WO2016016979A1 - X線透視撮影装置 - Google Patents

X線透視撮影装置 Download PDF

Info

Publication number
WO2016016979A1
WO2016016979A1 PCT/JP2014/070133 JP2014070133W WO2016016979A1 WO 2016016979 A1 WO2016016979 A1 WO 2016016979A1 JP 2014070133 W JP2014070133 W JP 2014070133W WO 2016016979 A1 WO2016016979 A1 WO 2016016979A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
imaging
setting
strip
Prior art date
Application number
PCT/JP2014/070133
Other languages
English (en)
French (fr)
Inventor
啓太 奥谷
雅大 田中
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/070133 priority Critical patent/WO2016016979A1/ja
Publication of WO2016016979A1 publication Critical patent/WO2016016979A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to an X-ray fluoroscopic apparatus that acquires an X-ray image of a subject using X-rays, and more particularly, acquires a plurality of X-ray images, and connects the obtained X-ray images to form a single length.
  • the present invention relates to an X-ray fluoroscopic apparatus that generates a scale image.
  • a long X-ray image for imaging a long region that is long in the body axis direction of the subject, such as the range from the neck to the knee of the subject.
  • a photo of a scale there is a case of taking a photo of a scale.
  • a plurality of X-ray images are photographed along the body axis direction of the subject, and a long image is acquired by a long photographing method in which the plurality of X-ray images are connected and reconstructed in the body axis direction.
  • slot photographing is used (see, for example, Patent Document 1).
  • a conventional X-ray fluoroscopic apparatus 100 that performs slot imaging includes a top plate 101 on which a subject M is placed, an X-ray tube 103 that irradiates the subject M with X-rays, And an X-ray detector 105 for detecting X-rays.
  • the X-ray detector 105 detects X-rays that are transmitted through the subject M from the X-ray tube 103, converts the detected X-rays into electrical signals, and outputs the signals as X-ray detection signals.
  • a collimator 107 is provided below the X-ray tube 103.
  • the collimator 107 limits the X-rays emitted from the X-ray tube 103 to a pyramid shape under the control of the collimator control mechanism 109.
  • the X-ray tube 103 and the X-ray detector 105 constitute an imaging system, and are disposed to face each other with the top plate 101 interposed therebetween.
  • a 17-inch square flat panel detector (FPD: Flat Panel Detector) is used.
  • FPD Flat Panel Detector
  • Each of the imaging systems is configured to move in the x direction, that is, the longitudinal direction of the top plate 101.
  • Each movement of the imaging system is controlled by the imaging system moving mechanism 111.
  • the image generation unit 113 is provided at the subsequent stage of the X-ray detector 105, and the reconstruction unit 115 is provided at the subsequent stage of the image generation unit 113.
  • the image generation unit 113 generates a plurality of X-ray images based on the X-ray detection signal output from the X-ray detector 105.
  • the reconstruction unit 115 reconstructs a long image by joining the X-ray images generated by the image generation unit 113 in the body axis direction of the subject M.
  • the collimator 107 is driven according to the control of the collimator control mechanism 109.
  • the X-ray irradiation field is adjusted so as to be narrowed down into a slit shape.
  • the X-ray beam 103a emitted from the X-ray tube 103 is limited as shown in FIG.
  • FIG. 14, S1 a pyramid shape (left figure) spreading in the x direction and y direction (short direction of the top plate 101) to a fan shape (right figure) spreading in the y direction and having a thickness T in the x direction (right figure).
  • FIG. 14, S1 a pyramid shape (left figure) spreading in the x direction and y direction (short direction of the top plate 101) to a fan shape (right figure) spreading in the y direction and having a thickness T in the x direction (right figure).
  • the position of the imaging system (imaging start point) at the time of capturing the first X-ray image and the imaging at the time of capturing the last X-ray image.
  • the position of the system (photographing end point) is determined (S2 in FIG. 14).
  • each of the X-ray tube 103 and the X-ray detector 105 moves to the imaging start point indicated by the solid line in FIG. 15B and irradiates the X-ray 103a from the X-ray tube 103.
  • the X-ray detector 105 detects the X-ray 103a that passes through the subject M and outputs an X-ray detection signal, and the image generation unit 113 generates an X-ray image based on the X-ray detection signal.
  • the X-ray image generated at this time is an image showing a strip-shaped region having a width T corresponding to the thickness T of the X-ray beam.
  • a strip-shaped image generated by one X-ray irradiation is referred to as a “strip image”.
  • the imaging system moving mechanism 111 moves each of the X-ray tube 103 and the X-ray detector 105 from the imaging start point to the imaging end point indicated by a broken line in FIG. 15B in the x direction.
  • the imaging system moving mechanism 111 moves each of the X-ray tube 103 and the X-ray detector 105 from the imaging start point to the imaging end point indicated by a broken line in FIG. 15B in the x direction.
  • irradiation with the X-ray 103a is repeated.
  • a plurality of strip images having a width T are generated in the range from the shooting start point to the shooting end point (S3 in FIG. 14).
  • the reconstruction unit 115 reconstructs a single long image by connecting the strip images generated by the image generation unit 113 in the body axis direction (x direction) of the subject M (FIG. 14, S4).
  • the reconstructed long image is displayed on a monitor (not shown). Since the X-rays irradiated when generating each of the strip images have a small spread in the x direction, the image reflected in the strip image has a small distortion. Accordingly, it is possible to acquire a long image that displays an X-ray image with less distortion by slot imaging.
  • the imaging start point and imaging end point of a strip image it is difficult to determine the position of the imaging start point and the like appropriately by looking at the body surface of the subject M. Therefore, in this case, in order to refer to the X-ray image scheduled to appear in the strip image, the X-ray image of the subject M is intermittently acquired by X-ray fluoroscopy that irradiates the X-ray with a low dose. Then, an appropriate imaging start point and imaging end point are specified with reference to an X-ray image reflected in an X-ray image (X-ray fluoroscopic image) acquired by X-ray fluoroscopy. In this case, in addition to a method of referring to an X-ray image obtained as a continuous moving image, a method of referring to a still image displayed using LIH (Last Image Hold) can be considered (for example, Patent Document 2).
  • LIH Last Image Hold
  • LIH is a function for interrupting X-ray fluoroscopy after storing X-ray fluoroscopy images and displaying the last stored X-ray fluoroscopy image as a still image. Therefore, when the LIH function is used, it is possible to refer to an X-ray fluoroscopic image as a still image while interrupting X-ray irradiation in the fluoroscopic mode. Therefore, it is possible to more accurately determine the imaging start point and imaging end point with reference to the X-ray image, and to reduce the exposure dose received by the subject.
  • the conventional example having such a configuration has the following problems. That is, when the imaging start point and the imaging end point are determined in a conventional apparatus, the collimator 107 is driven in advance to ensure that a target X-ray image is reliably captured in the acquired long image.
  • X-ray fluoroscopic images are acquired in a state in which is limited to the image capturing range of strip images.
  • the X-ray fluoroscopic image obtained in this case has a narrow imaging range because the width of the subject in the body axis direction is very short. Therefore, even if an X-ray fluoroscopic image with a narrow imaging range is referred to, it is difficult to confirm whether or not the current position of the imaging system is appropriate as the imaging start point (or imaging end point).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an X-ray fluoroscopic imaging apparatus that can determine the imaging start point and the imaging end point more quickly and perform long imaging. To do.
  • an X-ray fluoroscopic apparatus includes an X-ray source that irradiates an object with X-rays, an X-ray detection unit that detects X-rays transmitted through the object on a detection surface, and shielding X-rays
  • a collimator that controls the X-ray field irradiated from the X-ray source, collimator control means for controlling the opening and closing movement of the shield part, the X-ray source, and the X-ray detection means
  • An imaging system moving means for moving the imaging system in the body axis direction of the subject, and a detection signal output by the X-ray detection means while the imaging system moving means moves each of the imaging systems.
  • a strip image generating means for generating a plurality of strip images that are strip-shaped X-ray images with the moving direction of the imaging system as a short direction, and a plurality of the strip images generated by the strip image generating means, Connected in the body axis direction of the subject
  • a long image reconstructing means for reconstructing the long image, a photographing start point that is the position of the imaging system when photographing the first strip image, and the imaging system when photographing the last strip image
  • a setting image generating means for generating an X-ray image used for setting an imaging end point as a setting image, and a shooting range in which a marker indicating the shooting range of the strip image is superimposed on the setting image.
  • the collimator control means emits from the X-ray source when the X-ray irradiation field emitted from the X-ray source when generating the setting image generates the strip image.
  • the opening / closing movement of the shielding portion is controlled so as to be in a wider range in the moving direction of the imaging system than the X-ray irradiation field.
  • the X-ray irradiation field irradiated from the X-ray source when generating the setting image is irradiated from the X-ray source when generating the strip image.
  • the opening / closing movement of the shielding unit is controlled so as to be in a wider range in the moving direction of the imaging system than the irradiation field of the line. That is, since the size of the setting image is larger than the size of the strip image, the information of the X-ray image shown in the setting image increases. Therefore, by referring to the setting image, it is possible to easily confirm appropriate positions as the shooting start point and the shooting end point.
  • the target strip image is generated when the position of the imaging system when the setting image is generated is set as the imaging start point. It can be easily and reliably confirmed.
  • the distance difference between the target X-ray image position and the marker position is clear, it is possible to easily confirm the position of the imaging system that is actually suitable as the imaging start point based on the distance difference. That is, the position of the imaging system can be corrected to an appropriate shooting start point more easily and accurately.
  • the imaging start point and imaging end point can be set appropriately and quickly in slot imaging. That is, since the long image acquired by slot imaging is an X-ray image that accurately displays the region of interest of the subject, an appropriate diagnosis can be performed using the long image. In addition, since the time required for acquiring a long image by slot shooting can be shortened, slot shooting can be performed more efficiently. Furthermore, it is possible to reduce the exposure dose of the subject M when setting the imaging start point and the imaging end point.
  • the X-ray fluoroscopic apparatus includes an imaging position calculation unit that calculates the imaging start point and the imaging end point based on the position of the marker superimposed and displayed by the imaging range display unit in the setting image. It is preferable to provide.
  • the imaging position calculation means calculates the imaging start point and the imaging end point based on the position of the marker superimposed and displayed by the imaging range display means in the setting image.
  • the shooting viewpoint or the shooting end point is calculated based on the position of the marker in the setting image by superimposing the marker on the position where the X-ray image desired as the shooting viewpoint or the shooting end point appears. . Therefore, the time and labor required for calculating the shooting start point and the shooting end point can be omitted, so that slot shooting can be performed more efficiently.
  • X-ray fluoroscopic apparatus when the collimator control means generates the setting image, X-rays emitted from the X-ray source are generated on the detection surface of the X-ray detection means. It is preferable to control the opening / closing movement of the shielding portion so as to be incident on the entire surface.
  • the collimator control means generates the setting image so that X-rays emitted from the X-ray source are incident on the entire surface of the X-ray detection means. Controls opening and closing movements.
  • the size of the setting image is larger, there is more information on the X-ray image shown in the setting image. Therefore, by referring to the setting image, it is possible to more easily and quickly confirm the appropriate positions as the photographing start point and the photographing end point.
  • the marker is superimposed and displayed so that the center position of the marker coincides with the center position of the setting image.
  • the marker is superimposed and displayed so that the center position of the marker matches the center position of the setting image.
  • the range shown in the strip image is the range surrounded by the markers in the setting image. Therefore, when the position of the imaging system when the setting image is generated is appropriate as the shooting start point or the shooting end point, it is not necessary to move the position of the imaging system in order to capture a strip image. Therefore, the process and labor required for slot photographing can be omitted, and a long image can be acquired more efficiently.
  • the X-ray fluoroscopic apparatus further includes a storage unit that stores the X-ray image generated by the setting image generation unit as a still image, and an image used for setting the imaging start point and the imaging end point is
  • the X-ray image is preferably stored as a still image by the storage means.
  • the image used for setting the imaging start point and the imaging end point is an X-ray image stored as a still image by the storage means.
  • the subject M since X-ray irradiation is not performed when referring to the displayed still image, the subject M is not exposed while the imaging start point and the imaging end point are set with reference to the still image. Therefore, it is possible to further reduce the exposure amount of the subject M in the long imaging.
  • the X-ray irradiation field irradiated from the X-ray source when generating the setting image is irradiated from the X-ray source when generating the strip image.
  • the opening / closing movement of the shielding unit is controlled so as to be in a wider range in the moving direction of the imaging system than the irradiation field of the line. That is, since the size of the setting image is larger than the size of the strip image, the information of the X-ray image shown in the setting image increases. Therefore, by referring to the setting image, it is possible to easily confirm appropriate positions as the shooting start point and the shooting end point.
  • the target strip image is generated when the position of the imaging system when the setting image is generated is set as the imaging start point. It can be easily and reliably confirmed.
  • the distance difference between the target X-ray image position and the marker position is clear, it is possible to easily confirm the position of the imaging system that is actually suitable as the imaging start point based on the distance difference. That is, the position of the imaging system can be corrected to an appropriate shooting start point more easily and accurately.
  • the imaging start point and imaging end point can be set appropriately and quickly in slot imaging. That is, since the long image acquired by slot imaging is an X-ray image that accurately displays the region of interest of the subject, an appropriate diagnosis can be performed using the long image. In addition, since the time required for acquiring a long image by slot shooting can be shortened, slot shooting can be performed more efficiently. Furthermore, it is possible to reduce the exposure dose of the subject M when setting the imaging start point and the imaging end point.
  • FIG. 1 is a schematic diagram illustrating a configuration of an X-ray fluoroscopic apparatus according to Embodiment 1.
  • FIG. It is a figure explaining the structure of the collimator which concerns on Example 1.
  • FIG. (A) is a longitudinal cross-sectional view explaining the structure when the collimator which concerns on an Example is looked toward y direction
  • (b) is when the collimator which concerns on Example 1 is looked toward x direction.
  • (c) is the schematic explaining the structure which a shielding board adjusts the irradiation range of X-rays.
  • 1 is a functional block diagram illustrating a configuration of an X-ray fluoroscopic apparatus according to Embodiment 1.
  • FIG. (A) is a flowchart explaining the operation
  • (b) is a flowchart explaining in detail the process of step S1 which concerns on Example 1
  • FIG. (A) is a figure which shows the area
  • (b) is a figure explaining the elongate image reconstructed by joining a strip image. It is a figure explaining the process of step S1 which concerns on Example 1.
  • FIG. (A) is a figure explaining the structure of the X-ray fluoroscopic apparatus in step S1
  • (b) is a figure explaining the image for a setting acquired in step S1. It is a figure explaining the process of step S2 which concerns on Example 1.
  • FIG. (A) is a figure explaining the structure of the X-ray fluoroscopic apparatus in step S2,
  • (b) is a figure explaining the image for a setting acquired in step S2.
  • FIG. (A) is a figure explaining the movement of an imaging system in step S3,
  • (b) is a longitudinal cross-sectional view explaining the collimator before the movement of a shielding board in step S3,
  • (c) is a shielding board in step S3.
  • FIG. 10 is a schematic diagram illustrating a mechanism for calculating the position of a shooting start point in the second embodiment.
  • (A) is a figure which shows the positional relationship of the center of the image for a setting, and the center of a marker
  • (b) is a figure which shows the positional relationship of the imaging position of a setting image, and a photography start point.
  • (A) is a figure explaining the change of the shape of the X-ray beam by adjustment of an irradiation field
  • (b) is a figure explaining the movement of the imaging system in the slot imaging which concerns on a prior art example.
  • FIG. 1 is a schematic diagram illustrating the configuration of the X-ray fluoroscopic apparatus according to the first embodiment.
  • the X-ray fluoroscopic apparatus 1 includes a base 3, a main support 5, a top support 7, a top 9, a sub support 11, and an X-ray.
  • a tube support unit 13, an X-ray tube 15, an FPD 17, and a collimator 19 are provided.
  • the main support 5 is supported by a base 3 having a base on the floor, and the top support 7 is provided on the main support 5.
  • the top board 9 is supported by the top board support part 7 and places the subject M taking a lying posture.
  • the sub strut 11 has a base portion on the top plate 9, and one end of the X-ray tube support portion 13 is connected so as to freely advance and retract.
  • An X-ray tube 15 for irradiating X-rays is provided at the other end of the X-ray tube support portion 13.
  • the FPD 17 is provided below the top plate 9, detects X-rays that are transmitted through the subject M from the X-ray tube 15, detects them, converts them into electrical signals, and outputs them as X-ray detection signals.
  • the X-ray tube 15 and the FPD 17 form an imaging system that captures an X-ray image.
  • the X-ray tube 15 corresponds to the X-ray source in the present invention
  • the FPD 17 corresponds to the X-ray detection means in the present invention.
  • the collimator 19 is provided below the X-ray tube 15 and includes four plate-shaped shielding plates 19a to 19d.
  • the shielding plate 19a and the shielding plate 19b are in the x direction (the longitudinal direction of the top plate 3) with reference to the central axis 15c of the X-ray 15b irradiated from the focal point 15a of the X-ray tube 15. It is configured to move in mirror image symmetry.
  • the shielding plate 19c and the shielding plate 19d are configured to move mirror-symmetrically in the y direction (short direction of the top plate 3) with the X-ray central axis 15c as a reference.
  • Each of the shielding plates 19a to 19d is not limited to a configuration that moves in a mirror image symmetry, and may be a configuration that moves independently.
  • Each of the shielding plates 19a to 19d is made of a material that shields X-rays, and an example thereof is lead. As shown in FIG. 2C, the spread of the X-ray 15b irradiated from the focal point 15a of the X-ray tube 15 is limited to a pyramid shape by each of the shielding plates 19a to 19d. Then, the subject M is irradiated with the X-ray 15b that has passed through the opening A formed by each of the shielding plates 19a to 19d. That is, the position and range of the irradiation range B of the X-rays 15b are adjusted by moving the shielding plates 19a to 19d to adjust the opening A.
  • the X-ray fluoroscopic apparatus 1 includes an image generation unit 21, a long image reconstruction unit 23, and a monitor 25.
  • the image generation unit 21 is provided at the subsequent stage of the FPD 17.
  • the image generation unit 21 forms an X-ray image of the subject M based on the X-ray detection signal output from the FPD 17.
  • the X-ray image generated by the image generation unit 21 in slot imaging is a strip X-ray image (strip image) used for reconstructing a long image, as well as an X-ray used for setting an imaging start point and an imaging end point described later.
  • An image (setting image) is included.
  • the long image reconstruction unit 23 is provided after the image generation unit 21 and reconstructs a long image by joining the generated series of strip images in the body axis direction (x direction) of the subject M. To do.
  • the monitor 25 is provided after the long image reconstructing unit 23 and displays the reconstructed long image.
  • the image generation unit 21 corresponds to a strip image generation unit and a setting image generation unit in the present invention.
  • the long image reconstruction unit 23 corresponds to the long image reconstruction means in the present invention.
  • the X-ray fluoroscopic apparatus 1 further includes an X-ray irradiation control unit 27, an X-ray tube moving unit 29, an FPD moving unit 31, an imaging system detecting unit 32, a top plate moving unit 33, a collimator control unit 35, An imaging range display unit 37, an input unit 39, a storage unit 41, and a main control unit 43 are provided.
  • the X-ray irradiation control unit 27 is connected to the X-ray tube 15, and controls the X-ray dose and X-rays irradiated from the X-ray tube 15 by controlling the tube voltage and tube current of the X-ray tube 15. Control the timing of irradiation.
  • the X-ray tube moving unit 29 is connected to the sub strut 11 and moves the sub strut 11 in the x direction (longitudinal direction of the top plate 9). Since the X-ray tube support portion 13 that supports the X-ray tube 15 is provided in the sub-column 11, the X-ray tube 15 moves in the x direction in conjunction with the movement of the sub-column 11.
  • the X-ray tube moving unit 29 is connected to the X-ray tube support unit 13 and moves the X-ray tube support unit 13 in the y direction (the short direction of the top plate 9). Since the X-ray tube 15 is supported by the X-ray tube support portion 7, it moves in the y direction in conjunction with the movement of the X-ray tube support portion 7.
  • the FPD moving unit 31 moves the FPD 17 in the x direction. That is, the X-ray tube moving unit 29 and the FPD moving unit 31 horizontally move the imaging system including the X-ray tube 15 and the FPD 17 in the body axis direction (x direction) of the subject M. Then, each of the imaging systems moves synchronously, and can move to a plurality of imaging positions (positions of the imaging system when imaging X-ray images) as will be described later.
  • the X-ray tube moving unit 29 and the FPD moving unit 31 correspond to the imaging system moving unit in the present invention.
  • the movement amount for each of the X-ray tube 15 and the FPD 17 is sequentially detected by a plurality of sensors attached to each of the X-ray tube 15 and the FPD 17.
  • a signal detected by each of the sensors is transmitted to the imaging system detection unit 32.
  • the imaging system detection unit 32 sequentially detects position information of the imaging system composed of the X-ray tube 15 and the FPD 17 based on the detection signal.
  • the top plate driving unit 33 moves the top plate support unit 7 in the z direction, that is, the vertical direction. Since the top plate 9 is supported by the top plate support portion 7, it moves in the z direction in conjunction with the movement of the top plate support portion 7. The distance from the X-ray tube 15 to the subject M is adjusted by moving the top plate 9 in the z direction.
  • the collimator controller 35 controls the opening / closing movement of each of the shielding plates 19a to 19d provided in the collimator 19.
  • the shooting range display unit 37 superimposes a marker indicating the shooting range of the strip image on the setting image generated by the image generation unit 21.
  • the collimator control unit 35 corresponds to the collimator control unit in the present invention
  • the shooting range display unit 37 corresponds to the shooting range display unit in the present invention.
  • the input unit 39 is used to input an operator's instruction, and examples thereof include a keyboard input type panel and a touch input type panel.
  • the storage unit 41 stores various parameters referred to for control of the X-ray fluoroscopic apparatus 1, various X-ray images generated by the image generation unit 21, and the like. Examples of parameters referred to for control of the X-ray fluoroscopic apparatus 1 include tube voltage / tube current parameters of the X-ray tube 15.
  • the main control unit 43 includes an image generation unit 21, a long image reconstruction unit 23, a monitor 25, an X-ray irradiation control unit 27, an X-ray tube moving unit 29, an FPD moving unit 31, a top plate moving unit 33, and a collimator control unit. 35 and the photographing range display unit 37 are controlled in an integrated manner.
  • FIG. 4A is a flowchart for explaining a process of slot imaging performed using the X-ray fluoroscopic apparatus 1 according to the first embodiment.
  • FIG. 4B is a flowchart for specifically explaining the step S1 according to the first embodiment.
  • a plurality of elongated rectangular X-ray images that is, strip images, in which the body axis direction of the subject M is the short direction are acquired, and these strip images are obtained in the body axis direction of the subject M.
  • a method of reconstructing a single long image by connecting them is described. That is, as shown in FIG. 5A, each of the regions R1 to Rn of the subject M is imaged once by the imaging operation of the X-ray fluoroscopic imaging apparatus 1.
  • a total of n strip images P1 to Pn are generated as shown in FIG. 5B.
  • the long image Q about the region of interest W of the subject M is reconstructed.
  • the length in the short direction is T.
  • the X-ray fluoroscopic imaging apparatus 1 images a region R1 located on the uppermost side in the body axis direction of the subject M among the regions R1 to Rn shown in FIG. An image P1 is generated. Then, the photographing position of the strip image is sequentially moved downward, and finally, the strip image Pn is generated by photographing the lowest region Rn. Further, as shown in FIG. 6A, it is assumed that the subject M is placed on the top board 9 so that the body axis direction coincides with the x direction (longitudinal direction of the top board 9).
  • a shooting start point is set (step S1), and then a shooting end point is set (step S2).
  • the shooting start point is the shooting position of the strip image P1
  • the shooting end point is the shooting position of the strip image Pn.
  • the imaging position is a position taken by the imaging system (X-ray tube 15 and FPD 17) when an X-ray image is captured.
  • each imaging system After setting the shooting start point and the shooting end point, each imaging system is moved to the shooting start point to prepare for shooting a strip image (step S3). Then, the movement of the image pickup system is started and the strip images P1 to Pn are taken (step S4). Finally, the long image Q is reconstructed based on the strip images P1 to Pn (step S5).
  • each step will be described in detail with particular emphasis on step S1 and step S2, which are characteristic in the present invention.
  • Step S1 setting of imaging start point
  • Step S1-1 movement of imaging system
  • the operator operates the input unit 39 to move the imaging system.
  • the region R1 for photographing the strip image P1 corresponds to the vicinity of the shoulder of the subject M. Therefore, the operator determines an approximate imaging position by looking at the body surface of the subject, and inputs position information to the input unit 39.
  • the position information input to the input unit 39 is transmitted to the main control unit 43, and the main control unit 43 outputs a control signal to the X-ray tube moving unit 29 and the FPD moving unit 31 based on the transmitted information. Based on the control signal, the X-ray tube moving unit 29 and the FPD moving unit 31 move each of the X-ray tube 15 and the FPD 17 to a position indicated by a solid line in FIG.
  • Step S1-2 (Irradiation field adjustment)
  • the shooting range of the setting image S1 is wider. Therefore, after moving the imaging system, the operator operates the input unit 39 to adjust the X-ray irradiation field. At this time, it is preferable to adjust so that the X-ray 15b irradiated from the X-ray tube 15 enters the detection surface 17a of the FPD 17 in a wider range. Specifically, it is preferable that the irradiation width in the x direction of the X-rays 15b is wider than at least the length T in the short direction of the strip image. Further, as shown in FIG. 6A, it is more preferable to adjust so that the entire detection surface 17a of the FPD 17 is irradiated with cone-beam X-rays 15b.
  • the position information input to the input unit 39 is transmitted to the main control unit 43, and the main control unit 43 outputs a control signal to the collimator control unit 35 based on the transmitted information.
  • the collimator control unit 35 moves each of the shielding plates 19a to 19d provided in the collimator 19 based on the control signal. By moving the shielding plates 19a to 19d, the position and range of the X-ray irradiation field B are adjusted as shown in FIG. Note that the order of the steps S1-1 and S1-2 may be reversed.
  • Step S1-3 Generation of setting image
  • the setting image S1 is generated. That is, the operator operates the input unit 39 to instruct X-ray irradiation.
  • an X-ray irradiation condition such as a tube voltage is input so as to perform X-ray fluoroscopy in which the X-ray dose to be irradiated is lower than that of X-ray imaging.
  • Information such as tube voltage and tube current input to the input unit 39 is transmitted to the main control unit 43, and the main control unit 43 outputs a control signal to the X-ray irradiation control unit 21 based on the transmitted information.
  • the X-ray irradiation control unit 21 irradiates the subject M intermittently with the X-ray 15b from the focal point 15a of the X-ray tube 15 based on the control signal.
  • X-rays 15a irradiated from the focal point 15b pass through the subject M and are detected by the FPD 17.
  • the FPD 17 outputs an X-ray detection signal based on the detected X-ray.
  • the image generation unit 21 intermittently generates the setting image S1 based on the X-ray detection signal. Note that the position taken by each of the imaging systems when generating the setting image S1 is sequentially detected by the imaging system detection unit 32 as the imaging position of the setting image S1.
  • Step S1-4 Marker display
  • the operator operates the input unit 39 to input information on the length T of the strip image in the lateral direction and instruct the setting of the shooting start point. It is more preferable to input the length information of the width T in advance.
  • the setting image S1 is displayed on the monitor 25 as shown in FIG.
  • the shooting range display unit 37 displays the marker F for displaying the shooting range of the strip image on the setting image S1 in a superimposed manner based on the information on the length T.
  • the marker F is displayed so that the center of the marker F and the center of the setting image S1 coincide.
  • step S1-4 the operator refers to the setting image S1 displayed on the monitor 25 and the marker F superimposed on the setting image S1. Then, it is determined whether or not the desired X-ray image of the subject M in the strip image P1 is within the range of the marker F, and the process branches. If the desired X-ray image of the subject M is within the range of the marker F, the process proceeds to step S1-5.
  • step S1-2 the positions of the shielding plates 19a to 19d are adjusted so as to widen the X-ray irradiation field. For this reason, the setting image S1 displays an X-ray image of a wide range of the subject M.
  • the desired X-ray image of the subject M is more reliably displayed on the setting image S1. Therefore, the operator confirms the distance difference between the position of the marker F and the position of the desired X-ray image shown in the setting image S1. Then, when returning to step S1-1, it is possible to move more reliably and quickly based on the distance difference to an appropriate position with each of the imaging systems as the imaging start point.
  • Step S1-5 (Registering the shooting start point)
  • the imaging start point is registered. That is, the operator operates the input unit 39 to input an instruction to register the shooting position of the setting image S1 detected by the imaging system detection unit 32 as the shooting start point.
  • the position information of the imaging start point is stored in the storage unit 41 for each of the X-ray tube 15 and the FPD 17.
  • the marker F is displayed so that the center of the marker F coincides with the center of the setting image S1. That is, the shooting position of the setting image S1 and the shooting position of the strip image having the marker F as the shooting range coincide with each other. Therefore, the shooting range of the strip image P1 shot at the registered shooting start point is the range that is reliably displayed by the marker F. Therefore, the desired X-ray image of the subject M is reliably displayed in the strip image P1. Registration of the shooting start point is completed by storing the position information related to the shooting start point, and all the steps related to step S1 are completed.
  • Step S2 (setting of shooting end point) After setting the shooting start point, set the shooting end point.
  • An X-ray image used for setting the imaging end point is set as a setting image S2.
  • the process according to step S2 is substantially the same as the process according to step S1.
  • the operator operates the input unit 39 to move the imaging system (step S2-1).
  • the region Rn for photographing the strip image Pn corresponds to the vicinity of the knee of the subject M. Therefore, the operator determines the approximate imaging position by looking at the body surface of the subject, and moves the X-ray tube 15 and the FPD 17 to the positions shown in FIG.
  • step S2-2 After moving each of the imaging systems, the irradiation field is adjusted (step S2-2). If the range of the X-ray irradiation field at the time of obtaining the setting image S2 is the same as that of the setting image S1, the process related to step S2-2 may be omitted. Then, after adjusting the irradiation field, X-ray irradiation in the fluoroscopic mode is performed to generate a setting image S2 (step S2-3). The position taken by each of the imaging systems when generating the setting image S2 is detected by the imaging system detection unit 32 as the shooting position of the setting image S2.
  • the operator operates the input unit 39 to temporarily end the X-ray irradiation. Then, the setting image S2 stored in the storage unit 41 is displayed on the monitor 25 as a still image, and the marker F indicating the shooting range of the strip image is superimposed on the setting image S2 (step S2-4).
  • step S2-4 the operator refers to the setting image S2 and the marker F. Then, it is determined whether or not the desired X-ray image of the subject M in the strip image Pn is within the range of the marker F, and the process is branched. If the desired X-ray image of the subject M is out of the range of the marker F, the process returns to step S2-1 to continue the process. On the other hand, when the desired X-ray image of the subject M is within the range of the marker F, the imaging position of the setting image S2 detected by the imaging system detection unit 32 is registered as the imaging end point (step S2-5). When the position information related to the photographing end point is stored in the storage unit 41, all the processes related to step S2 are completed.
  • Step S3 preparation for X-ray imaging
  • the operator operates the input unit 39 to move each imaging system to the imaging start point and adjust the X-ray irradiation field.
  • the X-ray tube 15 and the FPD 17 move from an imaging end point indicated by a broken line in FIG. 8A to an imaging start point indicated by a solid line in accordance with an instruction input to the input unit 39.
  • the shielding plate 19a and the shielding plate 19b move in the x direction from the position shown in FIG. 8B to the position shown in FIG. 8C.
  • the X-ray 15b irradiated from the focal point 15a extends from the cone beam shape (FIG. 8B) extending in the x direction and the y direction to the fan beam shape having a thickness T in the x direction. (FIG. 8C).
  • the length of T is about 4 cm to 6 cm.
  • Step S4 After preparation for X-ray imaging is completed, strip images are captured. That is, the operator operates the input unit 39 to irradiate the X-ray 15b from the focal point 15a of the X-ray tube 15. At this time, an X-ray irradiation condition such as a tube voltage is input so as to perform X-ray imaging in which the X-ray dose to be irradiated is higher than that of fluoroscopy.
  • the FPD 17 detects the X-ray 15b that passes through the region R1 of the subject M and outputs an X-ray detection signal.
  • the image generation unit 21 generates a strip image P1 based on the X-ray detection signal.
  • the X-ray tube moving unit 29 and the FPD moving unit 31 move each of the imaging systems synchronously in the x direction according to the control signal output from the main control unit 43. That is, the X-ray tube 15 and the FPD 17 move from the imaging start point indicated by the solid line in FIG. 9 to the imaging end point indicated by the broken line via the position indicated by the two-dot chain line.
  • the X-ray tube 15 repeats the irradiation of the X-rays 15 b according to the control of the X-ray irradiation control unit 27.
  • an X-ray image of the region R1 of the subject M is displayed on the strip image P1 generated by the first imaging, and an X of the region R2 of the subject M is displayed on the strip image P2 generated by the next imaging.
  • a line image is projected.
  • An X-ray image of the region Rn of the subject M is displayed on the strip image Pn generated by the last imaging.
  • strip images P1 to Pn having a width T in the short direction are generated for the regions R1 to Rn of the subject M.
  • Each of the imaging systems moves to the photographing end point, and the strip image Pn is generated, whereby the strip image capturing in step S4 is completed.
  • Step S5 (Reconstruction of long image) After the strip image has been shot, the long image is reconstructed. That is, the long image reconstruction unit 23 reconstructs a single long image Q by connecting the strip images P1 to Pn generated by the image generation unit 21 in the body axis direction of the subject M, that is, the x direction. The reconstructed long image Q is displayed on the monitor 25 and stored in the storage unit 41. In this way, a single long image Q that displays an X-ray image of the region of interest R of the subject M is acquired. With the acquisition of the long image Q, all the steps related to slot photographing are completed.
  • the setting image for setting the imaging start point and the imaging end point is set after the collimator is operated to limit the X-ray irradiation field to the imaging range of the strip image.
  • the positions of the shooting start point and the shooting end point are set with reference to the setting image having the size of the shooting range of the strip image.
  • T is the length in the short direction of the strip image.
  • the setting image is acquired after limiting the X-ray irradiation field to a strip shape.
  • the setting image S1 used for setting the shooting start point is generated as a strip-shaped image having a length T in the lateral direction, as in the case of the strip image.
  • the length T is about 4 cm as an example, the information amount of the X-ray image displayed in the setting image S1 is scarce. That is, the number of spines G shown in the setting image S1 is small. For this reason, it is difficult for the operator to determine whether the spine G displayed in the setting image S1 is the target n-th spine or another spine.
  • the operation of moving the region of the subject M shown in the setting image S1 in the body axis direction and visually recognizing the X-ray image shown in the setting image S1 after the movement is repeatedly performed.
  • the time required for confirming the position of the n-th spine and setting the imaging start point becomes longer, and the exposure amount of the subject M increases.
  • a method of generating the setting image S1 with the X-ray irradiation field adjusted so that X-rays enter a wide range of the FPD can be considered.
  • the size of the generated setting image S1 is large, many spines G are displayed in the setting image S1. Therefore, the operator can easily confirm the position of the n-th spine with reference to the many spines G displayed in the setting image S1.
  • the size of the setting image S1 is different from the size of the strip image actually taken. Therefore, in the strip image P1 photographed at the photographing start point set with reference to the setting image S1, the target X-ray image of the nth spine may not actually be displayed. Therefore, with the configuration as shown in FIG. 10B, it is difficult to capture a long image that accurately reflects the region of interest of the subject M.
  • the setting image S1 is generated in a state where the X-ray irradiation field is adjusted over a wide range of the FPD, and the imaging range display unit 37 superimposes and displays the marker F on the setting image S1.
  • the marker F is a structure which shows the imaging range of a strip image. Therefore, the operator can more surely confirm the position of the n-th spine that is the target of the imaging start point by referring to the X-ray image shown in the large setting image S1.
  • the X-ray image of the n-th spine is located within the range of the marker F, and the position of the imaging system when the setting image S1 is generated is set as the shooting start point, the X image of the n-th spine is added to the strip image P1. It can be confirmed easily and reliably that a line image is reflected.
  • the distance difference between the position of the marker F and the position of the nth spine is clear. Therefore, based on the distance difference, it is possible to easily confirm the position of the imaging system that is actually appropriate as the imaging start point. That is, the position of the imaging system can be corrected to an appropriate shooting start point more easily and accurately.
  • the imaging start point and the imaging end point can be appropriately and quickly set in slot imaging. Therefore, the long image acquired by slot imaging is an X-ray image that accurately displays the region of interest of the subject. Therefore, an appropriate diagnosis can be performed using the acquired long image. In addition, since the time required for acquiring a long image by slot shooting can be shortened, slot shooting can be performed more efficiently. Furthermore, it is possible to reduce the exposure dose of the subject M when setting the imaging start point and the imaging end point.
  • the center position of the marker F is configured to coincide with the center position of the setting image. That is, when a strip image is shot by operating the collimator while maintaining the position of the imaging system when the setting image is generated, the shooting range of the strip image is a range surrounded by the marker F. Therefore, when the position of the imaging system when the setting image is generated is appropriate as the shooting start point or shooting end point, it is not necessary to move the position of the imaging system in order to capture a strip image. Therefore, since the process and time required for slot photographing can be shortened, it is possible to acquire a long image more efficiently.
  • the X-ray fluoroscopic apparatus 1A according to the second embodiment further includes an imaging position calculation unit 45 in addition to the configuration of the X-ray fluoroscopic apparatus 1 according to the first embodiment.
  • the shooting position calculation unit 45 calculates the position of the shooting start point and the position of the shooting end point based on the position of the marker superimposed and displayed on the setting image. A mechanism for calculating the position of the shooting start point and the position of the shooting end point will be described later.
  • the second embodiment is different from the first embodiment with respect to step S1 and step S2. That is, in the first embodiment, an image (moving image) continuously generated by X-ray fluoroscopy is used as the setting image. On the other hand, in the second embodiment, an X-ray image displayed as a still image by LIH is used as a setting image.
  • Step S1 (setting of imaging start point)
  • the imaging system is first moved (step S1-1), and the irradiation field is adjusted (step S1-2).
  • Step S1-3 Generation of setting image
  • the setting image S1 is generated. That is, the operator operates the input unit 39 to perform fluoroscopy.
  • the image generation unit 21 intermittently generates an X-ray fluoroscopic image based on the X-ray detection signal output from the FPD 17.
  • the information of the generated X-ray fluoroscopic image is stored in the storage unit 41.
  • Step S1-4 (Marker display) After storing the X-ray fluoroscopic image, the operator temporarily ends the X-ray irradiation in order to prevent an increase in the exposure dose of the subject M. Then, by operating the input unit 39, information on the length of the width T in the short direction of the strip image is input, and the setting of the shooting start point is instructed. Based on the instruction input to the input unit 39, as shown in FIG. 6B, the X-ray fluoroscopic image last stored in the storage unit 41 is displayed on the monitor 25 as the setting image S1. At this time, the shooting range display unit 37 displays the marker F corresponding to the shooting range of the strip image on the setting image S1 in a superimposed manner based on the information on the length T. The marker F is preferably initially displayed so that the center of the marker F and the center of the setting image S1 coincide.
  • the operator refers to the setting image S1 displayed on the monitor 25 as a still image and the marker F displayed superimposed on the setting image S1. Then, it is determined whether or not the desired X-ray image of the subject M in the strip image P1 is displayed in the setting image S1, and the process branches.
  • the X-ray image of the desired subject M is displayed in the setting image S1
  • the X-ray image of the desired subject M is superimposed on the setting image S1 so that it is within the range of the marker F.
  • the position of the marker F is moved in the body axis direction of the subject M, and the process proceeds to the next step. If the desired X-ray image of the subject M is not projected on the setting image S1, the process returns to step S1-1 and the processing is continued.
  • Step S1-5 (Registering the shooting start point)
  • the imaging position calculation unit 45 calculates the position of the imaging start point based on the position of the marker F superimposed on the setting image S1. .
  • FIG. 12A it is assumed that the marker F has been moved to a position where the desired X-ray image of the subject M is present.
  • a line passing through the center of the setting image S1 and perpendicular to the body axis direction of the subject M is denoted by reference character Sc.
  • a line passing through the center of the marker F and perpendicular to the body axis direction of the subject M is indicated by a symbol Fc.
  • the distance between the line Sc and the line Fc is C
  • the length of the setting image S1 in the x direction is Sx.
  • the distance C corresponds to the distance from the center of the setting image S1 to the center of the marker F.
  • the imaging position of the setting image S1 is indicated by a solid line and the imaging start point is indicated by a broken line.
  • the distance from the shooting position to the shooting start point is E, and the length in the x direction of the detection surface 17a provided on the FPD 17 is Fx.
  • the shooting position calculation unit 45 can calculate the shooting start point based on the position of the center of the setting image S1 and the position of the center of the marker F displayed superimposed on the setting image S1. Information on the shooting start point calculated by the shooting position calculation unit 45 is stored in the storage unit 41. By storing the position information related to the shooting start point, the setting of the shooting start point is completed, and all the steps related to step S1 are completed.
  • Step S2 (setting of shooting end point) After setting the shooting start point, set the shooting end point.
  • the process according to step S2 is the same as the process according to step S1. That is, the operator operates the input unit 39 to move the imaging system (step S1-1) and adjust the irradiation field (step S1-2). After adjusting the irradiation field, X-ray irradiation is performed in the fluoroscopic mode, and the generated X-ray fluoroscopic image is stored in the storage unit 41. Thereafter, the X-ray irradiation is stopped, and the last stored X-ray fluoroscopic image is displayed on the monitor 25 as the setting image S2 (step S2-3).
  • step S2 it is determined whether or not the desired X-ray image of the subject M in the strip image Pn is displayed in the setting image S2, and the process branches.
  • the X-ray image of the desired subject M is displayed in the setting image S2
  • the X-ray image of the desired subject M is superimposed on the setting image S1 so that the X-ray image of the desired subject M is within the range of the marker F.
  • the position of the marker F is moved in the body axis direction of the subject M (step S2-4). If the desired X-ray image of the subject M is not projected on the setting image S2, the process returns to step S2-1 to continue the processing.
  • the imaging position calculation unit 45 positions the center of the setting image S2 and the center of the marker F superimposed on the setting image S2.
  • the position of the photographing end point is calculated on the basis of the position of. That is, based on the distance from the center of the setting image S2 to the center of the marker F, the length in the x direction of the setting image S2, and the length in the x direction of the detection surface 17a, the image is taken from the shooting position of the setting image S2. Calculate the distance to the end point.
  • the calculated position information of the photographing end point is stored in the storage unit 41 (step S2-5). By storing the position information of the photographing end point, the setting of the photographing end point is completed, and all the processes related to step S2 are completed.
  • Step S3 preparation for X-ray imaging
  • the operator operates the input unit 39 to move each of the imaging systems to the imaging start point, and moves the shielding plate 19a and the shielding plate 19b to adjust the X-ray irradiation field.
  • the X-ray 15b irradiated from the focal point 15a is limited to a fan beam having a thickness T in the x direction and extending in the y direction.
  • Step S4 photograph of strip image
  • step S5 reconstruction of long image
  • the operator operates the input unit 39 to move each of the imaging systems in the x direction synchronously, so that the widths in the short direction of the regions R1 to Rn of the subject M are increased.
  • the strip images P1 to Pn with T are taken (step S4).
  • the long image reconstruction unit 23 reconstructs a single long image Q by joining the strip images P1 to Pn generated by the image generation unit 21 in the x direction (step S5).
  • the setting image is generated in a state where the X-ray irradiation field is adjusted in a wide range of the FPD, and the imaging range display unit 37 superimposes and displays the marker F on the setting image.
  • the size of the setting image is larger than the size of the strip image. For this reason, it is possible to easily determine whether or not a desired X-ray image is displayed in the setting image in the strip image captured from the imaging start point or the imaging end point. Accordingly, it is possible to more quickly identify appropriate positions as the photographing start point and the photographing end point.
  • the marker F is a structure which shows the imaging
  • the X-ray fluoroscopic apparatus 1A includes an imaging position calculation unit 45 that calculates an imaging start point and an imaging end point based on the position of the marker that the imaging range display unit 37 superimposes and displays on the setting image. . Even when the X-ray image desired as the imaging viewpoint or the imaging end point is not located at the center of the setting image, the marker is superimposed on the position of the desired X-ray image, so that it is based on the marker position. A photographing viewpoint and a photographing end point are calculated.
  • the X-ray irradiation is temporarily terminated. Then, the setting image stored last in the storage unit 41 is displayed on the monitor 25. Since the imaging start point and the imaging end point are set with reference to the setting image displayed using such a LIH function (Last Image Hold), the subject M is not exposed while referring to the setting image. . Therefore, the exposure amount of the subject M in slot imaging can be further reduced.
  • LIH function Last Image Hold
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the X-ray tube support portion 13 that supports the X-ray tube 15 is configured to be connected to the sub strut 11 having the base portion on the top plate 9, but is not limited thereto. That is, as shown in FIG. 10, the base of the X-ray tube support portion 13 may be provided on the ceiling, and the X-ray tube 15 may be suspended and supported. Further, the main support column 5 connected to the top plate support portion 7 is not limited to the configuration supported by the base 3 having the base portion on the floor surface, and may have a configuration having the base portion on the ceiling.
  • the imaging position is moved by moving the X-ray tube 15 and the FPD 17 in the x direction.
  • the top plate moving unit 33 moves the top plate support unit 7 in the x direction. It is good also as a structure to which it moves.
  • the top 9 and the subject M move in the x direction in conjunction with the movement of the top support 7. Accordingly, in conjunction with the movement of the top board 9, the relative positions of the imaging systems with respect to the subject M are displaced in the x direction.
  • the center of the marker F and the center of the setting image coincide with each other, but the present invention is not limited to this. That is, the position of the marker F superimposed and displayed on the setting image may be changed as appropriate.
  • the medical device is used.
  • the present invention can also be applied to an industrial device or a nuclear device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明のX線透視撮影装置は、設定用画像S1のx方向の長さが短冊画像P1のx方向の長さより長くなるように、遮蔽板19a~19dの開閉移動を制御する。すなわち設定用画像S1のサイズは短冊画像P1のサイズより大きいので、設定用画像S1に映るX線像の情報が多くなる。そして設定用画像S1には短冊画像P1の撮影範囲を示すマーカFが重畳表示される。そのためマーカFの位置と設定用画像S1に映るX線像の位置を参照することにより、現時点の撮像系の位置を撮影始点とした場合に、短冊画像に目的のX線像が映るか否かを容易かつ確実に確認できる。また、目的とするX線像の位置とマーカFの位置との距離差が明瞭であるので、撮像系の位置を撮影始点として適切な位置へ迅速かつ正確に補正できる。従って、本発明に係るX線透視撮影装置を用いるスロット撮影によって、診断に適する長尺画像を迅速に取得することができる。

Description

X線透視撮影装置
 本発明は、X線を用いて被検体のX線画像を取得するX線透視撮影装置に関し、特に、複数のX線画像を取得し、得られたX線画像を繋ぎ合わせて単一の長尺画像を生成するX線透視撮影装置に関する。
 医療現場では、例えば被検体の首から膝までの範囲のように、被検体の体軸方向に長い長尺領域を撮影対象とする、単一のX線画像(長尺画像)を撮影する長尺撮影を行う場合がある。この場合、X線検出器の規格上、一度のX線照射で長尺領域についての長尺画像を撮影することは困難である。そのため、被検体の体軸方向に沿って複数枚のX線画像を撮影し、これら複数枚のX線画像を体軸方向に繋ぎ合わせて再構成させる長尺撮影法によって長尺画像を取得する。長尺撮影法の一例としては、スロット撮影が用いられる(例えば、特許文献1参照)。
 ここでスロット撮影を行うX線透視撮影装置について説明する。スロット撮影を行う従来のX線透視撮影装置100は、図13に示すように、被検体Mを載置させる天板101と、被検体Mに対してX線を照射するX線管103と、X線を検出するX線検出器105とを備えている。X線検出器105はX線管103から被検体Mに照射されて透過したX線を検出して電気信号に変換させ、X線検出信号として出力させる。
 X線管103の下方には、コリメータ107が設けられている。コリメータ107はコリメータ制御機構109の制御に従って、X線管103から照射されるX線を角錐状に制限する。X線管103とX線検出器105は撮像系を構成しており、天板101を挟んで対向配置されている。X線検出器105の一例としては、17インチ四方のフラットパネル型検出器(FPD:Flat Panel Detector)が用いられる。撮像系の各々はx方向、すなわち天板101の長手方向に移動するように構成されている。撮像系の各々の移動は、撮像系移動機構111によって制御される。
 X線検出器105の後段には画像生成部113が設けられており、画像生成部113の後段には再構成部115が設けられている。画像生成部113は、X線検出器105から出力されるX線検出信号に基づいて複数枚のX線画像を生成する。再構成部115は、画像生成部113が生成するX線画像の各々を被検体Mの体軸方向に繋ぎ合わせて長尺画像を再構成する。
 次に、従来のX線透視撮影装置100を用いてスロット撮影を行う工程について、図14に示すフローチャートを用いて説明する。コリメータ107はコリメータ制御機構109の制御に従って駆動する。コリメータ107の駆動により、X線照射野はスリット状に絞るように調整される。X線照射野の調整により、X線管103から照射されるX線ビーム103aは図15(a)に示すように制限される。すなわち、x方向およびy方向(天板101の短手方向)に広がった角錐状(左図)から、y方向に広がり、x方向に厚さTを有する扇状(右図)に制限される(図14、S1)。
 そしてコリメータ107の駆動後、長尺画像の再構成に用いるX線画像のうち、最初のX線画像の撮影時における撮像系の位置(撮影始点)と、最後のX線画像の撮影時における撮像系の位置(撮影終点)とを決定する(図14、S2)。
 撮影始点および撮影終点が決定された後、X線画像の撮影を行う。すなわちX線管103およびX線検出器105の各々は図15(b)において実線で示す撮影始点へ移動し、X線管103からX線103aを照射する。X線検出器105は被検体Mを透過するX線103aを検出してX線検出信号を出力し、画像生成部113はX線検出信号に基づいてX線画像を生成する。このときに生成されるX線画像は、X線ビームの厚さTに対応した、幅をTとする短冊状の領域を映し出す画像である。なお、一度のX線照射によって生成される短冊状の画像を「短冊画像」と称する
 そして撮像系移動機構111は、X線管103およびX線検出器105の各々を撮影始点から、図15(b)において破線で示す撮影終点へx方向に移動させる。そしてX線管103はx方向へX線ビームの厚さTに相当する距離を移動する度に、X線103aの照射を繰り返す。このように撮影始点から撮影終点までの範囲について、幅をTとする短冊画像が複数生成される(図14、S3)。
 再構成部115は画像生成部113が生成した短冊画像を被検体Mの体軸方向(x方向)に繋ぎ合わせて単一の長尺画像を再構成する(図14、S4)。再構成された長尺画像は図示しないモニタに表示される。短冊画像の各々を生成する際に照射されるX線は、x方向への広がりが小さいので、短冊画像に映る像は歪みが小さい。従ってスロット撮影により、より歪みの小さいX線像を映し出す長尺画像を取得できる。
 短冊画像の撮影始点および撮影終点を決定する場合、被検体Mの体表面を見て撮影始点などの位置を適切に決定することは困難である。そこでこの場合、短冊画像に映る予定のX線像を参照すべく、線量の低いX線を照射するX線透視により被検体MのX線画像を断続的に取得する。そしてX線透視により取得されるX線画像(X線透視画像)に映るX線像を参照して、適切な撮影始点および撮影終点を特定する。なおこの場合、連続する動画として得られるX線画像を参照する方法の他、LIH(Last Image Hold)を用いて表示される静止画像を参照する方法が考えられる(例えば、特許文献2)。
 LIHはX線透視画像を記憶させた後にX線透視を中断し、最後に記憶されたX線透視画像を静止画像として表示させる機能である。そのためLIH機能を用いる場合、透視モードによるX線照射を中断しつつ、静止画像としてのX線透視画像を参照できる。そのため、X線像を参照して撮影始点および撮影終点をより正確に決定するとともに、被検体が受ける被曝量を低減することができる。
特開2007-222500号公報 特開2007-244484号公報
 しかしながら、このような構成を有する従来例の場合には、次のような問題点がある。
 すなわち従来の装置において撮影始点および撮影終点を決定する場合、取得される長尺画像において、目的とするX線像が確実に撮影されるようにするため、予めコリメータ107を駆動させてX線ビームを短冊画像の撮影範囲に制限した状態でX線透視画像を取得する。この場合に得られるX線透視画像は、被検体の体軸方向の幅が非常に短いので撮影範囲が狭い。そのため、撮影範囲の狭いX線透視画像を参照しても、現時点における撮像系の位置が撮影始点(または撮影終点)として適切であるか否かを確認することは困難である。
 また、現時点における撮像系の位置が適切でない場合、撮影範囲の狭いX線透視画像から得られるX線像の情報が乏しい。そのためX線透視画像に映るX線像に基づいて、撮影始点などとして適切な位置を予測することは困難である。従って、撮影始点などとして適切な位置を探すために、x方向への撮像系の移動と透視画像の確認を何度も繰り返すこととなる。その結果、撮影始点および撮影終点を決定するために要する時間が長くなるので長尺撮影の効率性が低下する。また、長尺撮影の際に被検体が受ける被曝量が増大するという問題も懸念される。
 本発明は、このような事情に鑑みてなされたものであって、撮影始点および撮影終点をより迅速に決定して長尺撮影を行うことのできるX線透視撮影装置を提供することを目的とする。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明に係るX線透視撮影装置は、被検体にX線を照射するX線源と、前記被検体を透過したX線を検出面において検出するX線検出手段と、X線を遮蔽する遮蔽部を備え、前記X線源から照射されるX線の照射野を制御するコリメータと、前記遮蔽部の開閉移動を制御するコリメータ制御手段と、前記X線源および前記X線検出手段からなる撮像系を前記被検体の体軸方向に移動させる撮像系移動手段と、前記撮像系移動手段が前記撮像系の各々を移動させる間に、前記X線検出手段が出力する検出信号を用いて、前記撮像系の移動方向を短手方向とする短冊状のX線画像である短冊画像を複数枚生成する短冊画像生成手段と、前記短冊画像生成手段が生成する複数枚の前記短冊画像を、前記被検体の体軸方向に繋ぎ合わせて単一の長尺画像を再構成する長尺画像再構成手段と、最初の前記短冊画像を撮影する際における前記撮像系の位置である撮影始点、および最後の前記短冊画像を撮影する際における前記撮像系の位置である撮影終点の設定に用いるX線画像を設定用画像として生成する設定用画像生成手段と、前記設定用画像に対して、前記短冊画像の撮影範囲を示すマーカを重畳表示させる撮影範囲表示手段とを備え、前記コリメータ制御手段は、前記設定用画像を生成する場合に前記X線源から照射されるX線の照射野が、前記短冊画像を生成する場合に前記X線源から照射されるX線の照射野と比べて、前記撮像系の移動方向に広い範囲となるように前記遮蔽部の開閉移動を制御することを特徴とするものである。
 本発明に係るX線透視撮影装置によれば、設定用画像を生成する場合にX線源から照射されるX線の照射野が、短冊画像を生成する場合にX線源から照射されるX線の照射野と比べて、撮像系の移動方向に広い範囲となるように遮蔽部の開閉移動を制御する。すなわち設定用画像のサイズは短冊画像のサイズより大きいので、設定用画像に映るX線像の情報が多くなる。そのため設定用画像を参照することにより、撮影始点および撮影終点として適切な位置を容易に確認できる。
 そして設定用画像には短冊画像の撮影範囲を示すマーカが重畳表示される。そのためマーカの位置と設定用画像に映るX線像の位置を参照することにより、設定用画像を生成した際の撮像系の位置を撮影始点とした場合に、目的とする短冊画像が生成されるか否かを容易かつ確実に確認できる。また、目的とするX線像の位置とマーカの位置との距離差が明瞭であるので、距離差に基づいて、実際に撮影始点として適切な撮像系の位置を容易に確認することができる。すなわち撮像系の位置を、より容易かつ正確に適切な撮影始点へ補正できる。
 従って、本発明に係るX線透視撮影装置では、スロット撮影において、撮影始点および撮影終点を適切かつ迅速に設定できる。すなわちスロット撮影によって取得される長尺画像は、被検体の関心部位を正確に映し出すX線画像であるので、長尺画像を用いて適切な診断を行うことができる。またスロット撮影による長尺画像の取得に要する時間を短縮できるので、より効率的にスロット撮影を行うことが可能となる。さらに、撮影始点および撮影終点を設定する際における、被検体Mの被曝量を低減させることも可能となる。
 また、本発明に係るX線透視撮影装置は、前記設定用画像において、前記撮影範囲表示手段が重畳表示する前記マーカの位置に基づいて、前記撮影始点および前記撮影終点を算出する撮影位置算出手段を備えることが好ましい。
 本発明に係るX線透視撮影装置によれば、撮影位置算出手段は、設定用画像において撮影範囲表示手段が重畳表示するマーカの位置に基づいて、撮影始点および撮影終点を算出する。この場合、設定用画像において、撮影視点または撮影終点として所望するX線像が映る位置にマーカを重畳表示させることにより、設定用画像におけるマーカの位置に基づいて撮影視点または撮影終点が算出される。従って、撮影始点および撮影終点の算出に要する時間と手間を省略できるので、より効率的にスロット撮影を行うことが可能となる。
 また、本発明に係るX線透視撮影装置は、前記コリメータ制御手段は、前記設定用画像を生成する場合に前記X線源から照射されるX線が、前記X線検出手段の前記検出面の全面に入射するように前記遮蔽部の開閉移動を制御することが好ましい。
 本発明に係るX線透視撮影装置によれば、コリメータ制御手段は設定用画像を生成する場合にX線源から照射されるX線が、X線検出手段の全面に入射するように遮蔽部の開閉移動を制御する。この場合、設定用画像の大きさがより大きいので、設定用画像に映るX線像の情報はより多くなる。そのため設定用画像を参照することにより、撮影始点および撮影終点として適切な位置をより容易かつ迅速に確認できる。
 また、本発明に係るX線透視撮影装置は、前記マーカは、前記マーカの中心の位置が前記設定用画像の中心の位置と一致するように重畳表示されることが好ましい。
 本発明に係るX線透視撮影装置によれば、マーカは、マーカの中心の位置が設定用画像の中心の位置と一致するように重畳表示される。この場合、設定用画像の撮影位置を維持した状態で短冊画像を撮影すると、短冊画像に映る範囲は、設定用画像においてマーカに囲まれた範囲となる。そのため、設定用画像を生成した際における撮像系の位置が撮影始点または撮影終点として適切である場合、短冊画像を撮影するために撮像系の位置を移動させる必要がない。従って、スロット撮影に要する工程や手間を省くことができるので、長尺画像をより効率的に取得することが可能となる。
 また、本発明に係るX線透視撮影装置は、前記設定用画像生成手段が生成する前記X線画像を静止画像として記憶する記憶手段を備え、前記撮影始点および前記撮影終点の設定に用いる画像は、前記記憶手段によって静止画像として記憶された前記X線画像であることが好ましい。
 本発明に係るX線透視撮影装置によれば、撮影始点および前記撮影終点の設定に用いる画像は、記憶手段によって静止画像として記憶されたX線画像である。この場合、表示された静止画像を参照する際にX線の照射は行われていないので、静止画像を参照して撮影始点および撮影終点を設定する間に被検体Mが被曝することがない。従って、長尺撮影における被検体Mの被曝量をより低減することができる。
 本発明に係るX線透視撮影装置によれば、設定用画像を生成する場合にX線源から照射されるX線の照射野が、短冊画像を生成する場合にX線源から照射されるX線の照射野と比べて、撮像系の移動方向に広い範囲となるように遮蔽部の開閉移動を制御する。すなわち設定用画像のサイズは短冊画像のサイズより大きいので、設定用画像に映るX線像の情報が多くなる。そのため設定用画像を参照することにより、撮影始点および撮影終点として適切な位置を容易に確認できる。
 そして設定用画像には短冊画像の撮影範囲を示すマーカが重畳表示される。そのためマーカの位置と設定用画像に映るX線像の位置を参照することにより、設定用画像を生成した際の撮像系の位置を撮影始点とした場合に、目的とする短冊画像が生成されるか否かを容易かつ確実に確認できる。また、目的とするX線像の位置とマーカの位置との距離差が明瞭であるので、距離差に基づいて、実際に撮影始点として適切な撮像系の位置を容易に確認することができる。すなわち撮像系の位置を、より容易かつ正確に適切な撮影始点へ補正できる。
 従って、本発明に係るX線透視撮影装置では、スロット撮影において、撮影始点および撮影終点を適切かつ迅速に設定できる。すなわちスロット撮影によって取得される長尺画像は、被検体の関心部位を正確に映し出すX線画像であるので、長尺画像を用いて適切な診断を行うことができる。またスロット撮影による長尺画像の取得に要する時間を短縮できるので、より効率的にスロット撮影を行うことが可能となる。さらに、撮影始点および撮影終点を設定する際における、被検体Mの被曝量を低減させることも可能となる。
実施例1に係るX線透視撮影装置の構成を説明する概略図である。 実施例1に係るコリメータの構成を説明する図である。(a)は、実施例に係るコリメータをy方向に向かって見たときの構成を説明する縦断面図であり、(b)は実施例1に係るコリメータをx方向に向かって見たときの構成を説明する縦断面図であり、(c)は遮蔽板がX線の照射範囲を調整する構成を説明する概略図である。 実施例1に係るX線透視撮影装置の構成を説明する機能ブロック図である。 (a)は実施例1に係るX線透視撮影装置における動作の工程を説明するフローチャートであり、(b)は実施例1に係るステップS1の工程を詳しく説明するフローチャートであり、(c)は実施例1に係るステップS2の工程を詳しく説明するフローチャートである。 実施例1に係るX線透視撮影装置に係る動作を説明する図である。(a)は短冊画像に映し出される被検体の領域を示す図であり、(b)は短冊画像を繋ぎ合わせて再構成される長尺画像を説明する図である。 実施例1に係るステップS1の工程を説明する図である。(a)はステップS1におけるX線透視撮影装置の構成を説明する図であり、(b)はステップS1において取得される設定用画像を説明する図である。 実施例1に係るステップS2の工程を説明する図である。(a)はステップS2におけるX線透視撮影装置の構成を説明する図であり、(b)はステップS2において取得される設定用画像を説明する図である。 実施例1に係るステップS3の工程を説明する図である。(a)はステップS3における撮像系の移動を説明する図であり、(b)はステップS3において遮蔽板の移動前におけるコリメータを説明する縦断面図であり、(c)はステップS3において遮蔽板の移動後におけるコリメータを説明する縦断面図である。 実施例1に係るステップS4の工程を説明する図である。 撮影始点の設定に用いる設定用画像を示す図である。(a)は従来例に係る設定用画像であり、(b)は従来例の問題点についての比較例に係る設定用画像であり、(c)は実施例に係る設定用画像である。 実施例2に係るX線透視撮影装置の構成を説明する概略図である。 実施例2において撮影始点の位置を算出する機構を説明する概略図である。(a)は設定用画像の中心とマーカの中心との位置関係を示す図であり、(b)は設定用画像の撮影位置と撮影始点との位置関係を示す図である。 従来例に係るX線透視撮影装置の構成を説明する概略図である。 従来例に係るX線透視撮影装置における動作の工程を説明するフローチャートである。 従来例に係るX線透視撮影装置における動作を示す図である。(a)は照射野の調整によるX線ビームの形状の変化を説明する図であり、(b)は従来例に係るスロット撮影における撮像系の移動を説明する図である。
 以下、図面を参照して本発明の実施例1を説明する。図1は、実施例1に係るX線透視撮影装置の構成を説明する概略図である。
<全体構成の説明>
 図1に示されるように、実施例1に係るX線透視撮影装置1は、基台3と、主支柱5と、天板支持部7と、天板9と、副支柱11と、X線管支持部13と、X線管15と、FPD17と、コリメータ19とを備えている。主支柱5は基部を床面に有する基台3に支持されており、天板支持部7は主支柱5に設けられている。天板9は天板支持部7によって支持されており、臥位体勢をとる被検体Mを載置させる。
 副支柱11は基部を天板9に有しており、X線管支持部13の一端が進退自在に接続されている。X線管支持部13の他端にはX線を照射するX線管15が設けられている。FPD17は天板9の下方に設けられており、X線管15から被検体Mに照射されて透過したX線を検出して電気信号に変換させ、X線検出信号として出力させる。X線管15とFPD17とはX線画像を撮像する撮像系を形成している。X線管15は本発明におけるX線源に相当し、FPD17は本発明におけるX線検出手段に相当する。
 コリメータ19はX線管15の下方に設けられており、4枚の板状の遮蔽板19a~19dを備えている。遮蔽板19aおよび遮蔽板19bは図2(a)で示すように、X線管15の焦点15aから照射されるX線15bの中心軸15cを基準として、x方向(天板3の長手方向)へ鏡像対称に移動するように構成される。そして遮蔽板19cおよび遮蔽板19dは図2(b)で示すように、X線の中心軸15cを基準としてy方向(天板3の短手方向)へ鏡像対称に移動するように構成される。なお、遮蔽板19a~19dの各々は鏡像対称に移動する構成に限られず、独立に移動する構成であってもよい。
 遮蔽板19a~19dの各々は、X線を遮蔽する材料で構成されており、その一例として鉛が挙げられる。図2(c)で示すように、X線管15の焦点15aから照射されたX線15bの広がりは、遮蔽板19a~19dの各々によって角錐状に制限される。そして遮蔽板19a~19dの各々によって形成された開口部Aを通過したX線15bが被検体Mに照射される。すなわち遮蔽板19a~19dを開閉移動させて開口部Aを調整することによって、X線15bの照射範囲Bの位置および範囲が調整される。
 また、X線透視撮影装置1は図3に示すように、画像生成部21と、長尺画像再構成部23と、モニタ25とを備えている。画像生成部21はFPD17の後段に設けられている。画像生成部21はFPD17から出力されるX線検出信号に基づいて、被検体MのX線画像を形成する。スロット撮影において画像生成部21が生成するX線画像は、長尺画像の再構成に用いられる短冊状のX線画像(短冊画像)の他、後述する撮影始点および撮影終点の設定に用いるX線画像(設定用画像)が含まれる。
 長尺画像再構成部23は画像生成部21の後段に設けられており、生成された一連の短冊画像を、被検体Mの体軸方向(x方向)に繋ぎ合わせて長尺画像を再構成する。モニタ25は長尺画像再構成部23の後段に設けられており、再構成された長尺画像を表示する。画像生成部21は、本発明における短冊画像生成手段および設定用画像生成手段に相当する。長尺画像再構成部23は本発明における長尺画像再構成手段に相当する。
 X線透視撮影装置1はさらにX線照射制御部27と、X線管移動部29と、FPD移動部31と、撮像系検出部32と、天板移動部33と、コリメータ制御部35と、撮影範囲表示部37と、入力部39と、記憶部41と、主制御部43とを備えている。X線照射制御部27はX線管15に接続されており、X線管15の管電圧や管電流などを制御することによって、X線管15から照射させるX線の線量、およびX線を照射させるタイミングなどを制御する。
 X線管移動部29は副支柱11に接続されており、副支柱11をx方向(天板9の長手方向)へ移動させる。X線管15を支持するX線管支持部13は副支柱11に設けられているので、副支柱11の移動に連動してX線管15はx方向へ移動する。また、X線管移動部29はX線管支持部13に接続されており、X線管支持部13をy方向(天板9の短手方向)へ移動させる。X線管15はX線管支持部7によって支持されているので、X線管支持部7の移動に連動してy方向へ移動する。
 FPD移動部31は、FPD17をx方向へ移動させる。すなわち、X線管移動部29およびFPD移動部31によって、X線管15およびFPD17からなる撮像系は、被検体Mの体軸方向(x方向)に水平移動する。そして撮像系の各々は同期的に移動して、後述するように複数の撮影位置(X線画像を撮影する際における撮像系の位置)に移動することができる。X線管移動部29およびFPD移動部31は本発明における撮像系移動手段に相当する。
 X線管15およびFPD17の各々についての移動量は、X線管15およびFPD17の各々に取り付けられた複数のセンサによって逐次検出される。そしてセンサの各々が検出する信号は撮像系検出部32に送信される。撮像系検出部32は検出信号に基づいて、X線管15とFPD17からなる撮像系の位置情報を逐次検出する。
 天板駆動部33は天板支持部7をz方向、すなわち鉛直方向へ移動させる。天板9は天板支持部7に支持されているので、天板支持部7の移動に連動してz方向に移動する。天板9をz方向に移動させることにより、X線管15から被検体Mまでの距離を調節する。コリメータ制御部35はコリメータ19に設けられている遮蔽板19a~19dの各々の開閉移動を制御する。撮影範囲表示部37は、画像生成部21が生成する設定用画像に対して、短冊画像の撮影範囲を示すマーカを重畳表示させる。コリメータ制御部35は本発明におけるコリメータ制御手段に相当し、撮影範囲表示部37は本発明における撮影範囲表示手段に相当する。
 入力部39は操作者の指示を入力するものであり、その例として、キーボード入力式のパネルやタッチ入力式のパネルなどが挙げられる。記憶部41は、X線透視撮影装置1の制御に参照される各種パラメータや、画像生成部21が生成する各種X線画像などを記憶する。X線透視撮影装置1の制御に参照されるパラメータの例としては、X線管15の管電圧・管電流のパラメータが挙げられる。主制御部43は、画像生成部21、長尺画像再構成部23、モニタ25、X線照射制御部27、X線管移動部29、FPD移動部31、天板移動部33、コリメータ制御部35、および撮影範囲表示部37の各々を統括制御する。
<動作の説明>
 次に、実施例1に係るX線透視撮影装置1を用いて行うスロット撮影の動作について説明する。図4(a)は実施例1に係るX線透視撮影装置1を用いて行うスロット撮影の動作の工程を説明するフローチャートである。そして図4(b)は、実施例1に係るステップS1の工程を具体的に説明するフローチャートである。
 この動作説明は、被検体Mの体軸方向が短手方向となっている細長い矩形状のX線画像、すなわち短冊画像を複数枚取得し、これらの短冊画像を被検体Mの体軸方向に繋ぎ合わせて単一の長尺画像を再構成する方式を説明している。すなわち図5(a)に示すように、X線透視撮影装置1の撮影動作によって、被検体Mの領域R1~Rnの各々について1回ずつ撮影する。そして合計n回のX線撮影を行った結果、図5(b)に示すように合計n枚の短冊画像P1~Pnを生成する。そして短冊画像P1~Pnを被検体Mの体軸方向に繋ぎ合わせることにより、被検体Mの関心部位Wについての長尺画像Qが再構成される。なお、短冊画像P1~Pnの各々について、短手方向の長さをTとする。
 実施例1に係るスロット撮影において、X線透視撮影装置1は図5(a)に示す領域R1~Rnのうち、被検体Mの体軸方向について最も上側に位置する領域R1を撮影して短冊画像P1を生成する。そして順に短冊画像の撮影位置を下方に移動させていき、最後に最も下側に位置する領域Rnを撮影して短冊画像Pnを生成することとなる。また図6(a)に示すように、被検体Mはその体軸方向がx方向(天板9の長手方向)に一致するように、天板9に載置されているものとする。
 実施例1に係るスロット撮影の動作の工程を簡潔に説明する。すなわち図4の左図に示すように、まず撮影始点の設定を行い(ステップS1)、次に撮影終点の設定を行う(ステップS2)。撮影始点とは短冊画像P1の撮影位置であり、撮影終点とは短冊画像Pnの撮影位置である。なお撮影位置とは、X線画像を撮影する際において、撮像系(X線管15およびFPD17)がとる位置である。
 撮影始点および撮影終点を設定した後、撮像系の各々を撮影始点に移動させて短冊画像の撮影準備を行う(ステップS3)。そして、撮像系の移動を開始させて短冊画像P1~Pnの撮影を行う(ステップS4)。最後に、短冊画像P1~Pnに基づいて長尺画像Qの再構成を行う(ステップS5)。以降、特に本発明において特徴的なステップS1およびステップS2を重点的に、各々のステップについて詳細に説明する。
 ステップS1(撮像始点の設定)
 ステップS1-1(撮像系の移動)
 ステップS1に係る撮影始点の設定を行うにあたり、まず撮影始点を設定するためのX線画像(設定用画像S1)を取得する必要がある。そこでまず操作者は入力部39を操作して撮像系の移動を行う。図5(a)に示すように、短冊画像P1を撮影する領域R1は被検体Mの肩付近に相当する。そこで操作者は被検体の体表面を見ておおよその撮影位置を決定し、入力部39に位置情報を入力する。
 入力部39に入力された位置情報は主制御部43に送信され、主制御部43は送信された情報に基づいて、X線管移動部29およびFPD移動部31へ制御信号を出力する。X線管移動部29およびFPD移動部31は制御信号に基づいて、X線管15およびFPD17の各々を図6(a)において実線で示す位置へ移動させる。
 ステップS1-2(照射野の調整)
 撮影始点の設定をより正確かつ迅速に行うため、設定用画像S1の撮影範囲は広い方が好ましい。そこで撮像系を移動させた後、操作者は入力部39を操作してX線照射野の調整を行う。この際に、X線管15から照射されるX線15bが、FPD17の検出面17aにおいて、より広い範囲に入射するように調整することが好ましい。具体的にはX線15bのx方向における照射幅が、少なくとも短冊画像の短手方向の長さTより広いことが好ましい。また図6(a)に示すように、FPD17の検出面17aの全面に対してコーンビーム状のX線15bが照射されるように調整することが、より好ましい。
 入力部39に入力された位置情報は主制御部43に送信され、主制御部43は送信された情報に基づいて、コリメータ制御部35に制御信号を出力する。コリメータ制御部35は制御信号に基づいて、コリメータ19に設けられている遮蔽板19a~19dの各々を移動させる。遮蔽板19a~19dの移動によって図2(c)に示すようにX線照射野Bの位置および範囲が調整される。なお、ステップS1-1およびステップS1-2に係る工程の順序は逆であってもよい。
 ステップS1-3(設定用画像の生成)
 撮像系の移動および照射野の調整が終了した後、設定用画像S1の生成を行う。すなわち操作者は入力部39を操作してX線の照射を指示する。この際に被検体Mの被曝量を低減すべく、照射するX線量がX線撮影より低い、X線透視を行うように管電圧などのX線照射条件が入力される。入力部39に入力された管電圧や管電流などの情報は主制御部43に送信され、主制御部43は送信された情報に基づいて、X線照射制御部21へ制御信号を出力する。
 X線照射制御部21は制御信号に基づいてX線管15の焦点15aからX線15bを被検体Mへ断続的に照射させる。焦点15bから照射されたX線15aは被検体Mを透過し、FPD17によって検出される。FPD17は検出したX線に基づいてX線検出信号を出力する。画像生成部21はX線検出信号に基づいて、設定用画像S1を断続的に生成する。なお、設定用画像S1を生成する際に撮像系の各々がとる位置は、撮像系検出部32によって設定用画像S1の撮影位置として逐次検出される。
 ステップS1-4(マーカの表示)
 設定用画像S1が生成された後、操作者は入力部39を操作して、短冊画像の短手方向の幅Tの長さの情報を入力するとともに、撮影始点の設定を指示する。なお、幅Tの長さの情報は、予め入力しておくことがより好ましい。入力部39に入力された指示に基づいて、図6(b)に示すように、設定用画像S1がモニタ25に表示される。またこのとき、撮影範囲表示部37は幅Tの長さの情報に基づいて、短冊画像の撮影範囲を表示するマーカFを、設定用画像S1に重畳表示させる。なおマーカFは、マーカFの中心と、設定用画像S1の中心とが一致するように表示される。
 ステップS1-4の終了後、操作者はモニタ25に表示された設定用画像S1、および設定用画像S1に重畳表示されたマーカFを参照する。そして短冊画像P1において所望する被検体MのX線像が、マーカFの範囲内にあるか否かを判断して処理を分岐する。所望する被検体MのX線像がマーカFの範囲内にある場合、ステップS1-5に進む。
 一方、所望する被検体MのX線像がマーカFの範囲から外れている場合、ステップS1-1に戻って処理を続ける。この場合、ステップS1-2において、X線照射野を広くするように遮蔽板19a~19dの位置を調整している。そのため、設定用画像S1は被検体Mの広い範囲についてのX線像を映し出している。
 従って、所望するX線像がマーカFの範囲から外れている場合であっても、所望する被検体MのX線像は、より確実に設定用画像S1に映し出されることとなる。そこで操作者はマーカFの位置と、設定用画像S1に映る所望のX線像の位置との距離差を確認する。そしてステップS1-1に戻った際に、撮像系の各々を撮影始点として適切な位置へ、距離差に基づいてより確実かつ迅速に移動させることができる。
 ステップS1-5(撮影始点の登録)
 所望する被検体MのX線像がマーカFの範囲内にあることを確認した場合、撮影始点の登録を行う。すなわち操作者は入力部39を操作して、撮像系検出部32が検出する設定用画像S1の撮影位置を、撮影始点として登録する指示を入力する。入力された指示に従い、X線管15およびFPD17の各々について、撮影始点の位置情報は記憶部41において記憶される。
 設定用画像S1においてマーカFは、マーカFの中心と、設定用画像S1の中心とが一致するように表示される。すなわち設定用画像S1の撮影位置と、マーカFを撮影範囲とする短冊画像の撮影位置とは一致する。そのため、登録された撮影始点において撮影される短冊画像P1の撮影範囲は、確実にマーカFで表示される範囲となる。従って、短冊画像P1において所望する被検体MのX線像が確実に映し出される。撮影始点に係る位置情報が記憶されることにより撮影始点の登録が完了し、ステップS1に係る工程は全て終了する。
 ステップS2(撮影終点の設定)
 撮影始点の設定が完了した後、撮影終点の設定を行う。撮影終点を設定するために用いるX線画像を設定用画像S2とする。ステップS2に係る工程は図4(c)に示すように、ステップS1に係る工程と略同じである。操作者は入力部39を操作して撮像系の移動を行う(ステップS2-1)。図5(a)に示すように、短冊画像Pnを撮影する領域Rnは被検体Mの膝付近に相当する。そこで操作者は被検体の体表面を見ておおよその撮影位置を決定し、X線管15およびFPD17を図7(a)に示す位置へ移動させる。
 撮像系の各々を移動させた後、照射野の調整を行う(ステップS2-2)。設定用画像S2を取得する際におけるX線照射野の範囲が設定用画像S1と同じ場合、ステップS2-2に係る工程は省略してもよい。そして照射野を調整した後、透視モードによるX線の照射を行い、設定用画像S2を生成させる(ステップS2-3)。設定用画像S2を生成する際に撮像系の各々がとる位置は、撮像系検出部32によって設定用画像S2の撮影位置として検出される。
 設定用画像S2が生成された後、操作者は入力部39を操作してX線の照射を一時的に終了させる。そして、記憶部41に記憶された設定用画像S2を静止画像としてモニタ25に表示させるとともに、短冊画像の撮影範囲を示すマーカFを設定用画像S2に重畳表示させる(ステップS2-4)。
 ステップS2-4の終了後、操作者は設定用画像S2およびマーカFを参照する。そして短冊画像Pnにおいて所望する被検体MのX線像が、マーカFの範囲内にあるか否かを判断して処理を分岐する。所望する被検体MのX線像がマーカFの範囲から外れている場合、ステップS2-1に戻って処理を続ける。一方、所望する被検体MのX線像がマーカFの範囲内にある場合、撮像系検出部32が検出する設定用画像S2の撮影位置を撮影終点として登録する(ステップS2-5)。撮影終点に係る位置情報が記憶部41に記憶されることにより、ステップS2に係る工程は全て終了する。
 ステップS3(X線撮影の準備)
 撮影始点および撮影終点が設定された後、X線撮影の準備を行う。すなわち操作者は入力部39を操作して撮像系の各々を撮影始点へ移動させるとともに、X線照射野の調整を行う。X線管15およびFPD17は入力部39に入力される指示に従い、図8(a)において破線で示される撮影終点から、実線で示される撮影始点へ移動する。
 そして遮蔽板19aおよび遮蔽板19bは図8(b)に示す位置から図8(c)に示す位置へ、x方向に移動する。その結果、焦点15aから照射されるX線15bは、x方向およびy方向に広がったコーンビーム状(図8(b))から、y方向に広がり、x方向に厚さTを有するファンビーム状に制限される(図8(c))。なお、Tの長さは一例として、4cm~6cm程度である。撮像系の各々が撮影始点へ移動し、X線照射野が調整されることによって、X線撮影の準備は完了する。
 ステップS4(短冊画像の撮影)
 X線撮影の準備が完了した後、短冊画像の撮影を行う。すなわち操作者は入力部39を操作してX線管15の焦点15aからX線15bを照射させる。この際、照射するX線量がX線透視より高い、X線撮影を行うように管電圧などのX線照射条件が入力される。FPD17は被検体Mの領域R1を透過するX線15bを検出してX線検出信号を出力する。画像生成部21はX線検出信号に基づいて、短冊画像P1を生成する。
 そしてX線管移動部29およびFPD移動部31は主制御部43が出力する制御信号に従い、撮像系の各々を、x方向へ同期的に移動させる。すなわちX線管15およびFPD17は図9において実線で示す撮影始点から二点鎖線で示す位置を経由して、破線で示す撮影終点へ移動する。そして撮像系の各々がx方向へ短冊画像の幅Tに相当する距離を移動する度に、X線管15はX線照射制御部27の制御に従って、X線15bの照射を繰り返す。
 すなわち、初回の撮影で生成される短冊画像P1には被検体Mの領域R1についてのX線像が映し出され、次回の撮影で生成される短冊画像P2には被検体Mの領域R2についてのX線像が映し出される。そして最後の撮影で生成される短冊画像Pnには、被検体Mの領域RnについてのX線像が映し出される。このように被検体Mの領域R1~Rnについて、短手方向の幅をTとする短冊画像P1~Pnが生成される。撮影終点に撮像系の各々が移動し、短冊画像Pnが生成されることによって、ステップS4に係る短冊画像の撮影は終了する。
 ステップS5(長尺画像の再構成)
 短冊画像の撮影が終了した後、長尺画像の再構成を行う。すなわち長尺画像再構成部23は、画像生成部21が生成した短冊画像P1~Pnを被検体Mの体軸方向、すなわちx方向に繋ぎ合わせて単一の長尺画像Qを再構成する。再構成された長尺画像Qはモニタ25に表示されるとともに、記憶部41によって記憶される。このように、被検体Mの関心領域RについてのX線像を映し出す単一の長尺画像Qが取得される。長尺画像Qの取得によって、スロット撮影に係る工程は全て終了する。
<実施例1の構成による効果>
 このように実施例1に係る構成を有することにより、スロット撮影によって、診断に適する長尺画像を効率的に取得することができる。ここで実施例1の構成に基づいて得られる効果について説明する。
 従来例に係るX線透視撮影装置を用いて行うスロット撮影では、コリメータを操作してX線照射野を短冊画像の撮影範囲に制限した後に、撮影始点および撮影終点を設定するための設定用画像を取得する。そして短冊画像の撮影範囲のサイズを有する設定用画像を参照して撮影始点および撮影終点の位置を設定していた。
 しかしこのような従来例の場合、実際に取得した長尺画像の撮影始点および撮影終点の位置と、操作者の所望する撮影始点および撮影終点の位置とを一致させることが困難であるという問題が発生していた。また、撮影始点および撮影終点の設定に要する時間が長くなるので、スロット撮影による長尺画像の取得を効率的に行えないという問題も懸念されていた。
 ここで、被検体について第n脊椎の位置を撮影始点とする場合を例にとって、従来例に係るX線透視撮影装置の問題点を具体的に説明する。なお、短冊画像について、短手方向の長さをTとする。
 従来例では、X線照射野を短冊状に制限した後に設定用画像を取得する。そのため、撮影始点の設定に用いる設定用画像S1は図10(a)に示すように、短冊画像と同様、短手方向の長さがTである短冊状の画像として生成される。しかし長さTは一例として4cm程度であるので、設定用画像S1に映し出されるX線像の情報量は乏しい。すなわち設定用画像S1に映る脊椎Gの数が少ない。そのため、操作者は設定用画像S1に映し出される脊柱Gについて、目的とする第n脊椎であるか、その他の脊椎であるかを判断することは困難である。
 従って、設定用画像S1に映る脊椎Gが第n脊椎であることを確認するため、X線を照射している状態で撮像系を適宜移動させる必要がある。そのため図の矢印で示すように、設定用画像S1に映る被検体Mの領域を体軸方向に移動させ、移動後の設定用画像S1に映るX線像を視認するという操作を繰り返し行う。その結果、第n脊椎の位置を確認して撮影始点を設定するための所要時間が長くなるとともに、被検体Mの被曝量が増大するという問題が発生する。
 このような従来例の問題を回避する方法として、FPDの広い範囲にX線が入射するように、X線照射野を調整した状態で設定用画像S1を生成する方法が考えられる。この場合、図10(b)に示すように、生成される設定用画像S1のサイズが大きいので、多くの脊椎Gが設定用画像S1に映し出される。そのため操作者は設定用画像S1に映し出される多数の脊椎Gを参照し、容易に第n脊椎の位置を確認できる。
 しかしながらこの場合、設定用画像S1のサイズと、実際に撮影される短冊画像のサイズが異なる。そのため設定用画像S1を参照して設定した撮影始点において撮影される短冊画像P1において、目的とする第n脊椎のX線像が実際には映し出されていない場合がある。従って、図10(b)に示すような構成では、被検体Mの関心部位を正確に反映する長尺画像を撮影することが困難である。
 そこで、本発明の実施例1では、X線照射野をFPDの広範囲に調整した状態で設定用画像S1を生成するとともに、撮影範囲表示部37がマーカFを設定用画像S1に重畳表示させる構成を有している。マーカFは、短冊画像の撮影範囲を示す構成である。そのため操作者はサイズの広い設定用画像S1に映るX線像を参照することにより、撮影始点の目標とする第n脊椎の位置をより確実に確認できる。
 そして第n脊椎のX線像がマーカFの範囲内に位置することにより、設定用画像S1を生成した際の撮像系の位置を撮影始点とした場合に、短冊画像P1に第n脊椎のX線像が映ることを容易かつ確実に確認できる。また、第n脊椎のX線像がマーカFの範囲外に位置する場合、マーカFの位置と第n脊椎の位置との距離差が明瞭である。そのため距離差に基づいて、実際に撮影始点として適切な撮像系の位置を容易に確認することができる。すなわち撮像系の位置を、より容易かつ正確に、適切な撮影始点へ補正することができる。
 このように実施例1に係るX線透視撮影装置では、スロット撮影において撮影始点および撮影終点を適切かつ迅速に設定できる。そのため、スロット撮影によって取得される長尺画像は、被検体の関心部位を正確に映し出すX線画像である。従って、取得される長尺画像を用いて、適切な診断を行うことができる。またスロット撮影による長尺画像の取得に要する時間を短縮できるので、より効率的にスロット撮影を行うことが可能となる。さらに、撮影始点および撮影終点を設定する際における、被検体Mの被曝量を低減させることも可能となる。
 そしてマーカFの中心の位置は、設定用画像の中心の位置と一致するように構成される。すなわち、設定用画像を生成した際における撮像系の位置を維持したままコリメータを操作して短冊画像を撮影した場合、短冊画像の撮影範囲はマーカFに囲まれた範囲となる。そのため、設定用画像を生成した際における撮像系の位置が撮影始点または撮影終点として適切だった場合、短冊画像を撮影するために撮像系の位置を移動させる必要がない。従って、スロット撮影に要する工程や時間を短縮できるので、長尺画像の取得をより効率的に行うことが可能となる。
 次に、図を参照して本発明の実施例2について説明する。実施例2に係るX線透視撮影装置1Aは図11に示すように、実施例1に係るX線透視撮影装置1の構成に加えて、さらに撮影位置算出部45を備えている。撮影位置算出部45は設定用画像に重畳表示されるマーカの位置に基づいて、撮影始点の位置および撮影終点の位置をそれぞれ算出する。なお、撮影始点の位置および撮影終点の位置をそれぞれ算出する機構については後述する。
 また動作の工程のうち、ステップS1およびステップS2について実施例2は実施例1と相違する。すなわち実施例1では、X線透視により連続的に生成される画像(動画)を設定用画像として用いる。一方、実施例2ではLIHにより静止画像として表示されるX線画像を設定用画像として用いる。
 ここで実施例2に係るX線透視撮影装置の動作の工程を説明する。なお、実施例1と共通する工程については詳細な説明を省略する。
 ステップS1(撮像始点の設定)
 ステップS1に係る撮影始点の設定を行うにあたり、まず撮像系を移動させ(ステップS1-1)、照射野を調整する(ステップS1-2)。
 ステップS1-3(設定用画像の生成)
 撮像系の移動および照射野の調整が終了した後、設定用画像S1の生成を行う。すなわち操作者は入力部39を操作してX線透視を行う。画像生成部21はFPD17から出力されるX線検出信号に基づいて、X線透視画像を断続的に生成する。実施例2では実施例1と異なり、生成されたX線透視画像の情報は記憶部41によって記憶される。
 ステップS1-4(マーカの表示)
 X線透視画像を記憶した後、被検体Mの被曝量の増大を防ぐために、操作者はX線照射を一時的に終了させる。そして入力部39を操作して、短冊画像の短手方向の幅Tの長さの情報を入力するとともに、撮影始点の設定を指示する。入力部39に入力された指示に基づいて、図6(b)に示すように、記憶部41において最後に記憶されたX線透視画像が、設定用画像S1としてモニタ25に表示される。またこのとき、撮影範囲表示部37は幅Tの長さの情報に基づいて、短冊画像の撮影範囲に相当するマーカFを設定用画像S1に重畳表示させる。なおマーカFは当初、マーカFの中心と、設定用画像S1の中心とが一致するように表示されることが好ましい。
 操作者は静止画像としてモニタ25に表示された設定用画像S1、および設定用画像S1に重畳表示されたマーカFを参照する。そして短冊画像P1において所望する被検体MのX線像が、設定用画像S1に映し出されているか否かを判断して処理を分岐する。所望する被検体MのX線像が設定用画像S1に映し出されている場合、所望する被検体MのX線像がマーカFの範囲内となるように、設定用画像S1に重畳表示されるマーカFの位置を、被検体Mの体軸方向に移動させ、次のステップに進む。所望する被検体MのX線像が設定用画像S1に映し出されていない場合、ステップS1-1に戻って処理を続ける。
 ステップS1-5(撮影始点の登録)
 所望する被検体MのX線像の位置にマーカFを移動させた場合、撮影位置算出部45は設定用画像S1に重畳表示されるマーカFの位置に基づいて、撮影始点の位置を算出する。
 ここで実施例2において撮影始点の位置を算出する方法について、図12を用いて説明する。なお図12(a)において、所望する被検体MのX線像のある位置へマーカFを移動させたものとする。設定用画像S1の中心を通り、被検体Mの体軸方向に垂直な線を符号Scで示す。そして、マーカFの中心を通り、被検体Mの体軸方向に垂直な線を符号Fcで示す。さらに、線Scと線Fcとの距離をCとし、設定用画像S1のx方向の長さをSxとする。距離Cは設定用画像S1の中心からマーカFの中心までの距離に相当する。
 また図12(b)に示すように、X線管15およびFPD17の各々について、設定用画像S1の撮影位置を実線で示し、撮影始点を破線で示すものとする。そして撮影位置から撮影始点までの距離をEとし、FPD17に設けられている検出面17aのx方向の長さをFxとする。
 この場合、検出面17aにおける座標上の距離と、設定用画像S1における座標上の距離の比は等しい。そのため、設定用画像S1における長さSxと距離Cとの比は、検出面17aにおける長さFxと距離Eとの比に等しい。従って、距離Eの値は、距離C、長さFx、および長さSxの各々の値を用いて、以下の(1)で示す式を用いて算出される。
           E=C・Fx/Sx …(1)
 設定用画像S1を生成する際に、設定用画像S1の撮影位置は撮像系検出部32によって検出されている。そのため、設定用画像S1の撮影位置からx方向に距離E移動させた位置が撮影始点の位置となる。このように、撮影位置算出部45は設定用画像S1の中心の位置と、設定用画像S1に重畳表示されるマーカFの中心の位置とに基づいて、撮影始点を算出できる。撮影位置算出部45によって算出された撮影始点の情報は、記憶部41において記憶される。撮影始点に係る位置情報が記憶されることにより撮影始点の設定が完了し、ステップS1に係る工程は全て終了する。
 ステップS2(撮影終点の設定)
 撮影始点の設定が完了した後、撮影終点の設定を行う。なお、ステップS2に係る工程はステップS1に係る工程と同様である。すなわち操作者は入力部39を操作して撮像系を移動させ(ステップS1-1)、照射野を調整する(ステップS1-2)。照射野を調整した後、透視モードによるX線の照射を行い、生成されたX線透視画像を記憶部41に記憶させる。その後X線の照射を停止させ、最後に記憶されたX線透視画像を設定用画像S2としてモニタ25に表示させる(ステップS2-3)。
 そして短冊画像Pnにおいて所望する被検体MのX線像が、設定用画像S2に映し出されているか否かを判断して処理を分岐する。所望する被検体MのX線像が設定用画像S2に映し出されている場合、所望する被検体MのX線像がマーカFの範囲内となるように、設定用画像S1に重畳表示されるマーカFの位置を、被検体Mの体軸方向に移動させる(ステップS2-4)。所望する被検体MのX線像が設定用画像S2に映し出されていない場合、ステップS2-1に戻って処理を続ける。
 所望する被検体MのX線像の位置にマーカFを移動させた場合、撮影位置算出部45は、設定用画像S2の中心の位置と、設定用画像S2に重畳表示されるマーカFの中心の位置とに基づいて、撮影終点の位置を算出する。すなわち設定用画像S2の中心からマーカFの中心までの距離、設定用画像S2のx方向の長さ、および検出面17aのx方向の長さに基づいて、設定用画像S2の撮影位置から撮影終点までの距離を算出する。そして算出された撮影終点の位置情報は、記憶部41において記憶される(ステップS2-5)。撮影終点の位置情報が記憶されることにより撮影終点の設定が完了し、ステップS2に係る工程は全て終了する。
 ステップS3(X線撮影の準備)
 撮影始点および撮影終点が設定された後、X線撮影の準備を行う。すなわち操作者は入力部39を操作して撮像系の各々を撮影始点へ移動させるとともに、遮蔽板19aおよび遮蔽板19bを移動させてX線照射野の調整を行う。その結果、焦点15aから照射されるX線15bは、y方向に広がり、x方向に厚さTを有するファンビーム状に制限される。
 ステップS4(短冊画像の撮影)、ステップS5(長尺画像の再構成)
 X線撮影の準備が完了した後、操作者は入力部39を操作して撮像系の各々をx方向へ同期的に移動させ、被検体Mの領域R1~Rnについて、短手方向の幅をTとする短冊画像P1~Pnを撮影する(ステップS4)。長尺画像再構成部23は、画像生成部21が生成した短冊画像P1~Pnをx方向に繋ぎ合わせて単一の長尺画像Qを再構成する(ステップS5)。
 実施例2では実施例1と同様に、X線照射野をFPDの広範囲に調整した状態で設定用画像を生成するとともに、撮影範囲表示部37がマーカFを設定用画像に重畳表示させる構成を有している。すなわち設定用画像のサイズは短冊画像のサイズより大きい。そのため、撮影始点または撮影終点から撮影される短冊画像において所望するX線像が、設定用画像に映し出されているか否かを容易に判断できる。従って、撮影始点および撮影終点として適切な位置をより迅速に特定することができる。
 そしてマーカFは、短冊画像の撮影範囲を示す構成である。そのため所望するX線像の位置がマーカFの範囲内となるようにマーカF位置を移動させることにより、所望するX線像は確実に短冊画像に映し出される。従って、撮影始点および撮影終点の各々について、設定ミスが発生することを未然に回避できる。その結果、実施例2に係るX線透視撮影装置では、実施例1と同様にスロット撮影による長尺画像の取得に要する時間を短縮できるので、より効率的にスロット撮影を行うことが可能となる。また、撮影始点および撮影終点を設定する際における、被検体Mの被曝量を低減できる。
 実施例2に係るX線透視撮影装置1Aは、撮影範囲表示部37が設定用画像に重畳表示するマーカの位置に基づいて、撮影始点および撮影終点を算出する撮影位置算出部45を備えている。撮影視点または撮影終点として所望するX線像が設定用画像の中心に位置していない場合であっても、所望するX線像の位置にマーカを重畳表示させることにより、マーカの位置に基づいて撮影視点および撮影終点が算出される。
 従って、撮影始点および撮影終点を算出するために、所望するX線像が設定用画像の中心に位置するように設定用画像の撮影位置を調整する必要がない。その結果、撮影始点および撮影終点を算出するために要する時間と手間を省略できるので、より効率的にスロット撮影を行うことが可能となる。
 さらに、実施例2では生成した設定用画像を記憶部41に記憶させた後、X線の照射を一時的に終了させる。そして記憶部41に最後に記憶されている設定用画像をモニタ25に表示させる。このようなLIH機能(Last Image Hold)を用いて表示された設定用画像を参照して撮影始点および撮影終点を設定するので、設定用画像を参照する間に被検体Mが被曝することがない。従って、スロット撮影における被検体Mの被曝量をより低減することができる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した各実施例では、X線管15を支持するX線管支持部13は、基部を天板9に有する副支柱11に接続される構成としたが、これに限られない。すなわち図10に示すように、X線管支持部13は基部が天井に設けられており、X線管15を懸垂支持する構成としてもよい。また天板支持部7に接続する主支柱5についても、基部を床面に有する基台3に支持される構成に限られず、天井に基部を有する構成としてもよい。
 (2)上述した各実施例では、臥位体勢をとる被検体Mに対してスロット撮影を行う構成を有しているが、各実施例に係る構成は立位体勢の被検体に対しても応用できる。被検体Mが臥位体勢をとる場合、脊椎や下肢などに対して被検体の自重がかからない。一方、被検体Mが立位体勢をとる場合、被検体Mの脊椎や下肢などに対して体軸方向に被検体の自重がかかる。そのため、立位状態および臥位状態の各々について長尺画像を取得することにより、脊椎や下肢などについてより詳細な情報を取得できる。その結果、より的確な診断を効率的に行うことが可能となる。
 (3)上述した各実施例では、X線管15およびFPD17がx方向に移動することによって、撮影位置が移動する構成としたが、天板移動部33が天板支持部7をx方向に移動させる構成としてもよい。この場合、天板9および被検体Mは天板支持部7の移動に連動してx方向に移動する。従って、天板9の移動に連動して、被検体Mに対する撮像系の各々の相対的な位置はx方向に変位することとなる。
 (4)上述した実施例1では、マーカFの中心と設定用画像の中心が一致するよう構成されているがこれに限られない。すなわち設定用画像に重畳表示されるマーカFの位置は適宜変更してもよい。その一例として、マーカFの上端が設定用画像の上端に接するように位置する構成や、マーカFの下端が設定用画像の下端に接する様に位置する構成が挙げられる。
 (5)上述した各実施例では医用の装置であったが、本発明は、工業用や原子力用の装置などに適用することもできる。
 1     …X線透視撮影装置 
 3     …基台 
 5     …主支柱 
 7     …天板支持部 
 9     …天板 
 11    …副支柱 
 13    …X線管支持部 
 15    …X線管(X線源) 
 17    …FPD(X線検出手段) 
 19    …コリメータ 
 19a~19d …遮蔽板 
 21    …画像生成部(短冊画像生成手段、設定用画像生成手段) 
 23    …長尺画像再構成部(長尺画像取得手段) 
 29    …X線管移動部 
 31    …FPD移動部  
 33    …天板移動部 
 35    …コリメータ制御部 
 37    …撮影範囲表示部(撮影範囲表示手段) 
 39    …入力部
 41    …記憶部
 43    …主制御部
 45    …撮影位置算出部(撮影位置算出手段)

Claims (5)

  1.  被検体にX線を照射するX線源と、
     前記被検体を透過したX線を検出面において検出するX線検出手段と、
     X線を遮蔽する遮蔽部を備え、前記X線源から照射されるX線の照射野を制御するコリメータと、
     前記遮蔽部の開閉移動を制御するコリメータ制御手段と、
     前記X線源および前記X線検出手段からなる撮像系を前記被検体の体軸方向に移動させる撮像系移動手段と、
     前記撮像系移動手段が前記撮像系の各々を移動させる間に、前記X線検出手段が出力する検出信号を用いて、前記撮像系の移動方向を短手方向とする短冊状のX線画像である短冊画像を複数枚生成する短冊画像生成手段と、
     前記短冊画像生成手段が生成する複数枚の前記短冊画像を、前記被検体の体軸方向に繋ぎ合わせて単一の長尺画像を再構成する長尺画像再構成手段と、
     最初の前記短冊画像を撮影する際における前記撮像系の位置である撮影始点、および最後の前記短冊画像を撮影する際における前記撮像系の位置である撮影終点の設定に用いるX線画像を設定用画像として生成する設定用画像生成手段と、
     前記設定用画像に対して、前記短冊画像の撮影範囲を示すマーカを重畳表示させる撮影範囲表示手段とを備え、
     前記コリメータ制御手段は、前記設定用画像を生成する場合に前記X線源から照射されるX線の照射野が、前記短冊画像を生成する場合に前記X線源から照射されるX線の照射野と比べて、前記撮像系の移動方向に広い範囲となるように前記遮蔽部の開閉移動を制御することを特徴とするX線透視撮影装置。
  2.  請求項1に記載のX線透視撮影装置において、
     前記設定用画像において、前記撮影範囲表示手段が重畳表示する前記マーカの位置に基づいて、前記撮影始点および前記撮影終点を算出する撮影位置算出手段を備えるX線透視撮影装置。
  3.  請求項1または請求項2に記載のX線透視撮影装置において、
     前記コリメータ制御手段は、前記設定用画像を生成する場合に前記X線源から照射されるX線が、前記X線検出手段の前記検出面の全面に入射するように前記遮蔽部の開閉移動を制御するX線透視撮影装置。
  4.  請求項1ないし請求項3のいずれかに記載のX線透視撮影装置において、
     前記マーカは、前記マーカの中心の位置が前記設定用画像の中心の位置と一致するように重畳表示されるX線透視撮影装置。
  5.  請求項1ないし請求項4のいずれかに記載のX線透視撮影装置において、
     前記設定用画像生成手段が生成する前記X線画像を静止画像として記憶する記憶手段を備え、
     前記撮影始点および前記撮影終点の設定に用いる画像は、前記記憶手段によって静止画像として記憶された前記X線画像であるX線透視撮影装置。 
PCT/JP2014/070133 2014-07-30 2014-07-30 X線透視撮影装置 WO2016016979A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070133 WO2016016979A1 (ja) 2014-07-30 2014-07-30 X線透視撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070133 WO2016016979A1 (ja) 2014-07-30 2014-07-30 X線透視撮影装置

Publications (1)

Publication Number Publication Date
WO2016016979A1 true WO2016016979A1 (ja) 2016-02-04

Family

ID=55216922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070133 WO2016016979A1 (ja) 2014-07-30 2014-07-30 X線透視撮影装置

Country Status (1)

Country Link
WO (1) WO2016016979A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371546A (zh) * 2017-01-30 2018-08-07 株式会社岛津制作所 X射线摄影装置
CN110946597A (zh) * 2018-09-27 2020-04-03 上海西门子医疗器械有限公司 X射线摄影设备和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195612A (ja) * 2006-01-24 2007-08-09 Shimadzu Corp X線撮像装置
JP2007267783A (ja) * 2006-03-30 2007-10-18 Toshiba Corp X線ct装置
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2012040156A (ja) * 2010-08-19 2012-03-01 Hitachi Medical Corp X線画像診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195612A (ja) * 2006-01-24 2007-08-09 Shimadzu Corp X線撮像装置
JP2007267783A (ja) * 2006-03-30 2007-10-18 Toshiba Corp X線ct装置
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2012040156A (ja) * 2010-08-19 2012-03-01 Hitachi Medical Corp X線画像診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371546A (zh) * 2017-01-30 2018-08-07 株式会社岛津制作所 X射线摄影装置
CN110946597A (zh) * 2018-09-27 2020-04-03 上海西门子医疗器械有限公司 X射线摄影设备和方法
CN110946597B (zh) * 2018-09-27 2023-09-26 上海西门子医疗器械有限公司 X射线摄影设备和方法

Similar Documents

Publication Publication Date Title
JP5549595B2 (ja) 放射線撮影装置
JP6264589B2 (ja) X線撮影装置
JP6187705B2 (ja) X線透視撮影装置
WO2011013328A1 (ja) 放射線撮影装置
JP6057020B2 (ja) 放射線断層撮影装置
JP4740779B2 (ja) 放射線撮影装置
JP6658578B2 (ja) X線撮影装置
US20130148779A1 (en) Radiation tomography apparatus
JP5702236B2 (ja) X線撮影装置およびそのキャリブレーション方法
US9655585B2 (en) X-ray diagnostic apparatus and dose distribution generation method
JP2022060511A (ja) X線撮影装置
JP2010119437A (ja) 断層画像撮影装置
WO2016016979A1 (ja) X線透視撮影装置
JP6384399B2 (ja) X線透視撮影装置
JP2015047392A (ja) X線断層撮影装置
JP5559648B2 (ja) 放射線撮影装置、方法およびプログラム
JP2009291548A (ja) 放射線撮影装置
JP5584995B2 (ja) 放射線撮影装置およびキャリブレーションデータの取得方法
JP5428882B2 (ja) 放射線撮影装置
JP2011036407A (ja) 放射線撮影装置
JP2017124070A (ja) 放射線画像撮影システム
JP6459775B2 (ja) 放射線透視装置
JP5348247B2 (ja) 放射線撮影装置
JP2013106884A (ja) 放射線撮影装置
JP2010240063A (ja) 放射線撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14898732

Country of ref document: EP

Kind code of ref document: A1