WO2016017568A1 - 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置 - Google Patents

硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置 Download PDF

Info

Publication number
WO2016017568A1
WO2016017568A1 PCT/JP2015/071207 JP2015071207W WO2016017568A1 WO 2016017568 A1 WO2016017568 A1 WO 2016017568A1 JP 2015071207 W JP2015071207 W JP 2015071207W WO 2016017568 A1 WO2016017568 A1 WO 2016017568A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligomer
curable
mass
resin composition
fraction
Prior art date
Application number
PCT/JP2015/071207
Other languages
English (en)
French (fr)
Inventor
牧人 中村
薫 小黒
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020177001714A priority Critical patent/KR20170039136A/ko
Priority to CN201580039097.XA priority patent/CN106536584B/zh
Priority to JP2016538331A priority patent/JP6610547B2/ja
Publication of WO2016017568A1 publication Critical patent/WO2016017568A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a curable resin composition, a method for producing a curable resin composition, a method for producing a laminate using the curable resin composition, and a display device produced using the curable resin composition. .
  • the stress generated by the shrinkage of the bonding resin layer when the bonding resin layer is cured may affect the display device.
  • the display forming material in the display device is affected by the stress, and the display uniformity may be impaired.
  • the alignment of the liquid crystal sealed in the display device may be disturbed by external stress and visually recognized as display unevenness such as color unevenness.
  • the criteria for judgment may be stricter depending on the type of liquid crystal panel.
  • Patent Document 1 forms an uncured seal portion on the peripheral edge of the surface of the first face material, An uncured curable resin composition is supplied to a region surrounded by the uncured seal portion, and a second face material is stacked on the curable resin composition in a reduced pressure atmosphere of 100 Pa or less. After that, a method for curing an uncured seal portion and a curable resin composition in a pressure atmosphere of 50 kPa or more is described.
  • Patent Document 2 describes a compound obtained by a reaction between a polyether monool and a (meth) acrylate having an isocyanate group, and is excellent in impact resistance of a cured product of a curable resin composition using the compound, It is described in the Examples that there is no image unevenness.
  • the bonding resin layer between the display device and the protective plate is required to have low elasticity, good flexibility, and low curing shrinkage in order to prevent the above display unevenness.
  • a method for improving the flexibility of the resin layer a method of adding a non-reactive component that does not contribute to the curing reaction such as a plasticizer to the curable resin composition forming the resin layer is used.
  • the non-reactive component (plasticizer) in the resin layer is not sufficiently stable, the reliability may be inferior, for example, a bleed out may occur over time and the bonding resin layer may be peeled off.
  • the flexibility of the resin layer can be improved by adding a chain transfer agent to adjust the molecular weight, but the elastic modulus is decreased. It is difficult to achieve a reduction in curing shrinkage at the same time.
  • Patent Document 2 the method described in Patent Document 2 is characterized in that a compound obtained by reacting (meth) acrylate having an isocyanate group with polyether monool instead of polyether diol is used.
  • polyether monool contains polyether diol which is a by-product in the production process.
  • the component derived from such polyether diol can affect the effect of preventing the display unevenness even if it is a by-product.
  • Patent Document 2 there is no mention of the presence of such a polyether diol, and no consideration is given thereto.
  • the present invention relates to a curable resin composition capable of forming a bonding resin layer having a low elastic modulus after curing, a low curing shrinkage rate, and hardly peeling off, and a method for producing a curable resin composition having such characteristics
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for producing a laminate using the curable resin composition, and a display device produced using the curable resin composition.
  • the present invention includes the following [1] to [10].
  • the curable oligomer (I) is a curable resin composition comprising 1 to 50% by mass of the following oligomer (IA) and 30 to 95% by mass of the following oligomer (IB) in 100% by mass of the curable oligomer (I). .
  • the oligomer (IB) includes an oligomer obtained by urethanation reaction of a polyoxyalkylene monool represented by the following formula (1a) and a monomer represented by the following formula (1b): [1] The curable resin composition described in 1.
  • R 12 is an alkylene group having 2 to 4 carbon atoms
  • R 13 is an alkyl group having 1 to 20 carbon atoms, or a carboxylic acid residue having 1 to 20 carbon atoms
  • b is 20 to 600 carbon atoms. It is an integer.
  • R 11 is a hydrogen atom or a methyl group
  • a is an integer of 1 to 4.
  • Oligomer (IA) contains a curable functional group having one or both of acryloyloxy group and methacryloyloxy group and a curable component having a urethane bond, the number of average curable functional groups is 2 or more, and the number average molecular weight is Oligomers that are 15,000 to 100,000.
  • the curable resin composition is a curable fraction of the curable oligomer (I) obtained by fractionating the curable resin composition by gel permeation chromatography (GPC)
  • GPC gel permeation chromatography
  • a fraction having a molecular weight of 23,000 or more is fraction (i)
  • When a fraction having a molecular weight of 500 or more and less than 7,500 is defined as a fraction (iii),
  • the average number of the curable functional groups in the fraction (i) is 1.5 or more and 2.5 or less,
  • the average number of the curable functional groups in the fraction (ii) is 1.0 or more and less than 1.5;
  • the ratio of fraction (i) to fraction (I) is more than 0% by mass and not more than 50% by mass,
  • the ratio of fraction (ii) to fraction (I) is 35 to 80% by weight,
  • An uncured layer comprising the curable resin composition according to any one of [1] to [4] is sandwiched between a pair of face materials in a first reduced-pressure atmosphere, and the uncured layer A first step of forming a laminated precursor in which the uncured layer is sealed with a seal portion provided around;
  • the manufacturing method of a laminated body which has a 2nd process of hardening the said non-hardened layer in 2nd atmosphere whose pressure is higher than said 1st pressure-reduced atmosphere.
  • the curable resin composition of the present invention can form a bonded resin layer that has a low elastic modulus of the cured resin layer, a low cure shrinkage rate, and is difficult to peel off.
  • the method for producing a curable resin composition of the present invention it is possible to obtain a curable resin composition capable of forming a bonding resin layer that has a low elastic modulus after curing, a low cure shrinkage rate, and is difficult to peel off.
  • the method for manufacturing a laminate of the present invention it is possible to obtain a laminate that has a low elastic modulus of a resin layer that joins a pair of face materials, a low cure shrinkage rate, and is difficult to peel off.
  • the elastic modulus of the resin layer that joins the display device and the transparent surface material is low, the curing shrinkage rate is low, and it is difficult to peel off. Accordingly, the occurrence of display unevenness such as color unevenness can be suppressed, and deterioration with time hardly occurs and the reliability is excellent.
  • 14 is a graph showing a method of fractionating the GPC measurement result of the oligomer (IB-1-1) obtained in Production Example 14 into a monofunctional component and a bifunctional component.
  • 6 is a graph showing a method for analyzing a GPC measurement result of an oligomer (IA-1-1) obtained in Production Example 11.
  • 16 is a graph showing a method for analyzing a GPC measurement result of the oligomer (IB-1-1) obtained in Production Example 14. It is a graph which shows the measurement result of GPC about the curable resin composition obtained in Example 1, 2 and Comparative Example 9.
  • a “curable functional group” is one or both of an acryloyloxy group and a methacryloyloxy group.
  • “Curable component” means a compound having a curable functional group.
  • “Monomer” refers to a monomer having a curable functional group.
  • the “curable oligomer” or “oligomer” refers to a mixture of compounds having a molecular weight of 500 or more and having different molecular weights mainly composed of a curable component.
  • the “average functional group number” means the average number of curable functional groups per molecule, where the number average molecular weight is one unit, unless otherwise specified.
  • (Meth) acrylate means acrylate or methacrylate. Unless otherwise specified, the prepolymer means a urethane prepolymer having an isocyanate group at the terminal.
  • the oligomer represented by the formula (1) may be referred to as “oligomer (1)”. The same applies to compounds represented by other formulas.
  • the hydroxyl value of the polyol is obtained by measurement according to JIS K1557 (2007 edition).
  • the number average molecular weight is a molecular weight in terms of polystyrene obtained by measuring by gel permeation chromatography (GPC) using a calibration curve prepared using a standard polystyrene sample having a known molecular weight.
  • the molecular weight distribution refers to a value obtained by dividing the mass average molecular weight (polystyrene equivalent molecular weight obtained by GPC as with the number average molecular weight) by the number average molecular weight.
  • the molecular weight represented by the formula weight obtained based on the chemical formula shall be substituted.
  • the molecular weight indicating the range of fractions by GPC means a molecular weight that correlates with the elution time (retention time) in GPC measurement.
  • the curable resin composition of the present invention (hereinafter sometimes referred to as curable resin composition (X)) has a curable functional group and a urethane bond composed of one or both of an acryloyloxy group and a methacryloyloxy group. And a curable oligomer (I) having a molecular weight of 500 or more and having the following composition characteristics.
  • Content of curable oligomer (I) in curable resin composition (X) is 50 mass% or more with respect to 100 mass% of curable resin composition (X).
  • the content is preferably 70% by mass or more, and more preferably 75% by mass or more. It may be 100% by mass.
  • the upper limit of the content of the curable oligomer (I) is not particularly limited, but the content is preferably 90% by mass or less from the viewpoint of low viscosity and ease of handling.
  • the curable oligomer (I) comprises the following oligomer (IA) and oligomer (IB) at a ratio of 1 to 50% by mass and 30 to 95% by mass with respect to 100% by mass of the curable oligomer (I), respectively. contains.
  • Oligomer (IB) A curable functional group comprising one or both of acryloyloxy group and methacryloyloxy group and a curable component having a urethane bond, and having an average number of curable functional groups of 0.5 to 1.5
  • the curable oligomer (I) may contain a curable oligomer (IC) having a molecular weight of 500 or more other than the oligomer (IA) and the oligomer (IB).
  • the content of the curable oligomer (IC) in the curable oligomer (I) is preferably about 0 to 50% by mass, for example.
  • the curable oligomer (IC) include an oligomer having a curable component having a urethane bond and having a composition other than the oligomer (IA) and the oligomer (IB), an oligomer having a curable component having no urethane bond, and the like. It is done.
  • the curable oligomer (I) contained in the curable resin composition (X) is divided into, for example, a fraction having a molecular weight of less than 500 and a fraction having a molecular weight of 500 or more by GPC. In this case, it is a component contained in a fraction having a molecular weight of 500 or more. Curing the fraction confirmed by NMR analysis that it has acryloyloxy group or methacryloyloxy group as a component of each fraction obtained from the fraction of molecular weight of 500 or more of curable resin composition (X)
  • the curable fraction (I) of the functional oligomer (I) refers to a fraction containing a curable component. Further, the curable fraction (I) of the curable oligomer (I) is simply referred to as the fraction (I).
  • the fraction (I) is further divided into a fraction (i) having a molecular weight of 23,000 or more, a fraction (ii) having a molecular weight of 7,500 or more, a molecular weight of less than 23,000, and a molecular weight of 500 or more.
  • the fraction (iii) has an average functional group number of 1.5 or more and 2.5 or less, and the fraction (ii) has an average functional group number of 1.
  • Fraction (i) has a molecular weight as high as 23,000 or more and contains an oligomer having 2 or 3 curable functional groups. Such an oligomer contributes to the curability of the curable resin composition (X).
  • the average number of functional groups in the fraction (i) is preferably 1.6 or more and 2.3 or less, and more preferably 1.7 or more and 2.0 or less.
  • the ratio of fraction (i) to fraction (I) is more than 0% by mass, preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the ratio of fraction (i) to fraction (I) is preferably 40% by mass or less.
  • Fraction (ii) has one curable functional group and contains an oligomer having a lower molecular weight than that of fraction (i).
  • Such low molecular weight oligomers have low viscosity, and those having one curable functional group do not form a crosslinked structure. Therefore, a low molecular weight oligomer having one curable functional group contributes to shrinkage reduction at the time of curing and to a reduction in elastic modulus of a resin after curing (hereinafter referred to as a cured product). As a result, it was used for a display device. Occasionally, the cured product is difficult to peel off, and the occurrence of display unevenness can be suppressed. Moreover, since it has a curable functional group, it is excellent in stability in a cured product and hardly causes bleeding out.
  • the average number of functional groups in fraction (ii) is preferably 1.0 or more and 1.3 or less, and more preferably 1.0 or more and 1.2 or less.
  • the ratio of the fraction (ii) to the fraction (I) is more preferably 50 to 80% by mass.
  • the low molecular weight bifunctional oligomer contained in the fraction (iii) increases the shrinkage during curing and increases the elastic modulus of the cured product.
  • the average number of functional groups in the fraction (iii) is preferably 1.0 or more and less than 1.5, more preferably 1.0 or more and 1.3 or less, and further preferably 1.0 or more and 1.2 or less.
  • the fraction (iii) is 40% by mass or less, preferably 35% by mass or less, more preferably 25% by mass or less, and more preferably 20% by mass. % Or less is more preferable. Fraction (iii) may not be included.
  • the ratio of fractions (i) to (iii) to fraction (I) is preferably 10 to 40% by mass of fraction (i) and 35 to 80% by mass of fraction (ii). %, And the fraction (iii) is 35% by mass or less. More preferably, the fraction (i) is 10 to 30% by mass, the fraction (ii) is 50 to 80% by mass, and the fraction (iii) is 25% by mass or less. .
  • the curable resin composition (X) may contain other curable components other than the curable oligomer (I), and may contain other components such as additives in addition to the curable component.
  • the content of the curable component in the curable resin composition (X) is 50 to 100% by mass. 50 mass% or more is preferable with respect to the curable component in curable resin composition (X), and 70 mass% or more is more preferable. It may be 100% by mass.
  • curable components include monomers having a molecular weight of 500 or more that are not derived from oligomers (IA) and oligomers (IB) contained in the curable oligomer (I), in addition to monomers having a molecular weight of less than 500.
  • a monomer (II) containing a curable functional group and a hydroxyl group described below hereinafter also referred to as “monomer (II)”
  • monomer (III) (hereinafter also referred to as “monomer (III)”) is preferable.
  • the total content of the monomer (II) and the monomer (III) is 8% by mass or more with respect to 100% by mass of the total of the curable components. It is preferably less than 50% by mass.
  • the curable oligomer (I) includes, for example, one or more of the above oligomers (IA) and one or more of the above oligomers (IB), and 1 to 100% by mass of the oligomer (IA) in 100% by mass of the curable oligomer (I). It is obtained by mixing so as to contain 50% by mass and 30 to 95% by mass of oligomer (IB).
  • Curable resin composition (X) adjusts content of this curable oligomer (I) so that 50 mass% or more of curable oligomer (I) may be contained in 100 mass% of curable resin composition (X). Is obtained.
  • the content of the oligomer (IA) and the oligomer (IB) in the curable oligomer (I) may be 1 to 50% by mass of the oligomer (IA) and 30 to 90% by mass of the oligomer (IB).
  • IA) is preferably 1 to 40% by mass, and oligomer (IB) is preferably 40 to 95% by mass. More preferably, the oligomer (IA) is 5 to 40% by mass and the oligomer (IB) is 50 to 95% by mass.
  • the total amount of the oligomer (IA) and the oligomer (IB) is preferably 50% by mass or more in 100% by mass of the curable oligomer (I).
  • the total amount of the oligomer (IA) and the oligomer (IB) is more preferably 80% by mass or more, more preferably 90% by mass or more in 100% by mass of the curable oligomer (I).
  • the oligomer (IA) is mainly an oligomer contained in the fraction (i) and the oligomer (IB) is mainly contained in the fraction (i) and the fraction (ii). Since oligomer (IA) and oligomer (IB) have molecular weight distribution, a part is contained in fraction (iii).
  • the ratio of fraction (iii) to fraction (I) tends to be 40% by mass or less.
  • the ratio can be calculated by, for example, the following method from the GPC measurement results of oligomer (IA) and oligomer (IB).
  • the mass parts of the bifunctional component of the calculated fraction (ii) are summed up, and the mass part of each functional group component of each fraction contained in the fraction (I) is obtained.
  • the ratio [mass%] of each functional group component of each fraction is determined with the total of the mass parts as 100.
  • FIG. 3 shows a chart of measurement results by GPC of the oligomer (IB-1-1) obtained in Production Example 14 described later, which is an oligomer (IB).
  • FIG. 2 shows a chart of measurement results by GPC of the oligomer (IA-1-1) obtained in Production Example 11 which is an oligomer (IA).
  • the peaks are fractionated as shown by the dotted line a in FIG. Ask.
  • the peak top exists in the region of the fraction (i) having a molecular weight of 23,000 or more, and the peak having a molecular weight distribution of 1.3 or more is 2 Considered to be derived from a sensory component.
  • the curable oligomer (I) is a polyisoprene (meth) acrylate oligomer (manufactured by Kuraray Co., Ltd., trademarks: Claprene UC-203, Claprene UC-102) as a curable oligomer (IC) other than oligomer (IA) and oligomer (IB). ), Polybutadiene (meth) acrylate oligomers, and the like.
  • the fraction is determined from the GPC measurement results of the oligomer (IA), oligomer (IB), and curable oligomer (IC). The ratio of the fractions (i) to (iii) in (I) is calculated.
  • the oligomer (IA) has a curable functional group consisting of one or both of an acryloyloxy group and a methacryloyloxy group and a urethane bond, has an average number of functional groups of 2 or more, and a number average molecular weight of 15,000 to 100,000. It is an oligomer. From the viewpoint of curing speed, the curable functional group in the oligomer (IA) is preferably an acryloyloxy group.
  • the average number of curable functional groups in one molecule of the oligomer (IA) is 2 or more, preferably 2 or more and 4 or less, and more preferably 2 or 3.
  • the number average molecular weight of the oligomer (IA) is preferably 23,000 to 100,000. When the number average molecular weight of the oligomer (IA) is within this range, the curable oligomer (I) comprising the fractions (i) to (iii) can be easily obtained.
  • 2 or more types of oligomers (IA) are contained in curable oligomer (I), it is preferable that the number average molecular weight of each oligomer (IA) is in said range.
  • the oligomer (IA) is obtained by reacting a polyol and a polyisocyanate compound in the range of an index of 105 to 150 to obtain a prepolymer having an isocyanate group at the terminal, and then adding the following monomer (m) to the isocyanate group of the prepolymer. What is obtained by reacting is preferable.
  • the index is a value obtained by dividing the number of moles of isocyanate groups of the polyisocyanate compound used in the reaction by the number of moles of hydroxyl groups of polyol or monool and multiplying by 100.
  • Monomer (m) a monomer having a molecular weight of 125 to 600, having one or more acryloyloxy groups and one group that reacts with an isocyanate group.
  • oligomer (IA) a compound obtained by urethanating a compound having one or more acryloyloxy groups and isocyanate groups in one molecule and a polyol with an index of 95 to 100 is also preferable.
  • Examples of the monomer (m) include monomers having an active hydrogen group (hydroxyl group, amino group, etc.) and an acryloyloxy group.
  • Specific examples of the monomer (m) include a hydroxyalkyl acrylate having a hydroxyalkyl group having 2 to 6 carbon atoms (2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, etc.).
  • the monomer (m) to be reacted with the prepolymer is preferably a hydroxyalkyl acrylate having a hydroxyalkyl group having 2 to 4 carbon atoms.
  • polystyrene-based oligomer (a) described in paragraphs [0016] to [0019] of WO2009 / 016943 Polyol (i), diisocyanate (ii), etc. described as a raw material of these.
  • polydiene-based polyols having repeating chains represented by the following formulas (I-1) to (I-4) can also be used.
  • the solid and dotted double lines represent single bonds or double bonds. In the case of a single bond, the single bond is a hydrogenated double bond.
  • the molecular weight of the polyol used for the production of the oligomer (IA) is preferably 1,500 to 19,000, more preferably 4,000 to 10,000, and more preferably 6,500 to 10 in number average molecular weight per hydroxyl group. Is more preferred. If it is within this range, the oligomer (IA) can be easily set in a desired molecular weight range, and the viscosity can be easily adjusted.
  • a preferred method for producing an oligomer (IA) by reacting a polyol and a diisocyanate with a monomer (m) is (a) reacting a polyol having an average hydroxyl number of 2 to 3 with a diisocyanate at an index of 105 to 150. After obtaining the isocyanate group-terminated prepolymer, a method in which the ratio of the number of moles of isocyanate groups in the prepolymer to the number of moles of hydroxyl groups in the monomer (m) is 1: 0.98 to 1: 1.05, etc. Can be mentioned.
  • the oligomer (IA) has an oxyalkylene chain, has an oxypropylene group content of 50 to 100% by mass, and an oxyethylene group content of 0 to 0% with respect to all oxyalkylene groups.
  • the oligomer (IA-PO) that is 50% by mass is preferably contained in the oligomer (IA).
  • the oligomer (IA-PO) has an oxyalkylene chain as a polyol to be reacted with a polyisocyanate compound, has an oxypropylene group content of 50 to 100% by mass with respect to all oxyalkylene groups, and has an oxyalkylene chain. It can be obtained by using a polyoxyalkylene polyol having an ethylene group content of 0 to 50% by mass.
  • the content of the oxypropylene group is 80 to 100% by mass and the content of the oxyethylene group is 0 to 20% by mass.
  • the content of the oligomer (IA-PO) with respect to the oligomer (IA) is preferably 50 to 100% by mass, and more preferably 80 to 100% by mass.
  • the content of the oligomer (IA-PO) is not less than the lower limit of the above range, flexibility is easily obtained in the cured product obtained from the curable resin composition (X).
  • the oligomer (IA-PO) has an oxypropylene group content of 80 to 100% by mass, an oxyethylene group content of 0 to 20% by mass, and an average number of hydroxyl groups of 2 to 3 with respect to all oxyalkylene groups.
  • a reaction product of a polyoxyalkylene polyol having a number average molecular weight of 1,500 to 19,000 per hydroxyl group, a non-yellowing diisocyanate, and a hydroxyalkyl acrylate is preferable.
  • the non-yellowing diisocyanate is a diisocyanate selected from the group consisting of aliphatic diisocyanates, alicyclic isocyanates, and non-yellowing aromatic diisocyanates. Specific examples include hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and xylylene diisocyanate.
  • the oligomer (IB) has a curable functional group consisting of one or both of an acryloyloxy group and a methacryloyloxy group and a urethane bond, the average number of functional groups is 0.5 to 1.5, and the number average molecular weight is 1,300 to It is an oligomer having a content of a component of 36,000 and having 2 curable functional groups and not more than 30% by mass.
  • the oligomer (IB) contributes to shrinkage reduction at the time of curing and the elastic modulus of the cured product, and as a result, the cured product is difficult to peel off when used in a display device, and display unevenness can be suppressed. Moreover, since it has a curable functional group, it is excellent in stability in a cured product and hardly causes bleeding out.
  • the average number of curable functional groups of the oligomer (IB) is preferably 0.8 to 1.2, and more preferably 1.
  • the oligomer (IB) In the production process of the oligomer (IB), when a by-product other than the oligomer having one curable functional group is generated, the oligomer (IB) contains the by-product, and the average number of functional groups is the number of the by-products. It is an included value.
  • the oligomer (IB) includes a by-product (bifunctional oligomer) having 2 curable functional groups.
  • the content of the component having 2 curable functional groups (bifunctional component) is 30% by mass or less.
  • the content of the component having 2 curable functional entries is preferably 25% by mass or less, and more preferably 18% by mass or less.
  • the number average molecular weight of the oligomer (IB) is preferably 5,300 to 25,000, more preferably 7,300 to 20,000. If the number average molecular weight of the oligomer (IB) is within this range, the number average molecular weight of the curable oligomer (IB) in which the fractions (i) to (iii) satisfy the above composition characteristics in the fraction (I) is If it is within the range, the content of the low-molecular-weight bifunctional oligomer contained in the fraction (iii) can be reduced, so that the occurrence of display unevenness in the display device can be suppressed.
  • the proportion of the oligomer is preferably 25% by mass or less.
  • the number average molecular weight of each oligomer (IB) is in said range.
  • the curable functional group of the oligomer (IB) is preferably an acryloyloxy group.
  • oligomer (IB) examples include the following oligomer (IB-1), the following oligomer (IB-2), and the following oligomer (IB-3). These may be used alone or in combination of two or more.
  • Oligomers (IB-2) and (IB-3) can contain a large amount of bifunctional oligomers as by-products.
  • oligomer (IB-1) tends to suppress the content of the bifunctional oligomer in production.
  • the oligomer (IB-1) As the oligomer (IB), it is easy to obtain the curable oligomer (I) in which the fractions (i) to (iii) satisfy the composition characteristics in the fraction (I). Therefore, it is preferable to use only the oligomer (IB-1) as the oligomer (IB).
  • the oligomer (IB-1) includes an oligomer (1) represented by the following formula (1) having one curable functional group.
  • the oligomer (1) is obtained by urethanizing a monool (1a) represented by the following formula (1a) and a monomer (1b) represented by the following formula (1b).
  • R 11 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 12 is an alkylene group having 2 to 4 carbon atoms, and a plurality of R 12 present in one molecule may be the same as or different from each other. When two or more types of R 12 are present in one molecule, the —OR 12 — linkage may be either a block or random.
  • R 12 is preferably an ethylene group or a propylene group.
  • R 13 is an alkyl group having 1 to 20 carbon atoms or a carboxylic acid residue having 1 to 20 carbon atoms.
  • the carboxylic acid residue is a monovalent group obtained by removing one hydrogen atom from a monocarboxylic acid having 1 to 20 carbon atoms including a carbon atom in a carboxyl group (—COOH).
  • R 13 is preferably an alkyl group in terms of easy reaction, and is preferably an alkyl group having 2 to 8 carbon atoms.
  • a is an integer of 1 to 4, and an integer of 1 to 2 is preferable.
  • b is an integer of 20 to 600, preferably an integer of 35 to 500, and more preferably an integer of 65 to 250.
  • the monool (1a) is usually produced as follows: a composition containing a diol as a by-product in addition to the monool (1a) (hereinafter referred to as “monool (1a)”. ) "Ingredients”)). Therefore, in the obtained oligomer component, in addition to the monofunctional oligomer (1), a bifunctional oligomer having two curable functional groups generated from a diol is included. The oligomer component obtained is used as oligomer (IB-1).
  • the monool (1a) which is the main component of the monool (1a) component, and the monomer (1b) each have one urethanizable group present in one molecule, as described above.
  • the urethane bonds in one molecule of the resulting oligomer (IB-1) are easily controlled to one on average. If the number of urethane bonds in one molecule of the oligomer (IB-1) is small, the viscosity tends to be low. Therefore, by containing the oligomer (IB-1), the curable resin composition (X) has a low viscosity, and a cured product having excellent flexibility is easily obtained.
  • Monool (1a) is a polyoxyalkylene monool.
  • the hydroxyl value of the monool (1a) component is preferably 1.6 to 56.1 mgKOH / g, more preferably 2.8 to 14.0 mgKOH / g, and further preferably 3.5 to 12.5.
  • the molecular weight converted from the hydroxyl value is preferably 1,000 to 35,000, more preferably 4,000 to 20,000, and still more preferably 4,500 to 16,000.
  • Monool (1a) component including monool (1a) can be obtained, for example, by ring-opening addition polymerization of alkylene oxide to an initiator such as monohydric alcohol or carboxylic acid.
  • the catalyst used for the ring-opening addition polymerization include an alkali metal compound catalyst, a double metal cyanide complex catalyst (hereinafter also referred to as DMC catalyst), a phosphazene compound catalyst, and a boron-based cation catalyst that is a Lewis acid.
  • a DMC catalyst is preferable in that it can reduce the mixing of a low molecular weight bifunctional polyol by-produced with water as an initiator, that is, a diol, and can easily produce a high molecular weight monool.
  • the molecular weight converted from the hydroxyl value of the monool produced using the DMC catalyst is preferably 1,000 to 35,000.
  • the molecular weight of the low molecular weight diol produced as a by-product is twice that of the monool. It is preferable to produce the monool (1a) component containing the monool (1a) so that the amount of the low molecular weight diol is reduced.
  • Zn and Co are present in the curable resin composition (X) as a residue in a total of 0.01 to 100 ppm.
  • the monool (1a) component thus obtained may contain, in addition to the monool (1a), a diol produced as a by-product during production.
  • the amount of the diol depends on the amount of the produced monool (1a) component. 30 mass% or less is preferable with respect to the whole quantity, 25 mass% or less is more preferable, and 18 mass% or less is further more preferable.
  • the amount of by-produced diol can be controlled within the above range by reducing the amount of water in the reaction system.
  • the total amount of water in the reaction system is preferably 250 ppm or less, and more preferably 200 ppm or less.
  • the amount of water in the reaction system is within this range, the production of diol using water as a by-product of monool (1a) as an initiator is suppressed.
  • the oligomer (IB-1) when the monool (1a) component in which the content of the diol is thus suppressed is used, the amount of the bifunctional oligomer derived from the diol can be easily suppressed, The oligomer (IB-1) containing the oligomer (1) in a content is easily obtained.
  • the water may be removed under reduced pressure after the initiator is supplied to the reaction vessel.
  • the water content in the reaction system can also be adjusted by setting the water content of the alkylene oxide to be added to 200 ppm or less.
  • the ring-opening addition polymerization catalyst is an alkali metal compound catalyst
  • the water content in the reaction system tends to be high because it is usually used as a 95% or 85% aqueous solution containing the catalyst.
  • the DMC catalyst is preferable because the amount of water in the catalyst is small. Further, when a DMC catalyst is used, a monol having a small molecular weight distribution can be obtained.
  • the content ratio of the monool (1a) and the diol in the monool (1a) component can be determined by GPC measurement of the produced monool (1a) component.
  • the average number of hydroxyl groups of the monool (1a) component can be determined by GPC measurement of the produced monool (1a) component in the same manner as the method for calculating the average number of hydroxyl groups of the monool component in Examples described later.
  • the compounding ratio of the monomer (1b) to the monool (1a) component is an index (NCO / OH ratio).
  • the ratio of propylene groups to the total amount of R 12 is more preferably 80 to 100% by mass, and particularly preferably 100% by mass.
  • the alkylene group other than the propylene group is preferably an ethylene group.
  • the content of the oligomer (IB-1-PO) with respect to the oligomer (IB) is preferably 50 to 100% by mass, and more preferably 80 to 100% by mass.
  • the content of the oligomer (IB-1-PO) is not less than the lower limit of the above range, the viscosity is low and the flexibility is excellent.
  • the oligomer (IB-2) includes an oligomer (2) having one curable functional group represented by the following formula (2).
  • the oligomer (2) was obtained by reacting the monool (2a) represented by the following formula (2a) with the diisocyanate compound (2b) represented by the following formula (2b) to obtain a prepolymer having an isocyanate group at the terminal. Thereafter, it is obtained by subjecting the isocyanate group of the prepolymer to a urethanization reaction with a monomer (2c) represented by the following formula (2c).
  • Monool (2a) is the same as monool (1a), including preferred embodiments.
  • d is an integer of 20 to 600, preferably an integer of 35 to 500, more preferably an integer of 65 to 250.
  • R 24 is a saturated hydrocarbon group having 6 to 14 carbon atoms. Examples of the diisocyanate compound (2b) include isophorone diisocyanate and hexamethylene diisocyanate.
  • R 21 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • c is an integer of 1 to 4, and an integer of 1 to 2 is preferable.
  • the monool (2a) is a composition comprising the monool (2a) as a main component and a diol as a by-product in the same manner as the monool (1a) (hereinafter referred to as “monool (2a) component”).
  • monool (2a) component a prepolymer having two isocyanate groups (bifunctional prepolymer) is by-produced in the production of the prepolymer.
  • the final oligomer component contains a bifunctional oligomer having two curable functional groups generated from a bifunctional prepolymer, in addition to the monofunctional oligomer (2). .
  • the obtained oligomer component is used as oligomer (IB-2).
  • the hydroxyl value of the monool (2a) component is preferably 1.6 to 56.1 mgKOH / g, and the molecular weight calculated from the hydroxyl value is preferably 1,000 to 35,000, more preferably 4,000 to 20,000.
  • the water content and molecular weight when producing the monool (2a) component including the monool (2a) are the same as in the case of the monool (1a) component.
  • the number average molecular weight of the oligomer (IB-2) can be adjusted to a range of 1,300 to 36,000.
  • the monool (2a) component is used to react the monool (2a) with the diisocyanate compound (2b) to obtain a prepolymer having an isocyanate group at the terminal, which is a urethanization reaction. Can be done.
  • the compounding ratio of the diisocyanate compound (2b) to the monool (2a) component is preferably 100 to 200, more preferably 180 to 200, and most preferably 200 in terms of an index (NCO / OH ratio). .
  • the average number of functional groups in the finally obtained oligomer (IB-2) can be adjusted to a range of 0.5 to 1.5.
  • the oligomer (IB-2) has a bifunctional oligomer formed from a bifunctional prepolymer as a by-product and a curable functional group. 0-functional urethane oligomers in which both ends of the diisocyanate are reacted with monools are included.
  • the reaction between the isocyanate group-terminated urethane prepolymer obtained above and the monomer (2c), which is performed to obtain the oligomer (IB-2), is a urethanization reaction and can be performed using a known method. .
  • the mixing ratio of the prepolymer and the monomer (2c) is such that the molar ratio of isocyanate group in the prepolymer: hydroxyl group in the monomer (2c) is 1: 1.0 to 1.1. It is preferable that the ratio is 1: 1.0 to 1.05.
  • the average number of functional groups in the resulting oligomer (IB-2) is 0.5 to It can be adjusted to a range of 1.5.
  • the oligomer (IB-3) is an oligomer obtained by reacting the diol (3a) represented by the following formula (3a) with the monomer (1b).
  • —OR 32 — is the same as —OR 12 — in formula (1a), including preferred embodiments.
  • R 32 is the same as R 12 in formula (1a), and e is the same as b in formula (1a), including preferred embodiments.
  • e is in the above range, the number average molecular weight of the oligomer (IB-3) can be adjusted to a range of 1,300 to 36,000.
  • the compounding ratio of the monomer (1b) to the diol (3a) is preferably 30 to 50 in terms of index (NCO / OH ratio), and 40 to 50 is More preferred is 50 and most preferred.
  • the reaction system contains a high molecular weight diol having a hydroxyl group at both ends and having no curable functional group as a by-product.
  • the average number of functional groups of the oligomer (IB-3) including such by-products is preferably 0.5 to 1.5, more preferably 0.6 to 1.2, and still more preferably 0.8 to 1.15.
  • the hydroxyl group-containing monomer (II) is preferably a compound represented by the following formula (II-1) to the following formula (II-4).
  • Monomer (II) contributes to improving the adhesion of the cured product of the curable resin composition (X). Moreover, it contributes to the improvement of the light transmittance of the hardened
  • Monomer (II) may be used individually by 1 type, and may use 2 or more types together.
  • R 2 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 3 is a hydroxyalkyl group having 2 to 8 carbon atoms having 1 or 2 hydroxyl groups.
  • the hydroxyalkyl group preferably has 2 to 6 carbon atoms.
  • Examples of the compound represented by the formula (II-1) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. , 6-hydroxyhexyl (meth) acrylate and the like. Of these, 4-hydroxybutyl acrylate and 6-hydroxyhexyl acrylate are preferable in terms of flexibility and low volatility.
  • R 4 is a hydrogen atom or a methyl group, and preferably a hydrogen atom.
  • m is an integer of 1 to 3, and preferably 1 or 2.
  • R 5 is a hydrogen atom or a methyl group, and preferably a hydrogen atom.
  • Q 1 is an oxyalkylene group having 2 to 4 carbon atoms. A plurality of Q 1 present in one molecule may be the same as or different from each other. When two or more types of Q 1 are present in one molecule, the chain of —Q 1 — may be a block or a random.
  • Q 1 is preferably an oxyethylene group or an oxypropylene group.
  • n is an integer of 2 to 8, preferably 2 to 6.
  • the compound represented by the formula (II-4) is 2-hydroxy-3-phenoxypropyl acrylate. Of these, compounds represented by the formula (II-1) or the formula (II-4) are preferred because they are easily available industrially and have few impurities.
  • the content thereof is preferably 1 to 20% by mass, and preferably 1 to 15% by mass with respect to the total amount of the curable resin composition (X). More preferred.
  • the content of the monomer (II) is at least the lower limit of the above range, the effect of improving the adhesion by adding the monomer (II) can be sufficiently obtained, and when the content is less than the upper limit, the low curing shrinkage Good physical properties are easily obtained in terms of rate.
  • the bonding resin layer formed by curing the curable resin composition is a malfunction of the touch sensor.
  • the dielectric constant is required to be low.
  • the relative dielectric constant is preferably 4.5 or less because malfunction of the touch sensor can be prevented in the OGS type touch panel.
  • the long-chain alkyl group-containing monomer (III) is a compound represented by the formula (III).
  • the method of containing the curable resin composition (X) under reduced pressure and curing it in a higher pressure atmosphere reduced pressure sealing-pressurizing
  • the bubbles in the cured product are easily lost.
  • Monomer (III) may be used individually by 1 type, and may use 2 or more types together.
  • R 6 is a hydrogen atom or a methyl group, and preferably a hydrogen atom.
  • R 7 is an alkyl group having 8 to 22 carbon atoms. The alkyl group preferably has 8 to 18 carbon atoms.
  • Examples of the compound represented by the formula (III) include lauryl (meth) acrylate (n-dodecyl (meth) acrylate), isostearyl (meth) acrylate, isodecyl (meth) acrylate, and the like. Of these, lauryl acrylate (n-dodecyl acrylate) and isostearyl acrylate are preferable in terms of flexibility, low viscosity, and low crystallinity.
  • the content thereof is preferably 1 to 20% by mass, and preferably 1 to 15% by mass with respect to the total amount of the curable resin composition (X). More preferred.
  • the content of the monomer (III) is not less than the lower limit of the above range, the effect of adding the monomer (III) can be sufficiently obtained, and when it is not more than the upper limit, it is favorable in terms of low curing shrinkage. It is easy to obtain physical properties.
  • the curable resin composition (X) may contain other components other than the curable oligomer (I), monomers (II), and (III) as long as the effects of the present invention are not impaired.
  • other components include tackifiers such as rosin esters, terpene phenols, hydrogenated terpene phenols, plasticizers such as adipic acid esters and phthalic acid esters, polyoxyalkylene polyols, and polyoxyalkylene polyols having terminal alkoxylation. .
  • tackifiers such as rosin esters, terpene phenols, hydrogenated terpene phenols
  • plasticizers such as adipic acid esters and phthalic acid esters
  • polyoxyalkylene polyols polyoxyalkylene polyols having terminal alkoxylation.
  • the content of other components is preferably 0 to 48% by mass and more preferably 0 to 28% by mass with respect to the total amount of the curable resin composition (X).
  • the content of other components other than the curable oligomer (I), monomer (II), and (III) is not less than the lower limit of the above range, the effect of flexibility and adhesiveness can be easily obtained, and the upper limit. If it is less than the value, it will be good in terms of durability.
  • the curable resin composition (X) may be a photocurable resin composition or a thermosetting resin composition.
  • a photo-curable resin composition is preferred because it can be cured at a low temperature and has a high curing rate.
  • curable resin composition (X) is a photocurable resin composition, it is preferable to contain a photoinitiator as another component. If it is a photocurable resin composition, since it does not require high temperature, for example when used for manufacture of a display apparatus, there is also little possibility of damage to the display device by high temperature.
  • photopolymerization initiator examples include acetophenone series, ketal series, benzoin or benzoin ether series, phosphine oxide series, benzophenone series, thioxanthone series, and quinone series. Of these, phosphine oxide and thioxanthone photopolymerization initiators are preferred, and phosphine oxide is preferred from the viewpoint of facilitating coloring after the photopolymerization reaction.
  • a photoinitiator may be used individually by 1 type and may use 2 or more types together.
  • the content thereof is preferably 0.01 to 10 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass as the total of the curable components. Part is more preferred.
  • the curable resin composition (X) may further contain an additive as another component.
  • Additives include polymerization inhibitors, photocuring accelerators, chain transfer agents, light stabilizers (ultraviolet absorbers, radical scavengers, etc.), antioxidants, flame retardants, adhesion improvers (silane couplings) Agents), pigments, dyes and the like.
  • a polymerization inhibitor and a light stabilizer are preferable.
  • the storage stability of the curable resin composition (X) can be improved by including a smaller amount of the polymerization inhibitor than the polymerization initiator, and the molecular weight after curing can be easily adjusted.
  • Polymerization inhibitors such as hydroquinone (2,5-di-tert-butylhydroquinone, etc.), catechol (p-tert-butylcatechol, etc.), anthraquinone, phenothiazine, hydroxytoluene, etc. are prohibited. Agents.
  • the ultraviolet absorber is used for preventing the photo-degradation of the curable resin composition (X) and improving the weather resistance, for example, benzotriazole-based, triazine-based, benzophenone-based, benzoate-based And the like, and the like.
  • benzotriazole ultraviolet absorber for example, those described in paragraph [0076] of International Publication No. 2014/017328 can be used.
  • the said light stabilizer is used in order to prevent the photodegradation of curable resin composition (X), and to improve a weather resistance, for example, a hindered amine type light stabilizer is mentioned.
  • a hindered amine type light stabilizer for example, those described in paragraph [0077] of International Publication No. 2014/017328 can be used.
  • the antioxidant is used to prevent oxidation of the curable resin composition (X) and improve weather resistance and heat resistance.
  • phenol-based, phosphorus-based antioxidant, etc. Is mentioned.
  • phenolic antioxidant for example, those described in paragraph [0078] of International Publication No. 2014/017328 can be used.
  • phosphorus-based antioxidant those described in paragraph [0078] of International Publication No. 2014/017328 can be used.
  • a product in which a plurality of antioxidants, light stabilizers and the like are mixed can also be used. Examples thereof include IRGASTAB PUR68 and TINUVIN B75 manufactured by BASF.
  • the total content of the additives is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass of the curable component.
  • the content of the chain transfer agent is preferably small, 3 parts by mass or less is preferable with respect to 100 parts by mass of the curable component, and 2 parts by mass or less is more preferable. It is particularly preferred not to contain.
  • the viscosity of the curable resin composition (X) is a value measured using an E-type viscometer at 25 ° C.
  • the viscosity of the curable resin composition (X) is preferably 0.05 to 50 Pa ⁇ s, more preferably 1 to 20 Pa ⁇ s, and further preferably 1.5 to 5 Pa ⁇ s.
  • the viscosity is 0.05 Pa ⁇ s or more, it is easy to achieve both the fluidity of the curable resin composition (X) and the physical properties of the cured product after curing.
  • it is 50 Pa ⁇ s or less, workability in forming an uncured resin layer is good.
  • it can be suitably used for a method of containing the curable resin composition (X) under reduced pressure, which will be described later, and curing it in a higher pressure atmosphere (vacuum sealing-pressurization curing method). Can be eliminated.
  • the curable resin composition (X) of the present invention contains a curable oligomer (I) containing an oligomer (IA) and an oligomer (IB), and the fraction in the above fraction (I) as a curable component.
  • a curable oligomer (I) containing an oligomer (IA) and an oligomer (IB), and the fraction in the above fraction (I) as a curable component.
  • the curable resin composition (X) of the present invention is suitable as a material for forming a bonding resin layer in which a pair of face materials are laminated and integrated, and an uncured layer made of the curable resin composition (X). Stress generated in the face material by curing can be reduced.
  • a bonding resin layer sandwiched between the transparent surface material and the display device is used as the curable resin composition (X).
  • the curable resin composition (X) By forming the cured product, it is possible to reduce the stress exerted on the display device, thereby effectively preventing the display quality such as display unevenness from being impaired. Further, since the elastic modulus of the cured product is reduced and the stress exerted on the display device can be reduced, peeling from the joined face material is unlikely to occur.
  • the display device is a liquid crystal display device and is a display device of an IPS (In-plane Switching) type or a TN (Twisted Nematic) type display device in which an optical film for improving the viewing angle is bonded to the display surface
  • the display device Since the stress applied to the film tends to adversely affect the display quality, the effect of using the curable resin composition (X) of the present invention is great.
  • the manufacturing method of the laminated body of this invention has the process of clamping the uncured layer which consists of curable resin composition (X) between a pair of face material, and the process of hardening this uncured layer. These steps can be performed using a known method as appropriate.
  • the face material is not particularly limited, when at least one of the pair of face materials is a transparent face material, when the uncured layer is cured, it can be cured by light irradiation through the transparent face material. preferable.
  • an uncured layer made of the curable resin composition (X) is sandwiched between a pair of face materials in a first reduced-pressure atmosphere, and a seal portion provided around the uncured layer.
  • the laminated body is formed by a method including a first step of forming a sealed laminated precursor and a second step of curing the uncured layer in a second atmosphere having a pressure higher than that of the first reduced-pressure atmosphere. It is preferable to manufacture.
  • Such a vacuum sealing-pressure curing method is known, and is described, for example, in paragraphs [0036] to [0042] of WO2009 / 016943 and paragraphs [0080] to [0091] of WO2011 / 158840. Can be used.
  • the thickness of the uncured layer (the bonding resin layer between a pair of face materials) of the uncured layer made of the curable resin composition (X) is preferably 0.03 to 2 mm, for example, and 0.1 to 0.8 mm. Is more preferable.
  • the seal portion may be formed using a double-sided adhesive type sealing material, and further has a light-transmitting double-sided adhesive type seal.
  • a seal portion may be formed by applying a photocurable resin on the material. The photocurable resin of the seal portion can be cured at the same time as the uncured layer made of the curable resin composition (X) is cured.
  • the viscosity is higher than that of the curable resin composition (X) (for example, 500 to 3000 Pa ⁇ s at 25 ° C.).
  • the seal portion may be cured at the same time as the uncured layer composed of the curable resin composition (X) is cured, or semi-cured before the uncured layer composed of the curable resin composition (X) is cured. Then, the uncured layer may be cured and simultaneously cured.
  • one of the pair of face materials is a transparent face material and the other is a display device.
  • the transparent surface material is a light-transmitting surface material (also referred to as a transparent surface material).
  • the transparent face material include a glass plate or a transparent resin plate, and a glass plate is preferable from the viewpoint of weather resistance, low birefringence, high planar accuracy, and the like.
  • the display device include a liquid crystal display device, an EL display device, a plasma display device, and an electronic ink display device.
  • the display device has a structure in which a pair of face materials, at least one of which is a transparent face material, is bonded, and is arranged so that the transparent face material side is in contact with the bonding resin layer.
  • an optical film such as a polarizing plate or a retardation plate may be provided on the outermost layer side of the transparent surface material in contact with the bonding resin layer.
  • the bonding resin layer is in a mode of bonding the optical film on the display device and the surface material.
  • the curable resin composition (X) has a low curing shrinkage while satisfying a low viscosity (for example, 0.05 to 50 Pa ⁇ s at 25 ° C.) suitable for the vacuum sealing-pressure curing method. And a low elastic modulus of the cured product can be achieved simultaneously. Therefore, it is possible to obtain a laminate, preferably a display device, in which the generation of stress due to the curing of the bonding resin layer is suppressed and the bubbles in the bonding resin layer disappear favorably.
  • a low viscosity for example, 0.05 to 50 Pa ⁇ s at 25 ° C.
  • the number of hydroxyl groups of monool was calculated by the following method.
  • GPC was measured for the monools of Production Examples 3, 4 and 5, two peaks, one hydroxyl group on the low molecular weight side and one peak of two components (by-products) on the high molecular weight side due to moisture. A peak was obtained. Each peak was fractionated and the number average molecular weight was calculated. The content ratio of one component and two components of hydroxyl group was determined from the area ratio of each peak.
  • the content ratio of the component having one hydroxyl group was divided by the number average molecular weight of the peak corresponding to the component having one hydroxyl group, and the number of molecules having the number average molecular weight in this component as a unit was determined. Similarly, the number of molecules having the number average molecular weight as a unit was determined for a component having two hydroxyl groups.
  • the average number of hydroxyl groups (hereinafter referred to as “average number of hydroxyl groups”) of the monol produced by weighted averaging of the number of molecules and the number of functional groups was determined.
  • the polyol of Production Examples 1 and 2 uses a raw material consisting only of a component having 2 hydroxyl groups, the average number of hydroxyl groups was not calculated by this method, and the number of hydroxyl groups in the raw material was defined as the average number of hydroxyl groups.
  • Model used HLC-8220GPC (manufactured by Tosoh Corporation).
  • Data processing device SC-8020 (manufactured by Tosoh Corporation).
  • Detector RI.
  • Solvent Tetrohydrofuran.
  • Flow rate 0.35 mL / min. Sample concentration: 0.5% by mass.
  • Injection volume 20 ⁇ L.
  • Standard sample for preparing a calibration curve Polystyrene ([Easical] PS-2 [Polystyrene Standards], manufactured by Polymer Laboratories).
  • polyol (1) polyoxyalkylene diol having a hydroxyl value of 6.4 mgKOH / g (molecular weight converted from the hydroxyl value: 17531). Of 7600 g was obtained.
  • the average number of hydroxyl groups of polyol (1) is the same as the number of hydroxyl groups of Exenol-1020 used as a raw material.
  • Table 1 shows molecular properties such as hydroxyl value of polyol (1), number average molecular weight by GPC (total), number average molecular weight of monofunctional component (monofunctional), number average molecular weight of bifunctional component (bifunctional), etc. (The same applies hereinafter).
  • the obtained product contained 4 ppm of Zn and 1 ppm of Co.
  • polyol (2) polyoxyalkylene diol having a hydroxyl value of 28.7 mgKOH / g (molecular weight converted from the hydroxyl value: 3909).
  • the average number of hydroxyl groups of polyol (2) is the same as the number of hydroxyl groups of Exenol-720 used as a raw material.
  • the molecular characteristics such as the hydroxyl value of the polyol (2) are shown in Table 1 as in Production Example 1.
  • the obtained product contained 1 ppm or less of Zn and 1 ppm or less of Co.
  • the obtained product contained 8 ppm of Zn and 2 ppm of Co.
  • Table 1 shows the hydroxyl value of the monool, the molecular weight converted from the hydroxyl value, the GPC measurement results, and the average hydroxyl number calculated according to the above-described method for calculating the average hydroxyl number of the monool (the same applies hereinafter).
  • the GPC chart is fractionated into a monofunctional component and a bifunctional component by a conventional method.
  • the number average molecular weight and the content ratio (area ratio) were determined for each fraction.
  • the content ratio of the monofunctional component was divided by the number average molecular weight of the fractional portion corresponding to the monofunctional component to obtain the number of molecules in units of the number average molecular weight in the monofunctional component.
  • the bifunctional component the number of molecules having the number average molecular weight in the bifunctional component as a unit was determined.
  • the average number of functional groups of the oligomer produced by weighted averaging the number of molecules and the number of functional groups was determined.
  • the reaction was terminated after confirming that the isocyanate group content was equal to or less than the theoretical isocyanate group content, and an isocyanate group-terminated prepolymer was obtained.
  • the isocyanate group content was measured in accordance with the isocyanate group content measurement method described in JIS K7301-1995. Thereafter, the reaction was completed in the same manner.
  • the blending amount of IPDI with respect to polyol (1) was 122 as an index (NCO / OH ratio).
  • the isocyanate group content of the prepolymer (P-1) was 0.244% by mass.
  • prepolymer (P-1) isocyanate group amount: 0.056 mol
  • DBTDL dibutyltin dilaurate
  • DtBHQ 5-di-tert-butylhydroquinone
  • HOA 2-hydroxyethyl acrylate
  • the number average molecular weight of the obtained oligomer (IA-1-1) was 34,800.
  • the average number of functional groups determined by calculation was 2.0, which was the same as the average number of hydroxyl groups of the polyol (1) used as a raw material. It was confirmed that the oligomer (IA-1-1) is classified as an oligomer (IA).
  • the oligomer (IA-1-1) contains Zn and Co derived from the polyol (1).
  • Table 2 shows the measurement results (total, monofunctional component and bifunctional component) of the obtained oligomer and the average number of functional groups calculated according to the above-mentioned method of calculating the average number of functional groups of the oligomer (the same applies hereinafter).
  • the oligomer (IA-1-2) is classified as an oligomer (IA).
  • the oligomer (IA-1-2) contains Zn and Co derived from the polyol (2).
  • the content of propyleneoxy groups was 76% by mass and the content of ethyleneoxy groups was 24% by mass with respect to all alkyleneoxy groups.
  • the oligomer (IB-2-1) contains Zn and Co derived from the monol (3).
  • the oligomer (IB-2-1) is an oligomer (IB), and is an oligomer classified as an oligomer (IB-2).
  • the number average molecular weight of the obtained oligomer (IB-1-1) was 7,660.
  • the average number of functional groups determined by the above calculation method was 1.03, which was the same as the average number of hydroxyl groups of monool (3) used as a raw material.
  • the oligomer (IB-1-1) contains Zn and Co derived from the monol (3).
  • the oligomer (IB-1-1) is an oligomer (IB) and is an oligomer classified as an oligomer (IB-1).
  • the number average molecular weight of the obtained oligomer (IB-1-2) was 16,000.
  • the average number of functional groups determined by the above calculation method was 1.08, which was the same as the average number of hydroxyl groups of monool (4) used as a raw material.
  • the oligomer (IB-1-2) contains Zn and Co derived from the monol (4).
  • the oligomer (IB-1-1) is an oligomer (IB) and is an oligomer classified as an oligomer (IB-1).
  • Production Example 16 Production of oligomer (IB-1-4)]
  • the same procedure as in Production Example 14 was used except that the monool (5) obtained in Production Example 5 (average number of hydroxyl groups: 1.21) was used.
  • Urethane acrylate oligomer) (IB-1-4) was produced.
  • the number average molecular weight of the obtained oligomer (IB-1-4) was 5,430.
  • the average number of functional groups determined by the above calculation method was 1.22, similar to the average number of hydroxyl groups of monool (5) used as a raw material.
  • the content of the bifunctional component was 37.1% by mass.
  • the oligomer (IB-1-4) contains Zn and Co derived from the monol (5).
  • the oligomer (IB-1-4) is an oligomer containing a curable component having a urethane bond and having a composition other than the oligomer (IA) and the oligomer (IB).
  • the obtained oligomers (IB-1-1), (IB-1-2) and (IB-1-4) all have an average number of functional groups similar to the average number of hydroxyl groups of the monool used as a raw material. It was. This represents that the isocyanate compound is equivalently reacted with respect to the number of hydroxyl groups. Since these oligomers reflect the composition of the raw material monool, the average number of hydroxyl groups of the raw material monool and the average number of functional groups of the obtained oligomer can be regarded as the same.
  • Examples 1 to 10 and Comparative Examples 1 to 9 Using the oligomers obtained in Production Examples 11 to 16, each component was mixed according to the formulations shown in Tables 3 and 4 to prepare curable resin compositions.
  • oligomer (IB-1-4) is not included in the category of oligomer (IB), but is close to its composition, so the oligomer is classified as oligomer (IB) ′. Differentiated from (IA) and oligomer (IB).
  • PML-5005 Bifunctional polypropylene glycol with molecular ends capped with ethylene oxide (manufactured by Asahi Glass Co., Ltd., product name: PREMINOL-5005, number average molecular weight: 4000).
  • Y-1 Polypropylene glycol having a hydroxyl group methoxylated (number average molecular weight: 1200).
  • KE311 Rosin ester (manufactured by Arakawa Chemical Industries, product name: Pine Crystal KE-311) (number average molecular weight: 460).
  • DoSH dodecyl mercaptan.
  • Irg184 1-hydroxy-cyclohexyl-phenylketone (manufactured by BASF, product name: Irgacure-184), KIP 150: oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propane] (manufactured by Lamberti, product name: Esacure KIP 150).
  • the fraction having a molecular weight of 500 or more by GPC as a whole contains a curable component. It was a fraction.
  • fraction (ii) contains a peak derived from a monofunctional component and a peak derived from a bifunctional component
  • fraction (ii) is further fractionated into a monofunctional component and a bifunctional component as indicated by dotted line a. did.
  • the number average molecular weight and area ratio of all fractions were calculated respectively. Taking the area ratio as the content ratio and taking the product of the charged mass part (50 parts by mass) of the oligomer (IB-1-1) of Example 1 and the area ratio, the curability of the oligomer (IB-1-1) The mass part of each functional component of each fraction contained in the oligomer (I) was calculated.
  • Components having the same number of functional groups in the same fraction for example, the mass part of the bifunctional component of the fraction (ii) calculated from the oligomer (IB-1-1) and the image calculated from the oligomer (IA-1-1)
  • the mass parts of the bifunctional components of the fraction (ii) were summed up to determine the mass parts of the functional group components of each fraction contained in the curable oligomer (I). Taking the total of the mass parts as 100, the ratio [mass%] of each functional group component of each fraction was determined.
  • the proportions of fractions (I) to fractions (i) to (iii) were calculated by summing the proportions of each functional group component for each fraction.
  • the fraction of each fractional component corresponding to the proportion of each functional group component of each fraction contained in the curable oligomer (I) determined by the method of calculating the proportion [% by mass] of each fraction in the fraction (I) Dividing by the number average molecular weight, the number of molecules with the number average molecular weight as a unit was determined.
  • Components having the same functional group number in the same fraction for example, the number of molecules of the bifunctional component of the fraction (ii) calculated from the oligomer (IB-1-1) and the image calculated from the oligomer (IA-1-1)
  • the number of molecules of the bifunctional component of the part (ii) is summed, and the number of molecules contained in a certain functional component of a certain fraction is obtained.
  • the same analysis was performed for each functional component, and the average number of functional groups in fractions (i) and (ii) was determined by weighted averaging of the obtained number of molecules and the number of functional groups.
  • FIG. 4 is a graph showing the GPC measurement results of the curable resin compositions (X) obtained in Examples 1 and 2 and Comparative Example 9.
  • the horizontal axis represents the molecular weight, and the vertical axis represents the signal intensity (unit: mV) by the RI detector.
  • the curable resin composition obtained in each example was applied to a thickness of 0.4 mm, and ultraviolet light (light source: manufactured by Ushio Inc., mercury xenon lamp, illuminance: 100 mW / cm 2) under nitrogen flow. , Accumulated light amount: 3000 mJ / cm 2 ) and cured. Thereafter, the storage elastic modulus (unit: kPa) of the cured product was measured using a rheometer MCR-301 (product name) manufactured by Anton Paar. The measurement conditions were a frequency of 1 Hz, a strain of 1%, and a temperature of 35 ° C.
  • the elastic modulus of the cured product is preferably 25 kPa or less, and more preferably 20 kPa or less.
  • the curable resin composition obtained in each example was applied to a thickness of 0.1 mm, and ultraviolet light (light source: Fusion D-bulb metal halide lamp, illuminance: 800 mW / cm 2 , integrated) under nitrogen flow. (Light quantity: 500 mJ / cm 2 ).
  • the sample after ultraviolet irradiation was measured by FT-IR (Fourier transform infrared spectroscopy), and the curability was evaluated according to the following criteria. “ ⁇ (good)”: The absorbance at 810 cm ⁇ 1 due to the unsaturated bond of the acryloyl group is less than 5% with respect to the absorbance before ultraviolet irradiation.
  • X (bad)” The absorbance at 810 cm ⁇ 1 due to the unsaturated bond of the acryloyl group is 5% or more with respect to the absorbance before the ultraviolet irradiation.
  • the curable resin composition obtained in each example was applied to a thickness of 0.4 mm, and ultraviolet light (light source: manufactured by Ushio Inc., mercury xenon lamp, illuminance: 100 mW / cm 2) under nitrogen flow. , Integrated light amount: 6000 mJ / cm 2 ) to cure and obtain a cured part.
  • ultraviolet light light source: manufactured by Ushio Inc., mercury xenon lamp, illuminance: 100 mW / cm 2
  • Integrated light amount 6000 mJ / cm 2
  • the specific gravity of the curable resin composition before curing (specific gravity before curing) and the specific gravity of the cured product after curing (cured product specific gravity), an electronic balance with a specific gravity measurement kit (manufactured by Sartorius, product name) : CPA224S), and the curing shrinkage (unit:%) was calculated from the following formula based on the specific gravity difference before and after curing.
  • the cure shrinkage is preferably 2.5% or less.
  • Curing shrinkage S (%) (specific gravity of cured product ⁇ specific gravity before curing) / specific gravity before curing ⁇ 100
  • the elastic modulus (G) ⁇ curing shrinkage rate (S) is an index of occurrence of display unevenness when used for the bonding resin layer of the display device. In order to prevent display unevenness, the value of elastic modulus ⁇ curing shrinkage is preferably 50 or less, particularly preferably 30 or less. The calculated values are shown in the “G ⁇ S” column of Tables 3 and 4.
  • the curable resin composition obtained in each example was applied on a 2 mm thick soda lime glass so as to have a thickness of 0.1 mm, and a 2 mm thick soda lime glass was further laminated thereon to obtain a laminated sample. It was created.
  • the laminated sample was irradiated with ultraviolet rays (light source: Fusion D-bulb metal halide lamp, illuminance: 800 mW / cm 2 , integrated light amount: 500 mJ / cm 2 ).
  • the laminated sample after the ultraviolet irradiation was allowed to stand under conditions of a temperature of 65 ° C. and a relative humidity of 93%, and reliability was evaluated according to the following criteria after 500 hours. Good reliability evaluated by this method means that the cured product of the curable resin composition does not peel off. “Good (good)”: No peeling of the laminated sample. "X (defect)”: Peeling is seen in the laminated sample.
  • a liquid crystal display device was taken out from a commercially available liquid crystal display device (7-inch liquid crystal digital photo frame, manufactured by Sony Corporation, product name: DPF-0720).
  • the display mode is a VA (Vertical Alignment) type
  • the display portion is rectangular, and the size is 88 mm in length (short side length) and 156 mm in width (long side length).
  • Polarizers were bonded to both surfaces of the liquid crystal display device, and a printed wiring board was bonded to the end on the long side.
  • the liquid crystal display device was designated as display device A.
  • a seal part having a thickness of 0.2 mm and a width of 2 mm was formed on the peripheral part of the viewing side surface of the display device A using a double-sided adhesive tape, and each region was obtained in a region surrounded by the seal part.
  • the curable resin composition was applied with a thickness of 0.2 mm. This was placed flat on the upper surface of the lower surface plate in the decompression device in which a pair of surface plate lifting devices are installed so that the surface coated with the curable resin composition is on the upper side.
  • a rectangular glass plate B (long side length: 160 mm, short side length 90 mm, thickness: 0.7 mm) is lifted and lowered in the decompression device so as to face the display device A. Installed on the lower surface of the upper surface plate. Moreover, it hold
  • the pressure reducing device was sealed and evacuated until the pressure in the pressure reducing device reached about 10 Pa.
  • the upper and lower surface plates are brought close to each other by the lifting device in the decompression device, and the display device A and the glass plate B are pressure-bonded at a pressure of 2 kPa through an uncured layer made of a curable resin composition and held for 1 minute. .
  • a laminated precursor in which an uncured layer made of the curable resin composition was sandwiched between the display device A and the glass plate B, and the uncured layer was sealed at a peripheral seal portion was formed.
  • the electrostatic chuck was neutralized to separate the glass plate B from the upper surface plate, and the pressure reducing device was returned to atmospheric pressure in about 15 seconds.
  • the laminated precursor is irradiated with ultraviolet rays (light source: Fusion D-bulb metal halide lamp, illuminance: 800 mW / cm 2 , integrated light amount: 500 mJ / cm 2 ) from the glass plate B side to cure the uncured layer.
  • ultraviolet rays light source: Fusion D-bulb metal halide lamp, illuminance: 800 mW / cm 2 , integrated light amount: 500 mJ / cm 2
  • the display device of the laminate was returned to the original liquid crystal display device housing, and the wiring was reconnected. This was installed so that the glass plate (B) would be vertical and allowed to stand for 5 days, then the power was turned on, and the homogeneity of the display image (presence of display unevenness) was evaluated according to the following criteria. “ ⁇ (good)”: The image is homogeneous over the entire display area. “X (defect)”: An image has a non-uniform (uneven) portion in a part of the display portion.
  • the curable resin composition obtained in each example was applied to a thickness of 0.4 mm, and ultraviolet light (light source: manufactured by Ushio Inc., mercury xenon lamp, illuminance: 100 mW / cm 2) under nitrogen flow. , Accumulated light amount: 3000 mJ / cm 2 ) and cured.
  • the cured sample was cut into a circle having a diameter of 38 mm, and then the relative dielectric constant of 1 MHz was measured using a 6440B LCR meter manufactured by Weinker.
  • the relative dielectric constant is preferably 4.5 or less because malfunction of the touch sensor can be prevented in an OGS (One Glass Solution) type touch panel.
  • Comparative Examples 1 to 5 containing no oligomer (IB) had high elastic modulus and cure shrinkage.
  • the laminated samples of Comparative Examples 1 and 3 were peeled after long-term storage.
  • Comparative Examples 6 and 7 having a high content of oligomer (IA) have a high elastic modulus and a high value of elastic modulus ⁇ curing shrinkage. Display unevenness occurred in a liquid crystal display device using these curable resins.
  • Comparative Example 9 has a low content of oligomer (IA), and the above oligomer (1B) ′ was used instead of the component of oligomer (IB), and the oligomer (IB-1-4) had a high content of low molecular weight bifunctional components. ). For this reason, since the amount of the bifunctional component of the fraction (ii) is large, display irregularity occurs in the liquid crystal display device having a high elastic modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

 硬化物層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい接合樹脂層を形成できる硬化性樹脂組成物を提供する。硬化性樹脂組成物中に硬化性オリゴマー(I)を50質量%以上含む硬化性樹脂組成物であって、硬化性オリゴマー(I)は、オリゴマー(IA)であるアクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基を有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマーを1~50質量%、オリゴマー(IB)であるアクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である成分の含有量が30質量%以下であるオリゴマーを30~95質量%含む硬化性樹脂組成物。

Description

硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置
 本発明は、硬化性樹脂組成物、硬化性樹脂組成物の製造方法、該硬化性樹脂組成物を用いた積層体の製造方法、および該硬化性樹脂組成物を用いて製造された表示装置に関する。
 表示デバイス上に接合樹脂層を介して保護板が積層された表示装置にあっては、接合樹脂層を硬化させる際に該接合樹脂層の収縮により発生する応力が、表示デバイスに影響を及ぼすおそれがある。表示デバイスに応力が加わると、表示デバイス中の表示形成材料が応力により影響を受け、表示の均一性が損なわれるおそれがある。例えば、表示形成材料として液晶を用いた液晶表示デバイスの場合には、表示デバイスに封入されている液晶の配列が外部応力により乱れて、色ムラ等の表示ムラとして視認されることがある。
 また液晶パネルの方式によっては判断基準がより厳しい場合がある。
 表示デバイス上に透明面材が積層された積層構造を有する表示装置を製造する方法として、特許文献1には、第1の面材の表面の周縁部に、未硬化のシール部を形成し、該未硬化のシール部で囲まれた領域に、未硬化の硬化性樹脂組成物を供給し、100Pa以下の減圧雰囲気下にて、該硬化性樹脂組成物の上に第2の面材を重ねた後、50kPa以上の圧力雰囲気下で未硬化のシール部および硬化性樹脂組成物を硬化させる方法が記載されている。
 特許文献2には、ポリエーテルモノオールとイソシアネート基を有する(メタ)アクリレートとの反応で得られる化合物が記載され、該化合物を用いた硬化性樹脂組成物の硬化物の耐衝撃性に優れ、画像ムラがないことが実施例に記載されている。
国際公開第2011/158840号 特開2012-126839号公報
 表示デバイスと保護板との間の接合樹脂層には、上記の表示ムラを防ぐために、弾性率が低くて柔軟性が良好であり、硬化収縮率が低いことが要求される。
 一般に、樹脂層の柔軟性を向上させる方法としては、該樹脂層を形成する硬化性樹脂組成物に、可塑剤などの硬化反応に寄与しない非反応成分を添加する方法が用いられる。
 しかしながら、樹脂層中の非反応成分(可塑剤)は安定性が充分でないため、経時によるブリードアウトが発生して接合樹脂層が剥がれる場合があるなど、信頼性に劣る。
 また、樹脂層を形成する硬化性樹脂組成物を製造する際に、連鎖移動剤を添加して分子量を調整する方法によっても、樹脂層の柔軟性を向上させることができるが、弾性率の低下と硬化収縮率の低下を同時に達成することは難しい。
 また特許文献2に記載されている方法は、ポリエーテルジオールではなく、ポリエーテルモノオールに、イソシアネート基を有する(メタ)アクリレートを反応させて得られる化合物を用いることを特徴とするものであるが、一般的に、ポリエーテルモノオールには製造工程で副生するポリエーテルジオールが含まれている。
 本発明者らの知見によれば、かかるポリエーテルジオールに由来する成分は、たとえ副生物であっても、上記の表示ムラの防止効果に影響を与え得る。
 しかしながら、特許文献2に記載の発明ではそのようなポリエーテルジオールの存在については言及がなく、全く考慮されていない。
 本発明は、硬化後の樹脂層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい接合樹脂層を形成できる硬化性樹脂組成物およびそのような特性を有する硬化性樹脂組成物の製造方法の提供を目的とする。
 また本発明は、該硬化性樹脂組成物を用いた積層体の製造方法、および該硬化性樹脂組成物を用いて製造された表示装置の提供を目的とする。
 本発明は以下の[1]~[10]である。
 [1]硬化性樹脂組成物100質量%中に、分子量が500以上である硬化性オリゴマー(I)を50質量%以上含む硬化性樹脂組成物であって、
 前記硬化性オリゴマー(I)は、前記硬化性オリゴマー(I)100質量%中に下記オリゴマー(IA)を1~50質量%、下記オリゴマー(IB)を30~95質量%含む硬化性樹脂組成物。
 オリゴマー(IA):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマー。
 オリゴマー(IB):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である硬化性成分の含有量が30質量%以下であるオリゴマー。
 [2]前記オリゴマー(IB)が、下記式(1a)で表わされるポリオキシアルキレンモノオールと、下記式(1b)で表わされるモノマーとをウレタン化反応させて得られるオリゴマーを含む、[1]に記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
 式(1a)において、R12は炭素数2~4のアルキレン基、R13は炭素数1~20のアルキル基、または炭素数1~20のカルボン酸残基であり、bは20~600の整数である。
 式(1b)において、R11は水素原子またはメチル基であり、aは1~4の整数である。
 [3]アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基と水酸基を含有するモノマー(II)および、アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基と長鎖アルキル基を含有するモノマー(III)の一方または両方をさらに含有する、[1]または[2]に記載の硬化性樹脂組成物。
 [4]ZnおよびCoを含む、[1]~[3]のいずれかに記載の硬化性樹脂組成物。
 [5]アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有し、分子量が500以上である硬化性オリゴマー(I)を含有する硬化性樹脂組成物の製造方法であって、
 下記オリゴマー(IA)の1種以上と、下記オリゴマー(IB)の1種以上とを、前記硬化性オリゴマー(I)100質量%中にオリゴマー(IA)を1~50質量%、オリゴマー(IB)を30~95質量%含むように、かつ、硬化性樹脂組成物100質量%中に前記硬化性オリゴマー(I)を50質量%以上含むように混合することを特徴とする硬化性樹脂組成物の製造方法。
 オリゴマー(IA):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマー。
 オリゴマー(IB):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である硬化性成分の含有量が30質量%以下であるオリゴマー。
 [6]前記硬化性樹脂組成物は、前記硬化性樹脂組成物をゲル・パーミエイション・クロマトグラフィー(GPC)により分画して得られる、前記硬化性オリゴマー(I)の硬化性画分(I)において、
 分子量23,000以上の画分を画分(i)、
 分子量7,500以上、23,000未満の画分を画分(ii)、
 分子量500以上、7,500未満の画分を画分(iii)とするとき、
 画分(i)の平均の前記硬化性官能基の数が1.5以上、2.5以下であり、
 画分(ii)の平均の前記硬化性官能基の数が1.0以上、1.5未満であり、
 画分(I)に対する画分(i)の割合が0質量%超、50質量%以下であり、
 画分(I)に対する画分(ii)の割合が35~80質量%であり、
 画分(I)に対する画分(iii)の割合が0~40質量%である、[5]に記載の硬化性樹脂組成物の製造方法。
 [7]一対の面材間に[1]~[4]のいずれかに記載の硬化性樹脂組成物からなる未硬化層を挟持させる工程と、該未硬化層を硬化させる工程を有する、積層体の製造方法。
 [8]第1の減圧雰囲気下で、一対の面材間に[1]~[4]のいずれかに記載の硬化性樹脂組成物からなる未硬化層が挟持され、かつ該未硬化層の周囲に設けられたシール部で前記未硬化層が密封された積層前駆体を形成する第1の工程と、
 前記第1の減圧雰囲気よりも圧力が高い第2の雰囲気下で前記未硬化層を硬化させる第2の工程を有する、積層体の製造方法。
 [9]前記一対の面材の一方が透明面材であり、他方が表示デバイスである、[7]または[8]に記載の積層体の製造方法。
 [10]透明面材と表示デバイスとの間に、[1]~[4]のいずれかに記載の硬化性樹脂組成物の硬化物からなる接合樹脂層が挟持されている表示装置。
 本発明の硬化性樹脂組成物は、硬化後の樹脂層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい接合樹脂層を形成できる。
 本発明の硬化性樹脂組成物の製造方法によれば、硬化後の樹脂層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい接合樹脂層が形成可能な硬化性樹脂組成物が得られる。
 本発明の積層体の製造方法によれば、一対の面材を接合する樹脂層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい積層体が得られる。
 本発明の表示装置は、表示デバイスと透明面材とを接合する樹脂層の弾性率が低く、硬化収縮率が低く、かつ剥がれにくい。したがって、色ムラ等の表示ムラの発生が抑えられるとともに、経時劣化が生じ難く信頼性にも優れる。
製造例14で得られたオリゴマー(IB-1-1)のGPCの測定結果を1官能成分と2官能成分に分画する方法を示したグラフである。 製造例11で得られたオリゴマー(IA-1-1)のGPCの測定結果の解析方法を示すグラフである。 製造例14で得られたオリゴマー(IB-1-1)のGPCの測定結果の解析方法を示すグラフである。 実施例1、2および比較例9で得られた硬化性樹脂組成物についての、GPCの測定結果を示すグラフである。
 本明細書において、次の用語は、それぞれ、下記の意味で使用される。
 「硬化性官能基」はアクリロイルオキシ基またはメタクリロイルオキシ基の一方または両方である。「硬化性成分」とは、硬化性官能基を有する化合物を意味する。「モノマー」とは、硬化性官能基を有する単量体をいう。
 「硬化性オリゴマー」または「オリゴマー」とは、硬化性成分を主体とする分子量500以上の分子量の異なる化合物の混合物をいう。
 「平均官能基数」とは、特にことわりのない場合、数平均分子量を1単位とする1分子当たりの平均の硬化性官能基の数を意味する。
 「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを意味する。
 プレポリマーとは特にことわりのない場合、末端にイソシアネート基を有するウレタンプレポリマーを意味する。
 式(1)で表わされるオリゴマーを「オリゴマー(1)」と表記することがある。他の式で表される化合物についても同様に記す。
 ポリオールの水酸基価は、JIS K1557(2007年版)に準拠した測定により得られる。
 数平均分子量は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定して得られるポリスチレン換算分子量である。分子量分布は質量平均分子量(数平均分子量と同様にGPCで得られるポリスチレン換算分子量)を数平均分子量で除した値をいう。
 数平均分子量で規定されていても、分子量分布が存在しない場合は、化学式に基づいて得られる式量で表される分子量で代替するものとする。
 GPCによる画分の範囲を示す分子量は、GPC測定における溶出時間(保持時間)と相関する分子量を意味する。
≪硬化性樹脂組成物≫
 本発明の硬化性樹脂組成物(以下、硬化性樹脂組成物(X)ということもある。)は、アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有し、分子量が500以上であって、以下の組成特性を有する硬化性オリゴマー(I)を含む。硬化性樹脂組成物(X)における硬化性オリゴマー(I)の含有量は、硬化性樹脂組成物(X)100質量%に対して50質量%以上である。該含有量は、70質量%以上が好ましく、75質量%以上がより好ましい。100質量%でもよい。硬化性オリゴマー(I)の含有量の上限は特にないが、該含有量は低粘度であり取り扱いのし易さの観点から90質量%以下が好ましい。
 硬化性オリゴマー(I)は、以下のオリゴマー(IA)およびオリゴマー(IB)を、硬化性オリゴマー(I)の100質量%に対して、それぞれ1~50質量%および30~95質量%の割合で含有する。
 オリゴマー(IA):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマー。
 オリゴマー(IB):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である硬化性成分の含有量が30質量%以下であるオリゴマー。
 硬化性オリゴマー(I)は、オリゴマー(IA)およびオリゴマー(IB)以外の分子量が500以上の硬化性オリゴマー(IC)を含有してよい。硬化性オリゴマー(I)における硬化性オリゴマー(IC)の含有量は、例えば、0~50質量%程度が好ましい。硬化性オリゴマー(IC)としては、ウレタン結合を有する硬化性成分を含有しオリゴマー(IA)およびオリゴマー(IB)以外の組成を有するオリゴマー、ウレタン結合を有しない硬化性成分を含有するオリゴマー等が挙げられる。
 硬化性樹脂組成物(X)が含有する硬化性オリゴマー(I)は、例えば、GPCにより、硬化性樹脂組成物(X)を分子量500未満の画分と、分子量500以上の画分とに分けた場合に、分子量500以上の画分に含まれる成分である。硬化性樹脂組成物(X)の分子量500以上の画分のうち、分集して得られる各画分の成分としてアクリロイルオキシ基またはメタクリロイルオキシ基を有することがNMR分析により確認される画分を硬化性オリゴマー(I)の硬化性画分(I)とする。本明細書において、硬化性画分とは、硬化性成分を含む画分をいう。また、硬化性オリゴマー(I)の硬化性画分(I)を単に画分(I)という。
 硬化性樹脂組成物(X)は、さらに画分(I)を、分子量23,000以上の画分(i)、分子量7,500以上、23,000未満の画分(ii)、分子量500以上、7,500未満の画分(iii)に分けた場合に、画分(i)の平均官能基数は1.5以上、2.5以下であり、画分(ii)の平均官能基数は1.0以上、1.5未満であり、また画分(I)に対する画分(i)の割合は0質量%超50質量%以下であり、画分(I)に対する画分(ii)の割合が35~80質量%であり、画分(I)に対する画分(iii)の割合が0~40質量%であるという組成特性を有する。なお、画分(i)~(iii)の合計は100質量%である。また、画分(I)が上記特性を満足する場合に、硬化性オリゴマー(I)は上記組成特性を有すると言える。なお、画分(i)~(iii)の合計は100質量%である。
 画分(i)は、分子量が23,000以上と高く、硬化性官能基を2個または3個有するオリゴマーを含む。かかるオリゴマーは硬化性樹脂組成物(X)の硬化性に寄与する。画分(i)の平均官能基数は1.6以上、2.3以下が好ましく、1.7以上、2.0以下がより好ましい。画分(I)に対する画分(i)の割合は0質量%超であり、5質量%以上が好ましく、10質量%以上がより好ましい。画分(I)に対する画分(i)の割合は、40質量%以下が好ましい。
 画分(ii)は、硬化性官能基を1個有し、画分(i)よりも低分子量のオリゴマーを含む。画分(ii)の平均官能基数の値が1.0に近いほど、画分(ii)に含まれる硬化性官能基を2個または3個有するオリゴマーの含有量が少ないことを意味する。かかる低分子量のオリゴマーは低粘度であり、硬化性官能基が1個であるものは架橋構造を形成しない。したがって、硬化性官能基が1個である低分子量のオリゴマーは硬化時の収縮低減、および硬化後の樹脂(以下、硬化物という。)の弾性率低減に寄与し、結果として表示装置に用いた時に硬化物が剥がれにくく、表示ムラの発生を抑制できる。また硬化性官能基を有するため、硬化物における安定性に優れ、ブリードアウトを生じ難い。
 画分(ii)の平均官能基数は1.0以上、1.3以下が好ましく、1.0以上、1.2以下がより好ましい。画分(I)に対する画分(ii)の割合は50~80質量%がより好ましい。
 画分(iii)に含まれる低分子量の2官能オリゴマーは硬化時の収縮を大きくし、硬化物の弾性率を高くする。画分(iii)の平均官能基数は1.0以上、1.5未満が好ましく、1.0以上、1.3以下がより好ましく、1.0以上、1.2以下がさらに好ましい。画分(iii)の低分子量の2官能オリゴマーの含有量を低くするため、画分(iii)は40質量%以下であり、35質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。画分(iii)は含まれていなくてもよい。
 画分(I)に対する画分(i)~(iii)の割合は、好ましくは、画分(i)の割合が10~40質量%であり、画分(ii)の割合が35~80質量%であり、画分(iii)の割合が35質量%以下である。より好ましくは、画分(i)の割合が10~30質量%であり、画分(ii)の割合が50~80質量%であり、画分(iii)の割合が25質量%以下である。
 画分(I)に対する画分(i)~(iii)の割合が上記の範囲であると、良好な硬化性が得られるとともに、硬化時の収縮を低減し、硬化物の弾性率を低減する効果が良好に得られる。このため。硬化物層の硬化収縮による応力が低減され、硬化後の経時における剥がれが改善される。
 硬化性樹脂組成物(X)は、硬化性オリゴマー(I)以外の、その他の硬化性成分を含有してもよく、硬化性成分以外に添加剤等のその他の成分を含有してもよい。硬化性樹脂組成物(X)における硬化性成分の含有量は50~100質量%である。硬化性樹脂組成物(X)中の硬化性成分に対して、硬化性オリゴマー(I)は50質量%以上が好ましく、70質量%以上がより好ましい。100質量%でもよい。
 その他の硬化性成分としては、分子量500未満のモノマーの他、硬化性オリゴマー(I)に含まれるオリゴマー(IA)、オリゴマー(IB)等に由来しない分子量500以上のモノマーが挙げられる。その他の硬化性成分としては、後述の硬化性官能基と水酸基を含有するモノマー(II)(以下、「モノマー(II)」ともいう。)および/または硬化性官能基と長鎖アルキル基を含有するモノマー(III)(以下、「モノマー(III)」ともいう。)が好ましい。モノマー(II)とモノマー(III)の合計含有量(ただし、硬化性オリゴマー(I)に由来する分子量500以上のモノマーは除く)は、硬化性成分の合計100質量%に対して8質量%以上50質量%未満であるのが好ましい。
 硬化性オリゴマー(I)は、例えば、上記オリゴマー(IA)の1種以上と、上記オリゴマー(IB)の1種以上を、硬化性オリゴマー(I)100質量%中にオリゴマー(IA)を1~50質量%、オリゴマー(IB)を30~95質量%含むように、混合することで得られる。硬化性樹脂組成物(X)は、硬化性樹脂組成物(X)100質量%中に硬化性オリゴマー(I)が50質量%以上含まれるように該硬化性オリゴマー(I)の含有量を調整して得られる。
 硬化性オリゴマー(I)におけるオリゴマー(IA)とオリゴマー(IB)の含有量は、オリゴマー(IA)が1~50質量%、オリゴマー(IB)が30~90質量%であってもよく、オリゴマー(IA)が1~40質量%、オリゴマー(IB)が40~95質量%であるのが好ましい。オリゴマー(IA)が5~40質量%、オリゴマー(IB)が50~95質量%であるのがより好ましい。オリゴマー(IA)とオリゴマー(IB)の合計量は硬化性オリゴマー(I)の100質量%中の50質量%以上が好ましい。オリゴマー(IA)とオリゴマー(IB)の合計量は硬化性オリゴマー(I)の100質量%中の80質量%以上がさらに好ましく、90質量%以上がより好ましい。
 オリゴマー(IA)は主に画分(i)、オリゴマー(IB)は主に画分(i)および画分(ii)に含まれるオリゴマーである。オリゴマー(IA)およびオリゴマー(IB)は分子量分布を有するため、一部が画分(iii)に含まれる。
 数平均分子量が15,000~100,000であるオリゴマー(IA)、数平均分子量が1,300~36,000であるオリゴマー(IB)を、硬化性オリゴマー(I)の100質量%中に、オリゴマー(IA)およびオリゴマー(IB)の合計量が50質量%以上となるように混合すると、画分(iii)の画分(I)に対する割合が40質量%以下となりやすい。
 硬化性オリゴマー(I)が、オリゴマー(IA)とオリゴマー(IB)の所定の割合の混合物である場合、画分(I)における画分(i)、画分(ii)、画分(iii)の割合は、例えば、オリゴマー(IA)とオリゴマー(IB)のGPCの測定結果から以下の方法で算出できる。
 オリゴマー(IA)とオリゴマー(IB)における同じ硬化性画分の同じ官能基数の成分、例えば、オリゴマー(IB)から算出された画分(ii)の2官能成分の質量部とオリゴマー(IA)から算出された画分(ii)の2官能成分の質量部を合計し、画分(I)に含まれる各画分の各官能基成分の質量部を求める。この質量部の総計を100として、各画分の各官能基成分の割合[質量%]を求める。画分ごとに各官能基成分の割合を合計することで、画分(I)の画分(i)~(iii)の占める割合を算出する。
 各オリゴマーの平均官能基数は、GPCの測定結果から算出する。図3は、オリゴマー(IB)である後述の製造例14で得られたオリゴマー(IB-1-1)のGPCによる測定結果のチャートを示す。図2は、オリゴマー(IA)である製造例11で得られたオリゴマー(IA-1-1)のGPCによる測定結果のチャートを示す。
 例えば、オリゴマー(IB-1-1)における、図3の線分d(分子量7,500を示す)と線分e(分子量23,000を示す)の間の画分(ii)の領域のように、一つの画分範囲に1官能成分と2官能成分が存在する場合には、常法により、図3の点線aのようにピークを分画してそれぞれの分子量分布やそれらの面積比を求める。また、オリゴマー(IA-1-1)における、図2のように分子量23,000以上の画分(i)の領域にピークのトップが存在し、分子量分布が1.3以上であるピークは2官能成分に由来するものとみなす。
 硬化性オリゴマー(I)は、オリゴマー(IA)とオリゴマー(IB)以外の硬化性オリゴマー(IC)として、ポリイソプレン(メタ)アクリレートオリゴマー(クラレ社製、商標:クラプレンUC-203、クラプレンUC-102)、ポリブタジエン(メタ)アクリレートオリゴマーなどを含んでもよい。硬化性オリゴマー(I)が硬化性オリゴマー(IC)を含む場合には、例えば、上記と同様にしてオリゴマー(IA)、オリゴマー(IB)、硬化性オリゴマー(IC)のGPCの測定結果から画分(I)の画分(i)~(iii)の占める割合を算出する。
<オリゴマー(IA)>
 オリゴマー(IA)は、アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有し、平均官能基数が2個以上、数平均分子量が15,000~100,000であるオリゴマーである。
 硬化速度の点で、オリゴマー(IA)中の硬化性官能基がアクリロイルオキシ基からなることが好ましい。
 オリゴマー(IA)の、1分子中における平均の硬化性官能基の数は2個以上であり、2個以上4個以下が好ましく、2個または3個がより好ましい。
 オリゴマー(IA)の数平均分子量は、23,000~100,000が好ましい。オリゴマー(IA)の数平均分子量がこの範囲であると、上記画分(i)~(iii)からなる硬化性オリゴマー(I)が得られやすい。
 硬化性オリゴマー(I)にオリゴマー(IA)が2種以上含まれる場合は、それぞれのオリゴマー(IA)の数平均分子量が上記の範囲内であることが好ましい。
 オリゴマー(IA)は、ポリオールとポリイソシアネート化合物とをインデックス105~150の範囲で反応させて末端にイソシアネート基を有するプレポリマーを得た後、該プレポリマーのイソシアネート基に、下記モノマー(m)を反応させて得られるものが好ましい。
 なお、インデックスとは、反応に用いるポリイソシアネート化合物のイソシアネート基のモル数をポリオールまたはモノオールの水酸基のモル数で除して100倍した値である。
 モノマー(m):分子量が125~600で、アクリロイルオキシ基を1個以上有し、かつイソシアネート基と反応する基を1個有するモノマー。
 オリゴマー(IA)として、1分子中にアクリロイルオキシ基とイソシアネート基とをそれぞれ1個以上有する化合物と、ポリオールとをインデックスの95~100でウレタン化反応させて得られるものも好ましい。
 モノマー(m)としては、活性水素を有する基(水酸基、アミノ基等。)およびアクリロイルオキシ基を有するモノマーが挙げられる。
 モノマー(m)の具体例としては、炭素数2~6のヒドロキシアルキル基を有するヒドロキシアルキルアクリレート(2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート等。)等が挙げられる。
 前記プレポリマーに反応させるモノマー(m)としては、炭素数2~4のヒドロキシアルキル基を有するヒドロキシアルキルアクリレートが好ましい。
 オリゴマー(IA)の製造に用いられるポリオールおよびポリイソシアネート化合物としては、公知の化合物を使用でき、例えば、国際公開第2009/016943号段落[0016]~[0019]に記載のウレタン系オリゴマー(a)の原料として記載された、ポリオール(i)、ジイソシアネート(ii)等が挙げられる。ポリオールとして、下記式(I-1)~式(I-4)で表される繰り返し鎖を有するポリジエン系ポリオールを用いることもできる。
 式(I-1)~式(I-4)において、実線と点線の二重線部分は、単結合または二重結合を示す。単結合である場合、該単結合は二重結合が水添されたものである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 オリゴマー(IA)の製造に用いられる、ポリオールの分子量は、水酸基1個当たりの数平均分子量が1,500~19,000が好ましく、4,000~10,000がより好ましく、6,500~10,000がさらに好ましい。この範囲であると、オリゴマー(IA)を所望の分子量の範囲としやすく、また粘度を調整しやすい。
 ポリオールおよびジイソシアネートと、モノマー(m)を反応させてオリゴマー(IA)を製造する方法として好ましい方法は、(a)平均水酸基数が2~3のポリオールとジイソシアネートをインデックスの105~150で反応してイソシアネート基末端プレポリマーを得た後、プレポリマーのイソシアネート基のモル数とモノマー(m)の水酸基のモル数との比が、1:0.98~1:1.05で反応する方法等が挙げられる。
 特に、オリゴマー(IA)であって、オキシアルキレン鎖を有し、全オキシアルキレン基に対して、オキシプロピレン基の含有量が50~100質量%であり、かつオキシエチレン基の含有量が0~50質量%であるオリゴマー(IA-PO)が、オリゴマー(IA)に含まれることが好ましい。
 該オリゴマー(IA-PO)は、ポリイソシアネート化合物と反応させるポリオールとして、オキシアルキレン鎖を有し、全オキシアルキレン基に対して、オキシプロピレン基の含有量が50~100質量%であり、かつオキシエチレン基の含有量が0~50質量%であるポリオキシアルキレンポリオールを用いることにより得られる。
 前記オキシプロピレン基の含有量が80~100質量%で、かつオキシエチレン基の含有量が0~20質量%であることがより好ましい。
 該オリゴマー(IA-PO)を用いる場合、オリゴマー(IA)に対する、該オリゴマー(IA-PO)の含有量は50~100質量%が好ましく、80~100質量%がより好ましい。該オリゴマー(IA-PO)の含有量が上記範囲の下限値以上であると、硬化性樹脂組成物(X)から得られる硬化物において柔軟性が得られやすい。
 特に、オリゴマー(IA-PO)は、全オキシアルキレン基に対する、オキシプロピレン基の含有量が80~100質量%、かつオキシエチレン基の含有量が0~20質量%、平均水酸基数が2~3、水酸基当たりの数平均分子量が1,500~19,000のポリオキシアルキレンポリオールと、無黄変性のジイソシアネートと、ヒドロキシアルキルアクリレートとの反応生成物であることが好ましい。無黄変性のジイソシアネートとは、脂肪族ジイソシアネート、脂環式系のイソシアネートおよび無黄変性芳香族ジイソシアネートからなる群から選ばれるジイソシアネートである。具体的にはヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート等が挙げられる。
<オリゴマー(IB)>
 オリゴマー(IB)は、アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有し、平均官能基数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である成分の含有量が30質量%以下であるオリゴマーである。オリゴマー(IB)は、硬化時の収縮低減、および硬化物の弾性率低減に寄与し、結果として表示装置に用いた時に硬化物が剥がれにくく、表示ムラの発生が抑制できる。また硬化性官能基を有するため、硬化物における安定性に優れ、ブリードアウトを生じ難い。
 オリゴマー(IB)の硬化性官能基は平均で0.8~1.2個が好ましく、1個であることがより好ましい。
 オリゴマー(IB)の製造工程において、硬化性官能基の数が1個のオリゴマー以外の副生成物が生じる場合、オリゴマー(IB)は該副生成物を含み、平均官能基数は該副生成物を含んだ値である。一般に、オリゴマー(IB)には、硬化性官能基の数が2である副生成物(2官能オリゴマー)が含まれる。硬化性官能基の数が2である成分(2官能成分)の含有量は30質量%以下である。硬化性官能記の数が2である成分の含有量は25質量%以下が好ましく、18質量%以下がさらに好ましい。
 オリゴマー(IB)の数平均分子量は、5,300~25,000が好ましく、7,300~20,000がさらに好ましい。オリゴマー(IB)の数平均分子量が該範囲であれば、画分(I)において上記画分(i)~(iii)が上記組成特性を満足する硬化性オリゴマー(IB)の数平均分子量が上記範囲であると、画分(iii)に含まれる低分子量の2官能オリゴマーの含有量を少なくすることができるため、表示装置の表示ムラの発生が抑制できる。
 画分(iii)に含まれる低分子量の2官能オリゴマーの含有量を少なくするために、オリゴマー(IB)100質量%中の、硬化性官能基が2個、数平均分子量が7,500未満のオリゴマーの割合が25質量%以下であることが好ましい。
 硬化性オリゴマー(I)にオリゴマー(IB)が2種以上含まれる場合は、それぞれのオリゴマー(IB)の数平均分子量が上記の範囲内であることが好ましい。
 硬化速度の点からはオリゴマー(IB)の硬化性官能基がアクリロイルオキシ基であることが好ましい。
 オリゴマー(IB)の具体例として、下記オリゴマー(IB-1)、下記オリゴマー(IB-2)、下記オリゴマー(IB-3)が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 オリゴマー(IB-2)、(IB-3)は、副生成物として2官能オリゴマーを多く含み得る。それに比べて、オリゴマー(IB-1)は、製造上、2官能オリゴマーの含有量を抑制しやすい。オリゴマー(IB)としてオリゴマー(IB-1)を用いることで、画分(I)において画分(i)~(iii)が上記組成特性を満足する硬化性オリゴマー(I)を得やすい。よって、オリゴマー(IB)としては、オリゴマー(IB-1)のみを用いることが好ましい。
[オリゴマー(IB-1)]
 オリゴマー(IB-1)は硬化性官能基が1個の下記式(1)で示されるオリゴマー(1)を含む。オリゴマー(1)は下記式(1a)で示されるモノオール(1a)と、下記式(1b)で示されるモノマー(1b)とをウレタン化反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 式(1)、(1a)、(1b)において、R11は水素原子またはメチル基であり、水素原子が好ましい。R12は炭素数2~4のアルキレン基であり、1分子中に存在する複数のR12は互いに同じであっても異なってもよい。1分子中に2種以上のR12が存在する場合、-OR12-の連鎖はブロックでもよくランダムでもよい。R12はエチレン基またはプロピレン基であることが好ましい。R13は炭素数1~20のアルキル基、または炭素数1~20のカルボン酸残基である。該カルボン酸残基は、カルボキシル基(-COOH)中の炭素原子を含む炭素数が1~20であるモノカルボン酸から水素原子を1個除いた1価の基である。R13は反応が容易な点でアルキル基が好ましく、炭素数2~8のアルキル基が好ましい。aは1~4の整数であり、1~2の整数が好ましい。bは20~600の整数であり、35~500の整数が好ましく、65~250の整数がより好ましい。
 オリゴマー(1)の製造に際してモノオール(1a)は、通常、以下のようにして製造される、モノオール(1a)の他に副生物としてのジオールを含む組成物(以下、「モノオール(1a)成分」という。)のかたちで用いられる。そのため、得られるオリゴマー成分中には、単官能のオリゴマー(1)以外に、ジオールから生成される硬化性官能基を2個有する2官能のオリゴマーが含まれる。なお、得られるオリゴマー成分がオリゴマー(IB-1)として使用される。
 モノオール(1a)成分の主成分であるモノオール(1a)と、モノマー(1b)は、1分子中に存在するウレタン化反応が可能な基が各々1個であるため、上記のようにして得られるオリゴマー(IB-1)の1分子中のウレタン結合が平均して1個に制御されやすい。オリゴマー(IB-1)の1分子中のウレタン結合の数が少ないと粘度が低くなりやすい。したがって、オリゴマー(IB-1)を含有することで硬化性樹脂組成物(X)が低粘度であり、柔軟性に優れた硬化物が得られやすい。
 モノオール(1a)はポリオキシアルキレンモノオールである。モノオール(1a)成分の水酸基価は1.6~56.1mgKOH/gが好ましく、2.8~14.0mgKOH/gがより好ましく、3.5~12.5がさらに好ましい。水酸基価から換算した分子量は1,000~35,000が好ましく、4,000~20,000がより好ましく、4,500~16,000がさらに好ましい。
 モノオール(1a)を含むモノオール(1a)成分は、例えば、一価アルコールやカルボン酸等の開始剤にアルキレンオキシドを開環付加重合することで得られる。該開環付加重合に用いる触媒としては、アルカリ金属化合物触媒、複合金属シアン化物錯体触媒(以下DMC触媒とも記す)、ホスファゼン化合物触媒、ルイス酸であるホウ素系カチオン触媒等が挙げられる。開環付加重合に際して、水を開始剤として副生する低分子量の2官能のポリオール、すなわちジオールの混入を少なくできる点、また高分子量のモノオールの製造が容易である点で、DMC触媒が好ましい。DMC触媒を用いて製造されたモノオールの水酸基価から換算した分子量は1,000~35,000であることが好ましい。
 副生する低分子量ジオールの分子量は、モノオールの2倍となる。該低分子量ジオールの量が少なくなるようにモノオール(1a)を含むモノオール(1a)成分を製造することが好ましい。DMC触媒を用いて製造されたモノオール(1a)成分を用いると、硬化性樹脂組成物(X)中に残渣としてZnとCoが合計0.01~100ppm存在する。
 このようにして得られるモノオール(1a)成分はモノオール(1a)の他に製造中に副生するジオールを含んでいてもよいが、該ジオールの量は生成したモノオール(1a)成分の全量に対して30質量%以下が好ましく、25質量%以下がより好ましく、18質量%以下がさらに好ましい。モノオール(1a)の製造において、反応系内の水分量を少なくすることで、ジオールの副生量を前記範囲とすることができる。
 モノオール(1a)の製造において、反応系中の水分量の合計量は250ppm以下が好ましく、200ppm以下がより好ましい。反応系中の水分量がこの範囲であると、モノオール(1a)の副生成物である水を開始剤としたジオールの生成が抑制される。オリゴマー(IB-1)の製造において、このようにしてジオールの含有量が抑制されたモノオール(1a)成分を用いると、ジオールに由来する2官能のオリゴマーの生成量を抑制しやすく、所定の含有量のオリゴマー(1)を含むオリゴマー(IB-1)が容易に得られる。
 反応系内の水分量を上記範囲とするには、開始剤を反応槽に供給後に水分を減圧除去してもよい。また、付加するアルキレンオキシドの水分量を200ppm以下にすることでも反応系内の水分量を調整できる。
 開環付加重合触媒がアルカリ金属化合物触媒である場合は、通常触媒を含む95%または85%の水溶液として用いられるため反応系内の水分量が高くなりやすいため、開始剤の水酸基をアルコラート化後に水分を減圧除去する。
 DMC触媒は触媒中の水分量が少ないため好ましい。さらにDMC触媒を用いると、分子量分布の小さいモノオールが得られる。
 モノオール(1a)成分中のモノオール(1a)と、ジオールとの含有割合は、製造したモノオール(1a)成分のGPC測定により求めることができる。モノオール(1a)成分の平均水酸基数は、製造したモノオール(1a)成分のGPC測定により、後述の実施例におけるモノオール成分の平均水酸基数の算出方法と同様に求めることができる。
 モノオール(1a)成分を用いて、モノオール(1a)とモノマー(1b)とを反応させる際の、モノオール(1a)成分に対する、モノマー(1b)の配合比は、インデックス(NCO/OH比)で80~100が好ましく、90~100がより好ましく、100が最も好ましい。
 インデックスを上記範囲とすることで、オリゴマー(IB-1)の1分子当たりの硬化性官能基を平均して1個に近づけることができる。
 特に、オリゴマー(1)において1分子中に存在するR12の全量に対してプロピレン基の含有量が50~100質量%であるオリゴマー(1-PO)を含むオリゴマー(IB-1-PO)が、オリゴマー(IB)に含まれることが好ましい。
 該オリゴマー(1-PO)において、該R12の全量に対するプロピレン基の割合は80~100質量%がより好ましく、100質量%が特に好ましい。1分子中に存在するR12のうち、プロピレン基以外のアルキレン基がエチレン基であることが好ましい。
 また該オリゴマー(IB-1-PO)を用いる場合、オリゴマー(IB)に対する、該オリゴマー(IB-1-PO)の含有量は50~100質量%が好ましく、80~100質量%がより好ましい。該オリゴマー(IB-1-PO)の含有量が上記範囲の下限値以上であると低粘度であり、柔軟性に優れる。
[オリゴマー(IB-2)]
 オリゴマー(IB-2)は下記式(2)で表される硬化性官能基が1個のオリゴマー(2)を含む。オリゴマー(2)は、下記式(2a)で示されるモノオール(2a)と、下記式(2b)で示されるジイソシアネート化合物(2b)とを反応させて末端にイソシアネート基を有するプレポリマーを得た後、該プレポリマーのイソシアネート基に、下記式(2c)で示されるモノマー(2c)をウレタン化反応させることによって得られる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 モノオール(2a)はモノオール(1a)と好ましい態様を含め同様である。式(2a)において、dは20~600の整数であり、35~500の整数が好ましく、65~250の整数がより好ましい。
 式(2b)において、R24は炭素数6~14の飽和炭化水素基である。ジイソシアネート化合物(2b)としては、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートが挙げられる。
 式(2c)において、R21は水素原子またはメチル基であり、水素原子が好ましい。cは1~4の整数であり、1~2の整数が好ましい。
 モノオール(2a)は、モノオール(1a)と同様にして、モノオール(2a)を主成分とし、副生物としてのジオールを含む組成物(以下、「モノオール(2a)成分」という。)のかたちで上記プレポリマーの製造に用いられる。それにより、プレポリマーの製造に際しては2個のイソシアネート基を有するプレポリマー(2官能のプレポリマー)が副生される。そして、最終的に得られるオリゴマー成分中には、単官能のオリゴマー(2)以外に、2官能のプレポリマーから生成される硬化性官能基を2個有する2官能のオリゴマーが含まれることになる。なお、得られるオリゴマー成分がオリゴマー(IB-2)として使用される。
 モノオール(2a)成分の水酸基価は1.6~56.1mgKOH/gが好ましく、水酸基価から換算した分子量は1,000~35,000が好ましく、4,000~20,000がより好ましい。
 モノオール(2a)を含むモノオール(2a)成分を製造する際の水分量や、分子量については、モノオール(1a)成分の場合と同様である。
 また、モノオール(2a)成分の分子量を上記範囲とすることで、オリゴマー(IB-2)の数平均分子量を1,300~36,000の範囲に調整することができる。
 モノオール(2a)成分を用いて、モノオール(2a)とジイソシアネート化合物(2b)とを反応させて、末端にイソシアネート基を有するプレポリマーを得る反応はウレタン化反応であり、公知の手法を用いて行うことができる。これらを反応させる際の、モノオール(2a)成分に対する、ジイソシアネート化合物(2b)の配合比は、インデックス(NCO/OH比)で100~200が好ましく、180~200がより好ましく、200が最も好ましい。
 プレポリマーを製造する際のインデックスを上記範囲とすることで、最終的に得られるオリゴマー(IB-2)における平均官能基数を0.5~1.5の範囲に調整することができる。なお、オリゴマー(IB-2)には、主成分である単官能のオリゴマー(2)に加えて、副生成物として2官能のプレポリマーから生成される2官能のオリゴマー、硬化性官能基を有しないジイソシアネートの両末端がモノオールと反応した0官能のウレタンオリゴマーが含まれる。
 オリゴマー(IB-2)を得るために行われる、上記で得られたイソシアネート基末端ウレタンプレポリマーと、モノマー(2c)との反応はウレタン化反応であり、公知の手法を用いて行うことができる。
 これらを反応させる際の、該プレポリマーと、モノマー(2c)の配合比は、該プレポリマー中のイソシアネート基:モノマー(2c)中の水酸基のモル比が、1:1.0~1.1であることが好ましく、1:1.0~1.05がより好ましい。
 プレポリマー中のイソシアネート基:モノマー(2c)中の水酸基のモル比を、1:1.0~1.1とすることで、得られるオリゴマー(IB-2)における平均官能基数を0.5~1.5の範囲に調整することができる。
[オリゴマー(IB-3)]
 オリゴマー(IB-3)は、下記式(3a)で示されるジオール(3a)と、モノマー(1b)とを反応させることによって得られるオリゴマーである。
Figure JPOXMLDOC01-appb-C000011
 式(3a)において、-OR32-は式(1a)における-OR12-と好ましい態様も含め同様である。またR32は式(1a)におけるR12と、eは式(1a)におけるbと好ましい態様も含め同様である。
 eが前記範囲であると、オリゴマー(IB-3)の数平均分子量を1,300~36,000の範囲に調整することができる。
 ジオール(3a)と、モノマー(1b)とを反応させる際の、ジオール(3a)に対する、モノマー(1b)の配合比は、インデックス(NCO/OH比)で30~50が好ましく、40~50がより好ましく、50が最も好ましい。
 かかる反応においては、ジオール(3a)の両末端の水酸基がモノマー(1b)と反応し得るため、1分子中の硬化性官能基の数が1個であるオリゴマーのほかに、2個であるオリゴマー(副生成物)も生成し得る。また反応系には、硬化性官能基を有しない両末端が水酸基の高分子量ジオールが副生物として含まれる。かかる副生成物も含めた、オリゴマー(IB-3)の平均官能基数は0.5~1.5が好ましく、0.6~1.2より好ましく、0.8~1.15がさらに好ましい。
 インデックスが前記範囲であると、ジオール(3a)の1分子にモノマー(1b)の1分子が反応した化合物が得られやすく、副生成物も含めたオリゴマー(IB-3)の平均官能基数を0.5~1.5の範囲に調整しやすい。
<水酸基含有モノマー(II)>
 水酸基含有モノマー(II)は、下式(II-1)~下式(II-4)で表される化合物が好ましい。モノマー(II)は硬化性樹脂組成物(X)の硬化物の密着性の向上に寄与する。また硬化性樹脂組成物(X)の硬化物の光透過率の向上に寄与する。
 モノマー(II)は1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000012
 式(II-1)において、Rは水素原子またはメチル基であり、水素原子が好ましい。Rは1個または2個の水酸基を有する炭素数2~8のヒドロキシアルキル基である。該ヒドロキシアルキル基の炭素数は2~6が好ましい。
 式(II-1)で表される化合物としては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等が挙げられる。これらのうち、柔軟性、低揮発性の点で4-ヒドロキシブチルアクリレート、6-ヒドロキシヘキシルアクリレートが好ましい。
 式(II-2)において、Rは水素原子またはメチル基であり、水素原子が好ましい。mは1~3の整数であり、1~2が好ましい。
 式(II-3)において、Rは水素原子またはメチル基であり、水素原子が好ましい。Qは炭素数2~4のオキシアルキレン基である。1分子中に存在する複数のQは互いに同じであっても異なってもよい。1分子中に2種以上のQが存在する場合、-Q-の連鎖はブロックでもよくランダムでもよい。Qはオキシエチレン基またはオキシプロピレン基であることが好ましい。nは2~8の整数であり、2~6が好ましい。
 式(II-4)で表される化合物は、2-ヒドロキシ-3-フェノキシプロピルアクリレートである。
 これらのうち、工業的に入手が容易であり、また不純物が少ない点で式(II-1)または式(II―4)で表わされる化合物が好ましい。
 硬化性樹脂組成物(X)がモノマー(II)を含有する場合、その含有量は、硬化性樹脂組成物(X)の全量に対して1~20質量%が好ましく、1~15質量%がより好ましい。該モノマー(II)の含有量が上記範囲の下限値以上であると、該モノマー(II)を添加することによる密着性の向上効果が充分に得られやすく、上限値以下であると低硬化収縮率の点で良好な物性が得られやすい。
 保護板が接合樹脂層との接着側の面にタッチセンサーを形成するOGS(One Glass Solution)タイプのタッチパネルである場合、硬化性樹脂組成物を硬化してなる接合樹脂層はタッチセンサーの誤作動を防止するため誘電率が低いことが求められる。比誘電率は、4.5以下であるとOGSタイプのタッチパネルにおいてタッチセンサーの誤作動を防止できるので好ましい。硬化性樹脂組成物(X)における該モノマー(II)の含有量が上記範囲の上限値以下であるとこれを用いて得られる接合樹脂層は低誘電率になりやすい。
 なお、硬化性オリゴマー(I)の合成において、反応に用いた、水酸基を含有するモノマーは、該オリゴマーの一部として存在するため、硬化性樹脂組成物(X)における水酸基含有モノマー(II)の含有量には含めない。一方、硬化性オリゴマー(I)の合成において、合成時または合成後に希釈剤として添加するモノマー(プレポリマーと反応しないもの)が、モノマー(II)に該当する場合は、当該モノマーも硬化性樹脂組成物(X)におけるモノマー(II)の含有量に含めるものとする。
<長鎖アルキル基含有モノマー(III)>
 長鎖アルキル基含有モノマー(III)は式(III)で表される化合物である。硬化性樹脂組成物(X)にモノマー(III)を含有させると、後述する、減圧下で硬化性樹脂組成物(X)を封じ込め、それより高圧の雰囲気中で硬化させる方法(減圧密封-昇圧硬化法)で硬化物を形成する際に、硬化物中の気泡が消失しやすくなる。
 モノマー(III)は1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000013
 式(III)において、Rは水素原子またはメチル基であり、水素原子が好ましい。Rは炭素数8~22のアルキル基である。該アルキル基の炭素数は8~18が好ましい。
 式(III)で表される化合物としては、例えばラウリル(メタ)アクリレート(n-ドデシル(メタ)アクリレート)、イソステアリル(メタ)アクリレート、イソデシル(メタ)アクリレート等が挙げられる。これらのうち、柔軟性、低粘度、低結晶性の点でラウリルアクリレート(n-ドデシルアクリレート)、イソステアリルアクリレートが好ましい。
 硬化性樹脂組成物(X)がモノマー(III)を含有する場合、その含有量は、硬化性樹脂組成物(X)の全量に対して1~20質量%が好ましく、1~15質量%がより好ましい。該モノマー(III)の含有量が上記範囲の下限値以上であると、該モノマー(III)の添加効果が充分に得られ易く、上限値以下であると、低硬化収縮率の点で良好な物性が得られやすい。
 硬化性樹脂組成物(X)は、本発明の効果を損なわない範囲で、上記硬化性オリゴマー(I)、モノマー(II)、(III)以外のその他の成分を含んでもよい。その他の成分としてはロジンエステル、テルペンフェノール、水添テルペンフェノール等のタッキファイヤ、アジピン酸エステル、フタル酸エステルなどの可塑剤、ポリオキシアルキレンポリオール、末端をアルコキシ化したポリオキシアルキレンポリオールなどが挙げられる。誘電率を低く保ちたい場合には、水酸基を有する化合物はできるだけ含まない方がよい。その他の成分の含有量は、硬化性樹脂組成物(X)の全量に対して0~48質量%が好ましく、0~28質量%がより好ましい。上記硬化性オリゴマー(I)、モノマー(II)、(III)以外のその他の成分の含有量が上記範囲の下限値以上であると、柔軟性や密着性の効果が充分に得られやすく、上限値以下であると、耐久性の点で良好となる。
<光重合開始剤>
 硬化性樹脂組成物(X)は、光硬化性樹脂組成物であってもよく、熱硬化性樹脂組成物であってもよい。低温で硬化でき、かつ硬化速度が速い点から光硬化性樹脂組成物が好ましい。硬化性樹脂組成物(X)が光硬化性樹脂組成物である場合、その他の成分として光重合開始剤を含有することが好ましい。光硬化性樹脂組成物であれば、例えば表示装置の製造に用いたときに、高い温度を必要としないことから、高温による表示デバイスの損傷のおそれも少ない。
 光重合開始剤としては、アセトフェノン系、ケタール系、ベンゾインまたはベンゾインエーテル系、フォスフィンオキサイド系、ベンゾフェノン系、チオキサントン系、キノン系等の光重合開始剤が挙げられる。これらのうち、フォスフィンオキサイド系、チオキサントン系の光重合開始剤が好ましく、光重合反応後に着色が抑えられやすい点ではフォスフィンオキサイド系が好ましい。光重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化性樹脂組成物(X)が光重合開始剤を含有する場合、その含有量は硬化性成分の合計100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。
<添加剤>
 硬化性樹脂組成物(X)はさらにその他の成分として添加剤を含有してもよい。添加剤としては、重合禁止剤、光硬化促進剤、連鎖移動剤、光安定剤(紫外線吸収剤、ラジカル捕獲剤等。)、酸化防止剤、難燃化剤、接着性向上剤(シランカップリング剤等)、顔料、染料等が挙げられる。硬化性樹脂組成物(X)に添加する添加剤としては、重合禁止剤、光安定剤が好ましい。特に、重合開始剤より少ない量の重合禁止剤を含ませることによって、硬化性樹脂組成物(X)の貯蔵安定性を改善でき、硬化後の分子量も調整しやすい。
 重合禁止剤としては、ハイドロキノン系(2,5-ジ-tert-ブチルハイドロキノン等。)、カテコール系(p-tert-ブチルカテコール等。)、アンスラキノン系、フェノチアジン系、ヒドロキシトルエン系等の重合禁止剤が挙げられる。
 前記紫外線吸収剤は、硬化性樹脂組成物(X)の光劣化を防止して、耐候性を改善するために使用されるものであり、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系等の紫外線吸収剤等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば国際公開第2014/017328号の段落[0076]に記載のものが使用できる。
 前記光安定剤は、硬化性樹脂組成物(X)の光劣化を防止して、耐候性を改善するために使用されるものであり、例えば、ヒンダードアミン系の光安定剤が挙げられる。
 ヒンダードアミン系の光安定剤としては、例えば、国際公開第2014/017328号の段落[0077]に記載のものが使用できる。
 前記酸化防止剤は、硬化性樹脂組成物(X)の酸化を防止して、耐候性、耐熱性を改善するために使用されるものであり、例えば、フェノール系、リン系の酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、例えば国際公開第2014/017328号の段落[0078]に記載のものが使用できる。
 リン系酸化防止剤としては、国際公開第2014/017328号の段落[0078]に記載のものが使用できる。
 また、複数の酸化防止剤、光安定剤等を混合した製品も使用できる。例えばBASF社製のIRGASTAB PUR68、TINUVIN B75等が挙げられる。
 硬化性樹脂組成物(X)が添加剤を含有する場合、添加剤の合計の含有量が硬化性成分の100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。
 硬化性樹脂組成物(X)において連鎖移動剤の含有量は少ない方が好ましく、硬化性成分の100質量部に対して、3質量部以下が好ましく、2質量部以下がより好ましく、連鎖移動剤を含まないことが特に好ましい。
 硬化性樹脂組成物(X)の粘度は、25℃においてE型粘度計を用いて測定した値である。硬化性樹脂組成物(X)の粘度は0.05~50Pa・sが好ましく、1~20Pa・sがより好ましく、1.5~5Pa・sがさらに好ましい。該粘度が0.05Pa・s以上であると、硬化性樹脂組成物(X)の流動性と硬化させた後の硬化物の物性の両立を図りやすい。50Pa・s以下であると、未硬化の樹脂層を形成する場合の作業性がよい。また後述する減圧下で硬化性樹脂組成物(X)を封じ込め、それより高圧の雰囲気中で硬化させる方法(減圧密封-昇圧硬化法)に好適に用いることができ、硬化物中の気泡を良好に消失させることができる。
<作用・効果>
 本発明の硬化性樹脂組成物(X)は、オリゴマー(IA)とオリゴマー(IB)を含む硬化性オリゴマー(I)を含むものであり、硬化性成分として、上記画分(I)において画分(i)~(iii)が上記組成特性を満足する硬化性オリゴマー(I)を含むことにより、後述の実施例に示されるように、硬化時の収縮を低減し、硬化物の弾性率を低減することができる。このため、硬化物層の硬化収縮による応力が低減され、硬化後の経時における剥がれが防止される。
 したがって、本発明の硬化性樹脂組成物(X)は、一対の面材を積層一体化する接合樹脂層を形成する材料として好適であり、硬化性樹脂組成物(X)からなる未硬化層の硬化によって面材に生じる応力を低減することができる。
 例えば、表示デバイスと、保護板等の透明面材との積層構造を有する表示装置の製造において、透明面材と表示デバイスとの間に挟持される接合樹脂層を硬化性樹脂組成物(X)の硬化物で形成することにより、表示デバイスに及ぼす応力を低減することができ、これによって表示ムラなど表示品位が損なわれるのを効果的に防止することができる。また、硬化物の弾性率が低減されて表示デバイスに及ぼす応力を低減することができるため、接合した面材との剥がれが生じにくい。
 特に、表示デバイスが液晶表示デバイスであり、さらにIPS(In-plane Switching)タイプや、視角改善する光学フィルムを表示面に貼合したTN(Twisted Nematic)タイプの表示装置の場合には、表示デバイスに加わる応力が表示品位に悪影響を及ぼしやすいため、本発明の硬化性樹脂組成物(X)を用いることによる効果が大きい。
≪積層体の製造方法≫
 本発明の積層体の製造方法は、一対の面材間に硬化性樹脂組成物(X)からなる未硬化層を挟持させる工程と、該未硬化層を硬化させる工程を有する。これらの工程は公知の方法を適宜用いて行うことができる。
 面材は特に限定されないが、一対の面材の少なくとも一方が透明面材であると、前記未硬化層を硬化させる際に、該透明面材を介して光照射して硬化させることができるため好ましい。
 表示デバイスと、保護板等の透明面材とを積層一体化する場合など、硬化後の接合樹脂層に気泡が残留していないことが好ましい場合には、減圧下で、一対の面材間に硬化性樹脂組成物(X)を封じ込め、それよりも高圧の雰囲気中で硬化させる方法(減圧密封-昇圧硬化法)を用いることが好ましい。
 具体的には、第1の減圧雰囲気下において、一対の面材間に硬化性樹脂組成物(X)からなる未硬化層が挟持され、かつ該未硬化層の周囲に設けられたシール部で密閉された積層前駆体を形成する第1の工程と、前記第1の減圧雰囲気よりも高圧である第2の雰囲気下で前記未硬化層を硬化させる第2の工程を有する方法で積層体を製造することが好ましい。
 かかる減圧密封-昇圧硬化法は公知であり、例えば国際公開第2009/016943号の段落[0036]~段落[0042]、国際公開第2011/158840号の段落[0080]~[0091]に記載された手法を用いることができる。
 例えば第1の減圧雰囲気中の圧力が100Pa以下であり、第2の雰囲気が大気圧雰囲気である条件で好適に行うことができる。
 硬化性樹脂組成物(X)からなる未硬化層の硬化後の層(一対の面材間の接合樹脂層)の厚さは、例えば0.03~2mmが好ましく、0.1~0.8mmがより好ましい。
 シール部は、国際公開第2009/016943号の段落[0036]に記載されているように、両面接着タイプのシール材を用いて形成してもよく、さらに光透過性を有する両面接着タイプのシール材上に光硬化性樹脂を塗布してシール部を形成してもよい。シール部の光硬化性樹脂は、硬化性樹脂組成物(X)からなる未硬化層を硬化させると同時に硬化させることができる。
 または、国際公開第2011/158840号の段落[0039]に記載されているように、硬化性樹脂組成物(X)よりも粘度が高い(例えば25℃において500~3000Pa・s)シール部形成用光硬化性樹脂組成物を用いてシール部を形成してもよい。該シール部は、硬化性樹脂組成物(X)からなる未硬化層を硬化させると同時に硬化させてもよく、または硬化性樹脂組成物(X)からなる未硬化層を硬化させる前に半硬化させた後、該未硬化層を硬化させると同時にさらに硬化させてもよい。
 本発明において、一対の面材の一方が透明面材であり、他方が表示デバイスであることが好ましい。透明面材は光透過性を有する面材(透明面材ともいう)である。透明面材としては、ガラス板、または透明樹脂板が挙げられ、耐候性、低複屈折性、高い平面精度等の点から、ガラス板が好ましい。表示デバイスとしては、液晶表示デバイス、EL表示デバイス、プラズマ表示デバイス、電子インク型表示デバイス等がある。表示デバイスは、少なくとも一方が透明面材である一対の面材を貼り合わせた構造を有しており、透明面材側が接合樹脂層と接するように配置する。この際、一部の表示デバイスにおいては、接合樹脂層と接する側の透明面材の最外層側に偏光板、位相差板等の光学フィルムが設置されていることがある。この場合、接合樹脂層は表示デバイス上の光学フィルムと表面材とを接合する様態となる。
 後述の実施例に示すように、硬化性樹脂組成物(X)は減圧密封-昇圧硬化法に好適な低粘度(例えば25℃において0.05~50Pa・s)を満たしながら、低硬化収縮率および硬化物の低弾性率を同時に達成することができる。
 したがって、接合樹脂層の硬化による応力発生が良好に抑えられ、かつ接合樹脂層中の気泡が良好に消失した積層体、好ましくは表示装置を得ることができる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<モノオールの平均水酸基数の算出方法>
 以下の実施例において、モノオールの水酸基数は下記方法にて算出した。
 製造例3、4および5のモノオールについてGPCを測定すると、低分子量側に水酸基が1つの成分のピーク、高分子量側に水分由来による水酸基が2つの成分(副生成物)のピークの2つのピークが得られた。それぞれのピークを分画し数平均分子量を算出した。それぞれのピークの面積比から水酸基が1つの成分と2つの成分の含有割合を求めた。水酸基が1つの成分の含有割合を水酸基が1つの成分に対応するピークの数平均分子量で除して、この成分中の数平均分子量を単位とする分子数を求めた。水酸基が2つの成分についても同様に数平均分子量を単位とする分子数を求めた。これらの分子数と官能基数とで加重平均することにより製造したモノオールの平均の水酸基数(以下、「平均水酸基数」という。)を求めた。
 なお、製造例1および2のポリオールは水酸基数が2である成分のみからなる原料を用いているため、この方法による平均水酸基数の算出は行わず、原料の水酸基数を平均水酸基数とした。
[GPC測定条件]
 使用機種:HLC-8220GPC(東ソー社製)。
 データ処理装置:SC-8020(東ソー社製)。
 使用カラム:TSG gel SuperMultiporeHZ 4000(東ソー社製)の2本と、TSG gel SuperMultiporeHZ 2500(東ソー社製)の2本を連結して使用した。
 カラム温度:40℃。
 検出器:RI。
 溶媒:テトロヒドロフラン。
 流速:0.35mL/分。
 試料濃度:0.5質量%。
 注入量:20μL。
 検量線作成用標準サンプル:ポリスチレン([Easical]PS-2[Polystyrene Standards]、Polymer Laboratories社製)。
[製造例1:ポリオール(1)の製造]
 撹拌機および窒素導入管を備えた耐圧反応器に、DMC触媒である亜鉛へキサシアノコバルテート-tert-ブチルアルコール錯体の0.2g、および開始剤であるエクセノール-1020(旭硝子社製、ポリオキシプロピレングリコール、水酸基数:2、水酸基価から換算した分子量:1000)の400gを仕込み、130℃の窒素雰囲気として、モノエポキシドであるプロピレンオキシド(以下、POということもある。)の7200gを一定の速度で加えながら7時間かけて投入した。その後、耐圧反応器の内圧の低下が止まったことを確認した後に生成物を抜き出し、水酸基価6.4mgKOH/g(水酸基価から換算した分子量:17531)のポリオキシアルキレンジオール(ポリオール(1))の7600gを得た。ポリオール(1)の平均水酸基数は、原料に用いたエクセノール-1020の水酸基数と同じである。ポリオール(1)の水酸基価、GPCによる数平均分子量(全体)、1官能成分部分の数平均分子量(1官能)、2官能成分の数平均分子量(2官能)等の分子特性を表1に示す(以下、同様。)。得られた生成物中にはZnは4ppm、Coは1ppm含まれていた。
[製造例2:ポリオール(2)の製造]
 撹拌機および窒素導入管を備えた耐圧反応器内に、DMC触媒である亜鉛へキサシアノコバルテート-グライム錯体の0.2g、および開始剤であるエクセノール-720(旭硝子社製、ポリオキシプロピレングリコール、水酸基数:2、水酸基価から換算した分子量:700)の700gを仕込み、130℃の窒素雰囲気下として、POの2340gを5時間反応させ、触媒を失活させた。その後、触媒として水酸化カリウムの12gを投入し、120℃で2時間脱水処理を行い、アルコラート化後、EOの960gを反応させた。耐圧反応器から生成物を抜き出し、水酸基価28.7mgKOH/g(水酸基価から換算した分子量:3909)のポリオキシアルキレンジオール(ポリオール(2))を得た。ポリオール(2)の平均水酸基数は、原料に用いたエクセノール-720の水酸基数と同じである。ポリオール(2)の水酸基価等の分子特性を製造例1と同様に表1に示す。得られた生成物中にはZnは1ppm以下、Coは1ppm以下含まれていた。
[製造例3:モノオール(3)の製造]
 撹拌機および窒素導入管を備えた耐圧反応器に、DMC触媒である亜鉛へキサシアノコバルテート-tert-ブチルアルコール錯体の0.2g、および開始剤であるn-ブタノールの59gを仕込み、130℃の窒素雰囲気として、モノエポキシドであるPOの3941gを一定の速度で加えながら7時間かけて投入した。その後、耐圧反応器の内圧の低下が止まったことを確認した後に生成物を抜き出し、ポリオキシアルキレンモノオール(モノオール(3))の4000gを得た。得られた生成物中にはZnは8ppm、Coは2ppm含まれていた。モノオールの水酸基価、水酸基価から換算した分子量、GPCの測定結果、および上記のモノオールの平均水酸基数の算出方法に従って算出した平均水酸基数を、表1に示す(以下、同様)。
[製造例4:モノオール(4)の製造]
 撹拌機および窒素導入管を備えた耐圧反応器に、DMC触媒である亜鉛へキサシアノコバルテート-tert-ブチルアルコール錯体の0.2g、および開始剤であるn-ブタノールの30gを仕込み、130℃の窒素雰囲気として、POの3970gを一定の速度で加えながら7時間かけて投入した。その後、耐圧反応器の内圧の低下が止まったことを確認した後に生成物を抜き出し、ポリオキシアルキレンモノオール(モノオール(4))の4000gを得た。得られた生成物中にはZnは8ppm、Coは2ppm含まれていた。
[製造例5:モノオール(5)の製造]
 撹拌機および窒素導入管を備えた耐圧反応器に、DMC触媒である亜鉛へキサシアノコバルテートグライム錯体の0.8g、および開始剤であるn-ブタノールを68g、水を2.81g仕込み、120℃の窒素雰囲気として、POの13710gを一定の速度で加えながら7時間かけて投入した。その後、耐圧反応器の内圧の低下が止まったことを確認した後に生成物を抜き出し、ポリオキシアルキレンモノオール(モノオール(5))の13778gが得られた。表1に示すように、モノオール(5)はモノオール(3)や(4)と比べて、数平均分子量が低い2官能成分を多く含んでいた。得られた生成物中にはZnは1ppm以下およびCoは1ppm以下含まれていた。
Figure JPOXMLDOC01-appb-T000014
<オリゴマーの平均官能基数の算出方法>
 以下の製造例11~16において、オリゴマーの平均官能基数は下記の方法にて算出した。GPCの測定条件はモノオールの平均水酸基数の算出方法と同様である。
 具体的な算出方法を製造例14で得られたオリゴマー(IB-1-1)のGPCチャートである図1を例として説明する。オリゴマー(IB-1-1)についてGPCを測定すると、低分子量側に1官能成分のピーク、高分子量側に2官能成分のピークが得られた(図1)。まず、図1の点線aのように常法によりGPCチャートを1官能成分と2官能成分とに分画する。分画したそれぞれについて数平均分子量と含有割合(面積比)を求めた。1官能成分の含有割合を1官能成分に相当する分画部分の数平均分子量で除して、1官能成分中の数平均分子量を単位とする分子数を求めた。2官能成分についても同様に2官能成分中の数平均分子量を単位とする分子数を求めた。これらの分子数とそれぞれの官能基数とを加重平均することにより製造したオリゴマーの平均官能基数を求めた。
[製造例11:オリゴマー(IA-1-1)の製造]
 撹拌機および窒素導入管を備えた反応容器内に、製造例1で得たポリオール(1)(平均水酸基数:2)の981.5g、およびポリイソシアネート化合物としてイソホロンジイソシアネート(以下、「IPDI」と記す。)の15.2gを仕込み、触媒であるジオクチル錫ジステアレート(以下、「DOTDS」と記す。)の0.0997gの存在下、70℃で10時間反応させ、イソシアネート基末端ウレタンプレポリマー(プレポリマー(P-1))を得た。
 反応中、一定時間毎に反応容器の内容物の一部を取り出して、理論イソシアネート基含有量に対するイソシアネートの反応率を求めた。イソシアネート基の含有量が、理論イソシアネート基含有量以下になったことを確認して反応を終了させ、イソシアネート基末端プレポリマーを得た。イソシアネート基の含有量はJIS K7301-1995記載のイソシアネート基含有率測定方法に準拠し測定した。以下、同様にして反応を終了した。
 ポリオール(1)に対するIPDIの配合量はインデックス(NCO/OH比)で122であった。プレポリマー(P-1)のイソシアネート基含有量は0.244質量%であった。
 プレポリマー(P-1)の997.1g(イソシアネート基量:0.056mol)に、触媒であるジブチル錫ジラウレート(以下、「DBTDL」と記す。)の0.27g、重合禁止剤である2,5-ジ-tert-ブチルハイドロキノン(以下、「DtBHQ」と記す。)の0.3g、およびモノマー(2c)においてcが1である2-ヒドロキシエチルアクリレート(以下、「HEA」と記す。)の6.7g(水酸基量:0.057mol)を加え、JIS K1603-1に則ったNCO滴定にてイソシアネート基含有率の測定を行いながら、イソシアネート基がなくなるまで反応を行い、オリゴマー(ウレタンアクリレートオリゴマー)(IA-1-1)を得た。
 得られたオリゴマー(IA-1-1)の数平均分子量は34,800であった。計算により求めた平均官能基数は2.0であり、原料として用いたポリオール(1)の平均水酸基数と同じであった。オリゴマー(IA-1-1)はオリゴマー(IA)に分類されることが確認された。また、オリゴマー(IA-1-1)は、ポリオール(1)に由来するZnおよびCoを含有する。得られたオリゴマーのGPCの測定結果(全体、1官能成分および2官能成分)と上記のオリゴマーの平均官能基数の算出方法に従って算出された平均官能基数を表2に示す(以下、同様)。
[製造例12:オリゴマー(IA-1-2)の製造]
 撹拌機および窒素導入管を備えた反応容器内に、製造例2で得たポリオール(2)(平均水酸基数:2)の460.3g、およびIPDIの31.9gを仕込み、DOTDSの0.039gの存在下、70℃で10時間反応させ、イソシアネート基末端ウレタンプレポリマー(プレポリマー(P-2))を得た。ポリオール(2)に対するIPDIの配合量はインデックスで121であった。プレポリマー(P-2)のイソシアネート基含有量は0.0319質量%であった。
 プレポリマー(P-2)の492.2g(イソシアネート基量:0.0559mol)に、DBTDLの0.135g、DtBHQの0.15g、およびHEAの6.5g(水酸基量:0.0559mol)を加え、製造例11と同様にして、オリゴマー(ウレタンアクリレートオリゴマー)(IA-1-2)を得た。
 得られたオリゴマー(IA-1-2)の数平均分子量は29,700であった。計算により求めた平均官能基数は2.0であり、原料として用いたポリオール(2)の平均水酸基数と同じであった。オリゴマー(IA-1-2)はオリゴマー(IA)に分類されることが確認された。また、オリゴマー(IA-1-2)は、ポリオール(2)に由来するZnおよびCoを含有する。なお、オリゴマー(IA-1-2)においては、全アルキレンオキシ基に対して、プロピレンオキシ基の含有量が76質量%、エチレンオキシ基の含有量が24質量%であった。
[製造例13:オリゴマー(IB-2-1)の製造]
 撹拌機および窒素導入管を備えた反応容器内に、製造例3で得たモノオール(3)(モノオール(2a)を含むモノオール(2a)成分に相当する)(平均水酸基数:1.03)の274.4g、およびIPDI(ジイソシアネート化合物(2b)に相当する)の12.4gを仕込み、DOTDSの0.0289gの存在下、70℃で4時間反応させ、イソシアネート基末端ウレタンプレポリマー(プレポリマー(P-3))を得た。モノオール(3)に対するIPDIの配合量はインデックスで200であった。プレポリマー(P-3)のイソシアネート基含有量は0.77質量%であった。
 プレポリマー(P-3)の286.8g(イソシアネート基量:0.0533mol)に、DBTDLの0.09g、DtBHQの0.08g、およびHEA(モノマー(2c)に相当する)の6.10g(水酸基量:0.0544mol)を加え、製造例11と同様にして、ウレタンアクリレートオリゴマーとしてオリゴマー(2)を含むオリゴマー(IB-2-1)を得た。
 得られたオリゴマー(IB-2-1)の数平均分子量は9,240であった。上述の算出方法により求めた平均官能基数は1.03であり、原料として用いたモノオール(3)の平均水酸基数と同じであった。また、オリゴマー(IB-2-1)は、モノオール(3)に由来するZnおよびCoを含有する。オリゴマー(IB-2-1)はオリゴマー(IB)であって、オリゴマー(IB-2)に分類されるオリゴマーである。
[製造例14:オリゴマー(IB-1-1)の製造]
 撹拌機および窒素導入管を備えた反応容器内に、製造例3で得たモノオール(3)(モノオール(1a)を含むモノオール(1a)成分に相当する)(平均水酸基数:1.03)の928.1g、および2-アクリロイルオキシエチルイソシアネート(モノマー(1b)に相当する)26.8gを仕込み、DOTDSの0.0955gの存在下、70℃で3時間反応させ、ウレタンアクリレートオリゴマーとしてオリゴマー(1)を含むオリゴマー(IB-1-1)を得た。モノオール(3)に対する2-アクリロイルオキシエチルイソシアネートの配合量はインデックス(NCO/OH比)で100であった。
 得られたオリゴマー(IB-1-1)の数平均分子量は7,660であった。上述の算出方法により求めた平均官能基数は1.03であり、原料として用いたモノオール(3)の平均水酸基数と同じであった。また、オリゴマー(IB-1-1)は、モノオール(3)に由来するZnおよびCoを含有する。オリゴマー(IB-1-1)はオリゴマー(IB)であって、オリゴマー(IB-1)に分類されるオリゴマーである。
[製造例15:オリゴマー(IB-1-2)の製造]
 撹拌機および窒素導入管を備えた反応容器内に、製造例4で得たモノオール(4)(モノオール(1a)を含むモノオール(1a)成分に相当する)(平均水酸基数:1.08)の964.9g、および2-アクリロイルオキシエチルイソシアネート(モノマー(1b)に相当する)13.1gを仕込み、DOTDSの0.0977gの存在下、70℃で3時間反応させ、ウレタンアクリレートオリゴマーとしてオリゴマー(1)を含むオリゴマー(IB-1-2)を得た。モノオール(4)に対する2-アクリロイルオキシエチルイソシアネートの配合量はインデックス(NCO/OH比)で100であった。
 得られたオリゴマー(IB-1-2)の数平均分子量は16,000であった。上述の算出方法により求めた平均官能基数は1.08であり、原料として用いたモノオール(4)の平均水酸基数と同じであった。また、オリゴマー(IB-1-2)は、モノオール(4)に由来するZnおよびCoを含有する。オリゴマー(IB-1-1)はオリゴマー(IB)であって、オリゴマー(IB-1)に分類されるオリゴマーである。
[製造例16:オリゴマー(IB-1-4)の製造]
 製造例14において、モノオール(3)の代わりに、製造例5で得たモノオール(5)(平均水酸基数:1.21)を用いた以外は製造例14と同様の手順で、オリゴマー(ウレタンアクリレートオリゴマー)(IB-1-4)を製造した。
 得られたオリゴマー(IB-1-4)の数平均分子量は5,430であった。上述の算出方法により求めた平均官能基数は1.22であり、原料として用いたモノオール(5)の平均水酸基数と同様であった。GPC測定の結果より、2官能成分の含有量は37.1質量%であった。また、オリゴマー(IB-1-4)は、モノオール(5)に由来するZnおよびCoを含有する。オリゴマー(IB-1-4)は、ウレタン結合を有する硬化性成分を含有しオリゴマー(IA)およびオリゴマー(IB)以外の組成を有するオリゴマーである。
 得られたオリゴマー(IB-1-1)、(IB-1-2)および(IB-1-4)は、いずれも原料として用いたモノオールの平均水酸基数と同様の平均官能基数を持っていた。これは、イソシアネート化合物が水酸基数に対して当量反応していることを表わす。これらのオリゴマーは、原料モノオールの組成を反映しているため、原料モノオールの平均水酸基数と、得られたオリゴマーの平均官能基数は同じとみなすことができる。
Figure JPOXMLDOC01-appb-T000015
[実施例1~10及び比較例1~9]
 製造例11~16で得られたオリゴマーを用い、表3および表4の配合で各成分を混合して、硬化性樹脂組成物を調製した。なお、表3および表4におけるオリゴマーの表示において、オリゴマー(IB-1-4)については、オリゴマー(IB)の範疇に含まれないがその組成に近いため、分類をオリゴマー(IB)’としてオリゴマー(IA)およびオリゴマー(IB)と区別した。表3および表4に、オリゴマー(I)中のオリゴマー(IA)の割合[質量%]、オリゴマー(IB)の割合[質量%](比較例においては、オリゴマー(IB)’の割合[質量%])および硬化性組成物(X)中のオリゴマー(I)の割合[質量%]を示す。なお、表中の「%」は「質量%」を表わす。
 表3および表4中の略称は下記を表す。
<モノマー(II)>
 4-HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業社製、製品名:4HBA)。
 M-600A:2-ヒドロキシ-3-フェノキシプロピルアクリレート(共栄社化学社製、製品名:エポキシエステルM-600A、上記式(II-4)の化合物)。
<モノマー(III)>
 LA:ラウリルアクリレート(大阪有機化学工業社製、製品名:LA)。
 iso-STA:イソステアリルアクリレート(大阪有機化学工業社製、製品名:ISTA)。
<その他の成分>
 PML-5005:分子末端をエチレンオキシドでキャップした2官能のポリプロピレングリコール(旭硝子社製、製品名:PREMINOL-5005、数平均分子量:4000)。
 Y-1:水酸基をメトキシ化したポリプロピレングリコール(数平均分子量:1200)。
 KE311:ロジンエステル (荒川化学工業社製、製品名:パインクリスタルKE-311) (数平均分子量:460)。
<連鎖移動剤>
 DoSH:ドデシルメルカプタン。
<光重合開始剤>
 Irg184:1-ヒドロキシ-シクロヘキシル-フェニルケトン(BASF社製、製品名:Irgacure-184)、
 KIP 150:オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパン](Lamberti社製、製品名:Esacure KIP 150)。
<安定剤>
 PUR68:IRGASTAB PUR68(BASF社製)。
<重合禁止剤>
 DtBHQ:2,5-ジ-tert-ブチルハイドロキノン(東京化成工業社製)。
<GPCによる画分(I)の解析結果:各画分の占める割合[質量%]の算出方法>
 硬化性オリゴマー(I)の画分(I)における各画分(i)~(iii)の画分(I)に占める割合[質量%]を下記のように算出した。結果を表3および表4に示す。表中の「%」は「質量%」を示す。
 硬化性オリゴマー(I)を構成するオリゴマー(IA)、オリゴマー(IB)およびオリゴマー(IB)’のそれぞれの成分についてGPCを測定した。GPCの測定条件はモノオールの平均水酸基数の算出方法に記載したのと同様である。なお、画分(I)の算出に用いたオリゴマー(IA)、オリゴマー(IB)およびオリゴマー(IB)’においては、GPCによる分子量500以上の画分は全体として、硬化性成分を含有する硬化性画分であった。
 実施例1における算出方法を例として以下に説明する。
 オリゴマー(IB-1-1)のGPCを測定すると、図3に示すようなチャートが得られた。高分子量側のピークは2官能成分に由来し、低分子量側のピークは1官能成分に由来するものとみなした。図3のとおり、ポリスチレン換算分子量が23000であるリテンションタイム(線分e)と7500であるリテンションタイム(線分d)で画分(i)、画分(ii)、画分(iii)を分画した。画分(ii)は1官能成分に由来するピークと2官能成分に由来するピークを含んでいるため、さらに点線aのように画分(ii)を1官能成分と2官能成分とに分画した。すべての分画部分の数平均分子量と面積比をそれぞれ算出した。面積比を含有割合とみなし、実施例1のオリゴマー(IB-1-1)の仕込み質量部数(50質量部)と面積比の積をとることで、オリゴマー(IB-1-1)の硬化性オリゴマー(I)に含まれる各画分の各官能成分の質量部を算出した。
 オリゴマー(IA-1-1)について同様にGPCを測定すると、図2に示すようなチャートが得られ、数平均分子量は34700、分子量分布は1.42であった。画分(i)に最大ピークを持ち、分子量分布が1.2以上であるため、このピークは2官能成分に由来するものとみなした。オリゴマー(IB-1-1)と同様にGPC測定結果を解析し、オリゴマー(IA-1-1)の硬化性オリゴマー(I)に含まれる各画分の各官能成分の質量部を算出した。
 同じ画分の同じ官能基数の成分、例えば、オリゴマー(IB-1-1)から算出された画分(ii)の2官能成分の質量部とオリゴマー(IA-1-1)から算出された画分(ii)の2官能成分の質量部を合計し、硬化性オリゴマー(I)に含まれる各画分の各官能基成分の質量部を求めた。この質量部の総計を100として、各画分の各官能基成分の割合[質量%]を求めた。画分ごとに各官能基成分の割合を合計することで、画分(I)の画分(i)~(iii)の占める割合を算出した。
<GPCによる画分(I)の解析結果:各画分の平均官能基数の算出方法>
 硬化性オリゴマー(I)の画分(I)における各画分(i)および(ii)の平均官能基数を下記のように算出した。結果を表3および表4の「画分(I)」の欄に示す。
 画分(I)の各画分の占める割合[質量%]の算出方法で求めた硬化性オリゴマー(I)に含まれる各画分の各官能基成分の割合をそれぞれに相当する分画部分の数平均分子量で除して、数平均分子量を単位とする分子数を求めた。同じ画分の同じ官能基数の成分、例えば、オリゴマー(IB-1-1)から算出された画分(ii)の2官能成分の分子数とオリゴマー(IA-1-1)から算出された画分(ii)の2官能成分の分子数を合計し、ある画分のある官能成分に含まれる分子数を求める。各官能成分毎に同様の解析を行い、得られた分子数とそれぞれの官能基数とを加重平均することにより画分(i)および(ii)の平均官能基数を求めた。
 図4は実施例1、2および比較例9で得られた硬化性樹脂組成物(X)のGPC測定結果を示すグラフである。横軸は分子量、縦軸はRI検出器による信号強度(単位:mV)を表す。
 得られた硬化性樹脂組成物について、下記の方法で粘度、弾性率、硬化性、硬化収縮率を測定した。また、下記の方法で信頼性(剥がれ防止)を評価した。
 実施例1、比較例1および4~9で得られた硬化性樹脂組成物について、下記の方法で表示ムラを評価した。実施例1、および比較例1~3で得られた硬化性樹脂組成物について、下記の方法で比誘電率を測定した。これらの評価結果を表3および表4に示す。
<評価方法>
[硬化性樹脂組成物の粘度]
 各例で得られた硬化性樹脂組成物の粘度(単位:Pa・s)を、E型粘度計(東機産業社製、RE-85U)を用いて25℃で測定した。
[硬化物の弾性率]
 ソーダライムガラス上に、各例で得られた硬化性樹脂組成物を0.4mm厚に塗布し、窒素流通下にて紫外線(光源:ウシオ電機社製、水銀キセノンランプ、照度:100mW/cm、積算光量:3000mJ/cm)を照射して硬化させた。その後、AntonPaar社製、レオメータMCR-301(製品名)を用いて、硬化物の貯蔵弾性率(単位:kPa)を測定した。測定条件は、周波数1Hz、歪1%、温度35℃とした。硬化物の弾性率は25kPa以下が好ましく、20kPa以下がより好ましい。
[硬化性]
 ソーダライムガラス上に、各例で得られた硬化性樹脂組成物を0.1mm厚に塗布し、窒素流通下にて紫外線(光源:Fusion D-bulb メタルハライドランプ、照度:800mW/cm、積算光量:500mJ/cm)を照射した。紫外線照射後のサンプルをFT-IR(フーリエ変換型赤外分光)により測定し、以下の基準で硬化性を評価した。「○(良好)」:アクリロイル基の不飽和結合に起因する810cm-1の吸光度が、紫外線照射前の当該吸光度に対して5%未満である。「×(不良)」:アクリロイル基の不飽和結合に起因する810cm-1の吸光度が、紫外線照射前の当該吸光度に対して5%以上である。
[硬化収縮率]
 ソーダライムガラス上に、各例で得られた硬化性樹脂組成物を0.4mm厚に塗布し、窒素流通下にて紫外線(光源:ウシオ電機社製、水銀キセノンランプ、照度:100mW/cm、積算光量:6000mJ/cm)を照射して硬化させることで硬化部を得た。
 各例において、硬化前の硬化性樹脂組成物の比重(硬化前比重)とその硬化後の硬化物の比重(硬化物比重)を、比重測定キットを取り付けた電子天秤(ザルトリウス社製、製品名:CPA224S)を用いてそれぞれ測定し、硬化前後の比重差に基づき以下の式より硬化収縮率(単位:%)を算出した。硬化収縮率は2.5%以下が好ましい。
 硬化収縮率S(%)=(硬化物比重―硬化前比重)/硬化前比重 ×100
 弾性率(G)×硬化収縮率(S)は表示装置の接合樹脂層に用いたときの表示ムラ発生の指標となる。表示ムラを防止するため、弾性率×硬化収縮率の値は50以下であることが好ましく、特に30以下が好ましい。算出した値を表3および表4の「G×S」の欄に示す。
[信頼性(剥がれ防止)の評価]
 厚さ2mmソーダライムガラス上に、各例で得られた硬化性樹脂組成物を0.1mm厚となるように塗布し、さらにその上に厚さ2mmのソーダライムガラスを重ね合わせて、積層サンプルを作成した。該積層サンプルに紫外線(光源:Fusion D-bulb メタルハライドランプ、照度:800mW/cm、積算光量:500mJ/cm)を照射した。紫外線照射後の積層サンプルを温度65℃、相対湿度93%の条件に放置し、500時間経過後に以下の基準で信頼性を評価した。この方法で評価される信頼性が良好であることは、硬化性樹脂組成物の硬化物剥がれがないことを意味する。「○(良好)」:積層サンプルに剥がれが見られない。「×(不良)」:積層サンプルに剥がれが見られる。
[表示ムラの評価]
 市販の液晶表示装置(7型液晶デジタルフォトフレーム、ソニー社製、製品名:DPF-0720)から液晶表示デバイスを取り出した。液晶表示デバイスは、表示モードがVA(Vertical Alignment)タイプで、表示部は矩形で、その大きさは、縦(短辺の長さ)88mm、横(長辺の長さ)156mmであった。液晶表示デバイスの両面には偏光板が貼合されており、長辺側の端部にはプリント配線板が接合されていた。該液晶表示デバイスを表示デバイスAとした。
 表示デバイスAの視認側の面の周縁部に、両面接着テープを用いて、厚み0.2mm、幅2mmのシール部を形成し、該シール部で囲まれた領域に、各例で得られた硬化性樹脂組成物を0.2mm厚で塗布した。これを一対の定盤の昇降装置が設置されている減圧装置内の下定盤の上面に、硬化性樹脂組成物を塗布した面が上側になるように平置した。
 これとは別に、矩形のガラス板B(長辺の長さ:160mm、短辺の長さ90mm、厚さ:0.7mm)を、表示デバイスAに対向するように、減圧装置内の昇降装置の上定盤の下面に設置した。また、垂直方向において表示デバイスAとの距離が30mmとなるように保持した。
 次いで、減圧装置を密封状態として減圧装置内の圧力が約10Paとなるまで排気した。減圧装置内の昇降装置にて上下の定盤を接近させ、表示デバイスAとガラス板Bとを、硬化性樹脂組成物からなる未硬化層を介して2kPaの圧力で圧着し、1分間保持した。こうして、硬化性樹脂組成物からなる未硬化層が表示デバイスAおよびガラス板Bの間に挟持され、かつ周囲のシール部で該未硬化層が密封された積層前駆体を形成した。
 この後、静電チャックを除電して上定盤からガラス板Bを離間させ、約15秒で減圧装置内を大気圧に戻した。
 続いて、積層前駆体に対して、ガラス板B側から紫外線(光源:Fusion D-bulb メタルハライドランプ、照度:800mW/cm、積算光量:500mJ/cm)を照射し、未硬化層を硬化させて、表示デバイスAにガラス板Bが接合された積層体を得た。
 該積層体の表示デバイスを、元の液晶表示装置の筺体に戻し、配線を再接続した。これを、ガラス板(B)が垂直になるように設置し、5日間静置した後に電源を入れ、表示画像の均質性(表示ムラの有無)を下記の基準で評価した。「○(良好)」:画像が表示部全面にわたって均質。「×(不良)」:画像が表示部の一部に不均質(ムラあり)部分あり。
[硬化物の比誘電率]
 ソーダライムガラス上に、各例で得られた硬化性樹脂組成物を0.4mm厚に塗布し、窒素流通下にて紫外線(光源:ウシオ電機社製、水銀キセノンランプ、照度:100mW/cm、積算光量:3000mJ/cm)を照射して硬化させた。
 硬化後のサンプルを直径38mmの円状に切断した後、ウェインカー社製6440B型LCRメータを用いて1MHzの比誘電率を測定した。比誘電率は、4.5以下であるとOGS(One Glass Solution)タイプのタッチパネルおいてタッチセンサーの誤作動を防止できるので好ましい。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表3および表4の結果に示されるように、実施例1~10で得られた硬化性樹脂組成物はいずれも、硬化性が良好であり、硬化物の弾性率は低かった。硬化収縮率も小さいため、弾性率と硬化収縮率との積が小さく、収縮による応力が小さかった。
 また、硬化性樹脂組成物の硬化物を介して接合された積層サンプルは長期保管後にも剥がれが生じず、信頼性に優れていた。
 実施例1で得られた硬化性樹脂組成物の硬化物を介して、表示デバイスにガラス板が接合された液晶表示装置において、表示ムラの発生が良好に抑えられた。また、硬化性樹脂組成物の硬化物の比誘電率は低かった。
 一方、オリゴマー(IB)を含まない比較例1~5は、弾性率および硬化収縮率が高かった。信頼性(剥がれ防止)の評価において比較例1と3の積層サンプルは長期保管後に剥がれが生じた。比較例1、4および5の液晶表示装置においては表示ムラが発生した。
 オリゴマー(IA)の含有割合が高い比較例6および7は、弾性率が高く、弾性率×硬化収縮率の値が高い。これらの硬化性樹脂を用いた液晶表示装置において表示ムラが発生した。
 硬化性組成物(X)中のオリゴマー(IA)とオリゴマー(IB)の合計含有量、すなわち硬化性オリゴマー(I)の含有量が50質量%に満たない比較例8は、硬化収縮率が高く液晶表示装置において表示ムラが発生した。
 比較例9はオリゴマー(IA)の含有割合が少なく、オリゴマー(IB)の成分の代わりに上記オリゴマー(1B)’とした、低分子量の2官能成分の含有量が多いオリゴマー(IB-1-4)を多く含んでいる。このため画分(ii)の2官能成分量が多いことから、弾性率が高く液晶表示装置において表示ムラが発生した。

Claims (10)

  1.  硬化性樹脂組成物100質量%中に、分子量が500以上である硬化性オリゴマー(I)を50質量%以上含む硬化性樹脂組成物であって、
     前記硬化性オリゴマー(I)は、前記硬化性オリゴマー(I)100質量%中に下記オリゴマー(IA)を1~50質量%、下記オリゴマー(IB)を30~95質量%含む硬化性樹脂組成物。
     オリゴマー(IA):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマー。
     オリゴマー(IB):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である硬化性成分の含有量が30質量%以下であるオリゴマー。
  2.  前記オリゴマー(IB)が、下記式(1a)で表わされるポリオキシアルキレンモノオールと、下記式(1b)で表わされるモノマーとをウレタン化反応させて得られる硬化性成分を含む、請求項1に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1a)において、R12は炭素数2~4のアルキレン基、R13は炭素数1~20のアルキル基、または炭素数1~20のカルボン酸残基であり、bは20~600の整数である。
     式(1b)において、R11は水素原子またはメチル基であり、aは1~4の整数である。
  3.  アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基と水酸基を含有するモノマー(II)および、アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基と長鎖アルキル基を含有するモノマー(III)の一方または両方をさらに含有する、請求項1または2に記載の硬化性樹脂組成物。
  4.  ZnおよびCoを含む、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。
  5.  アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有する、分子量が500以上である硬化性オリゴマー(I)を含有する硬化性樹脂組成物の製造方法であって、
     下記オリゴマー(IA)の1種以上と、下記オリゴマー(IB)の1種以上とを、前記硬化性オリゴマー(I)100質量%中にオリゴマー(IA)を1~50質量%、オリゴマー(IB)を30~95質量%含むように、かつ、硬化性樹脂組成物100質量%中に前記硬化性オリゴマー(I)を50質量%以上含むように混合することを特徴とする硬化性樹脂組成物の製造方法。
     オリゴマー(IA):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が2以上、数平均分子量が15,000~100,000であるオリゴマー。
     オリゴマー(IB):アクリロイルオキシ基およびメタクリロイルオキシ基の一方または両方からなる硬化性官能基およびウレタン結合を有する硬化性成分を含有し、平均の硬化性官能基の数が0.5~1.5、数平均分子量が1,300~36,000であり、硬化性官能基の数が2である硬化性成分の含有量が30質量%以下であるオリゴマー。
  6.  前記硬化性樹脂組成物は、前記硬化性樹脂組成物をゲル・パーミエイション・クロマトグラフィー(GPC)により分画して得られる、前記硬化性オリゴマー(I)の硬化性画分(I)において、
     分子量23,000以上の画分を画分(i)、
     分子量7,500以上、23,000未満の画分を画分(ii)、
     分子量500以上、7,500未満の画分を画分(iii)とするとき、
     画分(i)の平均の前記硬化性官能基の数が1.5以上、2.5以下であり、
     画分(ii)の平均の前記硬化性官能基の数が1.0以上、1.5未満であり、
     画分(I)に対する画分(i)の割合が0質量%超50質量%以下であり、
     画分(I)に対する画分(ii)の割合が35~80質量%であり、
     画分(I)に対する画分(iii)の割合が0~40質量%である、請求項5に記載の硬化性樹脂組成物の製造方法。
  7.  一対の面材間に請求項1~4のいずれか一項に記載の硬化性樹脂組成物からなる未硬化層を挟持させる工程と、該未硬化層を硬化させる工程を有する、積層体の製造方法。
  8.  第1の減圧雰囲気下で、一対の面材間に請求項1~4のいずれか一項に記載の硬化性樹脂組成物からなる未硬化層が挟持され、かつ該未硬化層の周囲に設けられたシール部で前記未硬化層が密封された積層前駆体を形成する第1の工程と、
     前記第1の減圧雰囲気よりも圧力が高い第2の雰囲気下で前記未硬化層を硬化させる第2の工程を有する、積層体の製造方法。
  9.  前記一対の面材の一方が透明面材であり、他方が表示デバイスである、請求項7または8に記載の積層体の製造方法。
  10.  透明面材と表示デバイスとの間に、請求項1~4のいずれか一項に記載の硬化性樹脂組成物の硬化物からなる接合樹脂層が挟持されている表示装置。
PCT/JP2015/071207 2014-07-28 2015-07-27 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置 WO2016017568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177001714A KR20170039136A (ko) 2014-07-28 2015-07-27 경화성 수지 조성물, 경화성 수지 조성물의 제조 방법, 적층체의 제조 방법 및 표시 장치
CN201580039097.XA CN106536584B (zh) 2014-07-28 2015-07-27 固化性树脂组合物、固化性树脂组合物的制造方法、层叠体的制造方法及显示装置
JP2016538331A JP6610547B2 (ja) 2014-07-28 2015-07-27 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014153287 2014-07-28
JP2014-153287 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017568A1 true WO2016017568A1 (ja) 2016-02-04

Family

ID=55217469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071207 WO2016017568A1 (ja) 2014-07-28 2015-07-27 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置

Country Status (5)

Country Link
JP (1) JP6610547B2 (ja)
KR (1) KR20170039136A (ja)
CN (1) CN106536584B (ja)
TW (1) TW201609933A (ja)
WO (1) WO2016017568A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162247A1 (ja) * 2019-02-05 2020-08-13 Agc株式会社 硬化性組成物、硬化物、硬化物を備えた製品
WO2020162245A1 (ja) * 2019-02-05 2020-08-13 Agc株式会社 重合体、硬化性組成物、硬化物、粘着シート、積層体及びフレキシブルディスプレイ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255604B2 (ja) * 2018-10-04 2023-04-11 Agc株式会社 粘着剤組成物、粘着剤層、積層体及び画像表示装置
CN115038729B (zh) * 2019-12-06 2024-08-16 Agc株式会社 树脂组合物及树脂固化物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235812A (ja) * 2009-03-31 2010-10-21 Jsr Corp 液状硬化性樹脂組成物
WO2010134547A1 (ja) * 2009-05-20 2010-11-25 旭硝子株式会社 硬化性樹脂組成物、透明積層体およびその製造方法
WO2011158840A1 (ja) * 2010-06-16 2011-12-22 旭硝子株式会社 硬化性樹脂組成物ならびにこれを用いた積層体およびその製造方法
JP2012057031A (ja) * 2010-09-08 2012-03-22 Dic Corp 活性エネルギー線硬化型樹脂組成物、コーティング剤
JP2014156566A (ja) * 2013-02-18 2014-08-28 Asahi Glass Co Ltd 硬化性樹脂組成物、積層体の製造方法、および表示装置
JP2014156565A (ja) * 2013-02-18 2014-08-28 Asahi Glass Co Ltd 硬化性樹脂組成物、粘着層付き透明面材および積層体
WO2014185366A1 (ja) * 2013-05-17 2014-11-20 旭硝子株式会社 硬化性樹脂組成物、およびそれを用いた積層体とその製造方法
JP2015060000A (ja) * 2013-09-17 2015-03-30 旭硝子株式会社 表示装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126839A (ja) 2010-12-16 2012-07-05 Nippon Shokubai Co Ltd 光学用紫外線硬化型樹脂組成物、硬化物及び表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235812A (ja) * 2009-03-31 2010-10-21 Jsr Corp 液状硬化性樹脂組成物
WO2010134547A1 (ja) * 2009-05-20 2010-11-25 旭硝子株式会社 硬化性樹脂組成物、透明積層体およびその製造方法
WO2011158840A1 (ja) * 2010-06-16 2011-12-22 旭硝子株式会社 硬化性樹脂組成物ならびにこれを用いた積層体およびその製造方法
JP2012057031A (ja) * 2010-09-08 2012-03-22 Dic Corp 活性エネルギー線硬化型樹脂組成物、コーティング剤
JP2014156566A (ja) * 2013-02-18 2014-08-28 Asahi Glass Co Ltd 硬化性樹脂組成物、積層体の製造方法、および表示装置
JP2014156565A (ja) * 2013-02-18 2014-08-28 Asahi Glass Co Ltd 硬化性樹脂組成物、粘着層付き透明面材および積層体
WO2014185366A1 (ja) * 2013-05-17 2014-11-20 旭硝子株式会社 硬化性樹脂組成物、およびそれを用いた積層体とその製造方法
JP2015060000A (ja) * 2013-09-17 2015-03-30 旭硝子株式会社 表示装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162247A1 (ja) * 2019-02-05 2020-08-13 Agc株式会社 硬化性組成物、硬化物、硬化物を備えた製品
WO2020162245A1 (ja) * 2019-02-05 2020-08-13 Agc株式会社 重合体、硬化性組成物、硬化物、粘着シート、積層体及びフレキシブルディスプレイ
JPWO2020162247A1 (ja) * 2019-02-05 2021-12-02 Agc株式会社 硬化性組成物、硬化物、硬化物を備えた製品
JPWO2020162245A1 (ja) * 2019-02-05 2021-12-02 Agc株式会社 重合体、硬化性組成物、硬化物、粘着シート、積層体及びフレキシブルディスプレイ
JP7380600B2 (ja) 2019-02-05 2023-11-15 Agc株式会社 硬化性組成物、硬化物、硬化物を備えた製品
JP7415957B2 (ja) 2019-02-05 2024-01-17 Agc株式会社 重合体、硬化性組成物、硬化物、粘着シート、積層体及びフレキシブルディスプレイ

Also Published As

Publication number Publication date
CN106536584B (zh) 2019-08-23
KR20170039136A (ko) 2017-04-10
CN106536584A (zh) 2017-03-22
JPWO2016017568A1 (ja) 2017-04-27
JP6610547B2 (ja) 2019-11-27
TW201609933A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
US8697240B2 (en) Photocurable resin composition and cured product of same, resin sheet and production method for same, and display device
JP5811143B2 (ja) 表示装置
JP5867571B2 (ja) 樹脂層および表示装置
JP5729385B2 (ja) 硬化性樹脂組成物およびこれを用いた積層体の製造方法
JP2014156566A (ja) 硬化性樹脂組成物、積層体の製造方法、および表示装置
KR101993678B1 (ko) 자외선 경화형 점착제용 수지 조성물 및 점착제
JP6610547B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、積層体の製造方法および表示装置
WO2015111584A1 (ja) 硬化性樹脂組成物、ならびに、硬化性樹脂組成物を用いた積層体および画像表示装置
CN112789340B (zh) 粘合剂组合物、粘合剂层、层叠体及图像显示装置
JPWO2014185366A1 (ja) 硬化性樹脂組成物、およびそれを用いた積層体とその製造方法
JPWO2014104231A1 (ja) 粘着層付き透明面材、積層体、表示装置、およびそれらの製造方法
JPWO2017110655A1 (ja) 硬化性組成物、粘着層、透明面材、積層体および画像表示装置
US20150291725A1 (en) Curable resin composition, and laminate using same and process for its production
KR20120131420A (ko) 수지형 도광판용 조성물, 이를 이용하여 형성된 도광판을 포함하는 백라이트 유닛 및 상기 백라이트 유닛을 포함하는 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538331

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001714

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826953

Country of ref document: EP

Kind code of ref document: A1