JP5950408B2 - Silicon carbide ceramics - Google Patents
Silicon carbide ceramics Download PDFInfo
- Publication number
- JP5950408B2 JP5950408B2 JP2013067912A JP2013067912A JP5950408B2 JP 5950408 B2 JP5950408 B2 JP 5950408B2 JP 2013067912 A JP2013067912 A JP 2013067912A JP 2013067912 A JP2013067912 A JP 2013067912A JP 5950408 B2 JP5950408 B2 JP 5950408B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- silicon
- thermal conductivity
- strength
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 54
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 47
- 239000000919 ceramic Substances 0.000 title claims description 29
- 239000011148 porous material Substances 0.000 claims description 33
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 23
- 230000005484 gravity Effects 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910021431 alpha silicon carbide Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
本発明は、耐熱性と強度に優れ、かつ高い熱伝導率を有する炭化ケイ素セラミックスに関する。 The present invention relates to a silicon carbide ceramic having excellent heat resistance and strength and high thermal conductivity.
炭化ケイ素は、高温でも安定した強度を有し、比較的高い熱伝導率を有するセラミックス材料である。例えば、半導体基板の放熱材や、半導体処理装置としての加熱用ヒータ、あるいは断熱材等の用途において、炭化ケイ素の使用温度における強度、密度、熱伝導率、熱膨張係数等の物性を、適切な範囲になるように設計して用いられる。 Silicon carbide is a ceramic material having a stable strength even at high temperatures and a relatively high thermal conductivity. For example, in applications such as a heat dissipation material for a semiconductor substrate, a heater for a semiconductor processing apparatus, or a heat insulating material, the physical properties such as strength, density, thermal conductivity, and thermal expansion coefficient of silicon carbide at an appropriate operating temperature are appropriately set. It is designed to be used within the range.
例えば、特許文献1には、熱応力による割れを抑制することができる炭化ケイ素セラミックス、および、該炭化ケイ素セラミックスを用いた半導体プロセス用治具を提供することを目的として、本発明による炭化ケイ素セラミックスは、炭化ケイ素の純度が99.9999重量%以上で、かつ、密度が2.0〜3.0g/cm3である半導体プロセス用治具が記載されている。 For example, Patent Document 1 discloses silicon carbide ceramics according to the present invention for the purpose of providing silicon carbide ceramics capable of suppressing cracking due to thermal stress and semiconductor process jigs using the silicon carbide ceramics. Describes a semiconductor process jig having a silicon carbide purity of 99.9999% by weight or more and a density of 2.0 to 3.0 g / cm 3 .
また、特許文献2には、実際の電子部品等で求められる熱膨張率と熱伝導率とのバランスに適合した特性を有するとともに、より高い熱伝導性を有することができる放熱材として、実質的にα−SiC及びβ−SiCからなる炭化珪素と金属シリコンから構成され、且つ該炭化珪素の結晶がお互いに結合し合ってできた空隙に該金属シリコンが含浸されてなるものであり、含浸された金属シリコンが4〜8重量%で、且つ嵩比重が3.1〜3.18g/ccであり、熱伝導率が265〜282W/mKである放熱材が記載されている。 In addition, Patent Document 2 substantially includes a heat radiating material having characteristics suitable for the balance between the thermal expansion coefficient and the thermal conductivity required for an actual electronic component and the like, and having a higher thermal conductivity. Is composed of silicon carbide composed of α-SiC and β-SiC and metal silicon, and is formed by impregnating the metal silicon with voids formed by bonding the silicon carbide crystals to each other. Further, there is described a heat radiating material having a metal silicon content of 4 to 8% by weight, a bulk specific gravity of 3.1 to 3.18 g / cc, and a thermal conductivity of 265 to 282 W / mK.
上記特許文献1に記載された炭化ケイ素セラミックスは、熱伝導率は60〜100W/mK、室温における曲げ強度は約200MPa、としている。しかし、強度を保ちつつより高い熱伝導率を得るには、十分対応できているとは言い難い。 The silicon carbide ceramic described in Patent Document 1 has a thermal conductivity of 60 to 100 W / mK and a bending strength at room temperature of about 200 MPa. However, it is difficult to say that it is sufficient to obtain higher thermal conductivity while maintaining strength.
上記特許文献2に記載された放熱材は、金属シリコンの含有量が高いので、シリコン融点付近の高温で使用すると、該金属シリコンが溶け出し、放熱材の強度が著しく低下するという問題があった。 The heat dissipating material described in Patent Document 2 has a high content of metal silicon, so that when used at a high temperature near the melting point of silicon, the metal silicon melts and the strength of the heat dissipating material is significantly reduced. .
本発明は、上記技術的課題を解決するためになされたものであり、耐熱性と強度に優れ、かつ、高い熱伝導率を有する炭化ケイ素セラミックスを提供することを目的とする。 The present invention has been made to solve the above technical problem, and an object of the present invention is to provide a silicon carbide ceramic having excellent heat resistance and strength and having high thermal conductivity.
本発明に係る炭化ケイ素セラミックスは、α−SiCとβ−SiCからなる炭化ケイ素を主成分として、さらに金属シリコンと炭素成分を含み、前記金属シリコンが0.2重量%以上2重量%以下、かさ比重が2.9g/cm3以上3.0g/cm3以下、平均気孔径3μm以下の開気孔が全気孔容積の85体積%以上であることを特徴とする。 The silicon carbide ceramic according to the present invention contains silicon carbide composed of α-SiC and β-SiC as a main component, and further contains metal silicon and a carbon component, and the metal silicon is 0.2 wt% or more and 2 wt% or less. The open pores having a specific gravity of 2.9 g / cm 3 or more and 3.0 g / cm 3 or less and an average pore diameter of 3 μm or less are 85 volume% or more of the total pore volume.
このような構成によれば、耐熱性と強度に優れ、使用目的に応じた熱伝導率を有する炭化ケイ素セラミックスを提供することができる。 According to such a configuration, it is possible to provide a silicon carbide ceramic having excellent heat resistance and strength, and having a thermal conductivity according to the purpose of use.
また、本発明に係る炭化ケイ素セラミックスは、熱伝導率が、240W/mK以上255W/mK以下であると、より好ましい。 The silicon carbide ceramic according to the present invention preferably has a thermal conductivity of 240 W / mK or more and 255 W / mK or less.
本発明によれば、耐熱性と強度に優れ、使用目的に応じた熱伝導率を有する炭化ケイ素セラミックスを得られるので、特に、例えば1000℃以上の高温域でかつ酸化雰囲気という使用条件においても、耐熱性と強度に優れ、かつ、高い熱伝導率を有する炭化ケイ素セラミックスとして広く用いることが可能となる。 According to the present invention, since silicon carbide ceramics having excellent heat resistance and strength and having a thermal conductivity according to the purpose of use can be obtained, particularly in use conditions such as a high temperature region of 1000 ° C. or higher and an oxidizing atmosphere, It can be widely used as silicon carbide ceramics having excellent heat resistance and strength and high thermal conductivity.
以下、本発明についてより詳細に説明する。本発明に係る炭化ケイ素セラミックスは、α−SiCとβ−SiCからなる炭化ケイ素を主成分として、さらに金属シ
リコンと炭素成分を含み、前記金属シリコンが0.2重量%以上2重量%以下、かさ比重が2.9g/cm3以上3.0g/cm3以下、平均気孔径3μm以下の開
気孔が全気孔容積の85体積%以上である。
Hereinafter, the present invention will be described in more detail. The silicon carbide ceramic according to the present invention contains silicon carbide composed of α-SiC and β-SiC as a main component, and further contains metal silicon and a carbon component, and the metal silicon is 0.2 wt% or more and 2 wt% or less. The open pores having a specific gravity of 2.9 g / cm 3 or more and 3.0 g / cm 3 or less and an average pore diameter of 3 μm or less are 85% by volume or more of the total pore volume.
α−SiCとβ−SiCからなる炭化ケイ素を主成分とすることで、α−SiCのみからなる場合よりも高強度にすることができ、かつ、β−SiCのみからなる場合よりも、強度はほぼ同等でありながら大型化と肉厚化にも容易に対応できる。 By using silicon carbide composed of α-SiC and β-SiC as a main component, the strength can be made higher than that of only α-SiC, and the strength is higher than that of only β-SiC. Although it is almost the same, it can easily cope with an increase in size and thickness.
このような炭化ケイ素セラミックスは、好適には、α−SiCである炭化ケイ素粒子を成形、焼成してなる多孔質体の気孔部に対して、炭素と金属ケイ素とのケイ化からなるβ−SiCが充填される方法で製造される。従って、作製する炭化ケイ素セラミックスの気孔率やかさ比重、熱伝導率、強度に応じて、α−SiCとβ−SiCの存在比率は、適時設定される。 Such silicon carbide ceramics are preferably β-SiC made of silicidation of carbon and metal silicon with respect to the pores of the porous body formed by molding and firing silicon carbide particles which are α-SiC. Is manufactured by the method of filling. Therefore, the abundance ratio of α-SiC and β-SiC is set in a timely manner according to the porosity, bulk specific gravity, thermal conductivity, and strength of the silicon carbide ceramic to be produced.
本発明において、主成分とは、炭化ケイ素セラミックス全重量の大部分を構成する成分を指しており、全重量に対する比率が具体的に限定されることを要するものではないが、後述する金属シリコンの比率との兼ね合いで、97重量%以上であればよい。 In the present invention, the main component refers to a component constituting most of the total weight of the silicon carbide ceramics, and it is not necessary to specifically limit the ratio to the total weight. In view of the ratio, it may be 97% by weight or more.
さらに、炭化ケイ素セラミックスは、金属シリコンと炭素成分を含む。これにより、炭化ケイ素のみで構成される場合に比べて、熱伝導率と強度のバランスが適切に調整された炭化ケイ素セラミックスとすることができる。 Furthermore, silicon carbide ceramics contain metallic silicon and a carbon component. Thereby, it can be set as the silicon carbide ceramics from which the balance of thermal conductivity and intensity | strength was adjusted appropriately compared with the case where it consists only of silicon carbide.
炭化ケイ素と金属シリコン以外の残分は、炭素成分である。ここで、製造過程で不可避的に混入する不純物、一例として、鉄、銅、クロム等の金属元素について
は、極めて微量であることと、完全除去を含めた存在比率の制御が困難であることから、本発明では、炭化ケイ素と金属シリコン以外の残分は、これらの不純物と合わせた炭素成分が該当するものとして扱う。
The remainder other than silicon carbide and metal silicon is a carbon component. Here, impurities that are inevitably mixed in the manufacturing process, for example, metal elements such as iron, copper, and chromium are extremely small amounts and it is difficult to control the abundance ratio including complete removal. In the present invention, the remainder other than silicon carbide and metal silicon is treated as a carbon component combined with these impurities.
炭素成分の含有率は、特に限定されないが、好ましくは、製造が容易で物性の制御も容易な含浸法、すなわち、炭化ケイ素の成形体を焼結した焼結体に金属シリコンを含浸して製造した場合の、0.05重量%〜0.1重量%である。 The content of the carbon component is not particularly limited, but is preferably an impregnation method that is easy to manufacture and easy to control physical properties, that is, manufactured by impregnating a silicon carbide sintered body with metal silicon. In this case, it is 0.05 wt% to 0.1 wt%.
金属シリコンは、炭化ケイ素セラミックス全体の0.2重量%以上2重量%以下である。金属シリコンが2重量%超では、炭化ケイ素より強度に劣るシリコンの存在比率が高いことで、強度が低下傾向にあり、好ましいものではない。 Metallic silicon is 0.2 wt% or more and 2 wt% or less of the entire silicon carbide ceramics. If the metal silicon exceeds 2% by weight, the strength of silicon that is inferior to that of silicon carbide is high and the strength tends to decrease, which is not preferable.
ところで、金属シリコンは、融点が1400℃付近であるので、これ以上の温度域で使用すると、融解、蒸発して消失する。これにより空孔部が増加して炭化ケイ素セラミックスの強度を低下させる。さらに、酸化性雰囲気では、金属シリコンと酸素が反応して生成した二酸化ケイ素が分解,離脱するので、やはり空孔部が増加して強度低下の原因となる。 By the way, since metallic silicon has a melting point of around 1400 ° C., it will melt and evaporate when used in a temperature range higher than this. Thereby, a void | hole part increases and the intensity | strength of silicon carbide ceramics is reduced. Further, in an oxidizing atmosphere, silicon dioxide produced by the reaction of metal silicon and oxygen is decomposed and separated, so that the number of pores is increased and the strength is lowered.
上記理由により、金属シリコンの含有率は小さいほうが好ましい。しかしながら、金属シリコンの含有率を0.2重量%未満にしても、上記作用効果はほとんど変化しない一方で、0.2重量%未満にすることは、実際の製造上極めて困難である。 For the above reasons, the metal silicon content is preferably small. However, even if the content of metal silicon is less than 0.2% by weight, the above-described effects are hardly changed, but it is extremely difficult to make it less than 0.2% by weight in actual production.
なお、金属シリコンは、含有率が炭化ケイ素セラミックス全体の0.5重量%以上1重量%以下であると、より好ましい。金属シリコンの含有率がこの範囲にあると、融解や酸化による空孔生成の影響は無視できるほど小さい一方で、適度な金属シリコンの分散により、炭化ケイ素のみに比べて破壊靭性の向上の効果が発揮されるためである。 In addition, it is more preferable that metal silicon is 0.5 wt% or more and 1 wt% or less of the entire silicon carbide ceramic. When the content of metallic silicon is within this range, the influence of vacancies due to melting and oxidation is negligibly small, but due to moderate dispersion of metallic silicon, it has the effect of improving fracture toughness compared to silicon carbide alone. It is because it is demonstrated.
本発明に係る炭化ケイ素セラミックスは、かさ比重が2.9g/cm3以上3.0g/cm3以下である。かさ比重が2.9g/cm3未満では、気孔の存在比が高く強度が十分でない。一方、3.0g/cm3超では、強度は十分であるが、熱伝導率の制御が困難であり、かつ緻密であるため、靭性が低下する傾向にあるので、好ましいものではない。 The silicon carbide ceramic according to the present invention has a bulk specific gravity of 2.9 g / cm 3 or more and 3.0 g / cm 3 or less. When the bulk specific gravity is less than 2.9 g / cm 3 , the abundance ratio of the pores is high and the strength is not sufficient. On the other hand, if it exceeds 3.0 g / cm 3 , the strength is sufficient, but it is difficult to control the thermal conductivity, and since it is dense, the toughness tends to decrease, it is not preferable.
本発明に係る炭化ケイ素セラミックスは、平均気孔径3μm以下の開気孔が全気孔容積の85体積%以上である。このようにすることで、熱伝導率を所定の範囲に収めつつ、耐酸化性に優れた炭化ケイ素セラミックスとすることができる。 In the silicon carbide ceramics according to the present invention, the open pores having an average pore diameter of 3 μm or less are 85% by volume or more of the total pore volume. By doing in this way, it can be set as the silicon carbide ceramics excellent in oxidation resistance, keeping thermal conductivity in the predetermined range.
平均気孔径3μm以下の開気孔が存在することで、かさ比重の増加、すなわち気孔率を低下させることで熱伝導率を高い値にすることができる。閉気孔のみでは、熱伝導率が大きく下がる傾向にあり、強度と熱伝導率をバランスよく両立させることが困難である。 By the presence of open pores having an average pore diameter of 3 μm or less, the thermal conductivity can be increased by increasing the bulk specific gravity, that is, decreasing the porosity. With only closed pores, the thermal conductivity tends to decrease greatly, and it is difficult to achieve a balance between strength and thermal conductivity.
平均気孔径3μm超では、かさ比重を2.9g/cm3以上にすることが困難である。また、熱伝導率が低下する傾向にあり、所定の熱伝導率を高い範囲、具体的には240W/mK以上にすることが困難となるので、好ましいものではない。 If the average pore diameter exceeds 3 μm, it is difficult to make the bulk specific gravity 2.9 g / cm 3 or more. Further, the thermal conductivity tends to decrease, and it is difficult to make the predetermined thermal conductivity within a high range, specifically, 240 W / mK or more.
平均気孔径については、3μm以下であれば本発明の効果が得られるが、極端に小さい気孔では、均一かつ精度よく形成することが困難であること、気孔同士が焼結してつぶれる懸念があることから、これらを考慮すると0.5μm以上がより好ましい。 If the average pore diameter is 3 μm or less, the effect of the present invention can be obtained. However, with extremely small pores, it is difficult to form uniformly and accurately, and there is a concern that the pores are sintered and collapsed. Therefore, in consideration of these, 0.5 μm or more is more preferable.
なお、平均気孔径3μm以下の開気孔の割合があまり高くても、本発明の効果はほとんど変わらないことから、製造上の容易さとの兼ね合いで、全気孔容積の85体積%以上であればよい。 In addition, even if the ratio of the open pores having an average pore diameter of 3 μm or less is too high, the effect of the present invention is hardly changed. Therefore, in view of the ease of manufacturing, it may be 85% by volume or more of the total pore volume. .
本発明に係る炭化ケイ素セラミックスは、熱伝導率が240W/mK以上255W/mK以下であると、より好ましい。 The silicon carbide ceramic according to the present invention preferably has a thermal conductivity of 240 W / mK or more and 255 W / mK or less.
炭化ケイ素は、組成や構造により、熱伝導率はだいたい100〜350W/mKの範囲の値をとるといわれている。熱伝導率を下げるには、気孔率を上げるとよいが、強度の点では劣る。また、金属シリコン等の他の材料と合わせて、特性値を制御する方法も考えられるが、製造工程の複雑化やコスト高、完成品の形状に制約が出る、等の問題があった。 Silicon carbide is said to have a thermal conductivity of about 100 to 350 W / mK depending on the composition and structure. To lower the thermal conductivity, the porosity should be increased, but the strength is inferior. A method of controlling the characteristic value in combination with other materials such as metal silicon is also conceivable, but there are problems such as complicated manufacturing process, high cost, and restrictions on the shape of the finished product.
本発明に係る炭化ケイ素セラミックスは、かさ比重が高いので、強度に優れる。また、適切な形態で気孔を有するので、熱伝導率を下げることなく強度の低下を抑
制できる。さらに、少量の金属シリコンを含むことで、靭性にも優れている。そして、大部分が炭化ケイ素で構成されている緻密なセラミックスであるので、耐酸化性、耐熱性も当然優れたものとなっている。
Since the silicon carbide ceramic according to the present invention has a high bulk specific gravity, it is excellent in strength. In addition, since the pores are provided in an appropriate form, a decrease in strength can be suppressed without reducing the thermal conductivity. Furthermore, by including a small amount of metal silicon, it is excellent in toughness. Since most of the ceramics are made of silicon carbide, they are naturally excellent in oxidation resistance and heat resistance.
なお、熱伝導率が240W/mK以上255W/mK以下の範囲であれば、強度、耐酸化性が高い次元で達成されるので、高温、酸化雰囲気で、高い熱伝導率を要求される用途に対しては、より好適なものとなる。 In addition, if the thermal conductivity is in the range of 240 W / mK or more and 255 W / mK or less, strength and oxidation resistance can be achieved at a high level, so that the application requires high thermal conductivity in a high temperature and oxidizing atmosphere. On the other hand, it becomes more suitable.
以下、本発明の好ましい実施形態を実施例に基づいて説明するが、本発明は、下記実施例により限定されるものではない。 EXAMPLES Hereinafter, although preferable embodiment of this invention is described based on an Example, this invention is not limited by the following Example.
[実施例1〜6、比較例1〜4]
炭化ケイ素粉末(スタルク社製BF−15)にエタノールを適量混合し、スラリーを調製した。このスラリーを、50℃で5時間乾燥後、一軸プレスにより100N/cm2で加圧成形して厚さ20mmの300mm四方の成形体を得た。この成形体に対して、不活性雰囲気下2300℃で1時間の再結晶化熱処理を行い、一次焼成体を得た。この一次焼成体に対して、フェノール樹脂40重量部からなるエタノール溶液を用いて樹脂含浸処理を行い、続けて、不活性雰囲気下1200℃で1時間の炭化熱処理を行った。この、樹脂含浸処理と炭化熱処理において、樹脂の種類やエタノールでの希釈率、樹脂含浸と炭化熱処理の繰り返し回数を適時変更して、各種の二次焼成体を得た。そして、得られた二次焼成体に、減圧下、1600℃で金属シリコンを含浸させる金属シリコン含浸処理を行ったのち、前記再結晶化熱処理を行って、評価用の各試料を作製した。そして、樹脂含浸処理と炭化熱処理において、樹脂の種類やエタノールでの希釈率、樹脂含浸と炭化熱処理の繰り返し回数を適時変更することで、実施例1〜6、比較例1〜4の試料を作製した。なお、かさ密度・気孔率については、JIS R 1634によるアルキメデス法で測定し、実施例比較例ともに、平均気孔径3μm以下の開気孔が全気孔容積の85体積%以上になるよう、製造プロセス中で調整した。
[Examples 1-6, Comparative Examples 1-4]
An appropriate amount of ethanol was mixed with silicon carbide powder (BF-15 manufactured by Starck Co., Ltd.) to prepare a slurry. The slurry was dried at 50 ° C. for 5 hours, and then pressure-molded at 100 N / cm 2 with a uniaxial press to obtain a 300 mm square molded body having a thickness of 20 mm. This molded body was subjected to a recrystallization heat treatment at 2300 ° C. for 1 hour under an inert atmosphere to obtain a primary fired body. The primary fired body was subjected to a resin impregnation treatment using an ethanol solution composed of 40 parts by weight of a phenol resin, and subsequently subjected to a carbonization heat treatment at 1200 ° C. for 1 hour in an inert atmosphere. In this resin impregnation treatment and carbonization heat treatment, various secondary fired bodies were obtained by appropriately changing the type of resin, the dilution ratio with ethanol, and the number of repetitions of resin impregnation and carbonization heat treatment. The obtained secondary fired body was subjected to a metal silicon impregnation treatment in which metal silicon was impregnated at 1600 ° C. under reduced pressure, and then the recrystallization heat treatment was performed to prepare each sample for evaluation. And in the resin impregnation treatment and the carbonization heat treatment, the samples of Examples 1 to 6 and Comparative Examples 1 to 4 are prepared by changing the resin type, the dilution rate with ethanol, and the number of repetitions of the resin impregnation and the carbonization heat treatment as appropriate. did. The bulk density / porosity was measured by Archimedes method according to JIS R 1634, and during the manufacturing process, the open pores with an average pore diameter of 3 μm or less were 85% by volume or more of the total pore volume in both of the comparative examples. Adjusted.
上記において作製した各試料について、以下のような各種評価を行った。そして、表1に、各試料の作製条件と評価結果を合わせて示す。
[曲げ強さ]
試料から3mm×4mm×40mmの試験片を作製し、JIS R 1601により、クロスヘッドスピードを0.5mm/minとして、3点曲げ強さを測定した。
[熱伝導率]
レーザーフラッシュ法で測定、評価を行った。
[耐酸化性]
JIS R 1609を参考に、9mm×12mm×120mmに加工した試料について、1000℃における耐酸化性評価を行い、酸化後の重量減少率を求めた。なお、減少率が5wt%未満を〇(優)、5〜10wt%を△(良)、10wt%超(劣)を×と評価した。
Each sample produced above was subjected to various evaluations as follows. Table 1 shows the preparation conditions and evaluation results for each sample.
[Bending strength]
A 3 mm × 4 mm × 40 mm test piece was prepared from the sample, and the three-point bending strength was measured according to JIS R 1601 with a crosshead speed of 0.5 mm / min.
[Thermal conductivity]
Measurement and evaluation were performed by a laser flash method.
[Oxidation resistance]
With reference to JIS R 1609, the sample processed to 9 mm × 12 mm × 120 mm was evaluated for oxidation resistance at 1000 ° C., and the weight reduction rate after oxidation was determined. The rate of decrease was evaluated as ◯ (excellent) when less than 5 wt%, △ (good) when 5 to 10 wt%, and x when exceeding 10 wt% (inferior).
表1の結果から、本発明の実施範囲にあるものは、強度、耐酸化性が共に優れているが、本発明の範囲を外れたものは、強度、耐酸化性のうち、少なくともいずれか一つにおいて、実施例に見劣りするものであった。 From the results of Table 1, those within the scope of the present invention are excellent in both strength and oxidation resistance, but those outside the scope of the present invention are at least one of strength and oxidation resistance. In one, it was inferior to the Example.
また、平均気孔径3μm以下の開気孔が全気孔容積の80体積%となるように製造プロセスを調整し、それ以外は実施例1に準じたものを、比較例5とした。この場合は、実施例1と比べて耐酸化性の面で劣っていた。 Further, the production process was adjusted so that the open pores having an average pore diameter of 3 μm or less were 80% by volume of the total pore volume. In this case, the oxidation resistance was inferior to that of Example 1.
なお、熱伝導率が258W/mKとなるように製造プロセスを調整し、それ以外は実施例1に準じたものを、実施例7とした。この場合は、強度と耐酸化性については本発明の実施例の範囲ではあるものの、実施例1と比べると、耐酸化性の面でやや見劣りするものであった。 In addition, the manufacturing process was adjusted so that the thermal conductivity was 258 W / mK, and other than that according to Example 1 was used as Example 7. In this case, although the strength and oxidation resistance were within the range of the examples of the present invention, they were slightly inferior in terms of oxidation resistance as compared with Example 1.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067912A JP5950408B2 (en) | 2013-03-28 | 2013-03-28 | Silicon carbide ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067912A JP5950408B2 (en) | 2013-03-28 | 2013-03-28 | Silicon carbide ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014189466A JP2014189466A (en) | 2014-10-06 |
JP5950408B2 true JP5950408B2 (en) | 2016-07-13 |
Family
ID=51836101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013067912A Active JP5950408B2 (en) | 2013-03-28 | 2013-03-28 | Silicon carbide ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5950408B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023223934A1 (en) * | 2022-05-16 | 2023-11-23 | Agc株式会社 | Heat dissipation member |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205043A (en) * | 1962-04-04 | 1965-09-07 | Carborundum Co | Cold molded dense silicon carbide articles and method of making the same |
JPS583996B2 (en) * | 1975-05-30 | 1983-01-24 | トウシバセラミツクス カブシキガイシヤ | Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou |
JPS53104615A (en) * | 1977-02-23 | 1978-09-12 | Toshiba Ceramics Co | Dipping nozzle for continuous casting |
JPS60141677A (en) * | 1983-12-27 | 1985-07-26 | 松下電器産業株式会社 | Manufacture of high density sic sintered body |
US6503572B1 (en) * | 1999-07-23 | 2003-01-07 | M Cubed Technologies, Inc. | Silicon carbide composites and methods for making same |
-
2013
- 2013-03-28 JP JP2013067912A patent/JP5950408B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014189466A (en) | 2014-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10919811B2 (en) | Aluminum-silicon-carbide composite and method of manufacturing same | |
JP6651628B2 (en) | High thermal conductivity silicon nitride sintered body and method for producing the same | |
JP6623173B2 (en) | Method for producing silicon carbide composite | |
JP5950408B2 (en) | Silicon carbide ceramics | |
US9676631B2 (en) | Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms | |
KR101222478B1 (en) | The High permeability Porous ceramics for vacuum chuck and method for manufacturing the same | |
JP4596855B2 (en) | Metal-ceramic composite structure and electrode member for plasma generation comprising the same | |
JP5172232B2 (en) | Aluminum-ceramic composite and its manufacturing method | |
JP2010083715A (en) | Porous body, metal-ceramic composite material, and manufacturing method thereof | |
JP6013940B2 (en) | Oil quenching heat treatment furnace tray manufacturing method and carburizing method | |
JP5540318B2 (en) | Low temperature sintering method for silicon carbide powder | |
JP3698571B2 (en) | Silicon carbide based composite and method for producing the same | |
JP6617153B2 (en) | Method for producing aluminum alloy-silicon carbide composite | |
JP2010235417A (en) | Porous body, metal-ceramic composite material and method of manufacturing them | |
JP6452969B2 (en) | Aluminum-silicon carbide composite and method for producing the same | |
JP6319909B2 (en) | Insulation | |
JP2004323291A (en) | Aluminum-ceramic composite and its producing method | |
KR20130077494A (en) | Ceramic composites and method of fabricating the same | |
TWI674251B (en) | Aluminum-carbonized tantalum composite and manufacturing method thereof | |
JP6343234B2 (en) | Silicon carbide sintered body, method for manufacturing silicon carbide sintered body, firing jig, firing furnace, and molten metal holding furnace | |
JP5856743B2 (en) | Method for producing metal-ceramic composite material | |
CN109305804A (en) | Alumina ceramic material and preparation method thereof | |
JP2002275556A (en) | Metal-ceramic composite material | |
JP6189184B2 (en) | Protective tube material for metal melting furnace, protective tube for metal melting furnace and manufacturing method thereof | |
JP2007022914A (en) | Method for manufacturing silicon/silicon carbide composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5950408 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |