WO2016017481A1 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
WO2016017481A1
WO2016017481A1 PCT/JP2015/070725 JP2015070725W WO2016017481A1 WO 2016017481 A1 WO2016017481 A1 WO 2016017481A1 JP 2015070725 W JP2015070725 W JP 2015070725W WO 2016017481 A1 WO2016017481 A1 WO 2016017481A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
light
unit
image
signal
Prior art date
Application number
PCT/JP2015/070725
Other languages
English (en)
French (fr)
Inventor
本田 一樹
倉 康人
樋野 和彦
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP15827417.5A priority Critical patent/EP3162271A1/en
Priority to JP2016506010A priority patent/JP6022109B2/ja
Priority to CN201580036923.5A priority patent/CN106488733B/zh
Publication of WO2016017481A1 publication Critical patent/WO2016017481A1/ja
Priority to US15/415,949 priority patent/US20170127925A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to an endoscope system, and more particularly to an endoscope system that irradiates illumination light in at least two directions and acquires a subject image from at least two directions.
  • the endoscope includes an illuminating unit and an observing unit at the distal end side of the insertion portion, and can be inserted into the subject to observe and inspect the subject.
  • an endoscope capable of observing two or more directions has been proposed.
  • a side surface of the insertion part is proposed.
  • An endoscope having a side field of view with the side as an observation field has been proposed.
  • an object of the present invention is to provide an endoscope system that prevents overheating of the tip of an endoscope that can observe two or more directions.
  • An endoscope system includes an insertion unit that is inserted into a subject, a subject image acquisition unit that is provided in the insertion unit and acquires an image of the subject, and the insertion unit.
  • a first illumination unit that emits first illumination light to a first region of the subject; and provided in the insertion unit, wherein the subject is at least partially different from the first region.
  • a second illumination unit that emits second illumination light to the second region, a first signal indicating the temperature of the first illumination unit, and a second signal indicating the temperature of the second illumination unit; And a light amount control for independently controlling the light amount of the first illumination light and the light amount of the second illumination light based on the first signal and the second signal.
  • the drive control of the six light emitting elements disposed in each of the six illumination windows 7a, 7b, 9a, 9b, 9c, 9d disposed in the distal end portion 6a according to the fifth embodiment of the present invention. It is a figure for demonstrating. It is a graph which shows the change of the drive signal level to the light emitting element with progress of time regarding the 5th Embodiment of this invention. It is a figure which shows the display system using the three display apparatuses. It is a perspective view of the front-end
  • FIG. 1 is a configuration diagram illustrating a configuration of an endoscope system according to the present embodiment.
  • the endoscope system 1 includes an endoscope 2, a light source device 3, a processor 4, and a display device 5.
  • the endoscope 2 has an insertion part 6 inserted into the subject and an operation part (not shown).
  • the endoscope 2 is connected to the light source device 3 and the processor 4 by a cable (not shown).
  • the distal end portion 6a of the insertion portion 6 of the endoscope 2 is provided with an illumination window 7 and an observation window 8 for a front visual field, and two illumination windows 9 and an observation window 10 for a lateral visual field.
  • FIG. 2 is a cross-sectional view of the distal end portion 6 a of the insertion portion 6.
  • the distal end portion 6 a of the insertion portion 6 has a distal end rigid member 11, and the illumination window 7 is provided on the distal end surface of the distal end rigid member 11.
  • a front end surface of the front illumination light guide 12 is disposed behind the illumination window 7.
  • An observation window 8 is provided on the distal end surface of the distal end rigid member 11.
  • An objective optical system 13 is disposed behind the observation window 8.
  • An imaging unit 14 is disposed behind the objective optical system 13.
  • a cover 11 a is attached to the distal end portion of the distal end rigid member 11.
  • the insertion portion 6 is covered with an outer skin 11b.
  • the front illumination light is emitted from the illumination window 7, and the reflected light from the observation site in the subject is incident on the observation window 8.
  • Two illumination windows 9 are disposed on the side of the distal end rigid member 11, and behind each illumination window 9, the distal end of the side illumination light guide 16 is passed through a mirror 15 having a curved reflecting surface. A surface is disposed.
  • the illumination window 7 constitutes a first illumination unit that emits the first illumination light to a region including the front as the first region inside the subject, and the plurality of illumination windows 9 includes the first illumination window 9.
  • the second illumination unit that emits the second illumination light to a region including the side as a second region at least partially different from the direction is configured.
  • the second area different from the first area means that the optical axes in the respective areas are directed in different directions, and one of the subject image in the first area and the subject image in the second area.
  • the portions may or may not overlap, and the irradiation range of the first illumination light and the irradiation range of the second illumination light may partially overlap or may not overlap.
  • the observation window 10 is disposed on the side surface of the distal end rigid member 11, and the objective optical system 13 is disposed on the rear side of the observation window 10.
  • the objective optical system 13 is configured to direct the reflected light from the front passing through the observation window 8 and the reflected light from the side passing through the observation window 10 to the imaging unit 14.
  • the objective optical system 13 has two optical members 17 and 18.
  • the optical member 17 is a lens having a convex surface 17 a
  • the optical member 18 has a reflection surface 18 a that reflects reflected light from the side toward the imaging unit 14 via the optical member 17.
  • the observation window 8 is provided in the insertion unit 6 and constitutes a first subject image acquisition unit that acquires an image from the front included in the first region, and the observation window 10 is provided in the insertion unit 6. And a second subject image acquisition unit that acquires an image from the side included in the second region different from the front.
  • the observation window 10 is disposed closer to the proximal end side of the insertion portion 6 than the observation window 8.
  • the image from the front included in the first region is a subject image of the first region including the front of the insertion portion 6 substantially parallel to the longitudinal direction of the insertion portion 6, and the second region.
  • the image from the side included in the image is a subject image of the second region including the side of the insertion portion 6 in the direction intersecting with the longitudinal direction of the insertion portion 6 (for example, substantially orthogonal).
  • a front subject acquiring unit that acquires a subject image of the first region including the front of the insertion unit 6, and the observation window 10 is configured to acquire a subject image of the second region including the side of the insertion unit 6. It is the side test image acquisition part which acquires.
  • the observation window 8 that is the subject image acquisition unit is arranged at the distal end portion 6a of the insertion unit 6 in the direction in which the insertion unit 6 is inserted, and the observation window 10 that is the subject image acquisition unit is inserted. It is arranged on the side surface of the portion 6 toward the outer diameter direction of the insertion portion 6.
  • the imaging unit 14 that is an imaging unit is arranged so as to photoelectrically convert the subject image from the observation window 8 and the subject image from the observation window 10 on the same imaging plane, and is electrically connected to the processor 4 that is an image processing unit. Connected.
  • the observation window 8 is arranged at the distal end portion 6a in the longitudinal direction of the insertion portion 6 so as to acquire the first subject image from the first direction which is the direction in which the insertion portion 6 is inserted.
  • 10 is arranged along the circumferential direction of the insertion portion 6 so as to acquire the second subject image from a second direction different from the first direction.
  • the front illumination light is emitted from the illumination window 7, the reflected light from the subject enters the imaging unit 14 through the observation window 8, and the side illumination light is emitted from the two illumination windows 9.
  • the reflected light from the subject enters the imaging unit 14 through the observation window 10.
  • the imaging element 14 a of the imaging unit 14 photoelectrically converts the optical image of the subject and outputs an imaging signal to the processor 4.
  • the imaging signal from the imaging unit 14 is supplied to the processor 4 which is an image processing unit, and an endoscopic image is generated by an image processing circuit (not shown).
  • the processor 4 outputs the image data of the endoscopic image to the display device 5.
  • the processor 4 is an image generation unit
  • the display device 5 is a display unit that displays an image generated by the processor 4.
  • FIG. 3 is a diagram illustrating an example of an endoscopic image display screen displayed on the display device 5.
  • An endoscopic image 21 displayed on the display screen 5 a of the display device 5 is a substantially rectangular image and has two regions 22 and 23.
  • the central circular area 22 is an area for displaying the front observation image
  • the C-shaped area 23 around the central area 22 is an area for displaying the side observation image.
  • the front observation image is displayed on the display screen 5a of the display device 5 so as to have a substantially circular shape
  • the side observation image has a substantially annular shape surrounding at least a part of the periphery of the front observation image. It is displayed on the display screen 5a (adjacent to the forward observation image). Therefore, a wide-angle endoscopic image is displayed on the display device 5.
  • the light source device 3 includes a light control unit 31, a drive unit 32 that drives the light control unit 31, and a light source 33.
  • the light guide 34 includes the light guide 12 for front illumination and the light guide 16 for side illumination.
  • the front end portion of the side illumination light guide 16 is branched into two.
  • the front illumination light guide 12 and the side illumination light guide 16 are independent of each other, the front illumination light guide 12 transmits light to the illumination window 7, and the side illumination light guide 16 transmits light. This is transmitted to the two illumination windows 9.
  • the light source 33 includes a lamp that emits white light, for example, a xenon lamp. Light from the light source 33 enters the light guide 34 via the light control unit 31 and is emitted from the tip 34b of the light guide 34.
  • the light emitted from the light control unit 31 is collected on the base end surfaces of the front illumination light guide 12 and the side illumination light guide 16 at the base end portion 34a of the light guide 34 by a light collecting device (not shown), The light enters the light guide 34.
  • the light incident on the base end face of the front illumination light guide 12 passes through the front end face of the front illumination light guide 12 and exits from the illumination window 7.
  • the light incident on the base end face of the side illumination light guide 16 passes through each end face of the distal end portion branched into two of the side illumination light guide 16 and exits from each illumination window 9.
  • the light amount of the light from the light source 33 is adjusted by the light control unit 31.
  • the light control unit 31 has two stops 31a and 31b.
  • the diaphragm 31a adjusts the light amount of the front illumination light L1 based on the diaphragm control signal AC1 from the control unit 42.
  • the diaphragm 31b adjusts the light quantity of the side illumination light L2 based on the diaphragm control signal AC2 from the controller 42.
  • the diaphragms 31a and 31b may be any one using a fan-shaped mask member, or one in which the opening amount of the central opening changes according to the movement of a plurality of diaphragm blades.
  • the diaphragms 31a and 31b are driven by a driving mechanism such as a motor.
  • the processor 4 includes a photometry unit 41, a control unit 42, and a temperature detection unit 43.
  • the photometry unit 41 is a processing unit that calculates the brightness of each of the two regions 22 and 23 of the endoscopic image 21 described above from the image data of the endoscopic image generated in the processor 4.
  • the photometry unit 41 calculates the brightness of the region 22 and the brightness of the region 23 and outputs the calculated brightness to the control unit 42.
  • the brightness of each area is an average value of the luminance of all the pixels in each area.
  • a temperature sensor 35 is provided in the vicinity of the illumination window 7 in the distal end portion 6a. Further, a temperature sensor 36 is also provided in the vicinity of one of the two illumination windows 9.
  • the output signals of the temperature sensors 35 and 36 are input to the temperature detector 43 via signal lines 35a and 36a, respectively.
  • the temperature detection unit 43 outputs temperature data of the illumination window 7 to the control unit 42 based on the output signal of the temperature sensor 35.
  • the temperature detection unit 43 outputs temperature data of the illumination window 9 to the control unit 42 based on the output signal of the temperature sensor 36. Therefore, the control unit 42 can always monitor the temperature data of the illumination units 7 and 9.
  • the temperature detection unit 43 constitutes a signal detection unit that detects signals indicating the temperatures of the illumination window 7 and the illumination window 9 from the temperature sensor 35 and the temperature sensor 36.
  • the signal indicating the temperature includes an output signal of the temperature sensor 35 provided in the vicinity of the illumination window 7 for the front visual field as the first signal, and a side visual signal as the second signal. And an output signal of the temperature sensor 36 provided in the vicinity of the illumination window 9.
  • Two temperature sensors 36 are provided in the two illumination windows 9, and the temperature detection unit 43 obtains an average value of the temperatures of the two illumination windows 9 for the side field of view from the output signals of the two temperature sensors. Then, data such as the average value may be output to the control unit 42.
  • the control unit 42 controls the two stops 31a and 31b independently of each other based on the brightness of each of the two regions 22 and 23 of the endoscopic image 21 detected by the photometry unit 41.
  • Aperture control signals AC1 and AC2 are generated and output to the drive unit 32.
  • the drive unit 32 individually controls the opening amounts of the apertures 31a and 31b based on the aperture control signals AC1 and AC2 from the control unit 42, respectively.
  • the control unit 42 can set a maximum aperture value for each of the apertures 31a and 31b in the drive unit 32.
  • the drive unit 32 drives each of the apertures 31a and 31b within a range that does not exceed the set maximum aperture value.
  • FIG. 4 is a flowchart showing an example of a flow of control operations of the two stops 31a and 31b by the control unit 42.
  • the process of FIG. 4 is performed for each of the apertures 31a and 31b based on the output signal of each temperature sensor. Therefore, the control part 42 comprises the illumination light quantity control part which controls at least one light quantity of the illumination light of the illumination window 7 and the illumination light of the illumination window 9 respectively independently based on the output signal of each temperature sensor. .
  • the control unit 42 restricts the maximum aperture value of the diaphragms 31a and 31b that limit the amount of illumination light for the front visual field and the side visual field, thereby illuminating the front visual field and the side visual field. Control at least one amount of light.
  • the light quantity of a necessary portion of the illumination light of the illumination window 7 and the illumination light of the illumination window 9 is controlled. It is possible to prevent the entire endoscope image 21 displayed on the display screen 5a of the display device 5 from being darkened by increasing or decreasing only the image.
  • the controller 42 determines whether or not the temperature data T of the illumination windows 7 and 9 from the temperature detector 43 is equal to or greater than a predetermined value TH1 (S1).
  • the predetermined value TH1 is 37 ° C., for example.
  • the control unit 42 is determined to be higher than the predetermined value TH1.
  • the maximum aperture value DM of the apertures 31a and 31b for controlling the amount of light emitted from the illumination window 7 or the illumination window 9 is changed to a predetermined value AD (S2).
  • the apertures 31a and 31b can be controlled in the range of 0 to 100
  • the maximum aperture value DM is set to 100 in the drive unit 32
  • the drive unit 32 controls the apertures 31a and 31b under the control of the control unit 42. Assume that each is controlled.
  • the control unit 42 sets the maximum aperture value DM of the aperture 31b to the drive unit 32.
  • the predetermined value AD is changed to 75.
  • the drive unit 32 controls the aperture amount of the aperture 31b based on the aperture control signal AC2 from the control unit 42 so as not to exceed the maximum aperture value DM. The rise of is suppressed. If the temperature data T of the illumination window 7 or 9 becomes less than the predetermined value TH1 after the maximum aperture value DM is changed, the maximum aperture value DM is changed to an initial value, for example, 100.
  • the image obtained by the observation window corresponding to the illumination window whose temperature data T is less than the predetermined value TH1 is a clear image.
  • the temperatures of two or more illumination windows having different illumination areas are individually confirmed, and the temperature does not rise more than a predetermined value. Since the above illumination windows are individually controlled, it is possible to provide an endoscope system that prevents overheating of the distal end portion while performing fine illumination control in which the amount of light of all illumination does not change simultaneously.
  • the second embodiment relates to an endoscope system that limits the illumination for the side view so that the front view is given priority over the side view and the temperature at the distal end of the insertion portion does not increase.
  • the endoscope system 1A according to the present embodiment has substantially the same configuration as the endoscope system 1 according to the first embodiment. Therefore, in the present embodiment, the same components as those in the endoscope system 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 5 is a configuration diagram showing the configuration of the endoscope system 1A according to the present embodiment.
  • the distal end portion 6a of the insertion portion 6 of the endoscope 2A has substantially the same configuration as the distal end portion of the first embodiment.
  • the light adjustment unit 31 ⁇ / b> A of the light source device 3 includes a diaphragm 31 c and a light shielding plate 37.
  • FIG. 6 is a diagram for explaining the configuration of the diaphragm 31 c and the light shielding plate 37 of the light source device 3.
  • the diaphragm 31c has a structure that adjusts the amount of light passing from the light source 33 by changing the opening amount of the central opening according to the movement of the plurality of diaphragm blades.
  • the light shielding plate 37 is a plate-like member that does not transmit light.
  • the light blocking plate 37 is movable between an aperture 31c and a base end portion 34a of the light guide 34 by an actuator (not shown) so as to block a part of the light from the aperture 31c.
  • the light blocking plate 37 When the light blocking plate 37 is positioned so as not to block a part of the light from the diaphragm 31c, that is, retracted, the light blocking plate 3 does not block a part of the light from the diaphragm 31c. However, when the light shielding plate 37 is positioned so as to shield part of the light from the diaphragm 31c, that is, protrudes, part of the light from the diaphragm 31c is shielded.
  • the base end portion 34 a of the light guide 34 is divided into a base end surface region 12 a of the front illumination light guide 12 and a base end surface region 16 a of the side illumination light guide 16. As shown in FIG. 6, one of the two semicircular regions on the end surface of the circular base end portion 34a is a base end surface region 12a, and the other of the two semicircular regions is a base end surface region 16a. is there.
  • the light shielding plate 37 When the light shielding plate 37 protrudes, the light shielding plate 37 moves between the diaphragm 31c and the base end portion 34a so that the light passing through the stop 31c does not enter the base end surface region 16a of the side illumination light guide 16. .
  • the shape of the light shielding plate 37 is formed so that when the light shielding plate 37 protrudes, the light that has passed through the diaphragm 31 c does not enter the base end surface region 16 a of the side illumination light guide 16 by the light shielding plate 37. .
  • the light shielding plate 37 when the light shielding plate 37 protrudes, the light shielding plate 37 just prevents the side illumination light L ⁇ b> 2 from the diaphragm 31 c from entering the base end face region 16 a of the side illumination light guide 16. Has a linear end 37a.
  • the front illumination light L1 is not shielded.
  • the control unit 42A Based on the brightness of each of the two regions 22 and 23 of the endoscopic image 21 detected by the photometry unit 41, the control unit 42A generates an aperture control signal AC for controlling the aperture 31c and drives it. To the unit 32A.
  • the driving unit 32A controls the opening amount of the diaphragm 31c based on the diaphragm control signal AC from the control unit 42.
  • control unit 42A generates a light shielding plate driving signal LIC for driving the light shielding plate 37 based on the aperture control signal AC, and outputs the light shielding plate driving signal LIC to the driving unit 32A.
  • the drive unit 32 ⁇ / b> A controls the position of the light shielding plate 37 based on the light shielding plate drive signal LIC from the control unit 42.
  • FIG. 7 is a flowchart illustrating an example of a flow of control operation of the light shielding plate 37 of the control unit 42A.
  • the control unit 42A controls the opening amount of the diaphragm 31c based on the brightness of the endoscopic image.
  • the control unit 42A also executes the process of FIG. 7 while controlling the diaphragm 31c.
  • the control unit 42A determines whether or not the opening amount of the diaphragm 31c is the maximum value DM1 (S11). Specifically, it is determined whether or not the aperture control signal AC is the maximum value DM1. For example, when the aperture is controlled in the range of 0 to 100, it is determined whether or not the aperture control signal AC is 100.
  • the maximum value DM1 is the opening amount of the diaphragm 31c when the predetermined part of the tip end portion 6a is assumed to be a predetermined temperature, for example, 37 ° C. or higher by the same method as in the first embodiment. is there.
  • control unit 42A that executes the process of S11 constitutes a signal detection unit that detects a signal indicating the temperature of the illumination units of the illumination windows 7 and 9.
  • the signal indicating the temperature is a signal of the opening amount of the diaphragm 31c that limits the amount of illumination light for the front visual field and the side visual field.
  • the control unit 42A When the opening amount of the diaphragm 31c is the maximum value DM1 (S11), that is, when it is estimated that the front end portion 6a is equal to or higher than a predetermined temperature, the control unit 42A causes the light shielding plate 37 to perform side field illumination. Turn off (S12). Specifically, the control unit 42A outputs the light shielding plate control signal LIC, and drives the light shielding plate 37 so that the light from the stop 31c does not enter the base end face region 16a of the side illumination light guide 16.
  • control unit 42 that executes the process of S12 controls at least one light quantity of the illumination light of the illumination window 7 and the illumination light of the illumination window 9 based on the signal indicating the temperature of the illumination units of the illumination windows 7 and 9.
  • An illumination light quantity control unit is configured. Specifically, the control unit 42 limits the light amount of the side-view illumination light as at least one light amount.
  • the temperature rise of the side view illumination window 9 is suppressed, and as a result, the temperature rise of the tip 6a is also suppressed.
  • the control unit 42A causes the control unit 42A to The light shielding plate 37 is moved so that the light is incident on the proximal end face region 16 a of the side illumination light guide 16.
  • the opening amount of the diaphragm 31c is not the maximum value DM1 (S11: NO)
  • the processing is not performed.
  • control unit 42A turns off the illumination for the side field of view, so that the temperature rise of the distal end portion 6a can be suppressed.
  • the light shielding plate 37 is used to suppress the incidence of light to the side illumination light guide 16, but other light reduction filters are used to reduce the amount of incident light. It may be.
  • the side field illumination is turned off depending on whether or not the aperture amount of the diaphragm 31c is the maximum value DM1, the illumination amount of the side field illumination is stepwise according to the aperture amount of the diaphragm 31c. You may make it reduce to.
  • the light amount of the side view illumination is reduced to 50% of the maximum light amount, and when the opening amount of the diaphragm 31c is between 90 and less than 100.
  • the light amount of the side field illumination may be reduced to 25%, and when the aperture amount of the diaphragm 3c reaches 100, the light amount of the side field illumination may be decreased to 0%.
  • the light amount of the side field illumination is set to 25% of the maximum light amount.
  • the aperture amount of the diaphragm 31c is between 80 and less than 90, the light quantity of the side view illumination is increased to 50%, and when the aperture amount of the diaphragm 31c is less than 80, the side The operation of the light shielding plate 37 is controlled so as to increase the amount of illumination of the direction field illumination to 100%.
  • the temperatures of two or more illumination windows having different illumination areas are individually confirmed, and the temperature does not rise more than a predetermined value.
  • Endoscope that controls the amount of light to the above-mentioned illumination windows independently and adjusts the aperture value at the same time to prevent overheating of the tip while performing fine illumination control that does not change the amount of light of all illuminations simultaneously.
  • the front field of view is given priority over the side field of view, and the temperature of the distal end portion 6a is estimated based on the aperture amount of the diaphragm so that the temperature of the distal end portion of the insertion portion does not increase.
  • the endoscope system estimates the temperature of the distal end portion 6a based on the change over time of the aperture amount of the diaphragm, and the distal end portion of the insertion portion.
  • the present invention relates to an endoscope system that controls illumination so that the temperature of the camera does not increase.
  • the endoscope system 1B according to the present embodiment has substantially the same configuration as the endoscope system 1A according to the second embodiment.
  • the same components as those in the endoscope system 1A of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 8 is a configuration diagram showing the configuration of the endoscope system 1B according to the present embodiment.
  • the distal end portion 6a of the insertion portion 6 has the same configuration as the distal end portion of the first embodiment, except that the temperature sensor of the first embodiment is not provided.
  • the light control unit 31B of the light source device 3 has a stop 31c.
  • the control unit 42B Based on the brightness of each of the two regions 22 and 23 of the endoscopic image 21 detected by the photometry unit 41, the control unit 42B generates an aperture control signal AC for controlling the aperture 31c and drives it. To the unit 32B.
  • the drive unit 32B controls the opening amount of the diaphragm 31c based on the diaphragm control signal AC from the control unit 42B.
  • FIG. 9 is a flowchart illustrating an example of the flow of the control operation of the brightness target value of the endoscopic image of the control unit 42B.
  • the control unit 42B controls the opening amount of the diaphragm 31c based on the brightness of the endoscopic image.
  • the control unit 42B also executes the process of FIG. 9 while controlling the diaphragm 31c.
  • the control unit 42B determines whether or not the integral value of the opening amount of the diaphragm 31c in the past predetermined period PT is equal to or greater than the predetermined value TH2 (S21).
  • the control unit 42B that executes the process of S21 constitutes a signal detection unit that detects a signal indicating the temperature of the illumination units of the illumination windows 7 and 9.
  • the signal indicating the temperature is a signal of an integral value for a predetermined time of the opening amount of the diaphragm 31c that limits the amount of illumination light of the illumination windows 7 and 9.
  • FIG. 10 is a graph showing a change in the opening amount of the diaphragm 31c over time. As shown in FIG. 10, the opening amount of the diaphragm 31c changes as shown by a solid line. As described above, the opening amount of the diaphragm 31c is controlled and changed by the control unit 42B based on the brightness of each of the two regions 22 and 23 of the endoscopic image 21 detected by the photometry unit 41.
  • the opening amount of the diaphragm 31c in the latest past predetermined period PT at time t2 is the opening amount of the diaphragm 31c in the latest past predetermined period PT at time t1.
  • the integrated value of the opening amount in the past predetermined period PT is also larger at the time t2 than the integrated value at the time t1.
  • the temperature of the tip 6a may be increased. That is, when the integral value of the opening amount of the diaphragm 31c in the most recent predetermined period PT is equal to or greater than the predetermined value TH2, the temperature of the front end portion 6a exceeds a predetermined temperature, for example, 37 degrees, or has already exceeded the temperature. It is estimated by the control unit 42B as an estimation unit.
  • the control unit 42B detects a signal indicating the temperature of the illumination unit of the illumination window 7 and a signal indicating the temperature of the illumination unit of the illumination window 9 as a signal detection unit, and sets the brightness target value of the endoscope image. Decrease by a predetermined value BL (S22).
  • the brightness target value of the endoscopic image is a target value of the brightness of the endoscopic image obtained by the imaging unit 14, and when the brightness target value decreases by a predetermined value BL, the control unit 42B causes the diaphragm 31c to stop.
  • a diaphragm control signal AC having a small opening amount is output by a predetermined value.
  • control unit 42 that executes the process of S22 controls at least one light amount of the illumination light of the illumination window 7 and the illumination light of the illumination window 9 based on the signal indicating the temperature of the illumination units of the illumination windows 7 and 9.
  • An illumination light quantity control unit is configured. Specifically, the control unit 42B controls at least one light amount by lowering the target value of the brightness of the subject image in the front visual field and the subject image in the side visual field.
  • the amount of light supplied to the tip portion 6a is reduced, so that the temperature rise of the tip portion 6a can be suppressed.
  • the integral value of the opening amount of the diaphragm 31c in the most recent predetermined period PT is not equal to or greater than the predetermined value TH2 (S21: NO), no processing is performed.
  • control unit 42B when it is estimated that the temperature of the front end portion 6a is equal to or higher than the predetermined temperature, the control unit 42B reduces the target brightness value of the image by the predetermined value BL, thereby suppressing the temperature increase of the front end portion 6a. be able to.
  • the image brightness target value is lowered depending on whether or not the integral value of the aperture amount of the diaphragm 31c in the most recent predetermined period PT is equal to or greater than the predetermined value TH2, but the aperture amount of the aperture 31c is reduced.
  • the brightness target value of the image may be decreased stepwise.
  • the brightness target value of the image is decreased by 10%
  • the integral value of the aperture amount of the diaphragm 31c is between AC2 and less than AC3
  • the image brightness target value may be decreased by 20%, and when the integral value of the aperture amount of the diaphragm 31c becomes AC3 or more, the image brightness target value may be decreased by 30%.
  • the target brightness value of the image is reduced by 20%.
  • the image brightness target value is increased to a level of 10% reduction, and the image brightness target value is less than AC1.
  • the target brightness value of the image is not reduced.
  • the image brightness target value is decreased by the predetermined value BL or stepwise, and the image brightness becomes equal to or less than the predetermined brightness BR1
  • the image brightness is adjusted by gain adjustment. May be adjusted.
  • the temperatures of two or more illumination windows having different illumination areas are individually estimated, and the temperature does not rise more than a predetermined value. Since the amount of light to the above illumination windows is controlled independently, it is possible to provide an endoscope system that prevents overheating of the tip while performing fine illumination control in which the amount of light of all the illuminations does not change simultaneously. .
  • one image sensor receives subject images of both the front field of view and the side field of view, but in the endoscope system of the present embodiment, Three image sensors are used, and one image sensor receives a subject image with a front visual field, and two image sensors receive a subject image with two lateral fields.
  • FIG. 11 is a configuration diagram showing the configuration of the endoscope system 1C according to the present embodiment. Since the endoscope system 1C according to the present embodiment has substantially the same configuration as the endoscope system 1B according to the third embodiment, the same components as those in the endoscope system 1B are denoted by the same reference numerals. A description will be omitted and different configurations will be described.
  • the endoscope 2B has a plurality of, for example, six illumination windows, the two illumination windows 7a and 7b are for front illumination, and the four illumination windows 9a, 9b, 9c and 9d are For side lighting.
  • the illumination windows 7a and 7b constitute a first illumination unit that emits first illumination light to a region including the front of the insertion unit 6 as a first region inside the subject, and a plurality of illumination windows 9a, 9b and the illumination windows 9c and 9d are a second illumination unit that emits second illumination light to a region including the side of the insertion unit 6 as a second region that is at least partially different from the first direction.
  • the second area different from the first area means that the optical axes in the respective areas are directed in different directions, and one of the subject image in the first area and the subject image in the second area.
  • the portions may or may not overlap, and the irradiation range of the first illumination light and the irradiation range of the second illumination light may partially overlap or may not overlap.
  • the endoscope 2B has three observation windows, one observation window 8 is for the front visual field, and the two observation windows 10a and 10b are for the lateral visual field.
  • an observation window 8 is disposed on the distal end surface of the distal end portion 6 a, and two illumination windows 7 a and 7 b are disposed in the vicinity of the observation window 8.
  • Two observation windows 10a and 10b for observing sides opposite to each other are arranged on the side surface of the tip 6a, and two illumination windows are provided in the vicinity of the observation window 10a.
  • 9a and 9b are disposed, and two illumination windows 9c and 9d are disposed in the vicinity of the observation window 10b. Therefore, the two observation windows 10 a and 10 b are arranged at substantially equal angles in the circumferential direction of the insertion portion 6.
  • the observation window 8 constitutes a first subject image acquisition unit that acquires an image from the front included in the first region, and the observation window 10a and the observation window 10b are included in a second region different from the front.
  • a second subject image acquiring unit that acquires an image from the side to be viewed is configured.
  • the image from the front included in the first region is a subject image of the first region including the front of the insertion portion 6 substantially parallel to the longitudinal direction of the insertion portion 6, and the second region.
  • the image from the side included in the image is a subject image of the second region including the side of the insertion portion 6 in the direction intersecting with the longitudinal direction of the insertion portion 6 (for example, substantially orthogonal).
  • a front subject image acquisition unit that acquires a subject image of a first region including the front of the insertion unit 6, and the observation window 10 is a subject image of a second region including the side of the insertion unit 6.
  • This is a side object image acquisition unit that acquires.
  • the observation window 8 that is the subject image acquisition unit is arranged at the distal end portion 6a of the insertion unit 6 in the direction in which the insertion unit 6 is inserted, and the observation window 10a that is the subject image acquisition unit and the observation window 10 b is arranged on the side surface portion of the insertion portion 6 toward the outer diameter direction of the insertion portion 6.
  • an imaging unit 14a for the first side field of view is disposed in the distal end portion 6a on the rear side of the observation window 10a, and on the second side on the rear side of the observation window 10b.
  • An imaging unit 14b for a field of view is disposed in the distal end portion 6a.
  • An imaging unit 14c for the front visual field is disposed in the front end portion 6a behind the observation window 8 for the front visual field.
  • Each of the three imaging units 14a, 14b, and 14c has an imaging device, and is controlled by the processor 4.
  • the imaging unit 14c photoelectrically converts the subject image from the observation window 8, and the imaging unit 14a is the observation window 10a.
  • the imaging unit 14b photoelectrically converts the subject image from the observation window 10b and outputs the imaging signal to the electrically connected processor 4 respectively.
  • the processor 4 includes a control unit 42C, a photometry unit 41A, and an illumination control unit 31C.
  • the control unit 42C of the processor 4 generates three endoscopic images based on the three imaging signals from the three imaging units 14a, 14b, and 14c as an image generation unit, and outputs them to the display device 5.
  • FIG. 12 is a diagram illustrating an example of an endoscopic image display screen displayed on the display device 5. Three endoscopic images are displayed on the display screen 5 a of the display device 5.
  • the first area 51 is an area for displaying the first side observation image generated from the imaging signal from the imaging unit 14a.
  • the second area 52 is an area for displaying a front observation image generated from the imaging signal from the imaging unit 14c.
  • the third area 53 is an area for displaying the second side observation image generated from the imaging signal from the imaging unit 14b.
  • three endoscopic images are displayed side by side on the display screen 5a of the display device 5 (that is, the processor 42 arranges the side images so as to be adjacent to the front image. To do).
  • the photometric unit 41A of the processor 4 calculates the brightness of each of the three endoscopic images generated by the processor 4 and outputs the brightness to the control unit 42C.
  • the processor 4 is an image processing unit that generates an image signal including a front observation image and two side observation images.
  • the control unit 42C controls the amount of illumination light corresponding to each endoscope image and adjusts the gain of each image signal.
  • the display device 5 receives an image signal from the processor 4 and includes an internal image including a front observation image and two side observation images so that two side observation images are displayed next to (adjacent to) the front observation image.
  • a display unit for displaying an endoscopic image is configured.
  • the processor 4 displays two side observation images on the display device 5 so as to sandwich the front observation image. That is, the processor 4 generates the image in which the subject image of the front visual field is arranged at the center, and the two side view subject images are arranged so as to sandwich the subject image of the front visual field.
  • FIG. 13 is a diagram for explaining the drive control of the six light emitting elements disposed in each of the six illumination windows 7a, 7b, 9a, 9b, 9c, and 9d disposed in the distal end portion 6a.
  • Light emitting elements 57a and 57b are disposed in the front viewing illumination windows 7a and 7b, respectively, and the first illumination light is emitted inside the subject to a region including the front as the first region. 1 illumination part is comprised.
  • the light emitting elements 57a and 57b are connected to the illumination control unit 31C via signal lines 38a and 38b, respectively. Further, temperature sensors 57a1 and 57b1 are provided in the vicinity of the light emitting elements 57a and 57b, respectively.
  • the six light emitting elements are, for example, light emitting diodes (LEDs).
  • Light emitting elements 59a and 59b are disposed in the first side-view illumination windows 9a and 9b, respectively.
  • the light emitting elements 57a and 57b are connected to the illumination control unit 31C via signal lines 38c and 38d, respectively.
  • temperature sensors 59a1 and 59b1 are provided in the vicinity of the light emitting elements 59a and 59b, respectively.
  • Light emitting elements 59c and 59d are disposed in the second side-view illumination windows 9c and 9d, respectively.
  • the light emitting elements 59c and 59d are connected to the illumination control unit 31C via signal lines 38e and 38f, respectively. Further, temperature sensors 59c1 and 59d1 are provided in the vicinity of the light emitting elements 59c and 59d, respectively.
  • the first side-view illumination windows 9a and 9b and the second side-view illumination windows 9c and 9d include a side as a second region at least partially different from the first direction. 2nd illumination part which radiate
  • the second area different from the first area means that the optical axes in the respective areas are directed in different directions, and one of the subject image in the first area and the subject image in the second area.
  • the portions may or may not overlap, and the irradiation range of the first illumination light and the irradiation range of the second illumination light may partially overlap or may not overlap.
  • each of the illumination light for the front visual field and the side visual field is generated by light emission of the light emitting element.
  • the control unit 42C includes a temperature comparison unit 55.
  • the temperature comparison unit 55 is a circuit that generates temperature data of each light emitting element based on an output signal of each temperature sensor and compares whether or not the temperature data is equal to or greater than a predetermined value TH3. Therefore, the temperature comparison unit 55 constitutes a signal detection unit that detects a signal indicating the temperature of the illumination windows 7a, 7b, 9a to 9d.
  • the signal indicating the temperature includes the output signals of the temperature sensors 57a1 and 57b1 provided in the vicinity of the light emitting elements 57a and 57b for the front visual field as the first signal, and the side as the second signal. It includes output signals of temperature sensors 59a1, 59b1, 59c1, and 59d1 provided in the vicinity of the light emitting elements 59a, 59b, 59c, and 59d for the direction field.
  • the illumination control unit 31 ⁇ / b> C includes an output limiter unit 56.
  • the output limiter unit 56 is a circuit that limits a drive signal for causing each light emitting element to emit light to a predetermined signal level for each light emitting element.
  • the output limiter unit 56 has six limiter circuits corresponding to the six light emitting elements 57a, 57b, 59a, 59b, 59c, and 59d.
  • limiter circuits C1, C2, L1, L2, R1, and R2 are circuits for limiting drive signals supplied to the light emitting elements 57a, 57b, 59a, 59b, 59c, and 59d, respectively.
  • the temperature comparison unit 55 is a processing unit that generates temperature data of each temperature sensor from output signals from the temperature sensors 57a1, 57b1, 59a1, 59b1, 59c1, and 59d1. For example, the temperature data of the temperature sensor 57a1 is calculated based on the output signal of the temperature sensor 57a1.
  • the temperature comparison unit 55 compares whether or not the temperature data of each temperature sensor is equal to or higher than a predetermined value TH3. If the temperature of each temperature sensor is equal to or higher than the predetermined value TH3, the temperature sensor equal to or higher than the predetermined value TH3.
  • the limit control signal LC is output to the output limiter unit 56 that limits the drive signal to the light emitting element provided with.
  • the temperature comparison unit 55 limits the drive signal to the light emitting element in the vicinity of the temperature sensor equal to or higher than the predetermined value TH3 so as not to exceed a predetermined value.
  • the limit control signal LC is output to the output limiter unit 56.
  • the predetermined value TH3 is 37 ° C., for example.
  • the upper limit value of only the drive signal to the light emitting element 59c is decreased by a predetermined value.
  • the temperature comparison unit 55 and the output limiter unit 56 are based on the signal indicating the temperature of the illumination window for the front visual field and the signal indicating the temperature of the illumination window for the side visual field, and the illumination windows 7a, 7b,
  • An illumination light quantity control unit that controls at least one light quantity from 9a to 9d is configured.
  • the temperature comparison unit 55 and the output limiter unit 56 as the illumination light amount control unit limit at least one light amount by limiting the driving signal of the light emitting element for the front visual field or the light emitting element for the side visual field. Control.
  • the signal level of the output signal to the light emitting element that has become equal to or higher than the predetermined value TH3 is lowered, so that overheating of the tip is suppressed.
  • the temperatures of two or more illumination windows having different illumination areas are individually confirmed, and the temperature does not rise more than a predetermined value. Since the amount of light to the above illumination windows is controlled independently, it is possible to provide an endoscope system that prevents overheating of the tip while performing fine illumination control in which the amount of light of all the illuminations does not change simultaneously. .
  • the temperature of each light emitting element is detected by the temperature sensor, and the maximum output of the drive signal to each light emitting element is limited according to the temperature of each light emitting element.
  • the latest drive signal when the integral value of the latest drive signal exceeds a predetermined value based on the most recent time change of the drive signal to each light emitting element without using the temperature sensor, the latest drive signal The dimming level of an image obtained by a light emitting element whose integrated value exceeds a predetermined value, that is, the brightness of the image is decreased by a predetermined value, and as a result, the signal level of the drive signal is decreased.
  • the configuration of the endoscope system according to the present embodiment is substantially the same as the configuration of the endoscope system 1C according to the fourth embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. A different configuration will be described.
  • FIG. 14 is a diagram for explaining the drive control of the six light emitting elements disposed in each of the six illumination windows 7a, 7b, 9a, 9b, 9c, and 9d disposed in the distal end portion 6a. As shown in FIG. 14, the temperature sensor is not provided at the distal end portion 6 a of the insertion portion 6.
  • the illumination control unit 31C includes a light emitting element driving unit 61 that drives the light emitting elements 57a, 57b, 59a, 59b, 59c, and 59d.
  • the light emitting element driving unit 61 has six driving circuits.
  • the drive circuits C11, C12, L11, L12, R11, and R12 of the light emitting element driving unit 61 are circuits for driving the light emitting elements 57a, 57b, 59a, 59b, 59c, and 59d, respectively.
  • the control unit 42C includes a temperature estimation comparison unit 62.
  • the temperature estimation comparison unit 62 calculates an integral value of the magnitude of the drive signal for each light emitting element in the past predetermined period PT1, for example, an integral value of the magnitude of the current value or the power value, and calculates each integral value from the latest integral value.
  • This is a processing unit that estimates the temperature of the light emitting element and compares whether or not the latest integrated value is equal to or greater than a predetermined value TH4. Therefore, the temperature estimation comparison unit 62 constitutes a signal detection unit that estimates and detects signals indicating the temperatures of the illumination windows 7a, 7b, 9a to 9d.
  • the signal indicating the temperature includes a signal of an integral value at a predetermined time PT1 of a drive signal to the light emitting element for the front visual field as the first signal, and a signal for the side visual field as the second signal. And a signal of an integral value at a predetermined time PT1 of the drive signal to the light emitting element.
  • FIG. 15 is a graph showing changes in the drive signal level to the light-emitting elements over time. As shown in FIG. 15, the drive signal level to the light emitting element changes as shown by the solid line. As described above, the drive signal level to the light emitting element is controlled and changed by the control unit 42C based on the brightness of each of the two regions 22 and 23 of the endoscopic image 21 detected by the photometry unit 41. To do.
  • the drive signal level to the light emitting element in the latest past predetermined period PT1 at time t2 is the light emission in the latest past predetermined period PT1 at time t1. Greater than the drive signal level to the element. Therefore, the integrated value of the drive signal level to the light emitting element in the past predetermined period PT1 is also larger at time t2 than at time t1.
  • the temperature of the tip 6a may be increased. That is, if the integral value of the drive signal level in the most recent predetermined period PT1 is equal to or greater than the predetermined value TH4, the temperature of the tip 6a is estimated to exceed or have already exceeded a predetermined temperature, for example, 37 degrees. .
  • control unit 42C lowers the target value of the brightness of the endoscopic image obtained through the observation window corresponding to the light emitting element having the integral value of the drive signal level equal to or higher than the predetermined value TH4 by the predetermined value D, and as a result. As a result, the drive signal level of the light emitting element is lowered by a predetermined value DL.
  • the control unit 42C having the temperature estimation comparison unit 62 detects, as a signal detection unit, a signal indicating the temperature of the illumination window for the front visual field and a signal indicating the temperature of the illumination window for the side visual field, Based on these signals, an illumination light amount control unit that controls at least one light amount of the illumination windows 7a, 7b, 9a to 9d is configured. Specifically, the control unit 42C controls at least one light quantity by lowering the target value of the brightness of the subject image in the front visual field or the subject image in the side visual field. Accordingly, the amount of heat generated by the light emitting element having the integral value of the drive signal level equal to or greater than the predetermined value TH4 is reduced, so that the temperature rise of the tip 6a can be suppressed.
  • the control unit 42C decreases the brightness target value by the predetermined value D, and as a result, the drive signal level of the light emitting element is reduced. Since the temperature is lowered by the predetermined value DL, an increase in the temperature of the tip 6a can be suppressed.
  • the brightness target value is decreased by the predetermined value D depending on whether or not the integral value of the drive signal level to the light emitting element within the most recent predetermined period PT1 is equal to or greater than the predetermined value TH4.
  • the drive signal level may be lowered so that the target brightness value of the image is decreased stepwise according to the integral value of the drive signal level.
  • the target value of brightness is reduced by 10%, and when the integral value of the drive signal level is between DC2 and less than DC3, Alternatively, the brightness target value may be decreased by 20%, and the brightness target value may be decreased by 30% when the integral value of the drive signal level becomes DC3 or more.
  • the brightness target value is increased to a level of 20% reduction, and the drive is performed.
  • the target brightness value is increased to a level of 10% reduction, and when the drive signal level is less than DC1, the brightness level is increased.
  • the target value is not reduced. Therefore, according to the present embodiment, in an endoscope capable of observing two or more directions, the temperatures of two or more illumination windows having different illumination areas are individually estimated, and the temperature does not rise more than a predetermined value. Since the amount of light to the above illumination windows is controlled independently, it is possible to provide an endoscope system that prevents overheating of the tip while performing fine illumination control in which the amount of light of all the illuminations does not change simultaneously. .
  • some endoscopes 2B are provided with a cleaning nozzle for cleaning the observation window at the distal end portion 6a and a water supply conduit in the insertion portion 6.
  • a fluid supply switch provided in an operation unit (not shown)
  • water for cleaning is discharged from the cleaning nozzle.
  • the temperature of the tip 6a is lowered.
  • the fluid supply switch is operated to perform cleaning.
  • the target value of the brightness of the image may be increased while water is being supplied.
  • cleaning nozzles 71, 72, and 73 are disposed in the distal end portion 6 a in the vicinity of each observation window.
  • the nozzles 71, 72, 73 are connected to a pump 74 provided in a light source device (not shown) or the like via water supply pipes 75, 76, 77, respectively.
  • the pump 74 operates in accordance with a pump drive signal from the control unit 42C based on an operation unit (not shown) of the endoscope 2B. Water is discharged from each of the cleaning nozzles 71, 72, 73 as indicated by a two-dot chain line.
  • the integral value of the drive signal level to the light emitting element in the most recent predetermined period PT1 is equal to or greater than the predetermined value TH4, it is obtained through the observation window corresponding to the light emitting element while water is being supplied.
  • the temperatures of two or more illumination windows having different illumination areas are individually confirmed, and the temperature does not rise more than a predetermined value. Since the amount of light to the above illumination windows is controlled independently, it is possible to provide an endoscope system that prevents overheating of the tip while performing fine illumination control in which the amount of light of all the illuminations does not change simultaneously. .
  • three observation images are displayed on the display screen of one display device, but a plurality of display devices 5 arranged adjacent to each other are used. You may make it display a front observation image and a side observation image on the separate display screens 5a, respectively.
  • FIG. 16 is a diagram showing a display system using three display devices 5. As shown in FIG. 16, the above-described first display area 51 is displayed on the display screen 5 a of the left display device 5, and the above-described second display area is displayed on the display screen 5 a of the central display device 5. 52 is displayed, and the above-described third display area 53 is displayed on the display screen 5a of the display device 5 on the right side.
  • the mode to be switched may be switched by a switch operation or the like.
  • the mechanism that realizes the function of illuminating and observing the side is incorporated in the insertion portion 6 together with the mechanism that realizes the function of illuminating and observing the front.
  • the mechanism for realizing the illumination and observation function may be a separate body that can be attached to and detached from the insertion portion 6.
  • FIG. 17 is a perspective view of the distal end portion 6a of the insertion portion 6 to which a side observation unit is attached.
  • the distal end portion 6 a of the insertion portion 6 has a front vision unit 600.
  • the side view unit 500 has a structure that is detachable from the front view unit 600.
  • the side view unit 500 includes two observation windows 501 for acquiring an image in the left-right direction and two illumination windows 502 for illuminating the left-right direction.
  • Each of the above-described embodiments can also be applied to an endoscope system having the insertion section 6 as shown in FIG.
  • the image generation unit combines a front view image (front observation image) and a side view image (side observation image) into one composite image.
  • the displayed endoscopic image may be displayed on the display screen 4a, or a plurality of, for example, two or three images may be displayed without combining the front view image (front observation image) and the side view image (side observation image). It may be displayed on the display screen 4a as an endoscope image simply arranged as an image.

Abstract

 内視鏡システム(1)は、被検体の内部に挿入される挿入部(6)と、挿入部(6)に設けられ、前方から第1の被検体像を取得する観察窓(8)と、挿入部(6)に設けられ、前方とは異なる側方から第2の被検体像を取得する観察窓(10)と、前方に第1の照明光を出射する照明窓(7)と、側方に第2の照明光を出射する照明窓(9)と、照明窓(7)と(9)の温度を示す信号を検出する信号に基づき、照明窓(7)の第1の照明光の光量と照明窓(9)の第2の照明光の光量とを個々に独立して制御する制御部(42)と、を備える。

Description

内視鏡システム
 本発明は、内視鏡システムに関し、特に、少なくとも2方向に照明光を照射し、その少なくとも2方向からの被検体像を取得する内視鏡システムに関する。
 従来、内視鏡が、医療分野及び工業分野において広く用いられている。内視鏡は、挿入部の先端側に照明手段及び観察手段を備え、被検体内に挿入されて被検体内の観察及び検査をすることができる。
 近年、2以上の方向を観察できる内視鏡が提案されており、例えば特許第4782900号公報に開示のように、挿入部の前方側を観察視野とする前方視野の他に、挿入部の側面側を観察視野とする側方視野を備えた内視鏡が提案されている。このような内視鏡を用いれば、検査者は、前方と側方の2方向を同時に観察することができる。
 しかし、このような2以上の方向を観察できる内視鏡で、各方向の視野において明るい画像を得ようとすると、各方向の視野に対応する照明が必要となるため、照明部の増加に伴って挿入部の先端部の発熱量が増加して、先端部が過熱する虞がある。
 そこで、本発明は、2以上の方向を観察できる内視鏡において先端部の過熱を防止する内視鏡システムを提供することを目的とする。
 本発明の一態様の内視鏡システムは、被検体の内部に挿入される挿入部と、前記挿入部に設けられ、前記被検体の像を取得する被検体像取得部と、前記挿入部に設けられ、前記被検体の第1の領域に第1の照明光を出射する第1の照明部と、前記挿入部に設けられ、前記第1の領域とは少なくとも一部が異なる前記被検体の第2の領域に第2の照明光を出射する第2の照明部と、前記第1の照明部の温度を示す第1の信号と前記第2の照明部の温度を示す第2の信号とを検出する信号検出部と、前記第1の信号及び第2の信号に基づき、前記第1の照明光の光量と前記第2の照明光の光量とを個々に独立して制御する照明光量制御部と、を備える。
本発明の第1の実施の形態に関わる内視鏡システムの構成を示す構成図である。 本発明の第1の実施の形態に関わる挿入部6の先端部6aの断面図である。 本発明の第1の実施の形態に関わる、表示装置5に表示される内視鏡画像の表示画面の例を示す図である。 本発明の第1の実施の形態に関わる、制御部42による2つの絞り31a、31bの制御動作の流れの例を示すフローチャートである。 本発明の第2の実施の形態に関わる内視鏡システム1Aの構成を示す構成図である。 本発明の第2の実施の形態に関わる、光源装置3の絞り31cと遮光板37の構成を説明するための図である。 本発明の第2の実施の形態に関わる、制御部42Aの遮光板37の制御動作の流れの例を示すフローチャートである。 本発明の第3の実施の形態に関わる内視鏡システム1Bの構成を示す構成図である。 本発明の第3の実施の形態に関わる、制御部42Bの内視鏡画像の明るさ目標値の制御動作の流れの例を示すフローチャートである。 本発明の第3の実施の形態に関わる、時間の経過に伴う絞り31cの開口量の変化を示すグラフである。 本発明の第4の実施の形態に関わる内視鏡システム1Cの構成を示す構成図である。 本発明の第4の実施の形態に関わる、表示装置5に表示される内視鏡画像の表示画面の例を示す図である。 本発明の第4の実施の形態に関わる、先端部6aに配設された6つの照明窓7a、7b、9a、9b、9c、9dの各々に配設される6つの発光素子の駆動制御を説明するための図である。 本発明の第5の実施の形態に関わる、先端部6aに配設された6つの照明窓7a、7b、9a、9b、9c、9dの各々に配設される6つの発光素子の駆動制御を説明するための図である。 本発明の第5の実施の形態に関わる、時間の経過に伴う発光素子への駆動信号レベルの変化を示すグラフである。 3つの表示装置5を用いた表示システムを示す図である。 側方観察用のユニットが取り付けられた挿入部6の先端部6aの斜視図である。
 以下、図面を参照して本発明の実施の形態を説明する。 
 なお、以下の説明に用いる各図においては、各構成要素を図面上で認識可能な程度の大きさとするため、各構成要素毎に縮尺を異ならせてあるものであり、本発明は、これらの図に記載された構成要素の数量、構成要素の形状、構成要素の大きさの比率、及び各構成要素の相対的な位置関係のみに限定されるものではない。
(第1の実施の形態)
 図1は、本実施の形態に関わる内視鏡システムの構成を示す構成図である。内視鏡システム1は、内視鏡2と、光源装置3と、プロセッサ4と、表示装置5とを含んで構成されている。
 内視鏡2は、被検体の内部に挿入される挿入部6と、図示しない操作部とを有する。内視鏡2は、図示しないケーブルにより、光源装置3とプロセッサ4に接続されている。内視鏡2の挿入部6の先端部6aには、前方視野用の照明窓7と観察窓8と、側方視野用の2つの照明窓9と観察窓10が設けられている。
 図2は、挿入部6の先端部6aの断面図である。なお、図2では、側方観察用の照明窓9は、1つのみが示されている。 
 挿入部6の先端部6aは、先端硬性部材11を有し、照明窓7が、先端硬性部材11の先端面に設けられている。照明窓7の後ろ側には、前方照明用ライトガイド12の先端面が配設されている。観察窓8が、先端硬性部材11の先端面に設けられている。観察窓8の後ろ側には、対物光学系13が配設されている。対物光学系13の後ろ側には、撮像ユニット14が配設されている。なお、先端硬性部材11の先端部には、カバー11aが取り付けられている。また、挿入部6には、外皮11bが被せられている。
 すなわち、前方用照明光は照明窓7から出射し、被検体内の観察部位からの反射光は、観察窓8に入射する。 
 先端硬性部材11の側面には、2つの照明窓9が配設されており、各照明窓9の後ろには、反射面が曲面のミラー15を介して、側方照明用ライトガイド16の先端面が配設されている。
 よって、照明窓7は、被検体の内部において、第1の領域として前方を含む領域に第1の照明光を出射する第1の照明部を構成し、複数の照明窓9は、第1の方向とは少なくとも一部が異なる第2の領域として側方を含む領域に第2の照明光を出射する第2の照明部を構成する。
 第1の領域とは異なる第2の領域とは、各領域における光軸が異なる方向を向いていることを指し、第1の領域における被検体像と第2の領域における被検体像との一部が重なっていても重なっていなくてもよく、さらに、第1の照明光の照射範囲と第2の照明光の照射範囲が一部において重なっていても重なっていなくても良い。
 先端硬性部材11の側面には、観察窓10が配設されており、観察窓10の後ろ側には、対物光学系13が配設されている。対物光学系13は、観察窓8を通った前方からの反射光と、観察窓10を通った側方からの反射光を撮像ユニット14へ向けるように構成されている。図2では、対物光学系13は、2つの光学部材17と18を有する。光学部材17は、凸面17aを有するレンズであり、光学部材18は、側方からの反射光を、光学部材17を介して撮像ユニット14へ向けて反射させる反射面18aを有する。
 すなわち、観察窓8は、挿入部6に設けられ、第1の領域に含まれる前方からの像を取得する第1の被検体像取得部を構成し、観察窓10は、挿入部6に設けられ、前方とは異なる第2の領域に含まれる側方からの像を取得する第2の被検体像取得部を構成する。観察窓10は、観察窓8よりも、挿入部6の基端側に配置されている。
 より具体的には、第1の領域に含まれる前方からの像は、挿入部6の長手方向に略平行な挿入部6前方を含む第1の領域の被検体像であり、第2の領域に含まれる側方からの像は、挿入部6の長手方向に対して交わる方向(例えば略直交する等)の挿入部6側方を含む第2の領域の被検体像であり、観察窓8は、挿入部6の前方を含む第1の領域の被検体像を取得する前方被検体取得部であり、観察窓10は、挿入部6の側方を含む第2の領域の被検体像を取得する側方被検像取得部である。
 そして、被検体像取得部である観察窓8は、挿入部6の先端部6aに、挿入部6が挿入される方向に向けて配置され、被検体像取得部である観察窓10は、挿入部6の側面部に、挿入部6の外径方向に向けて配置されている。撮像部である撮像ユニット14は、観察窓8からの被検体像と観察窓10からの被検体像とを、同じ撮像面で光電変換するように配置され、画像処理部であるプロセッサ4に電気的に接続されている。
 すなわち、観察窓8は、挿入部6の長手方向における先端部6aに、挿入部6が挿入される方向である第1の方向から第1の被検体像を取得するように配置され、観察窓10は、第1の方向とは異なる第2の方向から第2の被検体像を取得するように、挿入部6の周方向に沿って配置される。
 よって、前方用照明光は照明窓7から出射し、被検体からの反射光は、観察窓8を通って撮像ユニット14へ入射すると共に、側方用照明光は2つの照明窓9から出射し、被検体からの反射光は、観察窓10を通って撮像ユニット14へ入射する。撮像ユニット14の撮像素子14aは、被検体の光学像を光電変換して、撮像信号をプロセッサ4へ出力する。
 図1に戻り、撮像ユニット14からの撮像信号は、画像処理部であるプロセッサ4へ供給され、図示しない画像処理回路により、内視鏡画像が生成される。プロセッサ4は、内視鏡画像の画像データを表示装置5に出力する。プロセッサ4は、画像生成部であり、表示装置5は、プロセッサ4により生成された画像を表示する表示部である。
 図3は、表示装置5に表示される内視鏡画像の表示画面の例を示す図である。 
 表示装置5の表示画面5a上に表示される内視鏡画像21は、略矩形の画像であり、2つの領域22と23を有する。中央部の円形の領域22は、前方観察画像を表示する領域であり、中央部の領域22の周囲のC字状の領域23は、側方観察画像を表示する領域である。
 すなわち、前方観察画像は、略円形状になるように表示装置5の表示画面5a上に表示され、側方観察画像は、前方観察画像の周囲の少なくとも一部を囲む略円環状になるように(前方観察画像と隣接して)表示画面5a上に表示される。よって、表示装置5には、広角の内視鏡画像が表示される。
 図1に戻り、光源装置3は、調光部31と、調光部31を駆動する駆動部32と、光源33とを有している。 
 ライトガイド34は、上記の前方照明用ライトガイド12と側方照明用ライトガイド16を含んで構成されている。側方照明用ライトガイド16の先端部は、2つに分岐している。前方照明用ライトガイド12と側方照明用ライトガイド16は、互いに独立しており、前方照明用ライトガイド12は、光を照明窓7へ伝達し、側方照明用ライトガイド16は、光を2つの照明窓9へ伝達する。
 光源33は、白色光を出射するランプ、例えばキセノンランプ、を有する。光源33からの光は、調光部31を介してライトガイド34へ入射し、ライトガイド34の先端部34bから出射される。
 調光部31から出射する光は、図示しない集光装置により、ライトガイド34の基端部34aの前方照明用ライトガイド12と側方照明用ライトガイド16の各々の基端面に集光され、ライトガイド34に入射する。
 前方照明用ライトガイド12の基端面に入射した光は、前方照明用ライトガイド12の先端面を通って、照明窓7から出射する。側方照明用ライトガイド16の基端面に入射した光は、側方照明用ライトガイド16の2つに分岐した先端部の各端面を通って、各照明窓9から出射する。
 光源33からの光は、調光部31において光量が調整される。具体的には、調光部31は、2つの絞り31a、31bを有している。絞り31aは、制御部42からの絞り制御信号AC1に基づいて、前方照明用の光L1の光量を調節する。絞り31bは、制御部42からの絞り制御信号AC2に基づいて、側方照明用の光L2の光量を調節する。
 絞り31a、31bは、扇形のマスク部材を用いるもの、複数の絞り羽根の動きに応じて、中央の開口部の開口量が変化するもの、等のいずれのものでもよい。絞り31a、31bは、モータなどの駆動機構により駆動される。
 プロセッサ4は、測光部41と、制御部42と、温度検出部43とを含んで構成されている。 
 測光部41は、プロセッサ4内で生成された内視鏡画像の画像データから、上述した内視鏡画像21の2つの領域22と23の各々の明るさを算出する処理部である。測光部41は、領域22の明るさと、領域23の明るさを算出し、制御部42へ出力する。各領域の明るさは、各領域内の全画素の輝度の平均値である。
 先端部6a内の照明窓7の近傍には、温度センサ35が設けられている。さらに、2つの照明窓9の一方の近傍にも、温度センサ36が設けられている。 
 温度センサ35と36の出力信号は、それぞれ信号線35aと36aを介して、温度検出部43に入力される。温度検出部43は、温度センサ35の出力信号に基づいて、照明窓7の温度データを、制御部42に出力する。同様に、温度検出部43は、温度センサ36の出力信号に基づいて、照明窓9の温度データを、制御部42に出力する。よって、制御部42は、各照明部7、9の温度データを常時モニタ可能となっている。すなわち、温度検出部43は、温度センサ35と温度センサ36からの照明窓7と照明窓9の温度を示す信号を検出する信号検出部を構成する。具体的には、温度を示す信号は、第1の信号としての、前方視野用の照明窓7近傍に設けられた温度センサ35の出力信号と、第2の信号としての、側方視野用の照明窓9近傍に設けられた温度センサ36の出力信号とを含む。
 なお、2つの照明窓9に2つの温度センサ36を設けて、温度検出部43が、2つの温度センサの出力信号から、側方視野用の2つの照明窓9の温度の平均値などを求めて、その平均値などのデータを制御部42に出力するようにしてもよい。
 制御部42は、測光部41において検出された内視鏡画像21の2つの領域22と23の各々の明るさに基づいて、2つの絞り31a、31bをそれぞれ個々に独立して制御するための絞り制御信号AC1,AC2をそれぞれ生成して、駆動部32へ出力する。 
 駆動部32は、制御部42からの絞り制御信号AC1,AC2に基づいて各絞り31a、31bの開口量をそれぞれ個々に独立して制御する。
 制御部42は、駆動部32に、各絞り31a、31bについて最大絞り値を設定可能となっている。駆動部32は、その設定された最大絞り値を超えない範囲で、各絞り31a、31bを駆動する。
(動作)
 図4は、制御部42による2つの絞り31a、31bの制御動作の流れの例を示すフローチャートである。図4の処理は、各温度センサの出力信号に基づき、絞り31a、31bのそれぞれについて行われる。よって、制御部42は、各温度センサの出力信号に基づき、照明窓7の照明光と照明窓9の照明光の少なくとも1つの光量をそれぞれ個々に独立して制御する照明光量制御部を構成する。具体的には、制御部42は、前方視野用と側方視野用の照明光の光量を制限する絞り31a、31bの最大絞り値を制限することによって、前方視野用と側方視野用の照明光の少なくとも1つの光量を制御する。照明窓7の照明光と照明窓9の照明光の少なくとも1つの光量をそれぞれ個々に独立して制御することにより、照明窓7の照明光と照明窓9の照明光のうち必要な部分の光量だけを独立して増減させるようにして、表示装置5の表示画面5a上に表示される内視鏡画像21全体が暗くなることを防止することができる。
 制御部42は、温度検出部43からの照明窓7,9の温度データTが、それぞれ所定値TH1以上であるか否かを判定する(S1)。所定値TH1は、例えば、37℃である。 
 照明窓7,または照明窓9の温度データTが、所定値TH1以上であると判定されると(S1:YES)、制御部42は、温度データTが所定値TH1以上であると判定された照明窓7、または照明窓9の出射光量を制御する絞り31a、31bの最大絞り値DMを、所定値ADに設定変更する(S2)。
 例えば、絞り31aと31bが0から100の範囲で制御可能で、駆動部32に最大絞り値DMが100に設定されて、駆動部32が制御部42の制御の下で、絞り31aと31bをそれぞれ制御しているとする。内視鏡観察中に、側方視野用の1つの照明窓9の温度データTが、所定値TH1以上になると、制御部42は、駆動部32に対して、絞り31bの最大絞り値DMを所定値ADとしての75に変更する。その結果、駆動部32が、制御部42からの絞り制御信号AC2に基づいて絞り31bの開口量を、最大絞り値DMを超えないように制御するので、側方視野用の照明窓9の温度の上昇は、抑えられる。 
 なお、最大絞り値DMが変更された後、照明窓7又は9の温度データTが所定値TH1未満になると、最大絞り値DMは、当初の値、例えば100に変更される。
 すなわち、温度の上昇した照明窓の温度上昇が抑えられるので、挿入部6の先端部6aの過熱が防止される。さらに、温度データTが所定値TH1未満の照明窓の出射光量は、減らないので、温度データTが所定値TH1未満の照明窓に対応する観察窓により得られる画像は、鮮明な画像となる。
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に確認するとともに、温度が所定以上に上昇しないよう、2以上の照明窓を個々に独立して制御するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
(第2の実施の形態)
 第2の実施の形態は、側方視野に対して前方視野を優先として、挿入部の先端部の温度が高くならないように、側方視野用の照明を制限する内視鏡システムに関する。
 本実施の形態の内視鏡システム1Aは、第1の実施の形態の内視鏡システム1と略同様の構成を有している。よって、本実施の形態において、第1の実施の形態の内視鏡システム1と同じ構成要素については、同じ符号を付して説明は省略する。
 図5は、本実施の形態に関わる内視鏡システム1Aの構成を示す構成図である。 
 内視鏡2Aの挿入部6の先端部6aは、第1の実施の形態の先端部とほぼ同じ構成である。
 光源装置3の調光部31Aは、絞り31cと、遮光板37を有している。
 図6は、光源装置3の絞り31cと遮光板37の構成を説明するための図である。絞り31cは、複数の絞り羽根の動きに応じて、中央の開口部の開口量が変化することにより、光源33からの光の通る量を調整する構造を有している。
 遮光板37は、光を透過しない板状部材である。遮光板37は、絞り31cと、ライトガイド34の基端部34aの間において、絞り31cからの光の一部を遮光するように、図示しないアクチュエータにより移動可能となっている。
 遮光板37が絞り31cからの光の一部を遮光しないように位置している、すなわち引っ込んでいるとき、遮光板3は、絞り31cからの光の一部を遮光しない。しかし、遮光板37が絞り31cからの光の一部を遮光するように位置している、すなわち突出しているときは、絞り31cからの光の一部を遮光する。
 ライトガイド34の基端部34aは、前方照明用ライトガイド12の基端面領域12aと側方照明用ライトガイド16の基端面領域16aに区分けされている。図6に示すように、円形の基端部34aの端面の2つの半円領域のうちの一方が、基端面領域12aであり、2つの半円領域のうちの他方が、基端面領域16aである。
 遮光板37が突出したとき、絞り31cを通った光が側方照明用ライトガイド16の基端面領域16aに入射しないように、遮光板37は、絞り31cと基端部34aの間に移動する。
 そのため、遮光板37が突出したときに、遮光板37によって側方照明用ライトガイド16の基端面領域16aに絞り31cを通った光が入射しないように、遮光板37の形状は形成されている。
 図6の場合、遮光板37が突出したときに、ちょうど、絞り31cからの側方照明用の光L2が、側方照明用ライトガイド16の基端面領域16aに入射しないように、遮光板37は、直線状の端部37aを有している。遮光板37が突出したとき、前方照明用の光L1は、遮光されない。
 制御部42Aは、測光部41において検出された内視鏡画像21の2つの領域22と23の各々の明るさに基づいて、絞り31cを制御するための絞り制御信号ACを生成して、駆動部32Aへ出力する。駆動部32Aは、制御部42からの絞り制御信号ACに基づいて絞り31cの開口量を制御する。
 さらに、制御部42Aは、絞り制御信号ACに基づいて、遮光板37の駆動する遮光板駆動信号LICを生成して、駆動部32Aへ出力する。駆動部32Aは、制御部42からの遮光板駆動信号LICに基づいて遮光板37の位置を制御する。
(動作)
 図7は、制御部42Aの遮光板37の制御動作の流れの例を示すフローチャートである。制御部42Aは、上述したように、内視鏡画像の明るさに基づいて、絞り31cの開口量を制御している。制御部42Aは、そのような絞り31cの制御をしながら、図7の処理も実行する。
 制御部42Aは、絞り31cの開口量が最大値DM1であるか否かを判定する(S11)。具体的には、絞り制御信号ACが最大値DM1であるか否かが判定される。例えば、絞りが0~100の範囲で制御されるとき、絞り制御信号ACが100であるか否かが判定される。 
 ここでは、最大値DM1は、先端部6aの所定の部位が第1の実施の形態と同様の方法で所定の温度、例えば37℃以上になっているとされるときの絞り31cの開口量である。
 よって、言い換えれば、S11の処理を実行する制御部42Aは、照明窓7と9の照明部の温度を示す信号を検出する信号検出部を構成する。具体的には、温度を示す信号は、前方視野及び側方視野用の照明光の光量を制限する絞り31cの開口量の信号である。
 絞り31cの開口量が最大値DM1であるとき(S11)、すなわち先端部6aが所定の温度以上になっていると推定されるとき、制御部42Aは、遮光板37で側方視野用照明をオフにする(S12)。具体的には、制御部42Aは、遮光板制御信号LICを出力し、絞り31cからの光が側方照明用ライトガイド16の基端面領域16aに入射しないように、遮光板37を駆動する。
 すなわち、S12の処理を実行する制御部42は、照明窓7と9の照明部の温度を示す信号に基づき、照明窓7の照明光と照明窓9の照明光の少なくとも1つの光量を制御する照明光量制御部を構成する。具体的には、制御部42は、少なくとも1つの光量としての側方視野用の照明光の光量を制限する。
 遮光板37により、側方照明用ライトガイド16への光の入射がなくなるので、側方視野用の照明窓9の温度の上昇が抑えられ、結果として、先端部6aの温度上昇も抑えられる。
 なお、遮光板37を移動させて側方照明用ライトガイド16への光の入射をさせなくした後に、絞りの開口量が最大値DM1でなくなったときは、制御部42Aは、絞り31cからの光を、側方照明用ライトガイド16の基端面領域16aに入射させるように、遮光板37を移動させる。 
 絞り31cの開口量が最大値DM1でないときは(S11:NO)、処理は、何もしない。
 以上のように、制御部42Aは、先端部6aの温度が所定の温度以上になったと推定されるときには、側方視野用照明をオフにするので、先端部6aの温度上昇を抑えることができる。
 内視鏡の場合、側方視野用照明をオフにしても、前方視野用の照明はオフにされず、前方視野は確保されるので、術者は、挿入部6の挿入あるいは抜去ができる。 
 なお、以上の例では、遮光板37を使用して側方照明用ライトガイド16への光の入射を抑制しているが、他にも減光フィルタを使用して入射する光量を減少させるようにしてもよい。また、絞り31cの開口量が最大値DM1であるか否かで、側方視野用照明をオフしているが、絞り31cの開口量に応じて、側方視野用照明の照明量を段階的に減少させるようにしてもよい。
 例えば、絞り31cの開口量が80から90未満の間の場合は、側方視野用照明の光量を最大光量の50%に減少させ、絞り31cの開口量が90から100未満の間の場合は、側方視野用照明の光量を25%に減少させ、絞り3cの開口量が100になると、側方視野用照明の光量を0%に減少させる、というようにしてもよい。
 その場合、一旦側方視野用照明の光量を0%にした後、絞り31cの開口量が90から100未満の間になったときは、側方視野用照明の光量を最大光量の25%に上昇させ、絞り31cの開口量が80から90未満の間になったときは、側方視野用照明の光量を50%に上昇させ、絞り31cの開口量が80未満になったときは、側方視野用照明の光量を100%に上昇させるように、遮光板37の動作が制御される。
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に確認するとともに、温度が所定以上に上昇しないよう、2以上の照明窓への光量を個々に独立して制御すると同時に絞りの値も調整するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
(第3の実施の形態)
 第2の実施の形態は、側方視野に対して前方視野を優先として、絞りの開口量に基づいて先端部6aの温度を推定し、挿入部の先端部の温度が高くならないように、側方視野の照明を制限する内視鏡システムであるが、本実施の形態の内視鏡システムは、絞りの開口量の経時変化に基づいて先端部6aの温度を推定し、挿入部の先端部の温度が高くならないように、照明を制御する内視鏡システムに関する。
 本実施の形態の内視鏡システム1Bは、第2の実施の形態の内視鏡システム1Aと略同様の構成を有している。本実施の形態において、第2の実施の形態の内視鏡システム1Aと同じ構成要素については、同じ符号を付して説明は省略する。
 図8は、本実施の形態に関わる内視鏡システム1Bの構成を示す構成図である。 
 挿入部6の先端部6aは、第1の実施の形態の温度センサが設けられていない点を除いて、第1の実施の形態の先端部と同じ構成である。光源装置3の調光部31Bは、絞り31cを有している。
 制御部42Bは、測光部41において検出された内視鏡画像21の2つの領域22と23の各々の明るさに基づいて、絞り31cを制御するための絞り制御信号ACを生成して、駆動部32Bへ出力する。駆動部32Bは、制御部42Bからの絞り制御信号ACに基づいて絞り31cの開口量を制御する。
(動作)
 図9は、制御部42Bの内視鏡画像の明るさ目標値の制御動作の流れの例を示すフローチャートである。制御部42Bは、上述したように、内視鏡画像の明るさに基づいて、絞り31cの開口量を制御している。制御部42Bは、そのような絞り31cの制御をしながら、図9の処理も実行する。
 制御部42Bは、過去の所定期間PTにおける絞り31cの開口量の積分値が、所定値TH2以上であるか否かを判定する(S21)。S21の処理を実行する制御部42Bは、照明窓7と9の照明部の温度を示す信号を検出する信号検出部を構成する。具体的には、温度を示す信号は、照明窓7と9の照明光の光量を制限する絞り31cの開口量の所定時間における積分値の信号である。
 図10は、時間の経過に伴う絞り31cの開口量の変化を示すグラフである。図10に示すように、絞り31cの開口量は、実線で示すように変化する。上述したように、絞り31cの開口量は、測光部41において検出された内視鏡画像21の2つの領域22と23の各々の明るさに基づいて、制御部42Bにより制御されて変化する。
 図10において、例えば、時刻t1とt2の時点を比較すると、時刻t2における直近の過去の所定期間PT内における絞り31cの開口量は、時刻t1における直近の過去の所定期間PT内における絞り31cの開口量大きい。よって、過去の所定期間PTにおける開口量の積分値も、時刻t2のときの積分値の方が、時刻t1のときの積分値よりも大きい。
 直近の過去の開口量の積分値が大きいと、先端部6aの温度が上昇している可能性がある。すなわち、直近の所定期間PTにおける絞り31cの開口量の積分値が所定値TH2以上であると、先端部6aの温度は、所定の温度、例えば37度をそろそろ超える、あるいは既に超えていると温度推定部としての制御部42Bにより推定される。
 そこで、制御部42Bは、信号検出部として照明窓7の照明部の温度を示す信号と照明窓9の照明部の温度を示す信号とを検出するとともに、内視鏡画像の明るさ目標値を所定値BLだけ下げる(S22)。内視鏡画像の明るさ目標値は、撮像ユニット14により得られる内視鏡画像の明るさの目標値であり、その明るさ目標値が所定値BLだけ下がると、制御部42Bは、絞り31cの開口量が所定値だけ小さい絞り制御信号ACを出力する。すなわち、S22の処理を実行する制御部42は、照明窓7と9の照明部の温度を示す信号に基づき、照明窓7の照明光と照明窓9の照明光の少なくとも1つの光量を制御する照明光量制御部を構成する。具体的には、制御部42Bは、前方視野の被検体像及び側方視野の被検体像の明るさの目標値を下げることによって、少なくとも1つの光量を制御する。
 その結果、先端部6aへ供給される光量が減少するので、先端部6aの温度上昇を抑えることができる。 
 直近の所定期間PTにおける絞り31cの開口量の積分値が所定値TH2以上でないときは(S21:NO)、処理は、何もしない。
 以上のように、制御部42Bは、先端部6aの温度が所定の温度以上になったと推定されたときには、画像の明るさ目標値を所定値BLだけ下げるので、先端部6aの温度上昇を抑えることができる。
 なお、以上の例では、直近の所定期間PTにおける絞り31cの開口量の積分値が所定値TH2以上であるか否かで、画像の明るさ目標値を下げているが、絞り31cの開口量の積分値に応じて、画像の明るさ目標値を段階的に減少させるようにしてもよい。
 例えば、絞り31cの開口量の積分値がAC1からAC2未満の間の場合は、画像の明るさ目標値を10%減少させ、絞り31cの開口量の積分値がAC2からAC3未満の間の場合は、画像の明るさ目標値を20%減少させ、絞り31cの開口量の積分値がAC3以上になると、画像の明るさ目標値を30%減少させる、というようにしてもよい。
 その場合、その後、絞り31cの開口量の積分値が減少し、絞り31cの開口量の積分値がAC2からAC3未満の間になったときは、画像の明るさ目標値を20%減少のレベルまで上昇させ、絞り31cの開口量の積分値がAC1からAC2未満の間になったときは、画像の明るさ目標値を10%減少のレベルまで上昇させ、画像の明るさ目標値がAC1未満の間になったときは、画像の明るさ目標値の減少がないようにされる。
 なお、画像の明るさ目標値を所定値BLだけあるいは段階的に減少させていったときに、画像の明るさが、所定の明るさBR1以下になったときには、ゲイン調整により、画像の明るさの調整をするようにしてもよい。
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に推定するとともに、温度が所定以上に上昇しないよう、2以上の照明窓への光量を個々に独立して制御するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
(第4の実施の形態)
 第1、第2及び第3の実施の形態の内視鏡システムでは、1つの撮像素子が前方視野と側方視野の両方の被検体像を受けるが、本実施の形態の内視鏡システムでは、3つの撮像素子が用いられ、1つの撮像素子が前方視野の被検体像を受け、2つの撮像素子が2つの側方視野の被検体像を受けるように構成されている。
 図11は、本実施の形態に関わる内視鏡システム1Cの構成を示す構成図である。本実施の形態の内視鏡システム1Cは、第3の実施の形態の内視鏡システム1Bと略同様の構成を有しているので、内視鏡システム1Bと同じ構成要素については、同じ符号を付して説明は省略し、異なる構成について説明する。
 図11に示すように、内視鏡2Bは、複数例えば6つの照明窓を有し、2つの照明窓7a、7bは、前方照明用であり、4つの照明窓9a、9b、9c、9dは、側方照明用である。 
 照明窓7a、7bは、被検体の内部において、第1の領域として挿入部6の前方を含む領域に第1の照明光を出射する第1の照明部を構成し、複数の照明窓9a、9bと照明窓9c、9dとは、第1の方向とは少なくとも一部が異なる第2の領域として挿入部6の側方を含む領域に第2の照明光を出射する第2の照明部を構成する。
 第1の領域とは異なる第2の領域とは、各領域における光軸が異なる方向を向いていることを指し、第1の領域における被検体像と第2の領域における被検体像との一部が重なっていても重なっていなくてもよく、さらに、第1の照明光の照射範囲と第2の照明光の照射範囲が一部において重なっていても重なっていなくても良い。
 さらに、内視鏡2Bは、3つの観察窓を有し、1つの観察窓8は、前方視野用であり、2つの観察窓10a、10bは、側方視野用である。
 図11に示すように、先端部6aの先端面には、観察窓8が配置され、観察窓8の近傍に2つの照明窓7a、7bが配設されている。 
 先端部6aの側面には、互いに反対方向である側方(例えば先端部6aの左右方向)を観察するための2つの観察窓10a、10bが配置され、観察窓10aの近傍に2つの照明窓9a、9bが配設され、観察窓10bの近傍に2つの照明窓9c、9dが配設されている。よって、2つの観察窓10aと10bは、挿入部6の周方向に略均等な角度で配置されている。
 観察窓8は、第1の領域に含まれる前方から像を取得する第1の被検体像取得部を構成し、観察窓10aと観察窓10bとは、前方とは異なる第2の領域に含まれる側方からの像を取得する第2の被検体像取得部を構成する。
 より具体的には、第1の領域に含まれる前方からの像は、挿入部6の長手方向に略平行な挿入部6前方を含む第1の領域の被検体像であり、第2の領域に含まれる側方からの像は、挿入部6の長手方向に対して交わる方向(例えば略直交する等)の挿入部6側方を含む第2の領域の被検体像であり、観察窓8は、挿入部6の前方を含む第1の領域の被検体像を取得する前方被検体像取得部であり、観察窓10は、挿入部6の側方を含む第2の領域の被検体像を取得する側方被検体像取得部である。 
 そして、被検体像取得部である観察窓8は、挿入部6の先端部6aに、挿入部6が挿入される方向に向けて配置され、被検体像取得部である観察窓10aと観察窓10bとは、挿入部6の側面部に、挿入部6の外径方向に向けて配置されている。
 図11に示すように、観察窓10aの後ろ側には、第1の側方視野用の撮像ユニット14aが先端部6a内に配設され、観察窓10bの後ろ側には、第2の側方視野用の撮像ユニット14bが先端部6a内に配設されている。前方視野用の観察窓8の後ろ側には、前方視野用の撮像ユニット14cが先端部6a内に配設されている。
 3つの撮像ユニット14a,14b,14cの各々は、撮像素子を有し、プロセッサ4により制御されて、撮像ユニット14cは観察窓8からの被検体像を光電変換し、撮像ユニット14aは観察窓10aからの被検体像を、撮像ユニット14bは観察窓10bからの被検体像をそれぞれ光電変換するとともに、撮像信号を電気的に接続されたプロセッサ4へそれぞれ出力する。 
 プロセッサ4は、制御部42Cと、測光部41Aと、照明制御部31Cとを含む。プロセッサ4の制御部42Cは、画像生成部として3つの撮像ユニット14a,14b,14cからの3つの撮像信号に基づく3つの内視鏡画像を生成して、表示装置5へ出力する。
 図12は、表示装置5に表示される内視鏡画像の表示画面の例を示す図である。 
 表示装置5の表示画面5a上には、3つの内視鏡画像が表示される。第1の領域51は、撮像ユニット14aからの撮像信号から生成された第1の側方観察画像を表示する領域である。第2の領域52は、撮像ユニット14cからの撮像信号から生成された前方観察画像を表示する領域である。第3の領域53は、撮像ユニット14bからの撮像信号から生成された第2の側方観察画像を表示する領域である。
 図12に示すように、3つの内視鏡画像が、表示装置5の表示画面5a上に並んで表示される(つまり、プロセッサ42は、側方画像を前方画像と隣接して並べるように配置する)。プロセッサ4の測光部41Aは、プロセッサ4において生成された3つの内視鏡画像の各々の明るさを算出し、制御部42Cへ出力する。
 プロセッサ4は、前方観察画像と2つの側方観察画像とを含む画像信号を生成する画像処理部である。制御部42Cは、各内視鏡画像の明るさに応じて、対応する照明光の光量を制御したり、各画像信号のゲイン調整を行ったりする。
 表示装置5は、プロセッサ4から画像信号を入力し、前方観察画像の隣に(隣接して)2つの側方観察画像が表されるよう、前方観察画像と2つの側方観察画像を含む内視鏡画像を表示する表示部を構成する。ここでは、プロセッサ4は、前方観察画像を挟むように2つの側方観察画像を表示装置5に表示する。すなわち、プロセッサ4は、前方視野の被検体像を中心に配置し、2つの側方視野の被検体像を、前方視野の被検体像を挟むように並べて配置した前記画像を生成する。
 図13は、先端部6aに配設された6つの照明窓7a、7b、9a、9b、9c、9dの各々に配設される6つの発光素子の駆動制御を説明するための図である。 
 前方視野用の照明窓7a、7bには、それぞれ発光素子57a、57bが配設されており、被検体の内部において、第1の領域として前方を含む領域に第1の照明光を出射する第1の照明部を構成する。発光素子57a、57bは、それぞれ信号線38a、38bを介して、照明制御部31Cと接続されている。さらに、発光素子57a、57bの近傍には、それぞれ温度センサ57a1、57b1が設けられている。6つの発光素子は、例えば発光ダイオード(LED)である。
 第1の側方視野用の照明窓9a、9bには、それぞれ発光素子59a、59bが配設されている。発光素子57a、57bは、それぞれ信号線38c、38dを介して、照明制御部31Cと接続されている。さらに、発光素子59a、59bの近傍には、それぞれ温度センサ59a1、59b1が設けられている。
 第2の側方視野用の照明窓9c、9dには、それぞれ発光素子59c、59dが配設されている。発光素子59c、59dは、それぞれ信号線38e、38fを介して、照明制御部31Cと接続されている。さらに、発光素子59c、59dの近傍には、それぞれ温度センサ59c1、59d1が設けられている。 
 第1の側方視野用の照明窓9a、9bおよび第2の側方視野用の照明窓9c、9dは、第1の方向とは少なくとも一部が異なる第2の領域として側方を含む領域に第2の照明光を出射する第2の照明部を構成する。
 第1の領域とは異なる第2の領域とは、各領域における光軸が異なる方向を向いていることを指し、第1の領域における被検体像と第2の領域における被検体像との一部が重なっていても重なっていなくてもよく、さらに、第1の照明光の照射範囲と第2の照明光の照射範囲が一部において重なっていても重なっていなくても良い。
 以上のように、前方視野用及び側方視野用の照明光の各々は、発光素子の発光により生成される。
 制御部42Cは、温度比較部55を含む。温度比較部55は、各温度センサの出力信号に基づいて、各発光素子の温度データを生成し、温度データが、所定値TH3以上であるか否かを比較する回路である。よって、温度比較部55は、照明窓7a、7b、9a~9dの温度を示す信号を検出する信号検出部を構成する。具体的には、温度を示す信号は、第1の信号としての、前方視野用の発光素子57a、57b近傍に設けられた温度センサ57a1,57b1の出力信号と、第2の信号としての、側方視野用の発光素子59a、59b、59c、59d近傍に設けられた温度センサ59a1、59b1、59c1、59d1の出力信号を含む。
 照明制御部31Cは、出力リミッタ部56を含む。出力リミッタ部56は、各発光素子を発光させるための駆動信号を、発光素子毎に所定の信号レベルに制限する回路である。ここでは、出力リミッタ部56は、6つの発光素子57a、57b、59a、59b、59c、59dに対応する6つのリミッタ回路を有している。図13において、リミッタ回路C1、C2、L1、L2、R1、R2は、それぞれ、発光素子57a、57b、59a、59b、59c、59dへ供給される駆動信号を制限するための回路である。
 温度比較部55は、温度センサ57a1、57b1、59a1、59b1、59c1、59d1からの出力信号から、各温度センサの温度データを生成する処理部である。例えば、温度センサ57a1の出力信号に基づいて、温度センサ57a1の温度データが算出される。
 さらに、温度比較部55は、各温度センサの温度データが、所定値TH3以上であるか否かを比較し、各温度センサの温度が所定値TH3以上の場合は、所定値TH3以上の温度センサが設けられている発光素子への駆動信号を制限する出力リミッタ部56へリミット制御信号LCを出力する。
 温度比較部55は、各温度センサの温度が、所定値TH3以上であると、その所定値TH3以上の温度センサの近傍の発光素子への駆動信号を所定の値以上にならないように制限するために、出力リミッタ部56へリミット制御信号LCを出力する。所定値TH3は、例えば、37℃である。 
 例えば、第1の視野領域の発光素子59cの近傍に設けられた温度センサ59c1の温度データが所定値TH3以上になると、その発光素子59cへの駆動信号のみの上限値を所定値だけ下げる。
 以上のように、温度比較部55と出力リミッタ部56は、前方視野用の照明窓の温度を示す信号と、側方視野用の照明窓の温度を示す信号に基づき、照明窓7a、7b、9aから9dの少なくとも1つの光量を制御する照明光量制御部を構成する。具体的には、照明光量制御部としての温度比較部55と出力リミッタ部56は、前方視野用の発光素子あるいは側方視野用の発光素子の駆動信号を制限することによって、少なくとも1つの光量を制御する。 
 その結果、所定値TH3以上になった発光素子への出力信号の信号レベルが低下するので、先端部の過熱が抑えられる。
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に確認するとともに、温度が所定以上に上昇しないよう、2以上の照明窓への光量を個々に独立して制御するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
(第5の実施の形態)
 第4の実施の形態の内視鏡システムでは、各発光素子の温度を温度センサにより検出し、各発光素子の温度に応じて各発光素子への駆動信号の最大出力を制限するが、本実施の形態の内視鏡システムでは、温度センサを用いず、各発光素子への駆動信号の直近の経時変化に基づいて、直近の駆動信号の積分値が所定の値を超えると、直近の駆動信号の積分値が所定の値を超えた発光素子により得られる画像の調光レベル、すなわち画像の明るさ、を所定値だけ下げ、その結果として駆動信号の信号レベルを下げるように構成されている。
 本実施の形態の内視鏡システムの構成は、第4の実施の形態の内視鏡システム1Cの構成と略同様であるので、同じ構成要素については同じ符号を付して、説明は省略し、異なる構成について説明する。
 図14は、先端部6aに配設された6つの照明窓7a、7b、9a、9b、9c、9dの各々に配設される6つの発光素子の駆動制御を説明するための図である。図14に示す
ように、挿入部6の先端部6aには、温度センサは設けられていない。
 照明制御部31Cは、各発光素子57a、57b、59a、59b、59c、59dを駆動する発光素子駆動部61を含む。発光素子駆動部61は、6つの駆動回路を有している。発光素子駆動部61の駆動回路C11、C12、L11、L12、R11、R12は、それぞれ、発光素子57a、57b、59a、59b、59c、59dを駆動するための回路である。
 制御部42Cは、温度推定比較部62を有する。温度推定比較部62は、過去の所定期間PT1における各発光素子についての駆動信号の大きさの積分値、例えば電流値あるいは電力値の大きさの積分値、を算出し、直近の積分値から各発光素子の温度を推定し、直近の積分値が所定値TH4以上であるか否かを比較する処理部である。よって、温度推定比較部62は、照明窓7a、7b、9a~9dの温度を示す信号を推定して検出する信号検出部を構成する。具体的には、温度を示す信号は、第1の信号としての、前方視野用の発光素子への駆動信号の所定時間PT1における積分値の信号と、第2の信号としての、側方視野用の発光素子への駆動信号の所定時間PT1における積分値の信号とを含む。
 図15は、時間の経過に伴う発光素子への駆動信号レベルの変化を示すグラフである。図15に示すように、発光素子への駆動信号レベルは、実線で示すように変化する。上述したように、発光素子への駆動信号レベルは、測光部41において検出された内視鏡画像21の2つの領域22と23の各々の明るさに基づいて、制御部42Cにより制御されて変化する。
 図15において、例えば、時刻t1とt2の時点を比較すると、時刻t2における直近の過去の所定期間PT1内における発光素子への駆動信号レベルは、時刻t1における直近の過去の所定期間PT1内における発光素子への駆動信号レベルより大きい。よって、過去の所定期間PT1における発光素子への駆動信号レベルの積分値も、時刻t2のときの方が、時刻t1のときよりも大きい。
 直近の過去の駆動信号レベルの積分値が大きいと、先端部6aの温度が上昇している可能性がある。すなわち、直近の所定期間PT1における駆動信号レベルの積分値が所定値TH4以上であると、先端部6aの温度は、所定の温度、例えば37度をそろそろ超える、あるいは既に超えていると推定される。
 そこで、制御部42Cは、駆動信号レベルの積分値が所定値TH4以上の発光素子に対応する観察窓を介して得られる内視鏡画像の明るさの目標値を所定値Dだけ下げ、その結果として、その発光素子の駆動信号レベルは所定値DLだけ下がる。
 従って、温度推定比較部62を有する制御部42Cは、信号検出部として、前方視野用の照明窓の温度を示す信号と、側方視野用の照明窓の温度を示す信号とを検出するとともに、これらの信号に基づき、照明窓7a、7b、9aから9dの少なくとも1つの光量を制御する照明光量制御部を構成する。具体的には、制御部42Cは、前方視野の被検体像あるいは側方視野の被検体像の明るさの目標値を下げることによって、少なくとも1つの光量を制御する。 
 よって、駆動信号レベルの積分値が所定値TH4以上の発光素子の発熱量が減少するので、先端部6aの温度上昇を抑えることができる。
 以上のように、制御部42Cは、先端部6aの発光素子の温度が所定の温度以上になったときには、明るさの目標値を所定値Dだけ下げ、その結果として発光素子の駆動信号レベルを所定値DLだけ下げるので、先端部6aの温度上昇を抑えることができる。
 なお、以上の例では、直近の所定期間PT1内における発光素子への駆動信号レベルの積分値が所定値TH4以上であるか否かで、明るさの目標値を所定値Dだけ下げているが、駆動信号レベルの積分値に応じて、画像の明るさ目標値を段階的に減少させるように、駆動信号レベルを下げるようにしてもよい。
 例えば、発光素子の駆動信号レベルの積分値がDC1からDC2未満の間の場合は、明るさの目標値を10%減少させ、駆動信号レベルの積分値がDC2からDC3未満の間の場合は、明るさの目標値を20%減少させ、駆動信号レベルの積分値がDC3以上になると、明るさの目標値を30%減少させる、というようにしてもよい。
 その場合、その後、駆動信号レベルの積分値が減少し、駆動信号レベルの積分値がDC2からDC3未満の間になったときは、明るさの目標値を20%減少のレベルまで上昇させ、駆動信号レベルの積分値がDC1からDC2未満の間になったときは、明るさの目標値を10%減少のレベルまで上昇させ、駆動信号レベルがDC1未満の間になったときは、明るさの目標値の減少がないようにされる。 
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に推定するとともに、温度が所定以上に上昇しないよう、2以上の照明窓への光量を個々に独立して制御するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
 また、内視鏡2Bには、観察窓の洗浄のための洗浄ノズルが先端部6aに設けられ、挿入部6内に送水管路が設けられているものもある。図示しない操作部に設けられた流体供給スイッチが操作されることによって、洗浄ノズルから洗浄のための水が吐出される。洗浄のために送水が行われると、先端部6aの温度が低下する。
 そこで、直近の所定期間PT1における駆動信号レベルの積分値が所定値TH4以上であるとき、すなわち発光素子の温度が所定の温度以上になったときに、流体供給スイッチが操作されて洗浄のための送水が行われたときは、送水が行われている間は、画像の明るさの目標値を上げるようにしてもよい。
 図14に示すように、先端部6aには、各観察窓の近傍に、洗浄ノズル71、72、73が配設されている。ノズル71,72,73は、それぞれ送水管路75,76,77を介して、図示しない光源装置などに設けられたポンプ74と接続されている。ポンプ74は、内視鏡2Bの操作部(図示せず)に基づいて、制御部42Cからのポンプ駆動信号に応じて動作する。各洗浄ノズル71,72,73から、2点鎖線で示すように、水が吐出する。
 従って、直近の所定期間PT1における発光素子への駆動信号レベルの積分値が所定値TH4以上であるときに、送水が行われている間は、その発光素子に対応する観察窓を介して得られる画像の明るさの目標値を所定値D1だけ上げる、あるいは所定値Dだけ下げる前の目標値に戻す、ようにしてもよい。画像の明るさの目標値を上げても、送水による冷却効果で、発光素子の温度上昇が抑制されるからである。すなわち、制御部42Cは、挿入部6に設けられた洗浄ノズル71等からの送水があったときは、画像の明るさの目標値を上げる。 
 よって、本実施の形態によれば、2以上の方向を観察できる内視鏡において、照明領域が異なる2以上の照明窓の温度を個々に確認するとともに、温度が所定以上に上昇しないよう、2以上の照明窓への光量を個々に独立して制御するので、全ての照明の光量が同時に変化しないきめ細かい照明制御を行いつつ、先端部の過熱を防止する内視鏡システムを提供することができる。
 なお、上述した第4と第5の実施の形態では、1つの表示装置の表示画面上に3つの観察画像を表示しているが、隣接して配置された複数の表示装置5を用いて、別々の表示画面5aに前方観察画像と側方観察画像とをそれぞれ表示させるようにしてもよい。
 図16は、3つの表示装置5を用いた表示システムを示す図である。図16に示すように、左側の表示装置5の表示画面5aには、上述した第1の表示領域51が表示され、中央の表示装置5の表示画面5aには、上述した第2の表示領域52が表示され、右側の表示装置5の表示画面5aには、上述した第3の表示領域53が表示される。
 また、このように別々の複数の表示画面5aに前方観察画像と側方観察画像とをそれぞれ表示させるモードと、図12に示す1つの表示画面5aに前方観察画像と側方観察画像とを表示させるモードとをスイッチ操作などで切り換えられるようにしてもよい。
 なお、上述した各実施の形態では、側方を照明及び観察する機能を実現する機構は、前方を照明及び観察する機能を実現する機構と共に、挿入部6に内蔵されているが、側方を照明及び観察する機能を実現する機構は、挿入部6に対して着脱可能な別体にしてもよい。
 図17は、側方観察用のユニットが取り付けられた挿入部6の先端部6aの斜視図である。挿入部6の先端部6aは、前方視野用ユニット600を有している。側方視野用ユニット500は、前方視野用ユニット600に対して着脱自在な構成を有している。
 側方視野用ユニット500は、左右方向の画像を取得するための2つの観察窓501と、左右方向を照明するための2つの照明窓502を有している。 
 図16に示すような挿入部6を有する内視鏡システムにおいても、上述した各実施の形態は、適用可能である。
 尚、上述した各実施の形態及び各変形例において、画像生成部は、前方視野の画像(前方観察画像)と側方視野の画像(側方観察画像)とを合成して1つの合成画像とした内視鏡画像を表示画面4aに表示させてもよいし、前方視野の画像(前方観察画像)と側方視野の画像(側方観察画像)とを合成させることなく複数例えば2つや3つの画像として単に並べた内視鏡画像として表示画面4aに表示させてもよい。
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
 本出願は、2014年7月28日に日本国に出願された特願2014-153103号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (15)

  1.  被検体の内部に挿入される挿入部と、
     前記挿入部に設けられ、前記被検体の像を取得する被検体像取得部と、
     前記挿入部に設けられ、前記被検体の第1の領域に第1の照明光を出射する第1の照明部と、 
     前記挿入部に設けられ、前記第1の領域とは少なくとも一部が異なる前記被検体の第2の領域に第2の照明光を出射する第2の照明部と、
     前記第1の照明部の温度を示す第1の信号と前記第2の照明部の温度を示す第2の信号とを検出する信号検出部と、
     前記第1の信号及び第2の信号に基づき、前記第1の照明光の光量と前記第2の照明光の光量とを個々に独立して制御する照明光量制御部と、
    を備えることを特徴とする内視鏡システム。
  2.  前記照明光量制御部は、前記第1及び前記第2の照明光の光量を制限する絞りの最大絞り値を制限することによって、前記少なくとも1つの光量を制御することを特徴とする請求項1に記載の内視鏡システム。
  3.  前記温度を示す信号は、前記第1及び前記第2の照明光の光量を制限する絞りの開口量の信号であることを特徴とする請求項1に記載の内視鏡システム。
  4.  前記温度を示す信号は、前記第1及び前記第2の照明光の光量を制限する絞りの開口量の所定時間における積分値の信号であることを特徴とする請求項1に記載の内視鏡システム。
  5.  前記照明光量制御部は、前記第1の被検体像及び前記第2の被検体像の明るさの目標値を下げることによって、前記少なくとも1つの光量を制御することを特徴とする請求項4に記載の内視鏡システム。
  6.  前記第1の照明光は、第1の発光素子の発光により生成され、
     前記第2の照明光は、第2の発光素子の発光により生成され、
     前記温度を示す信号は、前記第1の信号としての、前記第1の発光素子近傍に設けられた第1の温度センサの出力信号と、前記第2の信号としての、前記第2の発光素子近傍に設けられた第2の温度センサの出力信号を含むことを特徴とする請求項1に記載の内視鏡システム。
  7.  前記照明光量制御部は、前記第1の発光素子あるいは前記第2の発光素子の駆動信号を制限することによって、前記少なくとも1つの光量を制御することを特徴とする請求項6に記載の内視鏡システム。
  8.  前記第1の照明光は、第1の発光素子の発光により生成され、
     前記第2の照明光は、第2の発光素子の発光により生成され、
     前記温度を示す信号は、第1の信号としての、前記第1の発光素子への駆動信号の所定時間における第1の積分値の信号と、第2の信号としての、前記第2の発光素子への駆動信号の前記所定時間における第2の積分値の信号とを含むことを特徴とする請求項1に記載の内視鏡システム。
  9.  前記照明光量制御部は、前記第1の被検体像あるいは前記第2の被検体像の明るさの目標値を下げることによって、前記少なくとも1つの光量を制御することを特徴とする請求項8に記載の内視鏡システム。
  10.  前記照明光量制御部は、前記挿入部に設けられた洗浄ノズルからの送水があったときは、前記明るさの目標値を上げることを特徴とする請求項9に記載の内視鏡システム。
  11.  前記第1及び前記第2の照明部の各々は、ライトガイドを有し、
     前記第1の照明光と前記第2の照明光は、前記ライトガイドを介して供給されることを特徴とする請求項1に記載の内視鏡システム。
  12.  前記被検体像取得部は、前記挿入部の長手方向に略平行な挿入部前方を含む前記第1の領域から第1の被検体像を取得する第1の被検体像取得部と、
     前記挿入部の長手方向に交わる方向の挿入部側方を含む前記第2の領域から第2の被検体像を取得する第2の被検体像取得部と、 
    を有することを特徴とする請求項1に記載の内視鏡システム。
  13.  前記第1の被検体像に基づく第1の画像及び前記第2の被検体像に基づく第2の画像を生成する画像生成部と、
     前記画像生成部により生成された前記第1及び第2の画像を表示する表示部と、
    を有し、
     前記画像生成部は、前記第2の画像を、前記第1の画像と隣接して並べるように配置することを特徴とする請求項12に記載の内視鏡システム。
  14.  前記第1の被検体像取得部は、前記挿入部の長手方向における先端部に設けられ、
     前記第2の被検体像取得部は、前記挿入部の周方向に沿って設けられ、
     前記第1の被検体像と前記第2の被検体像を1つの撮像面において光電変換する撮像部が、前記第1の被検体像に基づく第1の画像及び前記第2の被検体像に基づく第2の画像を生成する画像生成部と電気的に接続されていることを特徴とする請求項12に記載の内視鏡システム。
  15.  前記第1の被検体像は、略円形であり、
     前記第2の被検体像は、前記第1の被検体像の周囲の少なくとも一部を囲む略環状であることを特徴とする請求項14に記載の内視鏡システム。
PCT/JP2015/070725 2014-07-28 2015-07-21 内視鏡システム WO2016017481A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15827417.5A EP3162271A1 (en) 2014-07-28 2015-07-21 Endoscope system
JP2016506010A JP6022109B2 (ja) 2014-07-28 2015-07-21 内視鏡システム
CN201580036923.5A CN106488733B (zh) 2014-07-28 2015-07-21 内窥镜系统
US15/415,949 US20170127925A1 (en) 2014-07-28 2017-01-26 Endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153103 2014-07-28
JP2014153103 2014-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/415,949 Continuation US20170127925A1 (en) 2014-07-28 2017-01-26 Endoscope system

Publications (1)

Publication Number Publication Date
WO2016017481A1 true WO2016017481A1 (ja) 2016-02-04

Family

ID=55217382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070725 WO2016017481A1 (ja) 2014-07-28 2015-07-21 内視鏡システム

Country Status (5)

Country Link
US (1) US20170127925A1 (ja)
EP (1) EP3162271A1 (ja)
JP (1) JP6022109B2 (ja)
CN (1) CN106488733B (ja)
WO (1) WO2016017481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466316A4 (en) * 2016-06-07 2020-01-22 Olympus Corporation ENDOSCOPY AND ENDOSCOPE SYSTEM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224334B2 (en) * 2015-08-13 2022-01-18 Koninklijke Philips N.V. Radial illumination system with ferrule
CN110753510B (zh) * 2017-06-20 2022-10-04 奥林巴斯株式会社 光源装置、内窥镜系统以及照明控制方法
CN108577794A (zh) * 2018-05-16 2018-09-28 广东欧谱曼迪科技有限公司 一种医用内窥镜冷光源备用灯自动切换系统及方法
CN114340471A (zh) * 2019-08-27 2022-04-12 富士胶片株式会社 内窥镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121575A (ja) * 1984-11-16 1986-06-09 Olympus Optical Co Ltd 内視鏡装置
JPS6371233A (ja) * 1986-09-16 1988-03-31 株式会社東芝 内視鏡装置
JP2004329700A (ja) * 2003-05-09 2004-11-25 Pentax Corp 側視鏡
JP2007252516A (ja) * 2006-03-22 2007-10-04 Olympus Medical Systems Corp 医療機器
JP2010178766A (ja) * 2009-02-03 2010-08-19 Hoya Corp 処置用内視鏡
WO2011055640A1 (ja) * 2009-11-06 2011-05-12 オリンパスメディカルシステムズ株式会社 内視鏡
JP2013000467A (ja) * 2011-06-20 2013-01-07 Fujifilm Corp 電子内視鏡システム及び内視鏡挿入部の温度検知方法、並びに電子内視鏡用プロセッサ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294826A (ja) * 1987-05-27 1988-12-01 Olympus Optical Co Ltd 内視鏡装置
JP4343594B2 (ja) * 2003-06-23 2009-10-14 オリンパス株式会社 内視鏡装置
KR100927286B1 (ko) * 2005-06-08 2009-11-18 올림푸스 메디칼 시스템즈 가부시키가이샤 내시경 장치 및 화상 처리 장치
JP5214853B2 (ja) * 2006-03-03 2013-06-19 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5019589B2 (ja) * 2007-03-28 2012-09-05 富士フイルム株式会社 カプセル内視鏡、およびカプセル内視鏡システム、並びにカプセル内視鏡の作動方法
JP2009201940A (ja) * 2008-02-29 2009-09-10 Hoya Corp 内視鏡光源システム、内視鏡光源装置、内視鏡プロセッサ、および内視鏡ユニット
WO2011055641A1 (ja) * 2009-11-06 2011-05-12 オリンパスメディカルシステムズ株式会社 内視鏡装置及び内視鏡
WO2011055613A1 (ja) * 2009-11-06 2011-05-12 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP5076036B2 (ja) * 2010-06-25 2012-11-21 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2012137737A1 (ja) * 2011-04-07 2012-10-11 オリンパスメディカルシステムズ株式会社 内視鏡及び内視鏡用照明装置
CN104203070B (zh) * 2012-11-07 2016-09-28 奥林巴斯株式会社 内窥镜
WO2014088076A1 (ja) * 2012-12-05 2014-06-12 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5959768B2 (ja) * 2014-05-16 2016-08-02 オリンパス株式会社 内視鏡システム
JP6121058B2 (ja) * 2014-09-08 2017-04-26 オリンパス株式会社 内視鏡システム、内視鏡システムの作動方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121575A (ja) * 1984-11-16 1986-06-09 Olympus Optical Co Ltd 内視鏡装置
JPS6371233A (ja) * 1986-09-16 1988-03-31 株式会社東芝 内視鏡装置
JP2004329700A (ja) * 2003-05-09 2004-11-25 Pentax Corp 側視鏡
JP2007252516A (ja) * 2006-03-22 2007-10-04 Olympus Medical Systems Corp 医療機器
JP2010178766A (ja) * 2009-02-03 2010-08-19 Hoya Corp 処置用内視鏡
WO2011055640A1 (ja) * 2009-11-06 2011-05-12 オリンパスメディカルシステムズ株式会社 内視鏡
JP2013000467A (ja) * 2011-06-20 2013-01-07 Fujifilm Corp 電子内視鏡システム及び内視鏡挿入部の温度検知方法、並びに電子内視鏡用プロセッサ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466316A4 (en) * 2016-06-07 2020-01-22 Olympus Corporation ENDOSCOPY AND ENDOSCOPE SYSTEM

Also Published As

Publication number Publication date
CN106488733A (zh) 2017-03-08
CN106488733B (zh) 2018-06-26
JPWO2016017481A1 (ja) 2017-04-27
JP6022109B2 (ja) 2016-11-09
EP3162271A1 (en) 2017-05-03
US20170127925A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6022109B2 (ja) 内視鏡システム
US9826893B2 (en) Electronic endoscope system and light source for endoscope
US10652973B2 (en) Control apparatus, control system, and control method
EP2301416B1 (en) Method of controlling endoscope and endoscope
CN109195502B (zh) 活体观察系统
JP6001219B1 (ja) 内視鏡システム
US20180033142A1 (en) Image-processing apparatus, biological observation apparatus, and image-processing method
EP3586716B1 (en) Endoscope device
JPWO2018211885A1 (ja) 画像取得システム、制御装置及び画像取得方法
US20210297606A1 (en) Medical image processing device and medical observation system
US10191271B2 (en) Image pickup system
US20200405135A1 (en) Medical observation system
JP6293392B1 (ja) 生体観察システム
JP6038425B2 (ja) 内視鏡及びこの内視鏡を含む内視鏡システム
WO2015151956A1 (ja) 内視鏡システム
KR20200021708A (ko) 가시광 및 근적외선 광을 모두 가시화할 수 있는 내시경 장치
US20220022728A1 (en) Medical system, information processing device, and information processing method
US20210235968A1 (en) Medical system, information processing apparatus, and information processing method
JP5639522B2 (ja) 電子内視鏡システム
JP6064092B2 (ja) 内視鏡システム
WO2016009886A1 (ja) 内視鏡システム
WO2022044898A1 (ja) 医療撮像システム、医療撮像装置、および動作方法
JP2011019693A (ja) 医療用観察システム
WO2016098444A1 (ja) 内視鏡及びこの内視鏡を含む内視鏡システム
JP2011019691A (ja) 医療用観察システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016506010

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827417

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015827417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827417

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE