WO2016013616A1 - 光通信システム、局側装置、加入者装置及び光通信方法 - Google Patents

光通信システム、局側装置、加入者装置及び光通信方法 Download PDF

Info

Publication number
WO2016013616A1
WO2016013616A1 PCT/JP2015/070974 JP2015070974W WO2016013616A1 WO 2016013616 A1 WO2016013616 A1 WO 2016013616A1 JP 2015070974 W JP2015070974 W JP 2015070974W WO 2016013616 A1 WO2016013616 A1 WO 2016013616A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
wavelength
communication wavelength
subscriber
standby
Prior art date
Application number
PCT/JP2015/070974
Other languages
English (en)
French (fr)
Inventor
智暁 吉田
慎 金子
木村 俊二
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2016535969A priority Critical patent/JP6369959B2/ja
Priority to CN201580039308.XA priority patent/CN106537852B/zh
Priority to US15/325,961 priority patent/US10009137B2/en
Publication of WO2016013616A1 publication Critical patent/WO2016013616A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present invention relates to an optical communication system, a station-side device, a subscriber device, and an optical communication method.
  • the PON is an optical communication system that achieves economy by sharing one station-side device and a part of a transmission path with a plurality of subscriber devices using an optical multiplexer / demultiplexer using an optical passive element.
  • wavelength variability is added to the transmitter / receiver so that the transmitter / receiver in the station side device can be added in stages according to the bandwidth requirement, and time division multiplexing (TDM) and wavelength are added.
  • TDM time division multiplexing
  • WDM Wavelength Division Multiplexing
  • wavelength tunable WDM / TDM-PON has attracted attention in recent years as a system that can increase the total bandwidth step by step and flexibly distribute the load according to user requirements.
  • the change of the assigned OSU (Optical Subscriber Unit) by load distribution is realized by switching the wavelength of the ONU (Optical Network Unit).
  • FIG. 1 shows a wavelength tunable WDM / TDM-PON system related to the present invention.
  • the wavelength tunable WDM / TDM-PON system related to the present invention includes a station side subscriber accommodation device (Optical Line Terminal, OLT) 10 and a subscriber device (ONU) 20.
  • OLT Optical Line Terminal
  • ONU subscriber device
  • the OLT 10 includes a dynamic wavelength band allocation circuit 101, a demultiplexing unit 106, and an OSU 107.
  • the OLT 10 and the ONU 20 are connected in a PON topology having a point-to-multipoint configuration using the optical multiplexer / demultiplexer 11, the optical multiplexer / demultiplexer 12, and the optical fibers 13, 14, 15 and 16.
  • the optical multiplexer / demultiplexer 11 and the optical multiplexer / demultiplexer 12 are, for example, a power splitter or a wavelength router.
  • the demultiplexing unit 106 of the OLT 10 is connected to the relay network 40.
  • the OLT 10 includes line cards OSU # 1 to OSU # m and a dynamic wavelength band allocation circuit 101 that transmit and receive a set ⁇ 1d, u 1 to ⁇ md, u of downstream wavelengths ⁇ 1d to ⁇ md and upstream wavelengths ⁇ 1u to ⁇ mu. Composed. OSU # 1 to OSU # m transmit and receive the wavelength signals of the wavelength sets ⁇ 1d, u to ⁇ md, u transmitted from the ONU 20 respectively.
  • the OLT 10 is connected with h ONUs 20 of ONU # 1 to ONU # h, and each ONU 20 transmits / receives using one of the pairs ⁇ 1d, u 1 to ⁇ md, u of the downstream and upstream wavelengths.
  • the ONU 20 can transmit and receive using one of the wavelength sets ⁇ 1d, u to ⁇ md, u in accordance with an instruction from the OLT 10.
  • Each ONU 20 receives an upstream signal from a communication device installed at a user's home, and is transmitted as an upstream optical signal by an optical transceiver inside the ONU 20.
  • the upstream signal is multiplexed onto one optical fiber 13 from the power splitter or wavelength router on the ONU 20 side toward the OLT 10. Therefore, the OLT 10 calculates and controls the transmission time and transmission duration of the uplink signal transmitted by each ONU 20 so that the uplink signals do not overlap.
  • Uplink signals 1 to m received by OSU # 1 to OSU # m are aggregated by the demultiplexing unit 106 in the OLT 10, multiplexed into one uplink signal, and transmitted to the relay network 40 side.
  • the downlink signal from the relay network 40 side to each ONU 20 is based on the OSU # 1 based on the destination information of the ONU 20 described in the downlink signal by the demultiplexing unit 106 and the information of the OSU 107 to which the ONU 20 belongs. Is divided into downlink signals 1 to m to OSU # m. The separated downlink signals 1 to m are sent to the ONUs 20 with the downlink wavelengths ⁇ 1d to ⁇ md set in the OSU # 1 to OSU # m, respectively.
  • the downstream signal is broadcast by the wavelength of each OSU 107, but since the transmission / reception wavelength of the ONU 20 is set to the transmission / reception wavelength of each OSU 107, the ONU 20 selects the information addressed to itself from the received wavelength signal, The data is output from the ONU 20 to the communication device at the user's home.
  • the dynamic wavelength band assignment circuit 101 includes a DWBA (Dynamic Wavelength and Bandwidth Assignment) calculation unit 103, a switching instruction signal generation unit 102, a control signal transmission unit 104, and a request signal reception unit 105.
  • the dynamic wavelength band allocation circuit 101 receives a signal including a bandwidth request transmitted from each ONU 20 by the request signal receiving unit 105 through each OSU 107, and transmits an upstream data signal and a request signal to be allocated to each ONU 20 based on the request.
  • the DWBA calculation unit 103 calculates the transmission time and the transmission continuation time.
  • the dynamic wavelength band allocation circuit 101 generates an instruction signal including the calculated transmission time and transmission duration in the switching instruction signal generation unit 102 and transmits it from the control signal transmission unit 104 to each ONU 20 through each OSU 107.
  • the DWBA calculation unit 103 manages connection information between the ONU 20 and the OSU 107 in the PON section.
  • the demultiplexing unit 106 instructs the demultiplexing unit to change the destination OSU 107 of the downlink signal of the ONU 20 as the destination.
  • Fig. 2 shows the configuration of ONU20.
  • the ONU 20 includes a data reception unit 201, a data transmission unit 208, an upstream buffer memory 202, a downstream buffer memory 209, a destination analysis selection reception unit 210, a frame transmission control unit 203, a frame assembly transmission unit 204, a wavelength tunable optical transceiver 205, a request A band calculation unit 206, a request signal generation unit 207, an instruction signal reception unit 211, and a wavelength switching control unit 212 are provided.
  • the upstream signal from the user is received by the data receiving unit 201 and temporarily stored in the upstream buffer memory 202.
  • the frame transmission control unit 203 sends the uplink signal to the frame assembly / transmission unit 204 according to the transmission time and transmission duration of the uplink signal designated by the instruction signal.
  • the frame assembly transmission unit 204 configures a frame format necessary for transmitting a signal to the OLT 10 in the PON configuration, and transmits the frame format to the wavelength variable optical transceiver 205.
  • the wavelength tunable optical transceiver 205 converts the optical signal into one of the wavelengths ⁇ 1d, u 1 to ⁇ md, u designated by the wavelength switching control unit 212 and transmits the optical signal to the OLT 10.
  • the downlink signal from the OSU 107 is received by selecting the designated wavelength in the wavelength tunable optical transceiver 205, and the destination analysis selection receiving unit 210 analyzes the destination of the downlink signal and selects only the information addressed to itself.
  • the data transmission unit 208 transmits information stored in the downlink buffer memory 209 as a downlink signal to the user.
  • the wavelength tunable optical transceiver 205 receives the instruction signal from the OLT 10, converts it into an electrical signal, and sends it to the instruction signal receiving unit 211.
  • the instruction signal receiving unit 211 analyzes the instruction content of the instruction signal. If the instruction signal includes a wavelength switching instruction, a wavelength after switching, and a switching start time, the instruction signal receiving unit 211 issues a switching destination wavelength and a switching execution instruction at the specified time. This is sent to the wavelength switching control unit 212.
  • the wavelength switching control unit 212 switches the wavelength of the wavelength tunable optical transceiver 205 according to the wavelength switching control.
  • the OLT 10 receives information about the bandwidth requested by the ONU 20 from the ONU 20 and uses it for bandwidth allocation.
  • an instruction signal is used to instruct the requested band information to be transmitted to the OLT 10
  • the ONU 20 may write the requested band information to the OLT 10 in accordance with the instruction.
  • the instruction signal receiving unit 211 receives an instruction signal requesting transmission of a request signal
  • the instruction signal receiving unit 211 instructs the request signal transmission unit 207 to generate a request signal.
  • the request signal transmission unit 207 instructs the request band calculation unit 206 to calculate the requested band.
  • the requested bandwidth calculation unit 206 measures the amount of uplink signal data stored in the uplink buffer memory 202, determines the requested bandwidth amount based on the data amount, and sends the requested bandwidth amount to the request signal transmission unit 207.
  • the request signal sending unit 207 generates a request signal describing the requested amount and sends it to the frame sending control unit 203.
  • the instruction signal instructing the ONU 20 to transmit the requested bandwidth from the OLT 10 may include information on the transmission start time and transmission duration of the request signal.
  • the instruction signal receiving unit 211 sends the request signal transmission start time and transmission duration information included in the instruction signal to the frame transmission control unit 203, and the frame transmission control unit 203 transmits the request signal at the instructed time. Is transmitted to the frame assembly transmission unit 204, and a request signal is transmitted to the OLT 10 via the wavelength tunable optical transceiver 205.
  • the instruction signal transmitted from the OLT 10 includes a transmission start time and a transmission continuation time during which the ONU 20 transmits the uplink signal received from the user side to the OLT 10.
  • the instruction signal receiving unit 211 sends information on the transmission start time and transmission duration of the uplink signal included in the instruction signal to the frame transmission control unit 203, and the frame transmission control unit 203 stores the uplink signal at the instructed time in the buffer memory.
  • the frame is taken out from the frame, sent to the frame assembly / transmission unit 204 for the duration of the transmission duration, and transmitted to the OLT 10 via the wavelength tunable optical transceiver 205.
  • Patent Document 1 discloses an optical communication system and an optical communication having a function of selecting and reconnecting the OSU 107 to which the ONU 20 newly belongs when the OSU 107 fails as a function for improving the reliability and availability of the OLT 10.
  • An error recovery method is described.
  • Patent Document 1 utilizes wavelength switching, which is a feature of wavelength tunable WDM / TDM-PON, and newly reconnects when the current OSU 107 that belongs to the service fails and an abnormality occurs in the received signal, such as a down signal disconnection.
  • the wavelength transmitted and received by the OSU 107 is held in the ONU 20 as a table of switching information, and when the ONU 20 detects an abnormality, the wavelength can be switched and the connection operation can be performed to quickly restore communication.
  • this switching destination standby communication wavelength as a wavelength transmitted and received by a different OSU 107 for each ONU 20
  • the ONUs 20 that are reconnected to the backup OSU 107 are distributed, and the OSU 107 reconnection processing It is possible to speed up the reconnection process by distributing the traffic and to distribute the traffic after the reconnection to each OSU 107.
  • Patent Document 1 describes a mode in which spare OSUs 107 can be distributed. However, when returning to the current state, a history of which ONU 20 has moved to which OSU 107 is traced back, and one of the ONUs 20 is recorded. It is necessary to instruct the wavelength switching to the OSU 107 recovered for each unit.
  • the present invention is simplified to the communication wavelength used before the occurrence of the abnormality when the abnormality of the communication between the OLT 10 and the ONU 20 is recovered after the abnormality occurs in the communication between the OLT 10 and the ONU 20.
  • An object of the present invention is to provide an optical communication system that can be switched back to.
  • the optical communication system of the present invention includes a plurality of subscriber devices and a single station side device, and the station side device includes a common monitoring control unit.
  • the common monitoring control unit uses the communication wavelength used for communication between the station-side device in which the abnormality has occurred and the subscriber device. Switch from wavelength to standby communication wavelength.
  • the common monitoring control unit sets the communication wavelength used in the communication between the station side device and the subscriber device that has performed communication using the recovered working communication wavelength to the standby communication. Switch back from wavelength to working communication wavelength.
  • the optical communication system of the present invention is an optical communication system in which a plurality of subscriber devices and a single station side device are connected by an optical line, and the station side device includes the plurality of subscription devices.
  • Communication wavelength assigned to the subscriber device that was communicating using the working communication wavelength in which an abnormality occurred when detecting that an abnormality has occurred in communication using the working communication wavelength assigned to any of the subscriber devices Is changed from the working communication wavelength to a predetermined standby communication wavelength, and when the communication of the working communication wavelength in which an abnormality has occurred is restored, the subscriber apparatus that has performed communication using the standby communication wavelength
  • a common monitoring control unit that changes the allocated communication wavelength from the standby communication wavelength to the active communication wavelength;
  • the optical communication system of the present invention includes a common supervisory control unit, it detects an abnormality in communication using the working communication wavelength that occurs between the station side device and any of the plurality of subscriber devices, and sets the communication wavelength to the working communication.
  • the wavelength can be changed from the standby communication wavelength.
  • the common monitoring control unit can change the communication wavelength from the standby communication wavelength to the working communication wavelength. Therefore, the optical communication system of the present invention can easily switch back to the communication wavelength used before the occurrence of the abnormality when the communication abnormality is recovered.
  • the station side device determines the working communication wavelength and the standby communication wavelength for each subscriber device in advance, and the communication wavelength assigned to the subscriber device is the working communication wavelength. And a station-side management table for managing an operation state indicating which of the standby communication wavelengths is in use, and the common monitoring control unit is assigned to one of the plurality of subscriber devices. And detecting that an abnormality has occurred in communication using the station side management table, the operating state in the station side management table is changed from the active communication wavelength to the standby communication wavelength, and the communication wavelength assigned to the subscriber device is changed to the station Change to the standby communication wavelength defined in the side management table and use the standby communication wavelength assigned to any of the plurality of subscriber devices.
  • the operating state in the station side management table is changed from the standby communication wavelength to the working communication wavelength, and the communication wavelength assigned to the subscriber device is It may be changed to the working communication wavelength defined in the station side management table.
  • the station-side device further includes a station-side timer that measures a predetermined time from when it is detected that an abnormality has occurred in communication using the working communication wavelength,
  • the common supervisory control unit when detecting that the station-side timer has passed the predetermined time for communication using the backup communication wavelength assigned to any of the plurality of subscriber devices, in the station-side management table
  • the standby communication wavelength may be set as a new working communication wavelength.
  • a station-side device of the present invention is the station-side device provided in an optical communication system in which a plurality of subscriber devices and a single station-side device are connected by an optical line, and any one of the plurality of subscriber devices
  • the communication wavelength assigned to the subscriber device that has performed communication using the working communication wavelength in which the abnormality has occurred is set to the working communication.
  • a communication wavelength assigned to the subscriber device that has performed communication using the standby communication wavelength A common monitoring control unit for changing from the standby communication wavelength to the working communication wavelength in which communication is recovered;
  • a subscriber device is a subscriber device provided in an optical communication system in which a plurality of subscriber devices and a single station-side device are connected by an optical line, and is used for communication with the station-side device.
  • the active communication wavelength and the standby communication wavelength are determined in advance, and the operational status indicating whether the wavelength assigned from the station side device or the station side device is the active communication wavelength or the standby communication wavelength is managed.
  • the operation status in the subscriber management table is changed from the working communication wavelength to the standby communication.
  • Change to the wavelength change the communication wavelength with the station side device to the backup communication wavelength defined in the subscriber management table, and receive a switchback instruction from the station side device
  • the working state in the subscriber management table is changed from the standby communication wavelength to the working communication wavelength, and the communication wavelength with the station side device is defined in the subscriber management table.
  • an individual monitoring control unit that changes the wavelength.
  • the subscriber device of the present invention further comprises a subscriber timer that measures a predetermined time from the time when it is detected that an abnormality has occurred in communication using the working communication wavelength, and the individual monitoring control unit is When the subscriber timer detects that the predetermined time has passed for communication using the standby communication wavelength assigned to any of the plurality of subscriber devices, the standby communication wavelength in the subscriber management table is newly set.
  • the active communication wavelength may be set.
  • the optical communication method of the present invention is an optical communication method for the station side device and the subscriber device in an optical communication system in which a plurality of subscriber devices and one station side device are connected by an optical line, An abnormality detection procedure for detecting that an abnormality has occurred in communication between the station side device and the subscriber device using an active communication wavelength assigned to any one of the subscriber devices, and an abnormality in the abnormality detection procedure.
  • the standby wavelength switching for changing the communication wavelength assigned to the subscriber device that is performing communication using the active communication wavelength in which an abnormality has occurred from the active communication wavelength to a predetermined standby communication wavelength
  • a communication wavelength to be assigned to the subscriber apparatus that has performed communication using the standby communication wavelength is changed from the standby communication wavelength to the active communication wave. It has a wavelength switchback steps to change to, in this order.
  • an optical communication system can be provided.
  • FIG. 1 is a block diagram illustrating an example of an optical communication system according to Embodiments 1 and 2.
  • FIG. The example before an abnormality generate
  • maintains is shown.
  • An example of the station-side management table after the switchback protection time has elapsed among the station-side management tables held by the OLT according to the first embodiment is shown.
  • 4 shows an example of a subscriber management table after the switchback protection time elapses, among the subscriber management tables held by the ONU according to the first embodiment.
  • the schematic diagram of an example of ONU which concerns on Embodiment 2 is shown.
  • an example before an abnormality occurs in the OSU is shown.
  • An example of a subscriber management table after the switchback protection time elapses among the subscriber management tables held by the ONU according to the second embodiment is shown.
  • FIG. 3 shows an example of an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes a plurality of ONUs 20 and a single OLT 10.
  • the ONU 20 functions as a subscriber unit.
  • the OLT 10 functions as a station side device.
  • a plurality of ONUs 20 and a single OLT 10 use an optical fiber 13, an optical fiber 14, an optical fiber 15, an optical fiber 16, an optical multiplexer / demultiplexer 11, and an optical multiplexer / demultiplexer 12.
  • the optical fiber 13, the optical fiber 14, the optical fiber 15, the optical fiber 16, the optical multiplexer / demultiplexer 11, and the optical multiplexer / demultiplexer 12 function as an optical line.
  • the optical line between the OLT 10 and the ONU 20 is connected in a PON topology having a point-to-multipoint configuration using the optical multiplexer / demultiplexer 11 and the optical multiplexer / demultiplexer 12.
  • the OLT 10 includes a dynamic wavelength band allocation circuit 101, a demultiplexing unit 106, an OSU 107, and a common monitoring control unit 108. Since the configurations and operations of the dynamic wavelength band allocation circuit 101, the demultiplexing unit 106, and the OSU 107 are the same as those of the OLT 10 shown in FIG. 1, the description thereof is omitted here.
  • the ONU 20 includes a data reception unit 201, a data transmission unit 208, an upstream buffer memory 202, a downstream buffer memory 209, a destination analysis selection reception unit 210, and a frame transmission control unit 203.
  • a frame assembly transmission unit 204 a wavelength tunable optical transceiver 205, a request band calculation unit 206, a request signal generation unit 207, an instruction signal reception unit 211, and a wavelength switching control unit 212.
  • the operation of these components is as already described.
  • the OLT 10 may be realized by causing a computer to function as the dynamic wavelength band allocation circuit 101, the demultiplexing unit 106, the OSU 107, and the common monitoring control unit 108.
  • each configuration is realized by executing a computer program stored in a storage unit (not shown) by a CPU (Central Processing Unit) included in the OLT 10.
  • the computer for realizing the OLT 10 may further include an arbitrary device controlled by the computer.
  • a program for realizing the OLT 10 can be recorded on a recording medium or provided through a network.
  • the OLT 10 includes a station side management table (sometimes referred to as a wavelength switching destination table) 110.
  • FIG. 4 shows an example of the station side management table (wavelength switching destination table) 110.
  • the station side management table (wavelength switching destination table) determines the working communication wavelength and the standby communication wavelength for each ONU 20 in advance, and indicates whether the communication wavelength assigned to the ONU 20 is the working communication wavelength or the standby communication wavelength. Manage.
  • Each ONU 20 changes the connected OSU 107 by switching the upstream and downstream wavelengths from the working communication wavelength to the standby communication wavelength.
  • the OLT 10 always knows which OSU 107 is connected to which ONU 20. Therefore, the station side management table (wavelength switching destination table) 110 of the OLT 10 shown in FIG. 4 may be created by extracting from the management information of the OSU 107-ONU 20 correspondence relationship that is always used by the OLT 10.
  • the ONU 20 may similarly hold the set of active communication wavelengths and the set of backup communication wavelengths in the own ONU 20 as a subscriber management table.
  • FIG. 5 shows an example of the subscriber management table according to the present embodiment.
  • the subscriber management table manages each active communication wavelength and standby communication wavelength of the ONU 20.
  • the subscriber management table indicates whether the communication wavelength assigned from the OLT 10 is the active communication wavelength or the standby communication wavelength, as in the station side management table shown in FIG.
  • the operational status to represent may be managed.
  • the optical communication method according to this embodiment will be described.
  • the optical communication method according to the present embodiment includes an abnormality detection procedure, a standby wavelength switching procedure, and a wavelength switching procedure in this order.
  • the ONU 20 communicates with the OSU 107 using the working communication wavelength that is the communication wavelength assigned to each of the ONUs 20.
  • the OLT 10 executes an abnormality detection procedure.
  • the common monitoring control unit 108 monitors the presence / absence of abnormality of each OSU 107 used for communication with the ONU 20, thereby causing an abnormality in communication using the working communication wavelength between the ONU 20 and the OSU 107. Is detected.
  • the common monitoring control unit 108 When the common monitoring control unit 108 detects an abnormality, the common monitoring control unit 108 executes a standby wavelength switching procedure. In the standby wavelength switching procedure, the common monitoring control unit 108 changes the communication wavelength assigned to the ONU 20 that has performed communication using the active communication wavelength in which an abnormality has occurred from the active communication wavelength to a predetermined standby communication wavelength. . For example, the common monitoring control unit 108 changes the ONU 20 belonging to the OSU 107 in which an abnormality has occurred to belong to the backup OSU 107 that uses the backup communication wavelength as the communication wavelength.
  • the common monitoring control unit 108 cooperates with the dynamic band allocation circuit 101 and the demultiplexing unit 106, and in the signal distribution of the ONU 20 in the demultiplexing unit 106, the signal from the ONU 20 is changed. Control to change to pass the spare OSU 107 is performed.
  • the common monitoring control unit 108 executes a wavelength switch-back procedure when any one of the working communication wavelengths in which an abnormality has occurred is recovered.
  • the operation state of the station side management table (wavelength switching destination table) 110 of the OLT 10 is changed from the operation state of the ONU 20 that is the standby communication wavelength to the active communication wavelength, and communication is performed using the standby communication wavelength.
  • the communication wavelength allocated to the ONU 20 that has been changed is changed from the standby communication wavelength to the working communication wavelength from which communication has been recovered.
  • the common monitoring control unit 108 has a switchback protection timer 109 that functions as a station-side timer for each OSU 107.
  • the switch-back protection timer 109 measures a predetermined time from the time when it is detected that an abnormality has occurred in communication using the working communication wavelength. In this case, when the timer of the switchback protection timer 109 expires (the switchback protection time has elapsed), the common monitoring control unit 108 gives up waiting for recovery of the working wavelength in which an abnormality has occurred, and sets the standby communication wavelength to the working communication wavelength.
  • the common monitoring control unit 108 sets the standby communication wavelength in the ONU 20 whose operation state of the station side management table (wavelength switching destination table) 110 of the OLT 10 is the standby communication wavelength to a new working communication wavelength, and sets the ONU 20
  • the operation state of the station side management table (wavelength switching destination table) of the OLT 10 is changed to the working communication wavelength.
  • FIG. 7 shows an example of the station side management table when the setting of the wavelength switching destination table of the OLT 10 is changed from the standby communication wavelength to the working communication wavelength after the switchback protection time of the switchback protection timer 109 has elapsed.
  • the common monitoring control unit 108 may detect that the communication of the working communication wavelength in which the abnormality has occurred has been recovered in response to an external trigger.
  • the trigger from the outside is, for example, that the OLT 10 is notified by the operator that an abnormality in the working wavelength has been recovered and switching back to the working wavelength is possible at any trigger.
  • ONU # 1 is lambda 1u
  • the OSU # 1 using d it is connected to the OSU # m that ONU # 2 and ONU # h is used Ramudamu
  • a set of the upstream wavelength ⁇ 1u and the downstream wavelength ⁇ 1d of OSU # 1 is denoted as ⁇ 1u, d
  • the upstream wavelength and the downstream wavelength are managed as a pair.
  • the OLT 10 holds a set of working communication wavelengths and a set of backup communication wavelengths.
  • the OLT 10 holds the station side management table (wavelength switching destination table) of FIG.
  • each ONU 20 is dispersed and reconnected when an abnormality occurs in the OSU 107.
  • ONU # 2 reconnects to OSU # 3 using ⁇ 3u
  • ONU # h reconnects to OSU # 1 using ⁇ 1u, d to restore communication.
  • the ONU 20 switches the wavelength to the backup communication wavelength and reconnects to the backup OSU 107.
  • This wavelength switching means is within the scope of the technology related to the present invention, and its specific method and procedure are not limited.
  • the OLT 10 changes the operation state of the ONU # 2 and ONU #h to the standby communication wavelength in the station side management table (wavelength switching destination table) of the OLT 10 shown in FIG. FIG. 6 shows the switching destination table after the change.
  • connection destination is changed by switching the wavelength of the ONU #h connected to the OSU # 1 to the OSU #m.
  • the ONU 20 reconnected at the standby communication wavelength and the distributed backup OSU 107 are designated one by one and switched back to the OSU # m that is the original OSU 107 one by one. It was necessary.
  • the ONU 20 is the standby communication wavelength and the working communication wavelength is OSU #. It can be seen that the ONU 20 that is ⁇ mu, d used by m is ONU # 2 and ONU # h. Therefore, after the abnormality of OSU # m is recovered, by referring to the wavelength switching destination table, it is re-established to ONU # 2 and OSU # 1 that belonged to OSU # m recovered from the abnormality and reconnected to OSU # 3. It can be easily extracted that the connected ONU # h.
  • the common monitoring control unit 108 instructs the switching instruction signal generation unit 102 to sequentially switch back the extracted OSU 107 and ONU 20, thereby giving a switching back instruction to the OLT 10 automatically or from the operator. All ONUs 20 can be switched back at the timing. Finally, the operating state of ONU # 2 and ONU # h is returned to the working communication wavelength.
  • the switchback protection timer 109 for the OSU 107 is set with a switchback protection time that is a predetermined time and started.
  • the common monitoring control unit 108 When the common monitoring control unit 108 detects that the switchback protection timer 109 has expired (the switchback protection time has elapsed), the common monitoring control unit 108 switches the standby communication wavelength and the working communication wavelength in the wavelength switching destination table of the OLT 10. For example, in this embodiment, in the description regarding ONU # 2 and ONU # h where the working communication wavelength is ⁇ mu, d in the wavelength switching destination table of the OLT 10 in FIG. Is changed to the working communication wavelength. With this change, the wavelength switching destination table of the OLT 10 in FIG. 6 is changed as shown in FIG.
  • the common monitoring control unit of the OLT 10 may instruct the ONU # 2 and ONU #h to exchange the registration of the active communication wavelength and the standby communication wavelength in the wavelength switching destination table held by each ONU 20.
  • the ONU # 2 working OSU 107 is OSU # 3 using ⁇ 3u, d
  • the spare OSU 107 is OSU # m
  • the ONU # h working OSU 107 is OSU # 1 using ⁇ 1u , d.
  • the spare OSU 107 is changed to OSU # m.
  • each OSU 107 has a switchback protection timer 109, and when the switchback protection timer 109 expires or when designated by the operator, the standby communication wavelength is changed to the working communication wavelength in the wavelength switching destination table of the OLT 10 By doing this, it is possible to determine the time limit for the active communication wavelength that is the switchback operation or switchback destination to be valid. For example, when the active OSU 107 does not recover over a long period of time, the standby OSU 107 is made active, the standby communication wavelength is reset to another OSU 107, and the redundancy is reconstructed. Then, when the abnormal OSU 107 recovers, the original state is restored. This makes it possible to eliminate the need for switching back.
  • the ONU 20 detects an abnormality and switches the communication wavelength.
  • FIG. 9 shows an example of the ONU 20 according to this embodiment.
  • the ONU 20 according to this embodiment includes a data reception unit 201, a data transmission unit 208, an upstream buffer memory 202, a downstream buffer memory 209, a destination analysis selection reception unit 210, a frame transmission control unit 203, and a frame assembly transmission.
  • Unit 204 wavelength tunable optical transceiver 205, request band calculation unit 206, request signal generation unit 207, instruction signal reception unit 211, wavelength switching control unit 212, monitoring control unit 214, reception abnormality detection unit 213.
  • the ONU 20 includes a data reception unit 201, a data transmission unit 208, an upstream buffer memory 202, a downstream buffer memory 209, a destination analysis selection reception unit 210, a frame transmission control unit 203, and a frame assembly transmission unit 204.
  • the computer when realizing the ONU 20 may further include an arbitrary device controlled by the computer. Further, the program for realizing the ONU 20 can be recorded on a recording medium or provided through a network.
  • the OLT 10 and the ONU 20 are connected by a PON topology having a point-to-multipoint configuration using the optical multiplexer / demultiplexer 11 and the optical multiplexer / demultiplexer 12.
  • the OLT 10 is connected to the relay network 40.
  • the ONU 20 holds a subscriber management table (sometimes referred to as a wavelength switching destination table) 220.
  • FIG. 10 shows a subscriber management table 220 managed by each ONU 20 in the present embodiment. Although not shown in FIG. 10, the subscriber management table indicates whether the communication wavelength assigned from the OLT 10 is the working communication wavelength or the standby communication wavelength, as in the station management table shown in FIG.
  • the operational status to represent may be managed.
  • the optical communication method according to this embodiment will be described.
  • the optical communication method according to the present embodiment includes an abnormality detection procedure, a standby wavelength switching procedure, and a wavelength switching procedure in this order.
  • the ONU 20 communicates with the OSU 107 using the working communication wavelength that is the communication wavelength assigned to each of the ONUs 20.
  • the reception abnormality detection unit 213 executes an abnormality detection procedure.
  • the reception abnormality detection unit 213 monitors the reception signal from the destination analysis selection reception unit 210 and detects an abnormality in the reception signal of the ONU 20.
  • the reception abnormality detection unit 213 may monitor the reception signal from the wavelength tunable optical transceiver 205 and detect an abnormality in the reception signal of the ONU 20.
  • the monitoring control unit 214 functions as an individual monitoring control unit, and receives a notification of reception signal abnormality from the reception abnormality detection unit 213.
  • the monitoring control unit 214 includes a switchback protection timer 215.
  • the switchback protection timer 215 functions as a subscriber timer.
  • the switchback protection timer 215 measures a predetermined time from the time when it is detected that an abnormality has occurred in communication using the working communication wavelength.
  • the monitoring control unit 214 executes a standby wavelength switching procedure.
  • the monitoring control unit 214 changes the operation state in the subscriber management table 220 from the working communication wavelength to the standby communication wavelength. Further, the monitoring control unit 214 changes the communication wavelength with the OLT 10 from the working communication wavelength to the standby communication wavelength in the subscriber management table 220.
  • the supervisory control unit 214 receives the switchback signal from the OLT 10, and executes the wavelength switchback procedure when the working communication wavelength included in the switchback signal matches the working communication wavelength in the subscriber management table 220. .
  • the monitoring control unit 214 changes the operation state in the subscriber management table 220 from the standby communication wavelength to the working communication wavelength. Further, the monitoring control unit 214 changes the communication wavelength with the station side device from the standby communication wavelength to the working communication wavelength in the subscriber management table 220.
  • the supervisory control unit 214 may detect that the communication of the working communication wavelength in which an abnormality has occurred has been recovered in response to an external trigger, and execute the wavelength switching procedure.
  • the trigger from the outside is, for example, that the OLT 10 is notified by the operator that an abnormality in the working wavelength has been recovered and switching back to the working wavelength is possible at any trigger.
  • ONU # 1 is connected to OSU # 1 using ⁇ 1u, d as an initial state
  • ONU # 2 and ONU # h are connected to OSU # m using ⁇ mu , d.
  • a set of the upstream wavelength ⁇ 1u and the downstream wavelength ⁇ 1d of OSU # 1 is denoted as ⁇ 1u, d
  • the upstream wavelength and the downstream wavelength are managed as a pair.
  • the operation in the standby wavelength switching procedure in which the ONUs 20 are dispersed and reconnected when an abnormality occurs in the OSU 107 will be described.
  • the reception abnormality detection unit 213 of ONU # 2 and ONU # h connected to OSU # m detects the abnormality of the reception signal and transmits it to the monitoring control unit 214.
  • the monitoring control unit 215 of ONU # 2 switches the communication wavelength from the current communication wavelength in the subscriber management table 220 to ⁇ 3u, d registered as the backup communication wavelength in the subscriber management table 220. And then reconnect to OSU # 3 to restore communication.
  • the monitoring control unit 215 of the ONU #h switches the communication wavelength from the current communication wavelength in the subscriber management table 220 to ⁇ 1u, d registered as the backup communication wavelength in the subscriber management table 220. And then reconnect to OSU # 1 to restore communication. At that time, the operating state in the subscriber management table 220 is changed from the working communication wavelength to the standby communication wavelength, and the communication wavelength with the OLT 10 is changed from the working communication wavelength to the standby communication wavelength in the subscriber management table 220. .
  • Means for the ONU 20 to switch the wavelength to the backup communication wavelength and reconnect to the backup OSU 107 is within the scope of the technology related to the present invention, and the specific method and procedure are not limited in this embodiment.
  • the switch back operation after the OSU 107 recovers from an abnormality in the second embodiment of the present invention.
  • OSU # m is recovered by repairing or replacing OSU # m, and ONU # 2 and ONU # h are switched back to OSU # m.
  • the ONU 20 does not have the subscriber management table shown in FIG. 8, so that the operator has determined that ONU # 2 and ONU # h were connected to OSU # m immediately before the occurrence of the abnormality.
  • the switching instruction signal generation unit 102 of the OLT 10 is instructed to change the connection destination from the ONU # 2 connected to the OSU # 3 to the OSU #m by switching the communication wavelength.
  • connection destination is changed by switching the communication wavelength from the ONU #h connected to the OSU # 1 to the OSU #m. In this way, it is necessary to specify each of the ONUs 20 reconnected at the standby communication wavelength and the spare OSUs 107 that are dispersed and reconnected, and switch back to the OSU # m that is the original OSU 107 one by one.
  • the common monitoring control unit 108 of the OLT 10 switches back the working communication wavelength used by the OSU # m that is the switchback OSU 107 from all the OSUs 107 to all the ONUs 20.
  • the ONU 20 is notified of the switch-back signal included as
  • each ONU 20 transmits and receives the switchback signal, and the communication wavelength of the switchback destination included in the switchback signal received from the OLT 10 is the active communication wavelength described in the subscriber management table 220 held by itself.
  • the active wavelength is equal to the standby communication wavelength described in the subscriber management table 220
  • the operating state in the subscriber management table 220 is changed from the standby communication wavelength to the active communication wavelength, and the standby communication wavelength of the communication wavelength is changed.
  • the switch-back operation from the current to the working communication wavelength is started.
  • the wavelength for transmitting / receiving the switchback signal is the standby communication wavelength is held by the ONU 20 and the information on the current communication wavelength used by the monitoring control unit 214 from the wavelength switching control unit 212 or the wavelength tunable optical transceiver 205. This can be confirmed by comparing the subscriber management table (wavelength switching destination table) 220. In the subscriber management table of FIG. 10, since ONU # 2 and ONU # h communicate with the active communication wavelength is OSU # m, ONU # 2 and ONU # h switch back to OSU # m. Perform the action.
  • the ONU # 2 belonging to the OSU # m that has recovered from the abnormality is reconnected to the OSU # 3 by notifying all the ONUs 20 of the above switchback signal.
  • ONU # h reconnected to OSU # 1 automatically switches back to OSU # m.
  • the switch-back operation of the ONU 20 may, for example, start wavelength switching control from the OSU # 3 and OSU # 1 after responding to the switch-back signal from the ONU # 2 and ONU #h.
  • the initial connection operation may be performed with OSU # m as the connection destination after voluntarily initializing h.
  • the switching protection timer 215 included in the monitoring control unit 214 of the ONU 20 shown in FIG. 9 is first switched to the standby communication wavelength of the ONU 20 when an abnormality occurs in the communication between the ONU 20 and the OSU 107. At this point, the timer set back-up protection time is set and started.
  • the timer expires (the switch-back protection time has elapsed) or the operator instructs the OLT 10 and the ONU 20 receives a signal for the OLT 10 to perform timer completion processing
  • communication is performed using the standby communication wavelength.
  • the standby communication wavelength of the ONU 20 subscriber management table (wavelength switching destination table) 220 and the active communication wavelength are switched, and the operation state of the subscriber management table (wavelength switching destination table) is changed from the standby communication wavelength to the active communication wavelength. change. For example, as shown in FIG.
  • ONU # h replaces the working communication wavelength ⁇ mu, d and the standby communication wavelength ⁇ 1u, d .
  • ONU # 2 and ONU # h are switched between the working communication wavelength and the standby communication wavelength in the wavelength switching destination table of the ONU 20 through a control channel that is a dedicated wavelength for sending a control signal to the common monitoring control unit 108 of the OLT 10. You may notify that.
  • the OLT 10 does not need to manage the distributed ONUs 20 and the OSUs 107 that were originally connected in the distributed protection in which the ONUs 20 are reconnected to different OSUs 107 by wavelength switching. Furthermore, when the OSU 107 in which an abnormality has occurred is recovered, the operation of returning the original ONU 20 to the original state and connecting it becomes possible. Therefore, the ONUs 20 that are dispersed and reconnected to the standby communication wavelength can be automatically switched back to the OSU 107 that was originally connected.
  • each ONU 20 has a switchback protection timer 215, and when the switchback protection timer 215 expires or at the time designated by the operator, the standby communication wavelength in the wavelength switching destination table of the ONU 20 is changed to the working communication wavelength.
  • the time limit for the active communication wavelength that is the switchback operation or switchback destination it is possible to determine the time limit for the active communication wavelength that is the switchback operation or switchback destination to be valid. For example, when the active OSU 107 does not recover over a long period of time, the standby OSU 107 is made active, the standby communication wavelength is reset to another OSU 107, and the redundancy is reconstructed. Then, when the abnormal OSU 107 recovers, the original state is restored. This makes it possible to eliminate the need for switching back.
  • the switchback method according to the present embodiment performs simple and automatic restoration of the communication service after the operating OSU 107 is abnormal or the OSU 107 performs preventive maintenance measures in the wavelength tunable WDM / TDM-PON. Can provide a method.
  • the common monitoring control unit 108 switches the communication wavelength from the working communication wavelength to the standby communication wavelength, and then switches the standby communication wavelength to another OSU 107. Change to the corresponding standby communication wavelength.
  • the optical communication method according to this embodiment will be described.
  • the optical communication method according to the present embodiment includes an abnormality detection procedure, a standby wavelength switching procedure, and a wavelength switching procedure in this order.
  • the common monitoring control unit 108 executes an abnormality detection procedure, and detects the occurrence of an abnormality in communication using the working communication wavelength between the OLT 10 and the ONU 20.
  • the common monitoring control unit 108 executes a standby wavelength switching procedure.
  • the common monitoring control unit 108 changes the communication wavelength assigned to the ONU 20 that has performed communication using the active communication wavelength in which an abnormality has occurred from the active communication wavelength to a predetermined standby communication wavelength.
  • FIG. 12 shows an example of the station side management table when the communication wavelength is changed from the active communication wavelength to the standby communication wavelength when an abnormality occurs in communication using the active communication wavelength in the optical communication system according to the present embodiment. Indicates.
  • the station side management table according to the present embodiment has two types of backup communication wavelengths, backup communication wavelength 1 and backup communication wavelength 2, and when an abnormality is detected in the abnormality detection procedure, standby communication wavelength 1 is determined from the active communication wavelength. Change the communication wavelength.
  • the standby communication wavelengths shown in FIG. 12 are two types of backup communication wavelength 1 and backup communication wavelength 2, but the number of types of backup communication wavelengths included in the optical communication system according to the present embodiment is arbitrary.
  • an abnormality occurs in OSU # m with which ONU # 2 and ONU # h were communicating, and the communication wavelength used by ONU # 2 and ONU # h is changed from the working communication wavelength to the standby communication wavelength. It has been changed to 1.
  • ONU # 1 communicates with OSU # 1
  • ONU # 2 communicates with OSU # 3
  • ONU # h communicates with OSU # 1 Communicating with.
  • FIG. 12 shows an example of the station side management table when the OSU 107 with which the ONU # 2 communicates is switched from OSU # 3 to OSU # 1 after the communication wavelength is switched as shown in FIG. 12 in the standby wavelength switching procedure. .
  • the communication wavelength is changed from the standby communication wavelength 1 to the standby communication wavelength 2 of the standby communication wavelengths.
  • the OSU 107 communicating with ONU # 2 is switched from OSU # 3 to OSU # 1, but if there is another ONU20 communicating with OSU # 3, the communication destination OSU107 of ONU # 2 is switched. At the same time, the communication destination OSU 107 is switched to OSU # 1.
  • the common monitoring control unit 108 executes a wavelength switchback procedure.
  • the operation state in the station side management table is changed from the standby communication wavelength 1 or the standby communication wavelength 2 to the active communication wavelength, and the communication wavelength between the OLT 10 and the ONU 20 is changed to the standby communication wavelength 1 or the standby communication wavelength. 2 is changed to the working communication wavelength.
  • the operation state of ONU # 2 and ONU # 3 is changed from standby communication wavelength 1 or standby communication wavelength 2 to working communication. Change to wavelength.
  • the common monitoring control unit 108 changes the communication wavelength from the standby communication wavelength 1 to the standby communication wavelength 2.
  • the reception abnormality detection unit 213 changes the communication wavelength from the standby communication wavelength 1 to the standby communication wavelength 2. You may change to
  • the optical communication system according to the present embodiment even when wavelength switching due to another factor occurs during operation at the standby communication wavelength, it is possible to continuously grasp the working communication wavelength. Therefore, after the abnormality of the working communication wavelength is recovered, the operation to switch back to the working communication wavelength shown in the first and second embodiments becomes possible.
  • optical communication system station-side device, subscriber device and optical communication method of the present invention can be applied to the communication industry.
  • Optical fiber 101 Dynamic wavelength band allocation circuit 102: Switching instruction signal generation unit 103: DWBA calculation unit 104: Control signal transmission unit 105: Request signal receiving unit 106: Demultiplexing unit 107: OSU 108: Common monitoring control unit 109: Switchback protection timer 20: Subscriber unit (ONU) 201: Data receiving unit 202: Up buffer memory 203: Frame transmission control unit 204: Frame assembly / transmission unit 205: Wavelength variable optical transceiver 206: Request band calculation unit 207: Request signal transmission unit 208: Data transmission unit 209: Down buffer Memory 210: Destination analysis selection reception unit 211: Instruction signal reception unit 212: Wavelength switching control unit 213: State abnormality detection unit 214: Monitoring control unit 215: Switchback protection timer 40: Relay network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

 本発明の光通信システムは、局側装置と複数の加入者装置のいずれかとの間の通信波長に異常が発生すると、通信波長を現用通信波長から予備通信波長へと切り替える。また、この光通信システムは、現用通信波長での異常が回復すると、予備通信波長を用いて通信を行っていた加入者装置と局側装置との間の通信で用いる通信波長を、予備通信波長から現用通信波長へと切り戻す。

Description

光通信システム、局側装置、加入者装置及び光通信方法
 本発明は、光通信システム、局側装置、加入者装置及び光通信方法に関する。
 本願は、2014年7月24日に、日本に出願された特願2014-150477号に基づき優先権を主張し、その内容をここに援用する。
 近年の急速なインターネットの普及に伴い、アクセスサービスシステムの大容量化、高度化、経済化が求められている中、それを実現する手段としてPON(Passive Optical Network)の研究が進められている。PONとは、光受動素子による光合分波器を用いて、1個の局側装置及び伝送路の一部を複数の加入者装置で共有することにより、経済化を図る光通信システムである。
 現在、日本では主に1Gbpsの回線容量を最大32ユーザで時分割多重(TDM:Time Division Multiplexing)によって共有する経済的な光加入者システム、GE-PON(Gigabit Ethernet(登録商標) Passive Optical Network)が導入されている。これにより、FTTH(Fiber To The Home)サービスが現実的な料金で提供されるようになった。
 また、より大容量のニーズに対応するため、次世代光加入者システムとして、総帯域が10Gbps級である10G-EPON(Ethernet(登録商標) Passive Optical Network)の研究が進められており、2009年に国際標準化が完了した。これは、送受信器のビットレートを増大させることにより、光ファイバなどの伝送路部分はGE-PONと同一のものを利用しながら、大容量化を実現する光加入者システムである。
 さらなる将来には、超高精細映像サービスやユビキタスサービスなど10G級を超える大容量が求められることが考えられるが、単純に送受信器のビットレートを10G級から40/100G級に増大させるだけでは、システムアップグレードにかかるコストの増大により、実用化が難しいという課題があった。
 これを解決する手段として、帯域要求量に応じて局側装置内の送受信器を段階的に増設することができるように、送受信器に波長可変性を付加し、時分割多重(TDM)及び波長分割多重(WDM:Wavelength Division Multiplexing)を効果的に組み合わせた波長可変型WDM/TDM-PONが報告されている(例えば、非特許文献1参照)。
 波長可変型WDM/TDM-PONは非特許文献2にあるように、ユーザの要求に合わせて段階的な総帯域の増設や柔軟な負荷分散が可能となるシステムとして近年注目されており、その段階的な総帯域の増設時に、負荷分散による所属OSU(Optical Subscriber Unit)の変更は、ONU(Optical Network Unit)の波長切替によって実現される。図1に、本発明に関連する波長可変型WDM/TDM-PONシステムを示す。本発明に関連する波長可変型WDM/TDM-PONシステムは、局側加入者収容装置(Optical Line Terminal,OLT)10と加入者装置(ONU)20とを備える。OLT10は、動的波長帯域割当回路101と、多重分離部106と、OSU107とを備える。OLT10とONU20との間は光合分波器11及び光合分波器12ならびに光ファイバ13,14、15および16を用いたpoint-to-multipoint構成のPONトポロジで接続される。光合分波器11及び光合分波器12は、例えば、パワースプリッタ又は波長ルータである。OLT10の多重分離部106は、中継ネットワーク40に接続される。
 OLT10は下り波長λ1d~λmdおよび上り波長λ1u~λmuの組λ1d,u~λmd,uを送受信するラインカードOSU#1~OSU#mと動的波長帯域割当回路101とで構成される。OSU#1~OSU#mはONU20から送信される波長の組λ1d,u~λmd,uのそれぞれの波長信号を送受信する。OLT10にはONU#1~ONU#hのh台のONU20が接続され、それぞれのONU20は下りと上りの波長の組λ1d,u~λmd,uのいずれかを用いて送受信する。ONU20はOLT10からの指示に従って、波長の組λ1d,u~λmd,uのいずれかを用いて送受信することができる。
 各ONU20には設置されるユーザ宅の通信装置からの上り信号が入力され、ONU20内部の光送受信器で上り光信号として送信される。上り信号はONU20側のパワースプリッタまたは波長ルータからはOLT10に向けて1本の光ファイバ13に多重される。したがって、OLT10は、上り信号が重ならないよう各ONU20が送信する上り信号の送信時刻および送信継続時間を算出し、制御する。OSU#1~OSU#mで受信した上り信号1~mはOLT10内の多重分離部106にて集約され、一つの上り信号に多重されて中継ネットワーク40側に送信される。一方、中継ネットワーク40側から各ONU20への下り信号は、多重分離部106にて下り信号に記されているONU20の宛先情報と、そのONU20が所属するOSU107の情報とを基に、OSU#1~OSU#mへの下り信号1~mに分離される。分離された下り信号1~mは、OSU#1~OSU#mに各々設定された下り波長λ1d~λmdで、各ONU20に送られる。下り信号は各OSU107の波長で同報されるが、ONU20の送受信波長が所属する各OSU107の送受信波長に設定されているため、ONU20は受信する波長の信号から、自宛の情報を選択し、ONU20からユーザ宅の通信装置へ出力される。
 動的波長帯域割当回路101は、DWBA(Dynamic Wavelength and Bandwidth Assignment)計算部103、切替指示信号生成部102、制御信号送信部104、要求信号受信部105を備える。動的波長帯域割当回路101は、各ONU20から送信された帯域要求を含んだ信号を各OSU107を通じて要求信号受信部105で受信し、その要求に基づいて各ONU20に割当てる上りデータ信号および要求信号の送信時刻および送信継続時間をDWBA計算部103で算出する。次に、動的波長帯域割当回路101は、算出された送信時刻および送信継続時間を含む指示信号を切替指示信号生成部102で生成し、制御信号送信部104から各OSU107を通じて各ONU20へ送信する。また、DWBA計算部103はPON区間のONU20とOSU107との接続情報を管理している。波長を切替えた際は、波長を変更したONU20に関して、多重分離部106が宛先が当該ONU20の下り信号の転送先OSU107を変えるよう多重分離部に指示する。
 図2にONU20の構成を示す。ONU20は、データ受信部201、データ送信部208、上りバッファメモリ202、下りバッファメモリ209、宛先解析選択受信部210、フレーム送出制御部203、フレーム組立送信部204、波長可変光送受信器205、要求帯域計算部206、要求信号生成部207、指示信号受信部211、波長切替制御部212を備える。
 ユーザからの上り信号はデータ受信部201で受信され、上りバッファメモリ202内に一時的に蓄積される。フレーム送出制御部203は指示信号によって指定された上り信号の送信時刻および送信継続時間に従って、上り信号をフレーム組立送信部204に送る。フレーム組立送信部204はPON構成においてOLT10に信号を送信するために必要なフレーム形式を構成し、波長可変光送受信器205に送る。
 波長可変光送受信器205は波長切替制御部212で指定された波長λ1d,u~λmd,uのいずれかで光信号に変換しOLT10へ送信する。OSU107からの下り信号は、波長可変光送受信器205において、指定された波長を選択して受信し、宛先解析選択受信部210において下り信号の宛先を解析して自宛の情報のみを選択し、下りバッファメモリ209に格納する。データ送信部208は下りバッファメモリ209に蓄積されている情報をユーザへ下り信号として送信する。
 波長可変光送受信器205はOLT10からの指示信号を受信して電気信号に変換し、指示信号受信部211へ送る。指示信号受信部211は指示信号の指示内容を解析し、指示信号に波長切替指示、切替後の波長、切替開始時刻が含まれていれば、指定された時刻に切替先波長と切替実行指示を波長切替制御部212に送る。波長切替制御部212は前記波長切替制御に従って波長可変光送受信器205の波長を切替える。
 また、OLT10はONU20の要求する帯域の情報をONU20から受信して帯域の割当に利用する。その方法はさまざまであるが、例えばこの要求帯域の情報をOLT10へ送信するよう指示信号を用いて指示し、その指示に従ってONU20がOLT10へ要求帯域の情報を要求信号に記載することもある。その場合、指示信号受信部211は要求信号送出を要求する指示信号を受信すると、要求信号送出部207へ要求信号の生成を指示する。要求信号送出部207は要求帯域計算部206に要求する帯域を算出するよう指示する。要求帯域計算部206は上りバッファメモリ202に蓄積されている上り信号のデータ量を計測しており、そのデータ量に基づき要求帯域量を決定し、要求信号送出部207へ要求帯域量を送る。要求信号送出部207は要求量を記載した要求信号を生成し、フレーム送出制御部203に送る。
 OLT10が要求帯域を送信するようONU20に指示する指示信号は、要求信号の送出開始時刻および送信継続時間の情報が含まれていることもある。その場合、指示信号受信部211はフレーム送出制御部203に指示信号に含まれていた要求信号の送出開始時刻および送信継続時間の情報を送り、フレーム送出制御部203は指示された時刻に要求信号をフレーム組立送信部204に送り、波長可変光送受信器205を介してOLT10へ要求信号を送信する。また、OLT10から送信される指示信号にはONU20がユーザ側から受信した上り信号をOLT10へ送信する送信開始時刻および送信継続時間が含まれている。指示信号受信部211はフレーム送出制御部203に指示信号に含まれていた上り信号の送信開始時間および送信継続時間の情報を送り、フレーム送出制御部203は指示された時刻に上り信号をバッファメモリからフレームを取り出し、送信継続時間の期間フレーム組立送信部204に送り、波長可変光送受信器205を介してOLT10へ送信する。
 また、特許文献1には、OLT10の信頼性、可用性を高めるための機能として、OSU107が故障した場合にONU20が新しく所属するOSU107を選択して再接続する機能を備えた光通信システムおよび光通信異常復帰方法が記載されている。特許文献1では、波長可変型WDM/TDM-PONの特徴である波長切替を活用し、現所属の現用OSU107が故障して下り信号断等、受信信号に異常が発生した場合に新しく再接続するOSU107が送受信する波長を、ONU20に切替情報の表として保持しておき、ONU20が異常を検出した際に波長切替および接続動作を行うことで早期に通信を復帰させることができる。また、この切替先予備通信波長を、ONU20毎に、異なるOSU107が送受信する波長として保持させることによって、あるOSU107が故障した場合に、予備OSU107へ再接続するONU20を分散させ、OSU107の再接続処理を分散させることによる再接続処理高速化や、再接続後のトラフィックを各OSU107へ分散させることが可能になる。
 しかし、異常が発生したOSU107を交換等により回復させた後には、当初現用であったOSU107へ、異常発生によって再接続したONU20を再度接続する、いわゆる切り戻し作業を行うことで現状復帰する場合がある。特許文献1では、予備OSU107を分散させることができる形態を記載していたが、現状復帰させる場合には、どのOSU107へどのONU20が移動していったかの履歴を遡って追跡し、当該ONU20の1台ごとに回復したOSU107への波長切替指示を行う必要がある。これは当初故障したOSU107に接続していたONU20が多いほど、切り戻し作業に要する時間や稼働が多くかかり、通信網運用の負担になる。したがって、この運用負担を軽減するためには、分散して再接続したONU20を回復したOSU107へ切り戻す作業を簡易に行う手段を有する必要がある。
国際公開番号WO2015/060277号公報
 前記課題を解決するために、本願発明は、OLT10とONU20の間の通信で異常が発生した後、OLT10とONU20の通信の異常が回復した際に、異常発生前に用いていた通信波長に簡易に切り戻すことができる光通信システムを提供することを目的とする。
 上記目的を達成するために、本願発明の光通信システムは、複数の加入者装置と、単一の局側装置を備え、局側装置は共通監視制御部を備える。共通監視制御部は、局側装置と複数の加入者装置のいずれかとの間の通信に異常が発生すると、異常が発生した局側装置と加入者装置の間の通信で用いる通信波長を現用通信波長から予備通信波長へと切り替える。また、共通監視制御部は、現用通信波長での異常が回復すると、回復した現用通信波長を用いて通信を行っていた局側装置と加入者装置の間の通信で用いる通信波長を、予備通信波長から現用通信波長へと切り戻す。
 具体的には、本願発明の光通信システムは、複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムであって、前記局側装置は、前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、異常が発生した前記現用通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更し、異常が発生した前記現用通信波長の通信が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から前記現用通信波長へと変更する共通監視制御部を備える。
 本願発明の光通信システムは、共通監視制御部を備えるので、局側装置と複数の加入者装置のいずれかとの間で生じた現用通信波長を用いる通信の異常を検出し、通信波長を現用通信波長から予備通信波長へと変更することができる。また、共通監視制御部は通信が異常から回復すると、通信波長を予備通信波長から現用通信波長へと変更することができる。そのため、本願発明の光通信システムは、通信の異常が回復した際に、異常発生前に用いていた通信波長に簡易に切り戻すことができる。
 本願発明の光通信システムでは、前記局側装置は、前記加入者装置ごとに前記現用通信波長及び前記予備通信波長が予め定められるとともに、前記加入者装置に割り当てている通信波長が前記現用通信波長及び前記予備通信波長のいずれであるかを表す運用状態を管理するための局側管理表をさらに備え、前記共通監視制御部は、前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、前記局側管理表における前記運用状態を前記現用通信波長から前記予備通信波長へと変更するとともに、当該加入者装置に割り当てる通信波長を前記局側管理表において定められている前記予備通信波長へ変更し、前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について異常が発生した前記現用通信波長の通信が回復すると、前記局側管理表における前記運用状態を前記予備通信波長から前記現用通信波長へと変更するとともに、当該加入者装置に割り当てる通信波長を前記局側管理表において定められている前記現用通信波長へと変更してもよい。
 本願発明の光通信システムでは、前記局側装置は、前記現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する局側タイマをさらに備え、前記共通監視制御部は、前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について前記局側タイマが前記一定時間を経過したことを検出すると、前記局側管理表における前記予備通信波長を新たな現用通信波長として設定してもよい。
 本願発明の局側装置は、複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムに備わる前記局側装置であって、前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、異常が発生した前記現用通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更し、異常が発生した前記現用通信波長の通信が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から通信が回復した前記現用通信波長へと変更する共通監視制御部を備える。
 本願発明の加入者装置は、複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムに備わる前記加入者装置であって、前記局側装置との通信に用いる現用通信波長及び予備通信波長が予め定められるとともに、前記局側装置局側装置から割り当てられている波長が前記現用通信波長及び前記予備通信波長のいずれであるかを表す運用状態を管理するための加入者管理表と、前記局側装置との間の前記現用通信波長を用いた通信に異常が発生したことを検出すると、前記加入者管理表における前記運用状態を前記現用通信波長から前記予備通信波長へと変更するとともに、前記局側装置との間の通信波長を前記加入者管理表において定められている前記予備通信波長へと変更し、切り戻し指示を前記局側装置から受信すると、前記加入者管理表における前記運用状態を前記予備通信波長から前記現用通信波長へと変更するとともに、前記局側装置との間の通信波長を前記加入者管理表に定められている前記現用通信波長へと変更する個別監視制御部とを備える。
 本願発明の加入者装置は、前記現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する加入者タイマをさらに備え、前記個別監視制御部は、前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について前記加入者タイマが前記一定時間を経過したことを検出すると、前記加入者管理表における前記予備通信波長を新たな前記現用通信波長として設定してもよい。
 本願発明の光通信方法は、複数の加入者装置と一の局側装置とが光線路で接続された光通信システムにおける前記局側装置及び前記加入者装置の光通信方法であって、前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた前記局側装置と前記加入者装置との通信に異常が発生したことを検出する異常検出手順と、前記異常検出手順で異常が検出されると、異常が発生した前記現用通信波長を用いて通信を行っている前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更する予備波長切替手順と、前記異常検出手順で検出された異常が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から前記現用通信波長へと変更する波長切戻手順と、を順に有する。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本願発明によれば、OLT10とONU20の間の通信で異常が発生した後、OLT10とONU20の通信の異常が回復した際に、異常発生前に用いていた通信波長に簡易に切り戻すことができる光通信システムを提供することができる。
本発明に関連する光通信システムの一例を示すブロック図である。 本発明に関連する光通信システムでのONUの一例を示すフロック図である。 実施形態1及び実施形態2に係る光通信システムの一例を示すブロック図である。 実施形態1に係るOLTが保持する局側管理表のうち、OSUに異常が発生する前の一例を示す。 実施形態1に係るONUが保持する加入者管理表のうち、OSUに異常が発生する前の一例を示す。 実施形態1に係るOLTが保持する局側管理表のうち、OSUに異常が発生した後の一例を示す。 実施形態1に係るOLTが保持する局側管理表のうち、切り戻し保護時間経過後の局側管理表の一例を示す。 実施形態1に係るONUが保持する加入者管理表のうち、切り戻し保護時間経過後の加入者管理表の一例を示す。 実施形態2に係るONUの一例の模式図を示す。 実施形態2に係るONUが保持する加入者管理表うち、OSUに異常が発生する前の一例を示す。 実施形態2に係るONUが保持する加入者管理表のうち、切り戻し保護時間経過後の加入者管理表の一例を示す。 実施形態3に係るOLTが保持する局側管理表のうち、OSUに異常が発生した後の一例を示す。 実施形態3に係るOLTが保持する局側管理表のうち、OLTのOSUに異常が発生した後、ONUが通信を行うOSUを切り替えた場合の一例を示す。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図3に、本実施形態に係る光通信システムの一例を示す。本実施形態に係る光通信システムは、複数のONU20と、単一のOLT10とを備える。ONU20は加入者装置として機能する。OLT10は局側装置として機能する。
 本実施形態に係る光通信システムは、複数のONU20と単一のOLT10とが、光ファイバ13、光ファイバ14、光ファイバ15、光ファイバ16、光合分波器11及び光合分波器12を用いて接続されている。光ファイバ13、光ファイバ14、光ファイバ15、光ファイバ16、光合分波器11及び光合分波器12は、光線路として機能する。例えば、OLT10とONU20間の光線路は、光合分波器11及び光合分波器12を用いたpoint-to-multipoint構成のPONトポロジで接続される。
 OLT10は、動的波長帯域割当回路101と、多重分離部106と、OSU107と、共通監視制御部108と、を備える。動的波長帯域割当回路101、多重分離部106およびOSU107の構成および動作は、図1に示されたOLT10のそれらと同様であるので、ここでの説明は省略する。
 図2に示すように、ONU20は、データ受信部201と、と、データ送信部208と、上りバッファメモリ202と、下りバッファメモリ209と、宛先解析選択受信部210と、フレーム送出制御部203と、フレーム組立送信部204と、波長可変光送受信器205と、要求帯域計算部206と、要求信号生成部207と、指示信号受信部211と、波長切替制御部212とを備える。これらの構成要素の動作はすでに説明したとおりである。 
 OLT10は、コンピュータを、動的波長帯域割当回路101と、多重分離部106と、OSU107と、共通監視制御部108として機能させることで実現してもよい。この場合、OLT10が備えるCPU(Central Processing Unit)が記憶部(不図示)に記憶されたコンピュータプログラムを実行することで、各構成を実現する。ここで、OLT10を実現する際のコンピュータは、コンピュータによって制御される任意の機器をさらに備えてもよい。また、OLT10を実現する際のプログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 OLT10は、局側管理表(波長切替先表ということもある)110を具備する。図4に局側管理表(波長切替先表)110の一例を示す。局側管理表(波長切替先表)は、ONU20ごとに現用通信波長及び予備通信波長を予め定め、ONU20に割り当てている通信波長が現用通信波長及び予備通信波長のいずれであるかを表す運用状態を管理する。
 各ONU20は上り下りの波長を現用通信波長から予備通信波長に切替えることにより、接続するOSU107を変更する。OLT10はどのOSU107にどのONU20が接続しているかを常に把握している。したがって、図4に示すOLT10の局側管理表(波長切替先表)110は常時OLT10が使用しているOSU107-ONU20対応関係の管理情報から抽出して作成してもよい。
 また、ONU20も同様に、自ONU20における現用通信波長の組と予備通信波長の組を加入者管理表として保持してもよい。図5に、本実施形態に係る加入者管理表の一例を示す。加入者管理表は、ONU20のそれぞれの現用通信波長及び予備通信波長を管理する。図5では示していないが、加入者管理表は、図4に示した局側管理表と同じように、OLT10から割り当てられている通信波長が現用通信波長及び予備通信波長のいずれであるかを表す運用状態を管理してもよい。
 本実施形態に係る光通信方法について説明する。本実施形態に係る光通信方法は、異常検出手順と、予備波長切替手順と、波長切戻手順とを順に有する。
 ONU20は、ONU20のそれぞれに割り当てられた通信波長である現用通信波長を用いてOSU107との通信を行う。このとき、OLT10は、異常検出手順を実行する。異常検出手順では、共通監視制御部108は、ONU20との通信に用いる各OSU107の異常発生有無を監視することにより、ONU20とOSU107との間の現用通信波長を用いた通信に異常が発生したことを検出する。
 共通監視制御部108が異常を検出すると、共通監視制御部108が予備波長切替手順を実行する。予備波長切替手順では、共通監視制御部108は、異常が発生した現用通信波長を用いて通信を行っていたONU20に割り当てる通信波長を、現用通信波長から予め定められた予備通信波長へと変更する。例えば、共通監視制御部108は、異常が発生したOSU107に所属しているONU20に対して、通信波長として予備通信波長を用いる予備OSU107へ所属するように変更する。ONU20のOSU107への所属変更にあたっては、共通監視制御部108は、動的帯域割当回路101および多重分離部106と連携し、多重分離部106における当該ONU20の信号振り分けにおいて、当該ONU20からの信号が予備OSU107を通過するよう変更する制御を行う。
 共通監視制御部108は、異常が発生した現用通信波長のうちのいずれかの通信が回復すると、波長切戻手順を実行する。波長切戻手順では、OLT10の局側管理表(波長切替先表)110の運用状態が予備通信波長であるONU20の運用状態を現用通信波長へと変更し、予備通信波長を用いて通信を行っていたONU20に割り当てる通信波長を、予備通信波長から通信が回復した現用通信波長へと変更する。
 共通監視制御部108は、局側タイマとして機能する切り戻し保護タイマ109をOSU107ごとに有している。切り戻し保護タイマ109は、現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する。この場合、共通監視制御部108は、切り戻し保護タイマ109のタイマが切れる(切り戻し保護時間を経過した)ことをもって、異常発生した現用波長の回復の待機を諦め、予備通信波長を現用通信波長として扱うことにしてもよい。その際、共通監視制御部108は、OLT10の局側管理表(波長切替先表)110の運用状態が予備通信波長であるONU20における予備通信波長を新たな現用通信波長に設定し、それらのONU20に対するOLT10の局側管理表(波長切替先表)の運用状態を現用通信波長へと変更する。図7に、切り戻し保護タイマ109の切り戻し保護時間を経過した後、OLT10の波長切替先表の設定を予備通信波長から現用通信波長へと変更した場合の局側管理表の一例を示す。
 共通監視制御部108は、外部からの契機が与えられたことをもって、異常が発生した現用通信波長の通信が回復したことを検出してもよい。ここで、外部からの契機とは、例えば、OLT10が、運用者から任意の契機で、現用波長の異常が回復し現用波長への切り戻しが可能になったことを通知されることである。
 本実施形態の適用例について説明する。ここでは、図3のように、初期状態としてONU#1がλ1u,dを用いるOSU#1に接続され、ONU#2およびONU#hがλmu,dを用いるOSU#mに接続されているとする。本実施形態ではOSU#1の上り波長λ1uと下り波長λ1dの組をλ1u,dと表記し、上り波長と下り波長とを組で管理するとしている。また、OLT10は現用通信波長の組と予備通信波長の組を保持する。本実施形態では必ずしも上り下りの波長を組で管理する必要はなく、上り、下り別々に管理するとしても同様に実現できる。本実施形態の適用例では、OLT10が図4の局側管理表(波長切替先表)を保持している場合を説明する。
 まずOSU107の異常発生時の各ONU20が分散して再接続する予備波長切替手順における動作を説明する。仮に、異常検出手順の実行中に、OSU#mにおいての異常発生を検出したとする。この場合、ONU#2はλ3u,dを用いるOSU#3へ、ONU#hはλ1u,dを用いるOSU#1へ波長切替を発生させて再接続し、通信を回復する。本実施形態ではONU20が予備通信波長に波長切替し、予備OSU107に再接続する。この波長切替手段は本発明に関連する技術の範囲であり、その具体的な方法、手順は問わない。一方でOLT10は再接続が完了すると、図4に示すOLT10の局側管理表(波長切替先表)において、ONU#2およびONU#hの運用状態を予備通信波長に変更する。変更後の切替先表を図6に示す。
 次に、OSU107の異常回復後の切り戻し動作を説明する。OSU#mの修理もしくは交換等によりOSU#mを回復させ、ONU#2およびONU#hをOSU#mに切り戻すとする。まず、本発明に関連する技術においては、OLT10は図4に示す局側管理表(波長切替先表)を有しないので、運用者は異常発生直前にOSU#mに接続されていたONU#2、ONU#hを別の手段で探し出し、OLT10の切替指示信号生成部102に指示して、OSU#3に接続されているONU#2をOSU#mへ波長切替による接続先変更を実施する。つぎにOSU#1に接続されているONU#hをOSU#mへ波長切替による接続先変更を実施する。このように、本発明に関連する技術においては、予備通信波長で再接続したONU20と分散した予備OSU107を一つ一つ指定して、元のOSU107であるOSU#mへ逐一切り戻すという作業が必要であった。
 しかし、本実施形態の波長切戻手順においては、図6の局側管理表(波長切替先表)に示す運用状態のうち、予備通信波長となっているONU20で、かつ現用通信波長がOSU#mが使用しているλmu,dであるONU20は、ONU#2およびONU#hであることがわかる。したがってOSU#mの異常が回復した後に、波長切替先表を参照することで、異常から回復したOSU#mに所属していた、OSU#3に再接続したONU#2およびOSU#1に再接続したONU#hであることを容易に抽出することができる。これら抽出したOSU107とONU20の組について順次切り戻す動作を共通監視制御部108が切替指示信号生成部102に対して指示することで、自動的、または運用者からOLT10への切り戻し指示を与えたタイミングで、すべてのONU20を切り戻すことができる。最後に、ONU#2およびONU#hの運用状態を現用通信波長に戻す。
 また、OSU#mの異常回復に相当の時間を要する等の理由で、予備通信波長に切り替えて再接続したOSU107を現用OSU107に変更する必要性が生じることも考えられる。この場合は、まず図3に示したOLT10の共通監視制御部108が有するOSU107ごとの切り戻し保護タイマ109に対し、OSU107の異常が発生した時点もしくは予備通信波長への切り替えが発生した時点で当該OSU107用の切り戻し保護タイマ109に予め定められた一定時間である切り戻し保護時間を設定して始動させる。
 共通監視制御部108は、切り戻し保護タイマ109が切れる(切り戻し保護時間を経過した)ことを検出すると、OLT10の波長切替先表の予備通信波長と現用通信波長を入れ替える。たとえば本実施形態においては図6のOLT10の波長切替先表での現用通信波長がλmu,dであるONU#2、ONU#hに関する記載において、現用通信波長と予備通信波長を入れ替え、運用状態を現用通信波長に変更する。この変更により、図6のOLT10の波長切替先表は、図7のように変更される。また、OLT10の共通監視制御部はONU#2およびONU#hに指示して、それぞれのONU20が保持している波長切替先表の現用通信波長と予備通信波長の登録を入れ替えてもよい。本実施形態の場合、ONU#2の現用OSU107はλ3u,dを使用するOSU#3に、予備OSU107はOSU#mに、ONU#hの現用OSU107はλ1u,dを使用するOSU#1に、予備OSU107はOSU#mに変更されることになる。
 本実施形態によって、以下の効果が期待できる。本実施形態は、ONU20を波長切替によって異なるOSU107に再接続させるような、分散プロテクションにおいても、分散されたONU20および、当初接続していたOSU107を容易に特定することが可能である。このため、異常が発生したOSU107を回復させたときに、当初接続されていたONU20を原状復帰して接続させる動作が可能になる。また本実施形態は、OSU107ごとに切り戻し保護タイマ109を持たせ、切り戻し保護タイマ109が切れた時点もしくは運用者からの指定時にOLT10の波長切替先表において予備通信波長を現用通信波長に変更することで、切り戻し動作や切り戻し先である現用通信波長が有効となる期限を定めることができる。例えば長期間にわたって現用OSU107が回復しない場合は、予備OSU107を現用化させ、予備通信波長を再度別のOSU107へ再設定することで冗長化を再構築し、その後の異常なOSU107の回復時に原状復帰のための切り戻しを不要とすることが可能になる。すなわち異常回復による原状復帰を優先する期間(切り戻し保護タイマが有効な時間)と、切り戻しせずにそのままの運用状態を優先する期間(切り戻し保護タイマ完了以降の時間)とに分けることが可能になる。
(実施形態2)
 本実施形態に係る光通信システムは、ONU20が異常を検出して通信波長を切り替える。図9に、本実施形態に係るONU20の一例を示す。本実施形態に係るONU20は、データ受信部201と、データ送信部208と、上りバッファメモリ202と、下りバッファメモリ209と、宛先解析選択受信部210と、フレーム送出制御部203と、フレーム組立送信部204と、波長可変光送受信器205と、要求帯域計算部206と、要求信号生成部207と、指示信号受信部211と、波長切替制御部212と、監視制御部214と、受信異常検出部213を備える。
 ONU20は、コンピュータを、データ受信部201と、データ送信部208と、上りバッファメモリ202と、下りバッファメモリ209と、宛先解析選択受信部210と、フレーム送出制御部203と、フレーム組立送信部204と、波長可変光送受信器205と、要求帯域計算部206と、要求信号生成部207と、指示信号受信部211と、波長切替制御部212と、監視制御部214と、受信異常検出部213として機能させることで実現してもよい。この場合、ONU20が備えるCPU(Central Processing Unit)が記憶部(不図示)に記憶されたコンピュータプログラムを実行することで、各構成を実現する。ここで、ONU20を実現する際のコンピュータは、コンピュータによって制御される任意の機器をさらに備えてもよい。また、ONU20を実現する際のプログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 OLT10とONU20間は光合分波器11及び光合分波器12を用いたpoint-to-multipoint構成のPONトポロジで接続される。また、OLT10は、中継ネットワーク40と接続される。ONU20は、加入者管理表(波長切替先表ということもある)220を保持する。図10に、本実施形態における各ONU20が管理する加入者管理表220を示す。図10では示していないが、加入者管理表は、図4に示した局側管理表と同じように、OLT10から割り当てられている通信波長が現用通信波長及び予備通信波長のいずれであるかを表す運用状態を管理してもよい。
 本実施形態に係る光通信方法について説明する。本実施形態に係る光通信方法は、異常検出手順と、予備波長切替手順と、波長切戻手順とを順に有する。
 ONU20は、ONU20のそれぞれに割り当てられた通信波長である現用通信波長を用いてOSU107との通信を行う。このとき、受信異常検出部213は、異常検出手順を実行する。異常検出手順では、受信異常検出部213は、宛先解析選択受信部210からの受信信号を監視して、ONU20の受信信号の異常を検出する。ここで、受信異常検出部213は、波長可変光送受信器205からの受信信号を監視して、ONU20の受信信号の異常を検出してもよい。
 監視制御部214は、個別監視制御部として機能し、受信異常検出部213から受信信号異常の通知を受ける。監視制御部214は、切り戻し保護タイマ215を備える。切り戻し保護タイマ215は、加入者タイマとして機能する。切り戻し保護タイマ215は、現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する。
 監視制御部214が異常を検出すると、監視制御部214が予備波長切替手順を実行する。予備波長切替手順では、監視制御部214は、加入者管理表220における運用状態を現用通信波長から予備通信波長へと変更する。また、監視制御部214は、OLT10との間の通信波長を現用通信波長から加入者管理表220における予備通信波長へと変更する。
 監視制御部214は、切り戻し信号をOLT10から受信し、切り戻し信号に含まれている現用通信波長が加入者管理表220の現用通信波長と一致する場合には、波長切戻手順を実行する。波長切戻手順では、監視制御部214は、切り戻し指示をOLT10から受信すると、加入者管理表220における運用状態を予備通信波長から現用通信波長へと変更する。また、監視制御部214は、局側装置との間の通信波長を予備通信波長から加入者管理表220における現用通信波長へと変更する。監視制御部214は、外部からの契機が与えられたことをもって、異常が発生した現用通信波長の通信が回復したことを検出し、波長切戻手順を実行してもよい。ここで、外部からの契機とは、例えば、OLT10が、運用者から任意の契機で、現用波長の異常が回復し現用波長への切り戻しが可能になったことを通知されることである。
  本実施形態の適用例について説明する。ここでは、図3のように、初期状態としてONU#1がλ1u,dを用いるOSU#1に接続され、ONU#2およびONU#hがλmu,dを用いるOSU#mに接続されているとする。本実施形態では例えばOSU#1の上り波長λ1uと下り波長λ1dの組をλ1u,dと表記し、上り波長と下り波長とを組で管理するとしている。本実施形態では必ずしも上り下りの波長を組で管理する必要はなく、上り、下り別々に管理するとしても同様に実現できる。
 まず、OSU107の異常発生時の各ONU20が分散して再接続する予備波長切替手順における動作を説明する。仮に、異常検出手順の実行中に、OSU#mにおいて異常が発生を検出したとする。この場合、OSU#mと接続しているONU#2、ONU#hの受信異常検出部213が受信信号の異常を検知し、監視制御部214に伝達する。ONU#2の監視制御部215は、通信波長を加入者管理表220の現用通信波長から、加入者管理表220に予備通信波長として登録されているλ3u,dに切り替わるよう波長切替制御部212に指示したうえでOSU#3へ再接続して通信を回復させる。ONU#hの監視制御部215は、通信波長を加入者管理表220の現用通信波長から、加入者管理表220に予備通信波長として登録されているλ1u,dに切り替わるよう波長切替制御部212に指示したうえでOSU#1へ再接続し、通信を回復させる。その際、加入者管理表220における運用状態を現用通信波長から予備通信波長へと変更するとともに、OLT10との間の通信波長を現用通信波長から加入者管理表220における予備通信波長へと変更する。ONU20が予備通信波長に波長切替し、予備OSU107に再接続させる手段は本発明に関連する技術の範囲であり、本実施形態ではその具体的な方法、手順は問わない。
 次に本発明の実施形態2におけるOSU107の異常回復後の切り戻し動作を説明する。OSU#mの修理もしくは交換等によりOSU#mを回復させ、ONU#2およびONU#hをOSU#mに切り戻すとする。本発明に関連する技術においては、ONU20は図8に示す加入者管理表を有しないので、運用者は異常発生直前にONU#2、ONU#hがOSU#mに接続されていたことを別の手段で探し出し、OLT10の切替指示信号生成部102に指示して、OSU#3に接続されているONU#2をOSU#mへ通信波長の切替による接続先変更を実施する。つぎにOSU#1に接続されているONU#hをOSU#mへ通信波長の切替による接続先変更を実施する。このように、予備通信波長で再接続したONU20と分散して再接続した予備OSU107を一つ一つ指定して、元のOSU107であるOSU#mへ逐一切り戻すという作業が必要であった。
 しかし、本実施形態の波長切戻手順においては、まずOLT10の共通監視制御部108は、全OSU107から全ONU20に対し、切り戻しOSU107であるOSU#mが用いていた現用通信波長を切り戻し先として含む切り戻し信号を各ONU20に通知する。次に、各ONU20は、OLT10から受信した切り戻し信号に含まれる切り戻し先の通信波長が、自ら保持する加入者管理表220に記載されている現用通信波長であり、かつ切り戻し信号を送受信している波長が加入者管理表220に記載されている予備通信波長と等しい場合は、加入者管理表220における運用状態を予備通信波長から現用通信波長へと変更し、通信波長の予備通信波長からから現用通信波長への切り戻し動作を開始する。
 切り戻し信号を送受信している波長が予備通信波長かどうかは、監視制御部214が波長切替制御部212もしくは波長可変光送受信器205から用いている現通信波長の情報とONU20が保持している加入者管理表(波長切替先表)220を比較することで確認できる。図10の加入者管理表では、ONU#2、およびONU#hが現用通信波長で通信を行うOSU107はOSU#mであるため、ONU#2、およびONU#hはOSU#mへの切り戻し動作を実行する。したがって、OSU#mの異常が回復した後に、全ONU20に上記の切り戻し信号を通知することで、異常から回復したOSU#mに所属していた、OSU#3に再接続したONU#2およびOSU#1に再接続したONU#hが自動的にOSU#mに切り戻ることになる。ONU20の切り戻し動作は、たとえば、ONU#2およびONU#hから切り戻し信号に応答したうえでOSU#3およびOSU#1から波長切替制御を開始してもよいし、ONU#2、ONU#hが自主的に初期化したうえで、OSU#mを接続先として初期接続動作を行うことでもよい。
 また、OSU#mの異常回復に相当の時間を要する等の理由で、予備通信波長に切り替えて再接続したOSU107を現用OSU107に変更する必要性が生じることも考えられる。この場合は、まず図9に示したONU20の監視制御部214が有する切り戻し保護タイマ215に対し、ONU20とOSU107の間の通信に異常が発生した時点もしくはONU20の予備通信波長への切り替えが発生した時点で当該タイマの切り戻し保護時間を設定して始動させる。次に、タイマが切れる(切り戻し保護時間を経過した)ことにより又は運用者からOLT10に指示し、OLT10がタイマ完了処理を行う信号をONU20が受信したことにより、予備通信波長を用いて通信を行っているONU20の加入者管理表(波長切替先表)220の予備通信波長と現用通信波長を入れ替えるとともに加入者管理表(波長切替先表)の運用状態を予備通信波長から現用通信波長へと変更する。たとえば本実施形態においては図11に示すように、ONU20の波長切替先表において、現用通信波長がλmu,dであるONU#2が現用通信波長λmu,dと予備通信波長λ3u,dを入れ替え、ONU#hが現用通信波長λmu,dと予備通信波長λ1u,dを入れ替える。ここで、ONU#2、ONU#hは、OLT10の共通監視制御部108に制御用信号を送る専用波長である制御用チャネルを通じてONU20の波長切替先表における現用通信波長と予備通信波長が入れ替わったことを通知してもよい。
 本実施形態によって、以下の効果が期待できる。本実施形態は、ONU20を波長切替によって異なるOSU107に再接続させるような、分散プロテクションにおいて、分散されたONU20および、当初接続していたOSU107をOLT10が管理する必要がない。さらに、異常が発生したOSU107を回復させたときに、当初接続されていたONU20を原状復帰して接続させる動作が可能になる。したがって、それぞれ分散して予備通信波長に再接続したONU20を、一斉に、自動的に当初接続していたOSU107へ切り戻すことが可能になる。
 また本実施形態は、ONU20ごとに切り戻し保護タイマ215を持たせ、切り戻し保護タイマ215が切れた時点もしくは運用者からの指定した時点にONU20の波長切替先表における予備通信波長を現用通信波長に変更することで、切り戻し動作や切り戻し先である現用通信波長が有効となる期限を定めることができる。例えば長期間にわたって現用OSU107が回復しない場合は、予備OSU107を現用化させ、予備通信波長を再度別のOSU107へ再設定することで冗長化を再構築し、その後の異常なOSU107の回復時に原状復帰のための切り戻しを不要とすることが可能になる。すなわち異常回復による原状復帰を優先する期間(切り戻し保護タイマが有効な時間)と、切り戻しせずにそのままの運用状態を優先する期間(切り戻し保護タイマ完了以降の時間)とに分けることが可能になる。
 したがって、本実施形態にかかる切り戻し方法は、波長可変型WDM/TDM-PONにおいて、稼働するOSU107が異常もしくはOSU107の予防保全措置を行った後に、通信サービスの原状復帰を簡易かつ自動的に行う方法を提供できる。
(実施形態3)
 本実施形態では、光通信システムにおいて現用通信波長での異常が発生した際、共通監視制御部108が通信波長を現用通信波長から予備通信波長へと切り替え、その後、予備通信波長を他のOSU107に対応する予備通信波長へと変更する。
 本実施形態に係る光通信方法について説明する。本実施形態に係る光通信方法は、異常検出手順と、予備波長切替手順と、波長切戻手順とを順に有する。共通監視制御部108は、異常検出手順を実行し、OLT10とONU20との間の現用通信波長を用いた通信での異常発生を検出する。
 異常検出手順で異常が検出されると、共通監視制御部108は、予備波長切替手順を実行する。予備波長切替手順では、共通監視制御部108は、異常が発生した現用通信波長を用いて通信を行っていたONU20に割り当てる通信波長を、現用通信波長から予め定められた予備通信波長へと変更する。図12に、本実施形態に係る光通信システムにおいて現用通信波長を用いた通信に異常が発生した際に、通信波長を現用通信波長から予備通信波長へと変更した場合の局側管理表の一例を示す。本実施形態に係る局側管理表は、予備通信波長1と予備通信波長2の2種類の予備通信波長を有し、異常検出手順で異常が検出されると、現用通信波長から予備通信波長1へと通信波長を変更する。図12に示した予備通信波長は予備通信波長1と予備通信波長2の2種類であるが、本実施形態に係る光通信システムが有する予備通信波長の種類の数は任意である。
 図12の局側管理表では、ONU#2及びONU#hが通信を行っていたOSU#mに異常が発生し、ONU#2及びONU#hが用いる通信波長を現用通信波長から予備通信波長1へと変更している。ONU#2及びONU#hの通信波長を予備通信波長1へと変更した後、ONU#1はOSU#1と通信し、ONU#2はOSU#3と通信し、ONU#hはOSU#1と通信している。
 予備波長切替手順で図12のように通信波長を変更した後、ONU#2が通信するOSU#3に異常が発生した場合や、外部からの契機が与えられると、ONU#2が通信するOSU107を切替える。外部からの契機とは、例えば、OLT10への、OLT10とONU20の間の通信波長の変更指示である。図13に、予備波長切替手順で図12のように通信波長を切替えた後、さらにONU#2が通信するOSU107をOSU#3からOSU#1に切り替えた場合の局側管理表の一例を示す。本実施形態では、ONU20が通信するOSU107を切り替えると、通信波長は予備通信波長のうち予備通信波長1から予備通信波長2へと変更される。図13では、ONU#2の通信するOSU107がOSU#3からOSU#1に切り替わっているが、他にOSU#3と通信しているONU20があれば、ONU#2の通信先OSU107の切り替えと同時に通信先OSU107がOSU#1に切り替わる。
 異常が発生した現用通信波長のうちのいずれかの通信が回復すると、共通監視制御部108は、波長切戻手順を実行する。波長切戻手順では、局側管理表における運用状態を予備通信波長1又は予備通信波長2から現用通信波長へと変更し、OLT10とONU20との間の通信波長を予備通信波長1又は予備通信波長2から現用通信波長へと変更する。図13では、OSU#mの異常が回復し、OSU#mとONU20の間の通信が可能となると、ONU#2及びONU#3の運用状態を予備通信波長1又は予備通信波長2から現用通信波長に変更する。
 本実施例では共通監視制御部108が通信波長を予備通信波長1から予備通信波長2へと変更する例を示したが、受信異常検出部213が通信波長を予備通信波長1から予備通信波長2へと変更してもよい。
 本実施形態に係る光通信システムを用いることにより、予備通信波長での運用中に別要因での波長切替が発生した場合においても,現用通信波長を継続して把握することが可能になる。したがって、現用通信波長の異常が回復した後に,実施形態1及び2に示した現用通信波長へ切り戻す動作が可能になる。
 本発明の光通信システム、局側装置、加入者装置及び光通信方法は、通信産業に適用することができる。
10:局側装置(OLT)
11:光合分波器
12:光合分波器
13、14、15、16:光ファイバ
101:動的波長帯域割当回路
102:切替指示信号生成部
103:DWBA計算部
104:制御信号送信部
105:要求信号受信部
106:多重分離部
107:OSU
108:共通監視制御部
109:切り戻し保護タイマ
20:加入者装置(ONU)
201:データ受信部
202:上りバッファメモリ
203:フレーム送出制御部
204:フレーム組立送信部
205:波長可変光送受信機
206:要求帯域計算部
207:要求信号送出部
208:データ送信部
209:下りバッファメモリ
210:宛先解析選択受信部
211:指示信号受信部
212:波長切替制御部
213:状態異常検出部
214:監視制御部
215:切り戻し保護タイマ
40:中継ネットワーク

Claims (7)

  1.  複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムであって、
     前記局側装置は、前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、異常が発生した前記現用通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更し、異常が発生した前記現用通信波長の通信が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から前記現用通信波長へと変更する共通監視制御部を備える、
     光通信システム。
  2.  前記局側装置は、前記加入者装置ごとに各々の現用通信波長及び予備通信波長が予め定められるとともに、前記加入者装置に割り当てている通信波長が前記現用通信波長及び前記予備通信波長のいずれであるかを表す運用状態を管理するための局側管理表をさらに備え、
     前記共通監視制御部は、
     前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、前記局側管理表における前記運用状態を前記現用通信波長から前記予備通信波長へと変更するとともに、当該加入者装置に割り当てる通信波長を前記局側管理表において定められている前記予備通信波長へ変更し、
     前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について異常が発生した前記現用通信波長の通信が回復すると、前記局側管理表における前記運用状態を前記予備通信波長から前記現用通信波長へと変更するとともに、当該加入者装置に割り当てる通信波長を前記局側管理表において定められている前記現用通信波長へと変更する、
     請求項1に記載の光通信システム。
  3.  前記局側装置は、前記現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する局側タイマをさらに備え、
     前記共通監視制御部は、前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について前記局側タイマが前記一定時間を経過したことを検出すると、前記局側管理表における当該加入者装置の前記予備通信波長を新たな現用通信波長として設定する、
     請求項2に記載の光通信システム。
  4.  複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムに備わる前記局側装置であって、
     前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた通信に異常が発生したことを検出すると、異常が発生した前記現用通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更し、
     異常が発生した前記現用通信波長の通信が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から通信が回復した前記現用通信波長へと変更する共通監視制御部を備える、
     局側装置。
  5.  複数の加入者装置と単一の局側装置とが光線路で接続された光通信システムに備わる前記加入者装置であって、
     前記局側装置との通信に用いる現用通信波長及び予備通信波長が予め定められるとともに、前記局側装置局側装置から割り当てられている波長が前記現用通信波長及び前記予備通信波長のいずれであるかを表す運用状態を管理するための加入者管理表と、
     前記局側装置との間の前記現用通信波長を用いた通信に異常が発生したことを検出すると、前記加入者管理表における前記運用状態を前記現用通信波長から前記予備通信波長へと変更するとともに、前記局側装置との間の通信波長を前記加入者管理表において定められている前記予備通信波長へと変更し、
     切り戻し指示を前記局側装置から受信すると、前記加入者管理表における前記運用状態を前記予備通信波長から前記現用通信波長へと変更するとともに、前記局側装置との間の通信波長を前記加入者管理表に定められている前記現用通信波長へと変更する個別監視制御部と、
     を備える加入者装置。
  6.  前記加入者装置は、前記現用通信波長を用いた通信に異常が発生したことを検出した時点から予め定められた一定時間を測定する加入者タイマをさらに備え、
     前記個別監視制御部は、前記複数の加入者装置のいずれかに割り当てている前記予備通信波長を用いた通信について前記加入者タイマが前記一定時間を経過したことを検出すると、前記加入者管理表における前記予備通信波長を新たな現用通信波長として設定する、
     請求項5に記載の加入者装置。
  7.  複数の加入者装置と一の局側装置とが光線路で接続された光通信システムにおける前記局側装置及び前記加入者装置の光通信方法であって、
     前記複数の加入者装置のいずれかに割り当てている現用通信波長を用いた前記局側装置と前記加入者装置との通信に異常が発生したことを検出する異常検出手順と、
     前記異常検出手順で異常が検出されると、異常が発生した前記現用通信波長を用いて通信を行っている前記加入者装置に割り当てる通信波長を、前記現用通信波長から予め定められた予備通信波長へと変更する予備波長切替手順と、
     前記異常検出手順で検出された異常が回復すると、前記予備通信波長を用いて通信を行っていた前記加入者装置に割り当てる通信波長を、前記予備通信波長から前記現用通信波長へと変更する波長切戻手順と、
    を有する光通信方法。
PCT/JP2015/070974 2014-07-24 2015-07-23 光通信システム、局側装置、加入者装置及び光通信方法 WO2016013616A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016535969A JP6369959B2 (ja) 2014-07-24 2015-07-23 光通信システム、局側装置、加入者装置及び光通信方法
CN201580039308.XA CN106537852B (zh) 2014-07-24 2015-07-23 光通信系统、站侧装置、用户装置以及光通信方法
US15/325,961 US10009137B2 (en) 2014-07-24 2015-07-23 Optical communication system, station-side device, subscriber device, and optical communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150477 2014-07-24
JP2014-150477 2014-07-24

Publications (1)

Publication Number Publication Date
WO2016013616A1 true WO2016013616A1 (ja) 2016-01-28

Family

ID=55163140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070974 WO2016013616A1 (ja) 2014-07-24 2015-07-23 光通信システム、局側装置、加入者装置及び光通信方法

Country Status (4)

Country Link
US (1) US10009137B2 (ja)
JP (1) JP6369959B2 (ja)
CN (1) CN106537852B (ja)
WO (1) WO2016013616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044076A1 (ja) * 2020-08-24 2022-03-03 日本電信電話株式会社 光通信システム及び光通信システムのプロテクション方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664234B (zh) * 2014-07-22 2020-03-10 日本电信电话株式会社 Wdm/tdm-pon系统和其发送开始时刻校正方法
CN107147513B (zh) * 2016-03-01 2019-03-15 中兴通讯股份有限公司 一种多波长无源光网络的管理方法及光模块
WO2017192894A1 (en) * 2016-05-04 2017-11-09 Adtran, Inc. Systems and methods for performing optical line terminal (olt) failover switches in optical networks
JP2019097108A (ja) * 2017-11-27 2019-06-20 富士通株式会社 光伝送装置、光伝送システムおよび光伝送方法
US10715256B1 (en) * 2019-02-18 2020-07-14 Nokia Solutions And Networks Oy Recovery of phase-modulated data from an optical signal via intensity measurements
JP7317552B2 (ja) * 2019-04-05 2023-07-31 日本ルメンタム株式会社 光モジュール及び光通信システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107626A1 (ja) * 2003-05-28 2004-12-09 Nippon Telegraph And Telephone Corporation 光波長多重アクセスシステム
JP2008054278A (ja) * 2006-07-26 2008-03-06 Nec Corp Ponシステム、局側装置及びそれらに用いる冗長化方法
US20080267628A1 (en) * 2005-04-29 2008-10-30 Zte Corporation Passive Optical Network System Based on a Wavelength Protection and Protecting Backup Method Thereof
JP2010034877A (ja) * 2008-07-29 2010-02-12 Nippon Telegr & Teleph Corp <Ntt> ポイント−マルチポイントシステムにおける冗長化伝送システム
JP2011082908A (ja) * 2009-10-09 2011-04-21 Nec Corp 局内装置、光通信システム、帯域割当方法、および装置のプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444231B2 (ja) * 1999-05-12 2003-09-08 日本電気株式会社 波長リングシステムおよびそのファイバへの収容方法
JP4638754B2 (ja) * 2005-03-18 2011-02-23 富士通株式会社 光装置および光クロスコネクト装置
CN101499852A (zh) * 2008-01-28 2009-08-05 中国电信股份有限公司 网络故障处理方法、设备及系统
CN101667865B (zh) * 2009-09-30 2013-07-03 中兴通讯股份有限公司 波分复用无源光网络中实现保护倒换的装置、系统及方法
JP5513245B2 (ja) * 2010-04-28 2014-06-04 日本電信電話株式会社 光通信システム及び光通信方法
JP5983609B2 (ja) * 2011-07-29 2016-09-06 日本電気株式会社 ネットワークシステム、ネットワーク装置、およびネットワーク制御方法
CN103475439A (zh) * 2013-09-06 2013-12-25 南京邮电大学 一种基于tdm/wdm混合pon结构的通道波长选择方法
US9780867B2 (en) 2013-10-25 2017-10-03 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication abnormality-recovery method
JP6072285B2 (ja) * 2013-11-01 2017-02-01 三菱電機株式会社 親局装置および通信システム
EP3065321B1 (en) * 2014-07-15 2018-05-16 Huawei Technologies Co., Ltd. Communication method, apparatus and system for passive optical network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107626A1 (ja) * 2003-05-28 2004-12-09 Nippon Telegraph And Telephone Corporation 光波長多重アクセスシステム
US20080267628A1 (en) * 2005-04-29 2008-10-30 Zte Corporation Passive Optical Network System Based on a Wavelength Protection and Protecting Backup Method Thereof
JP2008054278A (ja) * 2006-07-26 2008-03-06 Nec Corp Ponシステム、局側装置及びそれらに用いる冗長化方法
JP2010034877A (ja) * 2008-07-29 2010-02-12 Nippon Telegr & Teleph Corp <Ntt> ポイント−マルチポイントシステムにおける冗長化伝送システム
JP2011082908A (ja) * 2009-10-09 2011-04-21 Nec Corp 局内装置、光通信システム、帯域割当方法、および装置のプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044076A1 (ja) * 2020-08-24 2022-03-03 日本電信電話株式会社 光通信システム及び光通信システムのプロテクション方法
JP7476970B2 (ja) 2020-08-24 2024-05-01 日本電信電話株式会社 光通信システム及び光通信システムのプロテクション方法

Also Published As

Publication number Publication date
CN106537852B (zh) 2019-10-01
US10009137B2 (en) 2018-06-26
US20170207875A1 (en) 2017-07-20
JPWO2016013616A1 (ja) 2017-04-27
CN106537852A (zh) 2017-03-22
JP6369959B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6369959B2 (ja) 光通信システム、局側装置、加入者装置及び光通信方法
JP6053232B2 (ja) 光通信システム及び光通信異常復帰方法
JP7070736B2 (ja) 光ネットワーク管理装置および光パスの設定方法
CA2941538C (en) Link switching method, device, and system
JP4807200B2 (ja) 光終端システム、光終端ユニット及び切替え方法
JP5490517B2 (ja) 光通信システム、光通信方法およびolt
JP6094666B2 (ja) 光ネットワークシステムおよび光通信方法
JP6445706B2 (ja) 多波長パッシブ光ネットワークに適用される通信方法、装置、及びシステム
JP5460886B2 (ja) 論理リンク管理方法および通信装置
US20140199062A1 (en) Protection for Fibre Optic Access Networks
WO2010023721A1 (ja) Ponシステムおよび冗長化方法
JP2015522992A (ja) 多波長パッシブ光ネットワーク上での波長切替えのための方法、システム、および装置
JP6285611B2 (ja) 局側装置及び波長切替監視方法
JP6219671B2 (ja) 光加入者システム及び通信方法
JP2017175176A (ja) 局側光回線終端装置、冗長装置切替方法及び冗長装置切替プログラム
JP6236488B2 (ja) 局側光回線終端装置、冗長装置切替方法及び冗長装置切替プログラム
JP2016115962A (ja) PON(PassiveOpticalNetwork)システム及び通信装置
JP6296834B2 (ja) 親局装置、制御装置、光通信システムおよび障害切替方法
JP6287404B2 (ja) 局側装置
JP2019047168A (ja) 局側終端装置、及び経路切替方法
JP2015037295A (ja) 光通信装置及び動的波長割当方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15325961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825013

Country of ref document: EP

Kind code of ref document: A1