JPH0435542B2 - - Google Patents

Info

Publication number
JPH0435542B2
JPH0435542B2 JP58244619A JP24461983A JPH0435542B2 JP H0435542 B2 JPH0435542 B2 JP H0435542B2 JP 58244619 A JP58244619 A JP 58244619A JP 24461983 A JP24461983 A JP 24461983A JP H0435542 B2 JPH0435542 B2 JP H0435542B2
Authority
JP
Japan
Prior art keywords
fiber
molded body
metal
binder
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58244619A
Other languages
Japanese (ja)
Other versions
JPS60138031A (en
Inventor
Katsuhiro Kishi
Yutaka Makuchi
Harumichi Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24461983A priority Critical patent/JPS60138031A/en
Publication of JPS60138031A publication Critical patent/JPS60138031A/en
Publication of JPH0435542B2 publication Critical patent/JPH0435542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、強化用繊維を用いた繊維成形体を
金属基地中の所定の箇所に加圧鋳造法により充填
複合させて繊維強化金属(FRM)複合材料を製
造するのに利用される複合材料の製造方法に関す
るものである。 (従来技術) 従来、繊維強化金属複合材料の製造方法のひと
つとしては、例えば第1図に示すように、粋型1
と、下型2と、プランジヤ3とを組み合わせて構
成した金型4内に、結合剤を用いて繊維成形体を
所定形状に成形した強化用繊維質成形体5を装入
し、次いで金型4内にマトリツクスとなる金属溶
湯6を注湯したのち、プランジヤ3を降下させる
ことにより金属溶湯6に静水圧的高圧力を加え、
この圧力によつて前記金属溶湯を前記繊維質成形
体5中に含浸させて凝固させることにより金属基
地中の所定箇所に前記繊維質成形体5を複合化す
る方法が知られている(例えば、特開昭56−
68576号、特開昭58−93837号)。 しかしながら、一般にこの種の製造方法でプレ
フオームとなる繊維質成形体5を成形するにあた
つては、繊維成形体の結合剤としてコロイダルシ
リカを用いている場合が多く(例えば、特開昭58
−93837号、特開昭58−93847号、特開昭58−
93844号、特開昭58−104059号等)、結合剤の繊維
への定着状態が凝集形状であるため、この繊維質
成形体5への金属溶湯6の含浸が不完全になりや
すく、また、金属基地−強化用繊維間の応力伝播
も阻害されやすく、複合材料としての強度は低い
という問題があつた。 (発明の目的) この発明は、このような従来の問題点に着目し
てなされたもので、強化用繊維を用いた繊維成形
体を金属基地中の所定の箇所に加圧鋳造法により
充填複合させて繊維強化金属複合材料を製造する
場合に、繊維成形体への金属溶湯の含浸が著しく
良好にかつ十分に行われ、金属基地−強化用繊維
間の応力伝播も十分に良好であり、強度および靭
性等の機械的特性に優れた繊維強化金属複合材料
を製造することが可能である複合材料の製造方法
を提供することを目的としている。 (発明の構成) この発明は、少なくとも強化用繊維と結合剤と
して金属粉末を溶媒中に混合した繊維スラリーを
得たのち、前記繊維スラリー中の溶媒を除去して
前記金属粉末を結合剤とする繊維成形体となし、
加圧鋳造法により前記繊維成形体の繊維間〓に金
属溶湯を浸透凝固させる構成としたことを特徴と
している。 この発明に適用される強化用繊維としては、ア
ルミナ繊維,アルミナ−シリカ系繊維,炭化ケイ
素ウイスカー,チタン酸カリウムウイスカー,窒
化ケイ素ウイスカーなどの酸化物系,炭化物系,
窒素物系等々の種々のものがあり、特に限定され
るものではなく、要求特性等によつて適宜選定さ
れるものである。 また、この発明に適用される結合剤は金属粉末
ならば何でも良いが、結合剤の繊維成形体中での
分布均一性を十分なものとするためには粒径
20μm以下、特に望ましくは10μm以下のものを用
いる。そして、また、この結合剤は、充填複合さ
せる金属基地と同種の金属粉末あるいは前記金属
基地の主成分を主成分とする金属粉末を用いるこ
とがより好ましい。 さらに、繊維成形体を金属基地中に複合させる
際の加圧鋳造法の具体的な手段においても特に限
定されず、プランジヤによる加圧力を利用したも
のや、遠心力を利用したものなど、各種の方法の
中から選採用することができる。 実施例 1 強化用繊維として直径3μmのアルミナ−シリカ
系繊維100gと、溶媒として水5とを容器内で
5分間撹拌し、次いで結合剤として平均粒径3μm
の純アルミニウム粉末20gを添加し、さらに2.5
重量%のでんぷん溶液50c.c.を添加して撹拌するこ
とにより繊維スラリーを得た。次いで、第2図に
示すように、内部にフイルタ8を有すると共に、
フイルタ8より下位側に吸引口9を有する容器1
0内に前記繊維スラリー11を注ぎ込み、吸引口
9を介して真空吸引することにより脱水・濾過し
て繊維成形体を得た。次に、得られた繊維成形体
を110℃において8時間乾燥した後、窒素雰囲気
中、800℃×30分間焼成して繊維質成形体を得た。 このようにして得た繊維質成形体の繊維体積率
は5%であつた。次に、第3図に示した粋型15
と下型16とプランジヤ17とを組み合わせた金
型18内に前記繊維質成形体19を設置したの
ち、320℃に加熱した金型18内にアルミニウム
合金(JIS規格AC8A)よりなる金属溶湯(温度
750℃)20を供給し、プランジヤ17を降下さ
せて金属溶湯20を静水圧的高圧力(1500気圧)
で加圧し、繊維質成形体19中に金属溶湯20を
浸透させて凝固させることにより金属基地中の所
定箇所に前記繊維質成形体19を複合化させた繊
維強化金属複合材料を得た。次いで、前記複合材
料の引張強度を測定したところ、22Kgf/mm2であ
つた。 比較例 1 実施例1における純アルミニウム粉末の代わり
に、市販のコロイダルシリカを結合剤として用
い、その他は実施例1と同じにして繊維強化金属
複合材料を作製した。次いで、得られた複合材料
の引張強度を測定したところ、15Kgf/mm2であつ
た。 実施例 2 実施例1とほぼ同様の手段であるが、適用する
アルミニウム粉末の粒径を (a) 1μm以下のもの (b) 1μm超過3μm以下のもの (c) 3μm超過10μm以下のもの (d) 10μm超過20μm以下のもの、および比較のた
め (e) 20μm超過40μm以下のもの の5種類について選び、その他は実施例1と同様
にして繊維質成形体を作製し、繊維質成形体中に
おける結合剤の分布均一性について調べた。この
結果を表1に示す。
(Industrial Application Field) This invention is a method for manufacturing fiber reinforced metal (FRM) composite materials by filling and compounding fiber molded bodies using reinforcing fibers into predetermined locations in a metal base using a pressure casting method. The present invention relates to a method for manufacturing composite materials used for. (Prior art) Conventionally, as one method for producing fiber-reinforced metal composite materials, for example, as shown in FIG.
A reinforcing fibrous molded body 5 formed by molding a fibrous molded body into a predetermined shape using a binder is charged into a mold 4 configured by combining a lower mold 2 and a plunger 3, and then After pouring the molten metal 6 to form a matrix into the molten metal 6, the plunger 3 is lowered to apply high hydrostatic pressure to the molten metal 6.
A method is known in which the molten metal is impregnated into the fibrous molded body 5 by this pressure and solidified, thereby compounding the fibrous molded body 5 at a predetermined location in the metal matrix (for example, Unexamined Japanese Patent Publication 1987-
No. 68576, JP-A-58-93837). However, in general, when molding the fibrous molded body 5 that becomes a preform by this type of manufacturing method, colloidal silica is often used as a binder for the fibrous molded body (for example, JP-A-58
-93837, JP-A-58-93847, JP-A-58-
93844, JP-A No. 58-104059, etc.), since the binding agent is fixed to the fibers in an agglomerated form, impregnation of the molten metal 6 into the fibrous molded body 5 tends to be incomplete, and Stress propagation between the metal base and the reinforcing fibers is also easily inhibited, resulting in a problem that the strength as a composite material is low. (Purpose of the Invention) This invention was made by focusing on the above-mentioned conventional problems, and is a method of filling a composite fiber molded article using reinforcing fibers into a predetermined location in a metal base by pressure casting. When producing a fiber-reinforced metal composite material, impregnation of the molten metal into the fiber molded body is extremely good and sufficient, the stress propagation between the metal base and the reinforcing fibers is also sufficiently good, and the strength is improved. Another object of the present invention is to provide a method for manufacturing a composite material that can manufacture a fiber-reinforced metal composite material with excellent mechanical properties such as toughness. (Structure of the Invention) This invention provides a fiber slurry in which at least reinforcing fibers and a metal powder as a binder are mixed in a solvent, and then the solvent in the fiber slurry is removed to use the metal powder as a binder. Fiber moldings and pears,
It is characterized by having a configuration in which molten metal is infiltrated and solidified between the fibers of the fiber molded body by a pressure casting method. Examples of reinforcing fibers applicable to this invention include oxide-based, carbide-based, alumina fibers, alumina-silica fibers, silicon carbide whiskers, potassium titanate whiskers, silicon nitride whiskers, etc.
There are various types, such as nitrogen-based ones, and they are not particularly limited, and can be appropriately selected depending on the required characteristics. Further, the binder applied to this invention may be any metal powder, but in order to ensure sufficient distribution uniformity of the binder in the fiber compact, the particle size must be
A material with a diameter of 20 μm or less, particularly preferably 10 μm or less is used. Further, it is more preferable to use a metal powder of the same type as the metal base to be filled and composited or a metal powder whose main component is the main component of the metal base as the binder. Furthermore, there are no particular limitations on the specific pressure casting method used to composite the fiber molded body into the metal base, and various methods may be used, such as those that utilize pressing force from a plunger or those that utilize centrifugal force. You can choose from among the methods. Example 1 100 g of alumina-silica fibers with a diameter of 3 μm as reinforcing fibers and water 5 as a solvent were stirred in a container for 5 minutes, and then an average particle size of 3 μm was used as a binder.
Add 20g of pure aluminum powder and add 2.5g of pure aluminum powder.
A fiber slurry was obtained by adding and stirring 50 c.c. of wt% starch solution. Next, as shown in FIG. 2, it has a filter 8 inside, and
Container 1 having a suction port 9 on the lower side than the filter 8
The fiber slurry 11 was poured into a vacuum chamber, and the slurry was dehydrated and filtered by vacuum suction through the suction port 9 to obtain a fiber molded body. Next, the obtained fibrous molded body was dried at 110°C for 8 hours, and then fired in a nitrogen atmosphere at 800°C for 30 minutes to obtain a fibrous molded body. The fiber volume fraction of the fibrous molded article thus obtained was 5%. Next, Iki-type 15 shown in Figure 3.
After placing the fibrous molded body 19 in a mold 18 which is a combination of a lower mold 16 and a plunger 17, a molten metal (temperature
750℃) 20, and the plunger 17 is lowered to bring the molten metal 20 under high hydrostatic pressure (1500 atm).
The molten metal 20 was infiltrated into the fibrous molded body 19 and solidified to obtain a fiber-reinforced metal composite material in which the fibrous molded body 19 was composited at a predetermined location in the metal matrix. Next, the tensile strength of the composite material was measured and found to be 22 Kgf/mm 2 . Comparative Example 1 A fiber-reinforced metal composite material was produced in the same manner as in Example 1 except that commercially available colloidal silica was used as a binder in place of the pure aluminum powder in Example 1. Next, the tensile strength of the obtained composite material was measured and found to be 15 Kgf/mm 2 . Example 2 The method is almost the same as in Example 1, but the particle size of the applied aluminum powder is (a) 1 μm or less (b) More than 1 μm and less than 3 μm (c) More than 3 μm and not more than 10 μm (d ) 10 μm to 20 μm or less, and (e) 20 μm to 40 μm for comparison, fibrous molded bodies were prepared in the same manner as in Example 1, and the bonding in the fibrous molded bodies was The uniformity of the agent distribution was investigated. The results are shown in Table 1.

【表】 表1において、◎は結合剤の分布が著しく均一
であつたことを示し、○は成形体の上下に結合剤
が若干集まり、結合剤の分布がさほど均一でなか
つたことを示し、×は結合剤の均一性が良くなか
つたことを示している。なお、分布の状態は肉眼
による判定とし、アルミニウム粉末の金属光沢が
均一のものは著しく均一に分布したとし、色に斑
がある場合には均一性が良くないと判断した。表
1に示すように粒径10μm超過のアルミニウム粉
末を用いた場合は、繊維スラリーを得る際の撹拌
時においても、アルミニウム粉末の容器内床部沈
澱が多く、第2図に示す容器10内で作製した繊
維成形体中のアルミニウム粉末の分布均一性があ
まり良くなかつた。そして、とくに粒径20μmを
超えるアルミニウム粉末を用いた場合には、作製
した繊維成形体を結合剤であるアルミニウムの溶
融点以上で焼成したときに、溶融したアルミニウ
ム繊維が凝集し、成形体中での繊維の分布の均一
性もかなり悪くなることが確認された。これに対
し、とくにアルミニウム粉末の粒径が10μm以下
である場合に、繊維成形体中でのアルミニウム粉
末の分布が著しく均一になることが確かめられ
た。そして、種々の実験結果から、場合によつて
は粒径が20μm以下のときでも良いことがわかつ
た。 実施例 3 結合剤として平均粒径1μm以下のアルミニウム
粉末を用い、実施例1と同様の手法で乾燥前にプ
レスすることにより、繊維体積率が10%および15
%である繊維成形体を作製した後、窒素雰囲気
中、800℃×30分間焼成して繊維質成形体を得た。
次いで、各繊維質成形体を第3図に示す金型18
内に装入したのち、実施例1と同様にしてアルミ
ニウム合金(JIS規格AC8A)よりなる金属溶湯
を充填複合して繊維強化金属複合材料を得た。次
いで、前記複合材料から引張試験片を作製し、
各々の引張強度を測定した。この結果を第4図の
線で示す。第4図に示すように、繊維体積率が
多くなるにつれて引張強度が高くなることが確か
められた。 比較例 2 実施例3と同種の繊維を用い、コロイダルシリ
カを結合剤として作製した繊維質成形体について
も実施例3と同様にアルミニウム合金(JIS規格
AC8A)よりなる金属溶湯で充填複合し、得られ
た繊維強化金属複合材料から引張試験片を作製し
て引張強度を測定した。この結果を第4図の線
で示す。第4図に示すように、繊維体積率が増加
するにつれて繊維質成形体中への金属溶湯の含浸
が不完全となり、複合材料の引張強度は低下する
ことが確かめられた。 (発明の効果) 以上説明してきたように、この発明によれば、
強化用繊維と結合剤として金属粉末を溶媒中に混
合した繊維スラリーを得たのち、前記繊維スラリ
ー中の溶媒を除去して前記金属粉末を結合剤とす
る繊維成形体となし、加圧鋳造法により前記繊維
成形体の繊維間〓に金属溶湯を浸透凝固させる構
成としたから、金属粉末を結合剤とする繊維成形
体を金属基地中の所定箇所に充填複合させて繊維
強化金属複合材料を製造する場合に、前記繊維成
形体中への金属溶湯の含浸が著しく良好にかつ十
分に行われ、金属基地−強化繊維間の応力伝播も
十分に良好であり、強度および靭性等の機械的特
性に優れた繊維強化金属複合材料を得ることがで
きるという非常に優れた効果を有している。
[Table] In Table 1, ◎ indicates that the distribution of the binder was extremely uniform, ○ indicates that the binder was slightly collected above and below the molded body, and the distribution of the binder was not very uniform. × indicates that the uniformity of the binder was not good. The state of distribution was determined visually. If the aluminum powder had a uniform metallic luster, it was considered to be extremely uniformly distributed, and if the color was uneven, it was determined that the uniformity was poor. As shown in Table 1, when aluminum powder with a particle size exceeding 10 μm is used, a large amount of aluminum powder settles on the floor of the container even during stirring to obtain fiber slurry, and the aluminum powder settles in the container 10 shown in FIG. 2. The distribution uniformity of the aluminum powder in the fabricated fiber compact was not very good. In particular, when aluminum powder with a particle size exceeding 20 μm is used, when the fabricated fiber molded body is fired at a temperature higher than the melting point of aluminum, which is a binder, the molten aluminum fibers aggregate and form inside the molded body. It was confirmed that the uniformity of fiber distribution also deteriorated considerably. On the other hand, it was confirmed that especially when the particle size of the aluminum powder was 10 μm or less, the distribution of the aluminum powder in the fiber molded body became extremely uniform. From various experimental results, it has been found that in some cases, the particle size may be 20 μm or less. Example 3 Using aluminum powder with an average particle size of 1 μm or less as a binder and pressing before drying in the same manner as in Example 1, fiber volume percentages of 10% and 15% were obtained.
After producing a fibrous molded body with a temperature of 10%, it was fired at 800°C for 30 minutes in a nitrogen atmosphere to obtain a fibrous molded body.
Next, each fibrous molded body is placed in a mold 18 shown in FIG.
Then, in the same manner as in Example 1, a molten metal made of aluminum alloy (JIS standard AC8A) was filled and composited to obtain a fiber-reinforced metal composite material. Next, a tensile test piece was prepared from the composite material,
The tensile strength of each was measured. This result is shown by the line in FIG. As shown in FIG. 4, it was confirmed that the tensile strength increased as the fiber volume fraction increased. Comparative Example 2 A fibrous molded body made using the same type of fiber as in Example 3 and using colloidal silica as a binder was also made of aluminum alloy (JIS standard) in the same manner as in Example 3.
AC8A) was filled and composited with a molten metal, and a tensile test piece was prepared from the obtained fiber-reinforced metal composite material and the tensile strength was measured. This result is shown by the line in FIG. As shown in FIG. 4, it was confirmed that as the fiber volume fraction increased, impregnation of the molten metal into the fibrous molded body became incomplete, and the tensile strength of the composite material decreased. (Effect of the invention) As explained above, according to this invention,
After obtaining a fiber slurry in which reinforcing fibers and metal powder as a binder are mixed in a solvent, the solvent in the fiber slurry is removed to form a fiber molded body using the metal powder as a binder, and a pressure casting method is performed. Since the structure is such that the molten metal is infiltrated and solidified between the fibers of the fiber molded body, the fiber molded body using metal powder as a binder is filled and composited at a predetermined location in the metal matrix to produce a fiber-reinforced metal composite material. In this case, the impregnation of the molten metal into the fiber molded body is extremely good and sufficient, the stress propagation between the metal base and the reinforcing fibers is also sufficiently good, and the mechanical properties such as strength and toughness are improved. It has a very excellent effect of being able to obtain an excellent fiber-reinforced metal composite material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の繊維質成形体に金属溶湯を含浸
させるのに用いる金型の縦断面説明図、第2図は
繊維スラリーから繊維成形体を得るのに用いる装
置の縦断面説明図、第3図はこの発明の実施例に
おいて繊維質成形体に金属溶湯を含浸させるのに
用いた金型の縦断面説明図、第4図は、従来のコ
ロイダルシリカを接合剤として用いた繊維質成形
体より作製した繊維強化金属と、この発明による
繊維質成形体より作製した繊維強化金属における
引張強度を比較した結果を示すグラフである。 11……繊維スラリー、19……繊維質成形体
(繊維成形体)、20……金属溶湯。
Fig. 1 is a longitudinal cross-sectional explanatory view of a mold used to impregnate a conventional fibrous molded body with molten metal, and Fig. 2 is a longitudinal cross-sectional explanatory view of a device used to obtain a fiber molded body from a fiber slurry. Figure 3 is an explanatory longitudinal cross-sectional view of a mold used to impregnate a fibrous molded body with molten metal in an example of the present invention, and Figure 4 is a fibrous molded body using conventional colloidal silica as a bonding agent. 1 is a graph showing the results of comparing the tensile strengths of a fiber-reinforced metal made from a fiber-reinforced metal made from a fiber-reinforced metal made from a fibrous molded article according to the present invention. 11... Fiber slurry, 19... Fibrous molded body (fiber molded body), 20... Molten metal.

Claims (1)

【特許請求の範囲】[Claims] 1 強化用繊維と結合剤として金属粉末を溶媒中
に混合した繊維スラリーを得たのち、前記繊維ス
ラリー中の溶媒を除去して前記金属粉末を結合剤
とする繊維成形体となし、加圧鋳造法により前記
繊維成形体の繊維間〓に金属溶湯を浸透凝固させ
ることを特徴とする複合材料の製造方法。
1 After obtaining a fiber slurry in which reinforcing fibers and metal powder as a binder are mixed in a solvent, the solvent in the fiber slurry is removed to form a fiber molded body with the metal powder as a binder, and pressure casting is performed. A method for producing a composite material, comprising penetrating and solidifying a molten metal between the fibers of the fiber molded body by a method.
JP24461983A 1983-12-27 1983-12-27 Fibrous molding for composite material Granted JPS60138031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24461983A JPS60138031A (en) 1983-12-27 1983-12-27 Fibrous molding for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24461983A JPS60138031A (en) 1983-12-27 1983-12-27 Fibrous molding for composite material

Publications (2)

Publication Number Publication Date
JPS60138031A JPS60138031A (en) 1985-07-22
JPH0435542B2 true JPH0435542B2 (en) 1992-06-11

Family

ID=17121432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24461983A Granted JPS60138031A (en) 1983-12-27 1983-12-27 Fibrous molding for composite material

Country Status (1)

Country Link
JP (1) JPS60138031A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297938A (en) * 1995-02-17 1996-08-21 Chang San Yu Manufacturing a semi-metal brake lining
JP4135191B2 (en) * 1995-02-22 2008-08-20 マツダ株式会社 Method for producing partially composite light metal parts and preform used therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021306A (en) * 1983-07-14 1985-02-02 Honda Motor Co Ltd Manufacture of composite reinforced member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021306A (en) * 1983-07-14 1985-02-02 Honda Motor Co Ltd Manufacture of composite reinforced member

Also Published As

Publication number Publication date
JPS60138031A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
DE68920267T2 (en) Process for the production of a composite material reinforced by ceramic.
EP0223478A2 (en) Fibre-reinforced metal matrix composites
US4994418A (en) Ceramic compact and a process for the production of the same
Yang et al. Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure
JP3376292B2 (en) Partially composite light metal parts and preforms used for their production
KR100686581B1 (en) Process for fabricating a low volume fraction preform for the fabrication of a metal matrix composite
JP3314141B2 (en) Preformed body for compounding, composite aluminum-based metal part obtained by compounding the preformed body, and method for producing the same
US6107225A (en) High-temperature ceramics-based composite material and its manufacturing process
EP0370546A1 (en) Process for producing composite materials with a metal matrix, with a controlled content of reinforcer agent
JPH0435542B2 (en)
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
EP0754659A1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH02194132A (en) Manufacture of metal matrix composite
US5262366A (en) Formation of a ceramic composite by centrifugal casting
WO2023136101A1 (en) Method for manufacturing metal matrix composite material
JP3171287B2 (en) Fiber molding for reinforced metal and method for producing the same
JP2000046078A (en) Backing plate for brake pad and manufacture of backing plate
JPH0564692B2 (en)
JPH04350136A (en) Fibrous molding for fiber reinforced metal
Muthukumarasamy et al. The performance of zinc alloy based metal matrix composites produced through squeeze casting
JPH0264068A (en) Production of fiber reinforced silicon carbide ceramics
JPH1129831A (en) Preform for metal matrix composite, and its production
JP3828622B2 (en) Method for producing metal-ceramic composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPH0364578B2 (en)