbon molded body was swollen and cracked.

フェノール樹脂量が少ない比較例4では成形材料の流動性が低下して、ショート成形となった。   In Comparative Example 4 in which the amount of phenol resin is small, the fluidity of the molding material was lowered and short molding was achieved.

Claims (2)

合成樹脂化合物を0.01〜10重量部混合した黒鉛粉末を硬化(不融化)処理した後、該樹脂混合黒鉛粉末を機械的摩砕処理して粒子表面を平滑にし、摩砕処理後の該粉末と、該粉末100重量部に対し残炭率40%以上の熱硬化性樹脂固形分10〜40重量部を溶解した樹脂溶液と混合、混練し、乾燥後、粉砕した成形粉を、射出成形、射出圧縮成形或いはトランスファ成形により成形し、得られた成形体を180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを特徴とする炭素成形体の製造方法。   After the graphite powder mixed with 0.01 to 10 parts by weight of the synthetic resin compound is cured (infusibilized), the resin-mixed graphite powder is mechanically ground to smooth the particle surface. A powder and a resin solution in which 10 to 40 parts by weight of a solid content of a thermosetting resin having a residual carbon ratio of 40% or more with respect to 100 parts by weight of the powder are mixed, kneaded, dried, and then pulverized molding powder is injection molded. Carbon obtained by molding by injection compression molding or transfer molding, and curing the resulting molded body at a temperature of 180 to 280 ° C., followed by firing at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. Manufacturing method of a molded object. 合成樹脂化合物が、熱硬化性樹脂、熱可塑性樹脂、ピッチ、もしくはこれら2種類以上の混合物であることを特徴とする請求項1記載の炭素成形体の製造方法。   The method for producing a carbon molded body according to claim 1, wherein the synthetic resin compound is a thermosetting resin, a thermoplastic resin, pitch, or a mixture of two or more of these.
JP2008095717A 2008-04-02 2008-04-02 Method for producing carbon molded product Pending JP2009249195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095717A JP2009249195A (en) 2008-04-02 2008-04-02 Method for producing carbon molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095717A JP2009249195A (en) 2008-04-02 2008-04-02 Method for producing carbon molded product

Publications (1)

Publication Number Publication Date
JP2009249195A true JP2009249195A (en) 2009-10-29

Family

ID=41310242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095717A Pending JP2009249195A (en) 2008-04-02 2008-04-02 Method for producing carbon molded product

Country Status (1)

Country Link
JP (1) JP2009249195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240611A (en) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp Method for molding carbon granule composite resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240611A (en) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp Method for molding carbon granule composite resin

Similar Documents

Publication Publication Date Title
JP5057263B2 (en) Separator material for polymer electrolyte fuel cell and method for producing the same
JP5120748B2 (en) Method for producing carbon molding material
JP5041312B2 (en) Carbon material manufacturing method
CN102596851A (en) Carbon material and process for production thereof
JP5057260B2 (en) Method for producing separator material for fuel cell
JP2009249195A (en) Method for producing carbon molded product
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP4973917B2 (en) Carbon material manufacturing method
JP2010173876A (en) Method for producing carbon material
JP5187475B2 (en) Method for producing polymer electrolyte fuel cell separator material
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP3705211B2 (en) Carbonaceous powder molding material and carbonaceous molded product
JP2009242176A (en) Carbonaceous structure and its forming process
KR101862551B1 (en) Method of isotropic carbon fiber electrode
JP2000331690A (en) Manufacture of separator for fuel cell
JP2007314870A (en) Method for producing hard alloy sintered compact, and hard alloy sintered compact
JP2000319068A (en) Carbon/graphite composite molding
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
JP2005190846A (en) Conductive molding and reduction method of its resistance value
JP2003306382A (en) Amorphous carbon molding and method for producing the same
JP2003277028A (en) Amorphous carbon molding and method for manufacturing the same
JPH0159969B2 (en)
JP2002155149A (en) Method for preparing carbonaceous powder molding material
JP2002160217A (en) Method for producing carbonaceous powdered molding material