JP7197946B1 - METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL - Google Patents

METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL Download PDF

Info

Publication number
JP7197946B1
JP7197946B1 JP2022004377A JP2022004377A JP7197946B1 JP 7197946 B1 JP7197946 B1 JP 7197946B1 JP 2022004377 A JP2022004377 A JP 2022004377A JP 2022004377 A JP2022004377 A JP 2022004377A JP 7197946 B1 JP7197946 B1 JP 7197946B1
Authority
JP
Japan
Prior art keywords
reinforcing material
mold
casting
matrix composite
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022004377A
Other languages
Japanese (ja)
Other versions
JP2023103704A (en
Inventor
義夫 高木
仁 北村
翔梧 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCE COMPOSITE CORPORATION
Original Assignee
ADVANCE COMPOSITE CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCE COMPOSITE CORPORATION filed Critical ADVANCE COMPOSITE CORPORATION
Priority to JP2022004377A priority Critical patent/JP7197946B1/en
Priority to PCT/JP2022/047659 priority patent/WO2023136101A1/en
Priority to CN202280039124.3A priority patent/CN117412826A/en
Application granted granted Critical
Publication of JP7197946B1 publication Critical patent/JP7197946B1/en
Publication of JP2023103704A publication Critical patent/JP2023103704A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals

Abstract

【課題】寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を簡便に得ることができる金属基複合材の製造方法の提供。【解決手段】純金属あるいは合金であるマトリックス材と、該マトリックス材と異なる材料の強化材とを複合化させ、寸法精度の高いニアネット形状で、且つ、高い強化材容積率を有する金属基複合材を得るための製造方法であって、強化材を用いて内部に多孔を有するニアネット形状の強化材成形体又は強化材充填体を作製する成形工程、得られた強化材成形体・充填体を予熱する予熱工程、予熱された強化材成形体・充填体を複合材鋳造用外殻金型内に設置する設置工程、設置した強化材成形体・充填体の前記多孔に溶融したマトリックス材を含浸・充填して複合化する鋳造工程を有し、前記すべての工程を、内部にニアネット形状の空間が形成される同一の金型を連続的に使用して行う金属基複合材の製造方法。【選択図】 図1Kind Code: A1 A method for producing a metal matrix composite that can easily obtain a metal matrix composite having a near-net shape with high dimensional accuracy and a high reinforcement volume fraction (Vf %) is provided. A metal matrix composite having a near-net shape with high dimensional accuracy and a high reinforcement volume ratio by combining a matrix material that is a pure metal or an alloy with a reinforcing material that is different from the matrix material. A manufacturing method for obtaining a material, which includes a molding step of using a reinforcing material to produce a near-net-shaped reinforcing material molded body or a reinforcing material filled body having pores inside, and the obtained reinforcing material molded body / filled body A preheating step of preheating, an installation step of installing the preheated reinforcing material molded body / filler in the outer shell mold for composite material casting, a molten matrix material in the pores of the installed reinforcing material molded body / filler A method for manufacturing a metal matrix composite material, which includes a casting step of impregnation and filling to form a composite, and all of the above steps are performed by continuously using the same mold in which a near-net shape space is formed. . [Selection diagram] Fig. 1

Description

本発明は、金属基複合材料の製造方法に関し、より詳しくは、セラミックス粒子などの強化材からなる多孔質の強化材成形体・充填体を用い、純金属あるいは合金からなるマトリックスを強化材と複合化させる際に、強化材成形体・充填体の成形工程で用いた金型を、強化材成形体・充填体を入れたままの状態で複合材鋳造用外殻金型内に設置して、強化材成形体・充填体の多孔に溶融マトリックス材を含浸・充填する、同一の金型を連続して使用することで、簡便に、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を得ることを可能にした金属基複合材料の製造技術に関する。 The present invention relates to a method for producing a metal matrix composite material, and more particularly, using a porous reinforcing material compact/filler made of a reinforcing material such as ceramic particles, and combining a matrix made of a pure metal or alloy with the reinforcing material. When converting, the mold used in the molding process of the reinforcing material molded body / filling body is installed in the outer shell mold for composite material casting with the reinforcing material molded body / filling body in the state, By continuously using the same mold that impregnates and fills the pores of the reinforcing material compact/filler with the molten matrix material, it is possible to easily achieve a near-net shape with high dimensional accuracy and a large reinforcing material volume. The present invention relates to a technology for manufacturing a metal matrix composite material that makes it possible to obtain a metal matrix composite material having a Vf %.

例えば、アルミニウムあるいはアルミニウム合金等の金属をマトリックス材とし、強化材として、セラミック粒子やグラファイト粒子やマトリックスとは異なる金属粒子などを含有する金属基複合材料は、マトリックス材に比して、優れた比強度、比剛性、熱特性などを備えた特性に優れたものになることから、様々な産業分野で利用されている。 For example, a metal matrix composite material containing a metal such as aluminum or an aluminum alloy as a matrix material and ceramic particles, graphite particles, metal particles different from the matrix, etc. as a reinforcing material has an excellent ratio compared to the matrix material. It is used in various industrial fields because it has excellent properties such as strength, specific rigidity, and thermal properties.

金属基複合材の製造方法としては、例えば、下記のような方法がある。第1に、予め強化材成形型(金型)を用いて多孔質の強化材成形体を成形し、得られた強化材成形体を金型から取り出して、強化材成形体を予熱後、鋳造用の金型内に設置し、溶融したマトリックス材(溶湯)を用いて鋳造して、上記強化材成形体の多孔(空隙)に溶湯を含浸・充填して複合化する製造方法がある。 As a method for producing a metal matrix composite, there are, for example, the following methods. First, a reinforcing material molding die (mold) is used in advance to form a porous reinforcing material molded body, the obtained reinforcing material molded body is removed from the mold, the reinforcing material molded body is preheated, and then cast. There is a manufacturing method in which the reinforcing material is placed in a mold, cast with a molten matrix material (molten metal), and impregnated and filled with the molten metal into the pores (voids) of the reinforcing material molded body to form a composite.

上記した第1の製造方法で、所望する製品に対して、製品の原料となる寸法精度の高いニアネット形状の金属基複合材を製造するには、作製した強化材成形体を、強化材成形体とほぼ同一寸法・形状の鋳造用の金型凹内に挿入して設置して鋳造する必要がある。しかし、寸法精度の高いニアネット形状を狙えば狙うほど、強化材成形体を鋳造用の金型凹内に挿入して・勘合設置することは極めて難しくなり、挿入工程の段階で強化材成形体の破損・欠損が起きるという問題がある。これに対しては、挿入・勘合設置を容易にする目的で両者の勘合面にクリアランス(隙間)を設けることが考えられる。しかし、クリアランスを設けると、製造される金属基複合材は高精度でニアネット形状のものではなくなる。 In the first manufacturing method described above, in order to manufacture a near-net shape metal matrix composite material with high dimensional accuracy as a raw material for a desired product, the prepared reinforcing material molded body is molded into a reinforcing material. It is necessary to insert and set it in a mold concave for casting that has almost the same size and shape as the body for casting. However, the more you aim for a near-net shape with high dimensional accuracy, the more difficult it becomes to insert and fit the reinforcing material compact into the mold recess for casting. There is a problem that damage or loss of To address this, it is conceivable to provide a clearance (gap) between the mating surfaces of both for the purpose of facilitating the insertion and mating installation. However, when the clearance is provided, the metal matrix composite produced is not of high precision and near net shape.

また、上記した第1の製造方法で、鋳造時に、強化材成形体の内部への溶湯(マトリックス材)の含浸浸透をよくするためには、強化材成形体及び鋳造用金型を予熱して温度を高める必要がある。しかし、一般的に強化材に使用されているセラミックスやグラファイトなどは熱膨張率が小さく、一方の鋳造用金型は熱膨張率が大きいため、上記した予熱による熱膨張量の差を勘案する必要があるため、さらに強化材成形体の鋳造用金型への挿入・勘合設置は困難になる。このため、上記した第1の製造方法では、寸法精度の高いニアネット形状の金属基複合材を鋳造することはできなかった。このような理由で、上記第1の製造方法で、最終製品形状とほぼ同一の寸法精度の高いニアネット形状の金属基複合材を製造する場合は、大きめのラフ形状の金属基複合材から切削加工して、最終形状にする必要があった。しかし、このような切削加工は、金属基複合材が硬いため、加工が難しく、加工に時間がかかり非常にコストが高くなるといった問題がある。 Further, in the first manufacturing method described above, in order to improve impregnation and penetration of the molten metal (matrix material) into the interior of the reinforcing material during casting, the reinforcing material molded body and the casting mold are preheated. It is necessary to raise the temperature. However, ceramics and graphite, which are generally used as reinforcing materials, have a small coefficient of thermal expansion, while casting dies have a large coefficient of thermal expansion. Therefore, it becomes more difficult to insert and fit the reinforcing molded body into the casting mold. For this reason, in the first manufacturing method described above, it was not possible to cast a near-net shape metal matrix composite material with high dimensional accuracy. For this reason, in the first manufacturing method, when manufacturing a near-net shape metal matrix composite material with high dimensional accuracy that is almost the same as the final product shape, it is necessary to cut from a larger rough shape metal matrix composite material. It had to be machined into its final shape. However, since the metal-based composite material is hard, such a cutting process is difficult, takes a long time, and is extremely costly.

上記課題に対し、下記の第2の金属基複合材の製造方法がある。第2の製造方法では、強化材の粒子や短繊維をマトリックス材に分散させ、予め強化材を分散させた強化材分散マトリックス複合材を作製し、得られた強化材分散マトリックス複合材を溶解して、これを、金型凹を精密なニアネット形状にした鋳造用金型にダイカスト等の鋳造法で充填して金属基複合材を製造する。 In order to solve the above problems, there is a second method for producing a metal-based composite material described below. In the second manufacturing method, reinforcing material particles and short fibers are dispersed in a matrix material to prepare a reinforcing material dispersed matrix composite material in which the reinforcing material is dispersed in advance, and the obtained reinforcing material dispersed matrix composite material is dissolved. Then, the metal-based composite material is produced by filling a casting mold having a precise near-net shape with the mold recesses by a casting method such as die casting.

例えば、特許文献1に記載の技術は、予め作製した強化材を分散させたマトリックス材(強化材分散マトリックス複合材)を利用した上記した第2の製造方法に関するものである。そして、該技術によれば、最終形状に近いニアネット形状の金属基複合材の製造が可能になるとしている。第2の製造方法では、予め作製した強化材を分散させた強化材分散マトリックス複合材を利用し、溶融状態の強化材分散マトリックス複合材を寸法精度の高いニアネット形状の金型凹に充填できるため、金型と同等のニアネット成形が可能になると考えられる。 For example, the technique described in Patent Literature 1 relates to the above-described second manufacturing method using a prefabricated matrix material in which a reinforcing material is dispersed (reinforcement-dispersed matrix composite material). According to this technique, it is possible to manufacture a near-net shape metal matrix composite material close to the final shape. In the second manufacturing method, a reinforcing material-dispersed matrix composite material in which a reinforcing material is dispersed is used, and the reinforcing material-dispersed matrix composite material in a molten state can be filled into a mold cavity having a near-net shape with high dimensional accuracy. Therefore, it is thought that near-net molding equivalent to that of molds will be possible.

特開平10-174222号公報JP-A-10-174222

しかしながら、本発明者らの検討によれば、溶融状態の強化材分散マトリックス複合材は、強化材の強化材容積率(Vf%)が低くないと流動性が悪いという課題があり、強化材のVf%が高い強化材分散マトリックス複合材を用いた場合は、金型凹内にきちんと充填できず、湯回り不良による未充填不良や薄肉部はニアネット形状にできないなどの問題が生じる。そのため、第2の製造方法では、強化材のVf%が高い金属基複合材を製造することはできないといった課題がある。 However, according to studies by the present inventors, there is a problem that the reinforcing material dispersed matrix composite material in a molten state has poor fluidity unless the reinforcing material volume ratio (Vf%) of the reinforcing material is low. When a reinforcing material dispersed matrix composite material with a high Vf% is used, it is not possible to properly fill the mold cavity, and there arise problems such as insufficient filling due to poor flow of molten metal and the inability to form a near-net shape in thin-walled portions. Therefore, in the second production method, there is a problem that a metal matrix composite material having a reinforcing material with a high Vf % cannot be produced.

上記したことは、特許文献1の実施例の記載からもわかる。すなわち、実施例1で利用しているアルミナ粒子分散アルミニウム基複合材は強化材容積率(Vf%)が20%であり、実施例2で利用しているアルミナ粒子分散アルミニウム基複合材は、強化材容積率(Vf%)が12%であり、これらの材料によっては、いずれも強化材容積率(Vf%)の低い金属基複合材を得ることしかできない。すなわち、上記した技術は、強化材のVf%が高い金属基複合材を製造する技術ではない。 The above can also be understood from the description of the example of Patent Document 1. That is, the alumina particle-dispersed aluminum-based composite used in Example 1 has a reinforcing material volume ratio (Vf%) of 20%, and the alumina particle-dispersed aluminum-based composite used in Example 2 is reinforced. The material volume fraction (Vf %) is 12%, and depending on these materials, it is only possible to obtain a metal matrix composite with a low reinforcement volume fraction (Vf %). That is, the technique described above is not a technique for producing a metal matrix composite material with a high Vf % reinforcement.

したがって、本発明の目的は、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を簡便に得ることができる金属基複合材の製造方法を提供することである。本発明の目的は、好適には、強化材容積率(Vf%)が40%を超えるニアネット形状の金属基複合材料を簡便に得ることができる、簡便な製造技術を提供することである。 Therefore, an object of the present invention is to provide a method for producing a metal matrix composite that can easily obtain a metal matrix composite having a near-net shape with high dimensional accuracy and a high reinforcement volume fraction (Vf%). It is to be. An object of the present invention is to preferably provide a simple manufacturing technique that can easily obtain a near-net shape metal matrix composite material having a reinforcement volume fraction (Vf %) exceeding 40%.

上記の目的は、以下の、本発明の金属被覆金属基複合材料の製造方法によって達成される。
[1]純金属あるいは合金であるマトリックス材と、該マトリックス材とは異なる材料からなる強化材とを複合化させて、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を得るための金属基複合材料の製造方法であって、前記強化材を用いて内部に多孔を有するニアネット形状の強化材成形体又は強化材充填体を作製する強化材成形体・充填体の成形工程、得られた強化材成形体・充填体を予熱する予熱工程、予熱された強化材成形体・充填体を複合材鋳造用外殻金型内に設置する設置工程、設置した強化材成形体・充填体の前記多孔に溶融したマトリックス材を含浸・充填して複合化する鋳造工程を有し、前記すべての工程を、内部にニアネット形状の空間が形成される同一の金型を連続的に使用して行うことを特徴とする金属基複合材料の製造方法。
The above object is achieved by the following method for producing a metal-coated metal matrix composite material of the present invention.
[1] A matrix material, which is a pure metal or alloy, and a reinforcing material made of a material different from the matrix material are combined to form a near-net shape with high dimensional accuracy and a high reinforcing material volume ratio (Vf% ), wherein the reinforcing material is used to produce a near-net shaped reinforcing material compact or reinforcing material filled body having pores inside Molding process of material molded body/filler, preheating process of preheating obtained reinforcing material molded body/filler, installation of preheated reinforcing material molded body/filler in outer shell mold for composite material casting and a casting step of impregnating and filling the molten matrix material into the pores of the installed reinforcing material molded body/filler to form a composite, and all of the above steps are performed in such a manner that a near-net-shaped space is formed inside. A method for producing a metal matrix composite material, characterized in that the same mold is used continuously.

上記本発明の金属基複合材料の製造方法の好ましい形態としては、下記が挙げられる。
[2]前記強化材容積率(Vf%)が、40%を超える上記[1]に記載の金属基複合材料の製造方法。
[3]前記強化材成形体・充填体の成形工程で、内部にニアネット形状の空間(凹)が形成される前記金型内に前記強化材を少なくとも含む材料を充填して、該材料が充填された状態の前記金型を用いて、該材料を加圧成形、或いは、該材料を加熱炉に入れて焼成成形を行う[1]又は[2]に記載の金属基複合材料の製造方法。
[4]前記マトリックス材が、アルミニウム又はアルミニウム合金である上記[1]~[3]のいずれかに記載の金属基複合材料の製造方法。
[5]前記強化材が、セラミックス粒子、黒鉛粒子及び金属粒子からなる群から選ばれる少なくともいずれかである上記[1]~[4]のいずれかに記載の金属基複合材料の製造方法。
Preferred embodiments of the method for producing the metal matrix composite material of the present invention are as follows.
[2] The method for producing a metal matrix composite material according to [1] above, wherein the reinforcing material volume fraction (Vf %) exceeds 40%.
[3] In the molding step of the reinforcing material molded body/filling body, a material containing at least the reinforcing material is filled in the mold in which a near-net-shaped space (concave) is formed inside, and the material is The method for producing a metal matrix composite material according to [1] or [2], in which the material is pressure-molded using the filled mold, or the material is placed in a heating furnace and fired. .
[4] The method for producing a metal matrix composite material according to any one of [1] to [3] above, wherein the matrix material is aluminum or an aluminum alloy.
[5] The method for producing a metal matrix composite material according to any one of [1] to [4] above, wherein the reinforcing material is at least one selected from the group consisting of ceramic particles, graphite particles and metal particles.

本発明によれば、寸法精度の高いニアネット形状で、且つ、強化材のVf%が高い金属基複合材を、簡便に得ることができる金属基複合材の製造方法が実現される。本発明の好ましい形態によれば、簡便な製造方法で、寸法精度の高いニアネット形状で、且つ、強化材容積率(Vf%)が40%を超える高い金属基複合材料を提供することが可能になる。本発明によれば、強化材成形体・充填体を成形する際に使用した凹がニアネット形状である金型を、強化材成形体・充填体を入れた状態で複合材鋳造用外殻金型内に設置して鋳造を行うため、強化材成形体・充填体の作製から、マトリックス材の溶湯を用いて鋳造して強化材とマトリックス材とを複合化させるまでの全工程を、同一の金型を連続して用いて(兼用して)行う、従来にない新たな製造方法が提供される。本発明の製造方法は、強化材成形体・充填体を成形後、金型から強化材成形体・充填体を取り出す必要がないので慎重に行う作業が不要になり、作業上の利点がある。また、本発明の製造方法によれば、図3に示したように、金型から強化材成形体・充填体を取り出す作業の際や、取出した強化材成形体・充填体を鋳造用の金型内に設置する際に生じることがあった、成形した強化材成形体・充填体の破損や欠損を生じることがないので、歩留まりよく、寸法精度の高いニアネット形状の金属基複合材料を経済的に得ることができるという顕著な効果が得られる。このため、本発明の金属基複合材の製造方法は、工業上、極めて有用である。 According to the present invention, a method for producing a metal matrix composite that can easily obtain a metal matrix composite having a near-net shape with high dimensional accuracy and a high Vf % of the reinforcing material is realized. According to a preferred embodiment of the present invention, it is possible to provide a metal matrix composite material with a near-net shape with high dimensional accuracy and a high reinforcement volume ratio (Vf%) exceeding 40% by a simple manufacturing method. become. According to the present invention, a mold having a near-net shape concave portion used for molding the reinforcing material molded body/filler is inserted into the outer shell metal for composite material casting with the reinforcing material molded body/filler inserted. Since the casting is carried out in a mold, the entire process from the preparation of the reinforcing material molded body/filler to the casting using the molten matrix material to form a composite of the reinforcing material and the matrix material can be carried out in the same process. Provided is a novel, unprecedented manufacturing method in which molds are continuously used (commonly used). The production method of the present invention eliminates the need to take out the reinforcing material compact/filler from the mold after molding the reinforcing material compact/filler, which eliminates the need for careful work, which is advantageous in terms of work. Further, according to the manufacturing method of the present invention, as shown in FIG. Since there is no breakage or chipping of the molded reinforcing material compacts and fillers, which may occur when they are placed in the mold, it is economical to produce near-net shape metal matrix composites with high dimensional accuracy and high yields. It is possible to obtain a remarkable effect that it can be obtained effectively. Therefore, the method for producing a metal matrix composite material of the present invention is industrially extremely useful.

本発明の金属基複合材の製造方法の、強化材成形体・充填体の成形工程から、マトリックス材の溶湯を用いて鋳造して強化材とマトリックス材とを複合化する鋳造工程までの一連の工程のうちの、金型凹に強化材成形体・充填体が入った状態のニアネット形状の兼用金型を複合材鋳造用外殻金型内に設置するまでの工程を説明するための模式図である。In the method for producing a metal matrix composite material of the present invention, a series of steps from the molding step of forming the reinforcing material molded body and the filling body to the casting step of casting the molten metal of the matrix material to form a composite of the reinforcing material and the matrix material. Schematic for explaining the steps up to setting a dual-use mold of near-net shape with the reinforcing material molded body and the filler in the mold recess in the outer shell mold for casting composite materials. It is a diagram. 本発明の金属基複合材料の製造方法の、図1に示した金型凹に強化材成形体・充填体が入った状態のニアネット形状の兼用金型を複合材鋳造用外殻金型内に設置後、マトリックス材の溶湯を用いて鋳造して強化材成形体・充填体とマトリックス材とを複合化する鋳造工程を説明するための模式図である。In the manufacturing method of the metal matrix composite material of the present invention, a near-net shape dual-use mold with the reinforcing material molded body and the filler in the mold concave shown in FIG. FIG. 10 is a schematic diagram for explaining a casting process for forming a composite of the reinforcing material compact/filler and the matrix material by casting using the molten metal of the matrix material after installation in the apparatus. 従来の金属基複合材の製造方法における課題の一つを説明するための模式図である。It is a schematic diagram for explaining one of the problems in the conventional method for producing a metal matrix composite.

以下、好ましい実施形態を挙げて本発明の説明をするが、本発明はこれらの実施形態に限定されるものではない。本発明の金属基複合材料の製造方法の特徴は、強化材成形体を作製する際に使用した凹がニアネット形状の金型を、該金型で形成した強化材成形体・充填体を入れたままの状態で、マトリックス材の溶湯で複合化を行う鋳造の際まで連続して使用して、各工程で凹がニアネット形状の同一の金型を兼用するように構成したことにある。このように構成したことで、強化材成形体を成形用の金型から取り出す必要も、取り出した強化材成形体を凹がニアネット形状の鋳造用の金型に挿入して設置する必要もないため、これらの作業の際に生じていた強化材成形体の破損・欠損の問題が解消される。 The present invention will be described below with reference to preferred embodiments, but the present invention is not limited to these embodiments. A feature of the method for producing a metal matrix composite material of the present invention is that a mold having a near-net concave shape used for producing a reinforcing material molded body is inserted into the reinforcing material molded body/filler formed by the mold. In this state, the mold is continuously used up to the time of casting in which the molten metal of the matrix material is composited, and the same mold with near-net shape concaves is also used in each step. With this configuration, there is no need to remove the reinforcing material molded body from the molding die, nor to insert the removed reinforcing material molded body into a casting mold having a near-net shape concave and install it. Therefore, the problem of breakage and chipping of the reinforcing material molded body that occurred during these operations can be resolved.

すなわち、本発明の金属基複合材料の製造方法は、純金属あるいは合金であるマトリックス材と、該マトリックス材とは異なる材料からなる強化材とを複合化させて、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を得るための金属基複合材の製造方法であって、前記強化材を用いて内部に多孔を有するニアネット形状の強化材成形体又は強化材充填体を作製する強化材成形体・充填体の成形工程、得られた強化材成形体・充填体を予熱する予熱工程、予熱された強化材成形体・充填体を複合材鋳造用外殻金型内に設置する設置工程、設置した強化材成形体・充填体の前記多孔に溶融したマトリックス材を含浸・充填して複合化する鋳造工程を有し、これらすべての工程を、内部にニアネット形状の空間(凹)が形成される同一の金型を連続的に使用して行うことを特徴とする。本発明では、この本発明の製造方法の全ての工程で連続して使用する凹がニアネット形状の金型のことを、「強化材成形・鋳造の兼用金型」或いは単に「兼用金型」とも呼ぶ。 That is, in the method for producing a metal matrix composite material of the present invention, a matrix material, which is a pure metal or an alloy, and a reinforcing material made of a material different from the matrix material are combined to form a near-net shape with high dimensional accuracy. And, a method for producing a metal matrix composite material for obtaining a metal matrix composite material having a high reinforcement volume fraction (Vf%), wherein the reinforcement material is used to produce a near-net shape reinforcement material having pores inside. Molding step of reinforcing material molded body/filler for producing molded body or reinforcing material filled body, preheating step of preheating obtained reinforcing material molded body/filler, preheated reinforcing material molded body/filler into composite material It has an installation process of installing it in the outer shell mold for casting, and a casting process of impregnating and filling the molten matrix material into the pores of the installed reinforcing material molded body / filler to form a composite, and all of these processes are performed. , the same mold in which a near-net-shaped space (concave) is formed is continuously used. In the present invention, a mold having a near-net shape concave portion that is continuously used in all steps of the manufacturing method of the present invention is referred to as a "double-purpose mold for reinforcing material molding/casting" or simply "double-purpose mold." Also called

以下、図1及び図2を参照して本発明の金属基複合材料の製造方法について説明する。図1及び2中の1は、本発明を特徴づける強化材成形・鋳造の兼用金型である。図1に模式的に示したように、兼用金型1の凹は、複合材料を用いて製造する製品とほぼ同様の所望の形状に形づくられているニアネット形状を有するものである。図1及び2中の2は、セラミックス粒子、黒鉛粒子及び金属粒子などから選ばれる強化材を少なくとも含む、強化材成形体・充填体を形成するための材料を示す。また、図1及び2中の3は、強化材成形・鋳造の兼用金型1の凹に強化材を含む材料2が入った(充填された)状態であることを示している。以下、この強化材を充填した状態の兼用金型のことを、「強化材充填済兼用金型3」と呼ぶ。 Hereinafter, a method for producing a metal matrix composite material of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 in FIGS. 1 and 2 is a dual-use mold for reinforcing material molding and casting that characterizes the present invention. As schematically shown in FIG. 1, the concavity of the dual-use mold 1 has a near-net shape that is formed into a desired shape substantially similar to the product manufactured using the composite material. Reference numeral 2 in FIGS. 1 and 2 indicates a material for forming a reinforcing compact/filler containing at least a reinforcing material selected from ceramic particles, graphite particles, metal particles, and the like. In addition, 3 in FIGS. 1 and 2 indicates a state in which the material 2 including the reinforcing material is placed (filled) in the recess of the dual-use mold 1 for molding/casting the reinforcing material. Hereinafter, the dual-use mold filled with the reinforcing material will be referred to as "reinforcement-filled dual-use mold 3".

図1中の10は、加熱炉を示す。本発明では、兼用金型1内に入れた(充填した)強化材を含む材料2を、必要に応じて焼成成形する場合や、図1に示したように、成型工程で得られた強化材成形体・充填体を予熱する場合に、強化材充填済兼用金型3を加熱炉10内に配置して、焼成や予熱を行う。本発明の製造方法では、兼用金型1を、強化材充填体を得る場合、強化材を加圧成型や焼成成形して強化材成形体を得る場合、さらに、図1に示したように、マトリックス材と複合化する鋳造工程を行う場合に、強化材充填済兼用金型3を複合材鋳造用外殻金型20内に設置し、図2に示したように、この状態で鋳造を行い、すべての製造工程を、内部にニアネット形状の空間(凹)が形成される同一の金型を連続的に使用して行うことを特徴とする。図1及び2の模式図に示した複合材鋳造用外殻金型20は、側壁となる外郭金型と、金型の底面を形成する鋳造用下金型20’とを組合わせて構成されている。そして、鋳造の際に、複合材鋳造用外殻金型20の凹部に、強化材充填済兼用金型3を設置し、例えば、図2に示したようにして鋳造を行って、強化材とマトリックス材を複合化する。 10 in FIG. 1 indicates a heating furnace. In the present invention, the material 2 containing the reinforcing material put (filled) in the dual-use mold 1 is baked and molded as necessary, or as shown in FIG. 1, the reinforcing material obtained in the molding process When preheating the molded body/filled body, the reinforcing material-filled dual-use mold 3 is placed in the heating furnace 10 for firing and preheating. In the manufacturing method of the present invention, the dual-purpose mold 1 is used to obtain a reinforcing material filled body, to obtain a reinforcing material molded body by pressure molding or firing molding of the reinforcing material, and further, as shown in FIG. When performing a casting process for compositing with a matrix material, the dual-use mold 3 filled with reinforcing material is placed in the outer shell mold 20 for composite material casting, and as shown in FIG. 2, casting is performed in this state. , All manufacturing processes are performed by continuously using the same mold in which a near-net-shaped space (concave) is formed. The composite material casting outer shell mold 20 shown in the schematic diagrams of FIGS. 1 and 2 is configured by combining an outer shell mold as a side wall and a lower casting mold 20′ that forms the bottom surface of the mold. ing. Then, at the time of casting, the reinforcing material-filled dual-use mold 3 is installed in the recess of the composite material casting outer shell mold 20, and casting is performed, for example, as shown in FIG. Composite the matrix material.

図1に示したように、本発明の金属基複合材の製造方法では、まず、兼用金型1の凹に強化材を含む材料2を入れて、高い強化材容積率(Vf%)の強化材成形体・充填体を成形する。本発明を構成する強化材成形体・充填体の成形工程としては、従来公知の種々の方法が適用できる。具体的には、下記のような方法が挙げられる。兼用金型1の凹にセラミックス粒子などの強化材を入れて兼用金型ごと振動機で振動して、所望する高いVf%となるように強化材2を充填して強化材充填体を得る方法や、強化材を充填した後、従来公知の方法で加圧成型して強化材成形体を得る方法が挙げられる。また、従来公知の方法でセラミックス粒子などの強化材にバインダーなどを加えて、得られる強化材成形体が所望の高いVf%となるように設計したスラリーを調製し、得られたスラリーを兼用金型の凹に充填した後、スラリーを充填した兼用金型ごと加熱炉10に入れて、焼成成形する方法も適用できる。この際に、焼成成形するための加熱炉と、焼成成形して得た強化体成形体を予熱するための加熱炉は、同一であっても異なる加熱炉を用いてもよい。いずれにしても、本発明の製造方法で、加熱炉に入れるのは、兼用金型に強化材が充填された状態の「強化材充填済兼用金型3」であり、兼用金型ごと加熱炉10に入れることを特徴としている。 As shown in FIG. 1, in the method for producing a metal matrix composite material of the present invention, first, a material 2 containing a reinforcing material is put into a concave portion of a dual-purpose mold 1 to achieve a high reinforcing material volume ratio (Vf%). Mold the material compact/filler. Various conventionally known methods can be applied to the step of forming the reinforcing material compact/filler constituting the present invention. Specifically, the following methods are mentioned. A method of obtaining a reinforcing material-filled body by inserting a reinforcing material such as ceramic particles into the recess of the dual-use mold 1, vibrating the dual-purpose mold with a vibrator, and filling the reinforcing material 2 so that the desired high Vf% is obtained. Alternatively, after filling the reinforcing material, pressure molding is performed by a conventionally known method to obtain a reinforcing material molded body. In addition, a binder is added to a reinforcing material such as ceramic particles by a conventionally known method to prepare a slurry designed so that the obtained reinforcing material molded body has a desired high Vf%, and the obtained slurry is used as a metal After filling the recesses of the mold, a method of sintering molding by placing the combined mold filled with the slurry into the heating furnace 10 can also be applied. At this time, the heating furnace for sintering molding and the heating furnace for preheating the reinforced compact obtained by sintering molding may be the same or different. In any case, in the manufacturing method of the present invention, what is put into the heating furnace is the "reinforcing material-filled dual-purpose mold 3" in which the dual-purpose mold is filled with the reinforcing material, and the dual-purpose mold is placed in the heating furnace. It is characterized by being put in 10.

本発明の製造方法は、上記したようにして強化材充填済兼用金型3を得た後、強化材充填済兼用金型3を複合材鋳造用外殻金型20内に設置し、溶融したマトリックス材を用いて鋳造して、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を製造する。予熱工程後の、強化材充填済兼用金型3を複合材成形体鋳造用外殻金型20内に設置する際には、熱衝撃を避けるため、外殻金型20を予熱することが好ましい。また、強化材成形体・充填体の多孔へ、マトリックス材の溶湯を良好な状態で含浸・充填させるためには、図2に示したように、加圧圧子30を用い、該加圧圧子を降下させて、例えば、鋳造圧力80MPa~120MPa程度に加圧して鋳造することが好ましい。 In the manufacturing method of the present invention, after obtaining the reinforcing material-filled dual-use mold 3 as described above, the reinforcing material-filled dual-purpose mold 3 is placed in the outer shell mold 20 for casting composite materials, and melted. By casting using a matrix material, a metal matrix composite material having a near-net shape with high dimensional accuracy and a high reinforcement volume ratio (Vf %) is manufactured. After the preheating step, when the reinforcing material-filled dual-use mold 3 is installed in the outer shell mold 20 for casting the composite material molded body, it is preferable to preheat the outer shell mold 20 in order to avoid thermal shock. . In order to impregnate/fill the molten matrix material into the pores of the reinforcing material compact/filler in a favorable state, a pressure indenter 30 is used as shown in FIG. It is preferable to lower the pressure and pressurize the casting pressure to, for example, about 80 MPa to 120 MPa for casting.

本発明の製造方法で使用する強化材は特に限定されず、従来、金属基複合材料に用いられているものをいずれも用いることができる。例えば、セラミックス粒子、黒鉛粒子及び金属粒子からなる群から選ばれる少なくともいずれかの微粒子などを用いることが挙げられる。より具体的には、ホウ酸アルミニウムや炭化ケイ素などのセラミックス微粒子や、鱗片状黒鉛の微粒子などが挙げられる。また、マトリックス材も特に限定されず、従来公知の材料を目的に応じて適宜に使用できる。例えば、本発明の製造方法に、マトリックス材としてアルミニウム或いはアルミニウム合金を用いることで、軽量で機能性が付与された部材製品を簡便に提供することが可能になる、ニアネット形状の金属基複合材が提供される。 The reinforcing material used in the manufacturing method of the present invention is not particularly limited, and any one conventionally used for metal matrix composite materials can be used. For example, at least one fine particle selected from the group consisting of ceramic particles, graphite particles and metal particles may be used. More specifically, fine particles of ceramics such as aluminum borate and silicon carbide, fine particles of flake graphite, and the like can be mentioned. Also, the matrix material is not particularly limited, and conventionally known materials can be appropriately used depending on the purpose. For example, by using aluminum or an aluminum alloy as the matrix material in the manufacturing method of the present invention, it is possible to easily provide a lightweight and functional member product, a near-net shape metal matrix composite material. is provided.

以下、実施例及び比較例を挙げて本発明を説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1]
本例では、強化材として平均粒径44μmのホウ酸アルミニウム粒子1.0kgを用いた。そして、強化材のホウ酸アルミニウム粒子を強化材成形・鋳造の兼用金型内に充填して、該兼用金型を振動機の上に設置して振動を20分間与えて、ホウ酸アルミニウム粒子の充填率が40%超になるように金型内に充填した。上記で使用した強化材成形・鋳造の兼用金型には、内部に所望する金属基複合材からなる製品とほぼ同じ、ニアネット形状の空間を有するものを用いた。
[Example 1]
In this example, 1.0 kg of aluminum borate particles having an average particle size of 44 μm were used as the reinforcing material. Then, the aluminum borate particles of the reinforcing material are filled in a dual-purpose mold for molding and casting the reinforcing material, and the dual-purpose mold is placed on a vibrator and vibration is applied for 20 minutes to remove the aluminum borate particles. The mold was filled so that the filling rate was over 40%. The metal mold used for molding and casting the reinforcing material used above had a near-net-shaped space inside, which was almost the same as the product made of the desired metal-based composite material.

上記のようにしてホウ酸アルミニウム粒子を充填して得た強化材成形体を内部に有する強化材成形・鋳造の兼用金型を、そのまま加熱炉に入れ、窒素雰囲気下で700℃に予熱した。そして、内部に強化材成形体を有する予熱した前記兼用金型ごと、200℃に予熱をした複合材鋳造用外殻金型内に設置した。 The reinforcing material molding/casting mold containing therein the reinforcing material compact obtained by filling the aluminum borate particles as described above was put into the heating furnace as it was, and was preheated to 700° C. in a nitrogen atmosphere. Then, the preheated dual-use mold having the reinforcing material molded body inside was placed in an outer shell mold for composite material casting preheated to 200°C.

その後、速やかに800℃にて溶解したAl合金溶湯(AC4C)を、複合材鋳造用外殻金型内に注湯して、加圧圧子を降下させて鋳造圧力100MPaまで上昇させ、その圧力を10分保持して、ニアネット形状の金属基複合材を成形した。得られた金属基複合材は、所望する製品の形状にほぼ近く、欠けや割れのない良好なニアネット形状のものであることを確認した。 After that, the Al alloy molten metal (AC4C) quickly melted at 800 ° C. is poured into the outer shell mold for casting the composite material, the pressure indenter is lowered to increase the casting pressure to 100 MPa, and the pressure is increased. After holding for 10 minutes, a near-net-shaped metal-based composite material was formed. It was confirmed that the obtained metal-based composite material had a good near-net shape with almost the shape of the desired product and was free from chipping and cracking.

[実施例2]
本例では、強化材として平均粒径20μmのSiC粒子2.0kgを用いた。実施例1で用いたと同様の、内部に所望する金属基複合材からなる製品とほぼ同じニアネット形状の空間を有する強化材成形・鋳造の兼用金型を用い、該兼用金型内に強化材のSiC粒子を充填して兼用金型ごと小型プレス機に設置して10MPaで加圧成型して、SiC粒子の充填率を50%にした強化材成形体を得た。
[Example 2]
In this example, 2.0 kg of SiC particles having an average particle size of 20 μm were used as the reinforcing material. The same mold used in Example 1, which has a near-net shape space similar to that of the desired metal matrix composite product, is used for molding and casting the reinforcing material, and the reinforcing material is placed in the mold. was placed in a small press along with the dual-use mold and pressure-molded at 10 MPa to obtain a reinforcing material compact with a filling rate of SiC particles of 50%.

次に、兼用金型の内部に収容されている強化材成形体を窒素雰囲気下で800℃に予熱して、その後、250℃に予熱した複合材鋳造用外殻金型内に、予熱した強化材成形体を兼用金型ごと設置した。そして、設置後速やかに800℃にて溶解したAl合金溶湯(ADC12)を成形体鋳造用外殻金型内に注湯して、加圧圧子を降下させて鋳造圧力を80MPaまで上昇させ、その圧力を15分保持して複合化して、ニアネット形状の金属基複合材を成形した。得られた金属基複合材は、所望する製品の形状にほぼ近く、欠けや割れのない良好なニアネット形状のものであることを確認した。 Next, the reinforcing material molded body housed inside the dual-use mold is preheated to 800°C under a nitrogen atmosphere, and then the preheated reinforcing material is placed in the outer shell mold for composite material casting preheated to 250°C. The material molded body was installed together with the dual-use mold. Then, immediately after installation, molten Al alloy (ADC12) melted at 800 ° C. is poured into the outer shell mold for casting the compact, and the pressure indenter is lowered to increase the casting pressure to 80 MPa. The pressure was held for 15 minutes to form a composite, thereby forming a near-net-shaped metal-based composite. It was confirmed that the obtained metal-based composite material had a good near-net shape with almost the shape of the desired product and was free from chipping and cracking.

[実施例3]
本例では、強化材として平均粒径44μmのホウ酸アルミニウム粒子1.0kgを用いた。そして、強化材のホウ酸アルミニウム粒子に、バインダーの原料として樹脂モノマーと架橋剤、分散剤を総量で500gとなる量加え、さらに水を5kg加えてこれらの原料が分散してなるスラリーを作製した。得られたスラリーに重合開始剤を添加した後、強化材成形・鋳造の兼用金型内に充填して、常温で放置して樹脂モノマー及び架橋剤を重合させて樹脂バインダーとし、ホウ酸アルミニウム粒子の充填率を60%にした強化材成形体を作製した。
[Example 3]
In this example, 1.0 kg of aluminum borate particles having an average particle size of 44 μm were used as the reinforcing material. Then, to the aluminum borate particles of the reinforcing material, a resin monomer, a cross-linking agent, and a dispersing agent as raw materials for the binder were added in an amount of 500 g in total, and 5 kg of water was added to prepare a slurry in which these raw materials were dispersed. . After adding a polymerization initiator to the obtained slurry, it is filled in a mold for reinforcing material molding and casting, left at room temperature to polymerize the resin monomer and the cross-linking agent to form a resin binder, and aluminum borate particles. A reinforcing material molded body having a filling rate of 60% was produced.

次に、兼用金型の内部に収容されている強化材成形体を窒素雰囲気下で700℃に加熱して、バインダーを除去した後、200℃に予熱した複合材鋳造用外殻金型内に、加熱された強化材成形体を兼用金型ごと設置した。そして、設置後速やかに750℃にて溶解したAl合金溶湯(AC4C)を複合材鋳造用外殻金型内に注湯して、加圧圧子を降下させて鋳造圧力を100MPaまで上昇させ、その圧力を10分保持して複合化して、ニアネット形状の金属基複合材を成形した。得られた金属基複合材は、所望する製品の形状にほぼ近く、欠けや割れのない良好なニアネット形状のものであることを確認した。 Next, the reinforcing material molded body housed inside the dual-use mold is heated to 700°C in a nitrogen atmosphere to remove the binder, and then placed in the outer shell mold for composite material casting preheated to 200°C. , the heated reinforcing material molded body was installed together with the dual-use mold. Then, immediately after installation, molten Al alloy (AC4C) melted at 750 ° C. is poured into the outer shell mold for casting composite materials, and the pressure indenter is lowered to increase the casting pressure to 100 MPa. The pressure was maintained for 10 minutes to form a composite, thereby forming a near-net-shaped metal-based composite. It was confirmed that the obtained metal-based composite material had a good near-net shape with almost the shape of the desired product and was free from chipping and cracking.

[実施例4]
本例では、強化材として平均粒径50μmの鱗片状黒鉛粒子1.0kgを用いた。そして、強化材の鱗片状黒鉛粒子を強化材成形・鋳造の兼用金型内に充填して、該兼用金型ごと小型プレス機に設置して、兼用金型内の充填物を20MPaで加圧成型し、鱗片状黒鉛粒子の充填率を55%にした強化材成形体を作製した。
[Example 4]
In this example, 1.0 kg of scale-like graphite particles having an average particle size of 50 μm were used as the reinforcing material. Then, the scale-like graphite particles of the reinforcing material are filled in a dual-purpose mold for molding and casting the reinforcing material, the dual-purpose mold is placed in a small press, and the filling in the dual-purpose mold is pressurized at 20 MPa. It was molded to produce a reinforcing material molded body having a filling rate of 55% of the scale-like graphite particles.

その後、強化材成形・鋳造の兼用金型に収容された状態の強化材成形体を窒素雰囲気化で700℃に予熱して、200℃に予熱した複合材鋳造用外殻金型内に、予熱された強化材成形体を兼用金型ごと設置した。そして、設置後速やかに800℃にて溶解したAl合金溶湯(AC8A)を複合材鋳造用外殻金型内に注湯して、加圧圧子を降下させて鋳造圧力を100MPaまで上昇させ、その圧力を10分保持して複合化して、ニアネット形状の金属基複合材を成形した。得られた金属基複合材は、所望する製品の形状にほぼ近く、欠けや割れのない良好なニアネット形状のものであることを確認した。 After that, the reinforcing material molded body housed in a dual-use mold for reinforcing material molding and casting is preheated to 700 ° C. in a nitrogen atmosphere, and preheated in the outer shell mold for composite material casting preheated to 200 ° C. The molded reinforcing material thus formed was installed together with the dual-use mold. Then, immediately after installation, molten Al alloy (AC8A) melted at 800 ° C. is poured into the outer shell mold for casting composite materials, and the pressure indenter is lowered to increase the casting pressure to 100 MPa. The pressure was maintained for 10 minutes to form a composite, thereby forming a near-net-shaped metal-based composite. It was confirmed that the obtained metal-based composite material had a good near-net shape with almost the shape of the desired product and was free from chipping and cracking.

1:強化材成形・鋳造の兼用金型
2:強化材
3:強化材充填済兼用金型
4:マトリックス材
10:加熱炉
20、20’、20’’:複合材鋳造用外殻金型
30:加圧圧子

1: dual-use mold for reinforcing material molding and casting 2: reinforcing material 3: dual-purpose mold filled with reinforcing material 4: matrix material 10: heating furnaces 20, 20′, 20″: outer shell mold 30 for composite material casting : pressure indenter

Claims (5)

アルミニウム又はアルミニウム合金等の純金属あるいは合金であるマトリックス材と、該マトリックス材とは異なるセラミックス粒子、黒鉛粒子及び金属粒子からなる群から選ばれる少なくともいずれかの材料からなる強化材とを複合化させて、寸法精度の高いニアネット形状で、且つ、高い強化材容積率(Vf%)を有する金属基複合材を得るための金属基複合材料の製造方法であって、
前記強化材を用いて内部に多孔を有するニアネット形状の強化材成形体又は強化材充填体を作製する強化材成形体・充填体の成形工程で、内部にニアネット形状の空間(凹)が形成される金型内に前記強化材を含む材料を充填して、該金型内に強化材成形体・充填体を形成し、形成した強化材成形体・充填体を有してなる金型を予熱工程で予熱し、予熱された強化材成形体・充填体が入った状態の金型を複合材鋳造用外殻金型内に設置して、前記金型内に入っている強化材成形体・充填体の前記多孔に溶融したマトリックス材を含浸・充填して、前記マトリックス材と前記強化材とを複合化する鋳造工程を行う、前記強化材成形体・充填体の成形工程、前記予熱工程及び前記鋳造工程の一連の工程において同一の金型を兼用して使用することを特徴とする金属基複合材料の製造方法。
A matrix material, which is a pure metal or alloy such as aluminum or an aluminum alloy , and a reinforcing material made of at least one material selected from the group consisting of ceramic particles, graphite particles, and metal particles different from the matrix material are combined. A method for producing a metal matrix composite material for obtaining a metal matrix composite material having a near net shape with high dimensional accuracy and a high reinforcement volume ratio (Vf%),
In the step of forming a reinforcing material molded body/filler for producing a near net shaped reinforcing material molded body or a reinforcing material filled body having pores inside using the reinforcing material, a near net shaped space (concave) is formed inside. A mold having a reinforcing material compact/filler formed by filling a material containing the reinforcing material in the mold to be formed to form a reinforcing material compact/filler in the mold. is preheated in the preheating step, the mold containing the preheated reinforcing material molded body / filler is placed in the outer shell mold for casting the composite material, and the reinforcing material contained in the mold is molded A casting step of impregnating and filling the pores of the body/filler with a molten matrix material to form a composite of the matrix material and the reinforcing material, forming the reinforcing material compact/filler, and preheating. A method for producing a metal matrix composite material, characterized in that the same mold is also used in a series of steps of the casting step and the casting step .
前記強化材容積率(Vf%)が、40%を超える請求項1に記載の金属基複合材料の製造方法。 2. The method for producing a metal matrix composite material according to claim 1, wherein the reinforcing material volume fraction (Vf %) exceeds 40%. 前記強化材成形体・充填体の成形工程で、内部にニアネット形状の空間(凹)が形成される前記金型内に前記強化材を少なくとも含む材料を充填して、該材料が充填された状態の前記金型をて、該兼用する金型内に充填された材料を加圧成形、或いは、該兼用する金型を加熱炉に入れて該金型内に充填された材料の焼成成形を行って強化材成形体を得る請求項1又は2に記載の金属基複合材料の製造方法。 In the molding step of the reinforcing material molded body/filling body, a material containing at least the reinforcing material is filled in the mold in which a near-net-shaped space (concave) is formed inside, and the material is filled. The mold in the state is also used , and the material filled in the mold is pressure-molded, or the mold is placed in a heating furnace and the material filled in the mold is molded. 3. The method for producing a metal matrix composite material according to claim 1 or 2, wherein sintering molding is performed to obtain the reinforcing material compact . 前記鋳造工程で、加圧圧子を用い、鋳造圧力80MPa~120MPaに加圧して鋳造する請求項1~3のいずれか1項に記載の金属基複合材料の製造方法。 The method for producing a metal matrix composite material according to any one of claims 1 to 3, wherein in the casting step, a pressure indenter is used to apply a casting pressure of 80 MPa to 120 MPa for casting . 前記強化材が、ホウ酸アルミニウム粒子、黒鉛粒子及びSiC粒子からなる群から選ばれる少なくともいずれかである請求項1~4のいずれか1項に記載の金属基複合材料の製造方法。 The method for producing a metal matrix composite material according to any one of claims 1 to 4, wherein the reinforcing material is at least one selected from the group consisting of aluminum borate particles, graphite particles and SiC particles.
JP2022004377A 2022-01-14 2022-01-14 METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL Active JP7197946B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022004377A JP7197946B1 (en) 2022-01-14 2022-01-14 METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL
PCT/JP2022/047659 WO2023136101A1 (en) 2022-01-14 2022-12-23 Method for manufacturing metal matrix composite material
CN202280039124.3A CN117412826A (en) 2022-01-14 2022-12-23 Method for producing metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022004377A JP7197946B1 (en) 2022-01-14 2022-01-14 METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL

Publications (2)

Publication Number Publication Date
JP7197946B1 true JP7197946B1 (en) 2022-12-28
JP2023103704A JP2023103704A (en) 2023-07-27

Family

ID=84688913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022004377A Active JP7197946B1 (en) 2022-01-14 2022-01-14 METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL

Country Status (3)

Country Link
JP (1) JP7197946B1 (en)
CN (1) CN117412826A (en)
WO (1) WO2023136101A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336438A (en) 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2012184493A (en) 2011-03-08 2012-09-27 Taiheiyo Cement Corp Metal-ceramic composite material and method for producing the same
JP2013087307A (en) 2011-10-14 2013-05-13 Hitachi Metals Ltd Manufacturing method of metal-ceramic composite material and metal-ceramic composite material
JP2015531688A (en) 2013-06-26 2015-11-05 ティー アンド マテリアルズ カンパニー,リミテッド Method for producing pressure-impregnated metal substrate composite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224853A (en) * 1985-07-25 1987-02-02 Toyota Motor Corp Production of casting member having heat insulating part
US5676907A (en) * 1992-09-17 1997-10-14 Coors Ceramics Company Method for making near net shape ceramic-metal composites
EP0662019A4 (en) * 1992-09-17 1998-07-15 Coors Ceramics Company Ritland Method for making a ceramic metal composite.
JP3183804B2 (en) * 1995-03-30 2001-07-09 株式会社豊田中央研究所 Porous reinforced sintered body and method for producing the same, composite material using this porous reinforced sintered body and method for producing the same
JPH10174222A (en) 1996-12-09 1998-06-26 Kawamura Electric Inc Distribution switchboard
JP4279366B2 (en) * 1997-08-05 2009-06-17 太平洋セメント株式会社 Method for producing metal-ceramic composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336438A (en) 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2012184493A (en) 2011-03-08 2012-09-27 Taiheiyo Cement Corp Metal-ceramic composite material and method for producing the same
JP2013087307A (en) 2011-10-14 2013-05-13 Hitachi Metals Ltd Manufacturing method of metal-ceramic composite material and metal-ceramic composite material
JP2015531688A (en) 2013-06-26 2015-11-05 ティー アンド マテリアルズ カンパニー,リミテッド Method for producing pressure-impregnated metal substrate composite material

Also Published As

Publication number Publication date
JP2023103704A (en) 2023-07-27
WO2023136101A1 (en) 2023-07-20
CN117412826A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR100545802B1 (en) Preforms for Cylinder Blocks and Metal-Based Composites
CA2178619A1 (en) Casting tooling
JP2002542035A (en) Dies and methods for manufacturing parts
US6247519B1 (en) Preform for magnesium metal matrix composites
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
JP7197946B1 (en) METHOD FOR MANUFACTURING METAL MATRIX COMPOSITE MATERIAL
JP3041421B1 (en) Ceramic reinforced metal matrix composite and method for producing the same
US4573519A (en) Method for forming metal base composite
CN104087878A (en) Method for preparing composite material for engine cylinder piston
CN114042910A (en) Preparation method of ceramic reinforced metal matrix composite material
CN112645713A (en) High-toughness ceramic composite material and preparation method thereof
JP5859850B2 (en) Composite material and manufacturing method thereof
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
RU2625377C1 (en) Method of manufacturing composite material for microwave electronics
CN115917022A (en) Method for manufacturing metal-based composite material and method for manufacturing prefabricated part
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP3834283B2 (en) Composite material and manufacturing method thereof
JP3232029B2 (en) Cylinder block
JP2000204454A (en) Preform for metal matrix composite material and its production
JP2003253308A (en) Method for manufacturing aluminum-base composite material
JPH0435542B2 (en)
RU2027553C1 (en) Method of production of moulds for glassware moulding
CN117550897A (en) Regional functional composite ceramic and manufacturing method thereof
JP2600104B2 (en) Manufacturing method of composite material parts
JP3547077B2 (en) Method of manufacturing preform for metal matrix composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

R150 Certificate of patent or registration of utility model

Ref document number: 7197946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150