WO2016013602A1 - 重荷重用空気入りタイヤ - Google Patents

重荷重用空気入りタイヤ Download PDF

Info

Publication number
WO2016013602A1
WO2016013602A1 PCT/JP2015/070932 JP2015070932W WO2016013602A1 WO 2016013602 A1 WO2016013602 A1 WO 2016013602A1 JP 2015070932 W JP2015070932 W JP 2015070932W WO 2016013602 A1 WO2016013602 A1 WO 2016013602A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
center
circumferential
bent portion
Prior art date
Application number
PCT/JP2015/070932
Other languages
English (en)
French (fr)
Inventor
晋均 山口
将瑛 角田
英樹 浜中
梨沙 田内
佐藤 利之
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/063719 external-priority patent/WO2016013276A1/ja
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2015536688A priority Critical patent/JP6229724B2/ja
Priority to AU2015293162A priority patent/AU2015293162B2/en
Priority to CN201580038831.0A priority patent/CN106660403B/zh
Priority to RU2017105482A priority patent/RU2633048C1/ru
Priority to US15/328,466 priority patent/US9962997B2/en
Publication of WO2016013602A1 publication Critical patent/WO2016013602A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0351Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Definitions

  • the present invention relates to a heavy duty pneumatic tire with a tread pattern.
  • a tread pattern is provided so as to realize this performance improvement.
  • a tread pattern is provided to improve traction performance.
  • a heavy-duty pneumatic tire that improves both traction during bad road travel and wet performance during high speed travel until the end of wear (Patent Document 1).
  • the heavy-duty pneumatic tire at least one circumferential groove extending in the circumferential direction, and a large number of lateral grooves that are connected to the circumferential groove and are spaced apart on both sides of the circumferential groove in the circumferential direction
  • the circumferential groove extends in the circumferential direction in a tread central region corresponding to 50% of the tread width
  • the groove depth of the circumferential groove is 5% or more of the tread width, (3)
  • the groove depth of the transverse grooves provided at least on both sides of the tread is 109% or more of the groove depth of the circumferential grooves.
  • traction at the end of wear can be improved, but heel and toe wear easily occurs in the tread center region before reaching the end of wear.
  • Heel and toe wear is one type of abnormal wear that forms a step with different amounts of wear at the edge portions of blocks located on both sides of the lug groove in the tire circumferential direction across the lug groove.
  • tires mounted on buses, trucks, etc. or dump trucks used in mines, etc. for example, large tires of 49 inches or more, it is possible to suppress heel and toe wear while improving traction performance. From the viewpoint of effectively using the tire.
  • an object of the present invention is to provide a pneumatic tire with a tread pattern, which is a heavy duty pneumatic tire that suppresses heel and toe wear.
  • the tread pattern is A plurality of tire circumferential directions are provided at intervals, extending to each of the first tread region and the second tread region in the tire width direction with respect to the tire equator line so as to cross the tire equator line.
  • a center lug groove having, A plurality of shoulder lug grooves which are provided at intervals in the tire circumferential direction and extend outward in the tire width direction in each of the half tread regions, and open at the ground contact ends on both sides in the tire width direction.
  • shoulder lug grooves provided one by one between the ends of adjacent center lug grooves adjacent to each other in the tire circumferential direction among the center lug grooves, In each of the half tread regions, the center lug groove end and the shoulder lug groove inner end in the tire width direction are alternately connected so as to be formed in a wave shape over the entire circumference of the tire circumference.
  • a pair of circumferential main grooves provided in the half-tread region;
  • a center block defined by the center lug groove and the pair of circumferential main grooves and formed in a row in the tire circumferential direction;
  • a circumferential sub-groove that is formed in a region of the center block and connects between the center lug grooves adjacent to each other in the tire circumferential direction among the center lug grooves.
  • Each of the center lug grooves has at least one bent part or a curved lug groove bent part
  • Each of the circumferential sub-grooves has at least one bent or curved sub-groove bent portion, and is connected to the center lug groove at the lug groove bent portion,
  • the ratio D3 / LB of the maximum groove depth D3 of the center lug groove to the maximum width LB in the tire circumferential direction of the center block is 0.1 to 0.3.
  • the lug groove bent portion is bent or curved so as to protrude to the third side in the tire circumferential direction on the first side, and the third groove in the tire circumferential direction on the second side.
  • a second groove bending portion that bends or curves so as to protrude to the fourth side that is opposite to the first side,
  • the first connection end portion on the first side and the second connection end portion on the second side where the center lug groove is connected to the circumferential main groove are on the inner side in the tire width direction of the circumferential main groove.
  • the second connection end of the center lug groove is on the third side in the tire circumferential direction from the first connection end, With respect to the center position in the groove width direction of the center lug groove, the first straight tire width connecting the first connecting end portion and the protruding end at which the first groove bent portion protrudes toward the third side in the tire circumferential direction.
  • the center lug groove of the center lug groove between the projecting end where the first groove bent portion projects toward the third side in the tire circumferential direction and the first connection end portion is on the first straight line or on the third side with respect to the first straight line, and the second groove bending portion protrudes on the fourth side in the tire circumferential direction and the second end.
  • the portion of the center lug groove between the connection end portion is preferably on the second straight line or on the fourth side with respect to the second straight line.
  • each of the pair of circumferential main grooves includes a bottom raised portion in which the groove depth is partially shallow.
  • the ratio D2 / T is preferably less than 0.05 with respect to the groove depth D2 in the bottom raised portion and the tread width T in the tire width direction of the tread portion.
  • the ratio D1 / T of the maximum groove depth D1 of the circumferential main groove to the tread width T of the tread portion is preferably 0.03 to 0.09.
  • the minor groove bent portion includes a third groove bent portion and a fourth groove bent portion, the position of the third groove bent portion and the fourth groove bent portion, the circumferential sub groove and the center lug groove 1. It is preferable that a connecting groove portion for connecting the connecting groove portion and the connecting groove portion is provided, and an inclination angle of the connecting groove portion with respect to the tire circumferential direction is 0 to 5 degrees.
  • the maximum groove depth D5 of the connecting groove portion is shallower than the maximum groove depth D3 of the center lug groove.
  • the ratio D5 / D3 of the maximum groove depth D5 to the maximum groove depth D3 is preferably 0.3 to 0.75.
  • the tire equator line crosses an intermediate groove portion connecting the positions of the third groove bent portion and the fourth groove bent portion.
  • the maximum groove width P6 of the intermediate groove part is preferably equal to or larger than the maximum groove width P5 of the connecting groove part. At this time, the ratio P6 / P5 of the maximum groove width P6 to the maximum groove width P5 is preferably 1 to 2.5.
  • two start positions in the tire width direction of the circumferential sub-groove extending from each of the center lug grooves are displaced from each other. At this time, it is preferable that the two start positions in the tire width direction are located on different sides in the tire width direction with respect to the tire equator line.
  • the top part of the center block formed corresponding to the curved part of the main groove that curves in the tire width direction outside of the circumferential main groove of the wave shape is an obtuse corner. Is preferred.
  • the groove widths of the pair of circumferential main grooves and the center lug groove are preferably 7 to 20 mm.
  • the heavy duty pneumatic tire is mounted on a construction vehicle or an industrial vehicle.
  • heel and toe wear can be suppressed without reducing traction performance.
  • the tire width direction refers to the rotation center axis direction of the pneumatic tire
  • the tire circumferential direction refers to the rotation direction of the rotation surface of the tread surface that is formed when the tire is rotated around the tire rotation center axis.
  • the tire radial direction refers to a direction radially extending from the tire rotation center axis.
  • the outer side in the tire radial direction refers to the side away from the tire rotation center axis
  • the inner side in the tire radial direction refers to the side closer to the tire rotation center axis.
  • the outer side in the tire width direction means a side away from the tire equator line in the tire width direction
  • the inner side in the tire width direction means a side closer to the tire equator line in the tire width direction.
  • the heavy load tire referred to in this specification is one type (dump truck, scraper) described in Chapter D in addition to the tire described in Chapter C of JATMA (Japan Automobile Tire Association Standard) YEAR BOOK 2014. Tires, 2 types (grader) tires, 3 types (excavator loader) tires, 4 types (tire roller) tires, mobile crane (truck crane, wheel crane) tires, or SECTION 4 of TRA 2013 YEAR BOOK Or the vehicle tire described in section 6.
  • FIG. 1 is a cross-sectional view of a pneumatic tire (hereinafter simply referred to as a tire) of this embodiment.
  • FIG. 1 is a cross-sectional view taken along the plane XX ′ in FIG. 2 to be described later and passing through the tire rotation axis.
  • R the tire radial direction
  • W the tire width direction
  • a tire 1 shown in FIG. 1 has a tread portion 2, a sidewall portion 3, and a bead portion 4.
  • the bead part 4 has a pair of bead cores 4a on both sides in the tire width direction.
  • a carcass layer 5 is mounted between the pair of bead cores 4a. Both ends of the carcass layer 5 are folded back from the tire inner side to the outer side around the bead core 4a.
  • the carcass layer 5 may be composed of a single carcass ply or a plurality of carcass plies.
  • a belt layer 6 is provided on the outer peripheral side of the carcass layer 5 in the tread portion 2.
  • the belt layer 6 includes a first cross belt layer 6a, a second cross belt layer 6b, and a third cross belt layer 6c in the order along the direction from the inner side to the outer side in the tire radial direction. Is provided.
  • Each of the first cross belt layer 6a, the second cross belt layer 6b, and the third cross belt layer 6c includes two belts.
  • the reinforcing cords are inclined to different sides with respect to the tire circumferential direction.
  • the belt positioned on the inner side in the tire radial direction has a tire width compared to the belt positioned on the outer side in the tire radial direction.
  • the belt width in the direction is narrow.
  • the belt positioned on the inner side in the tire radial direction has a wider belt width in the tire width direction than the belt positioned on the outer side in the tire radial direction.
  • the belt located inside in the tire radial direction has a wider belt width in the tire width direction than the belt located outside in the tire radial direction.
  • the belt width is not particularly limited, and the form of the belt width shown in FIG.
  • the belt layer 6 is comprised by three cross belt layers, it may be comprised by two cross belt layers and there is no restriction
  • a sheet-like rubber layer may be partially provided between the belt layers of the second cross belt layer 6b.
  • the inclination angle of the belt cord having the lowest angle with respect to the tire circumferential direction among the reinforcing cords of the respective belts of the first cross belt layer 6a with respect to the tire circumferential direction is 20 to 24 degrees. This is preferable in that a so-called tagging effect in which the belt suppresses deformation that tends to expand in the radial direction can be effectively obtained.
  • the inclination angle of the belt cord having the lowest angle with respect to the tire circumferential direction with respect to the tire circumferential direction is 16 to 20 degrees. It is preferable from the point that can be obtained.
  • the inclination angle of the belt cord having the lowest angle with respect to the tire circumferential direction among the reinforcing cords of the respective belts of the third cross belt layer 16c is preferably 22 to 26 degrees.
  • the inclination angle in the reinforcing cord of each belt of the first cross belt layer 16a is preferably larger than the inclination angle in the second cross belt layer 6b.
  • Such a configuration of the tire 1 is an example, and the tire 1 may include other known configurations.
  • FIG. 2 is a pattern diagram in which a tread pattern provided on the tread portion 2 of the tire 1 is developed in a plane.
  • the tire circumferential direction is indicated by C
  • the tire width direction is indicated by W.
  • the tread portion 2 includes a shoulder lug groove 10, a pair of circumferential main grooves 12, a center lug groove 14, a center block 16, and a circumferential sub groove 20 as a tread pattern.
  • a plurality of shoulder lug grooves 10 are provided at intervals in the tire circumferential direction in each of the half tread regions on both sides in the tire width direction with respect to the tire equator line CL.
  • the shoulder lug groove 10 extends outward in the tire width direction in each of the half tread regions on both sides in the tire width direction with respect to the tire equator line CL, and the outer ends in the tire width direction are on both sides in the tire width direction.
  • the tread end 18 is a portion where the outer shapes of the tread portion 2 and the side portion 3 are connected. When the connecting portion is rounded, the outer shape of the tread portion 2 is changed to this shape.
  • the shoulder lug grooves 10 located on both sides in the tire width direction, the position of one shoulder lug groove 10 in the tire circumferential direction in one half tread region is the tire of two adjacent shoulder lug grooves in the other half tread region. Between the circumferential positions. Furthermore, the shoulder lug groove 10 has a position in the tire width direction at the inner end in the tire width direction of the shoulder lug groove 10 at a position in the tire width direction at the end of the center lug groove 14 to be described later in each half tread region.
  • the shoulder lug grooves 10 are provided one by one in the shoulder region between adjacent center lug grooves 14 adjacent to each other in the tire circumferential direction among the center lug grooves 14 in the tire circumferential direction. ing. Thereby, the circumferential main groove 12 described later forms a wave shape by alternately connecting the end of the center lug groove 14 and the inner end of the shoulder lug groove 10 in the tire width direction.
  • the pair of circumferential main grooves 12 are provided in the half-tread regions on both sides (first side and second side) in the tire width direction with respect to the tire equator line CL.
  • Each of the circumferential main grooves 12 has a wave shape over the entire circumference of the tire circumference by alternately connecting an end of a center lug groove 14 described later and an inner end of the shoulder lug groove 10 in the tire width direction in each of the half tread regions. Is formed.
  • the groove width of the pair of circumferential main grooves 12 is narrower than the groove width of the shoulder lug grooves 10.
  • the groove having a wave shape means a shape in which the groove meanders, and the main groove bent portion that curves in the tire width direction outside or inside that forms the wave shape of the groove may have a square shape.
  • the curved shape may be round.
  • the curved shape includes a shape in which the corner of the rubber block that is in contact with the corner of the groove with a radius of curvature is rounded, that is, a curved shape of the groove formed by chamfering the corner of the rubber block.
  • the portion other than the main groove bent portion may be linear or curved. When the main groove bent portion and the portion other than the main groove bent portion are curved, the two curved shapes may be curved with the same radius of curvature.
  • the circumferential main groove 12 has a plurality of main groove bent portions 11 on the tire circumference that bend in the tire width direction on the outer side and the inner side, and meanders in a wavy shape in the tire width direction. While extending in the tire circumferential direction.
  • Each of the pair of circumferential main grooves 12 is connected to the shoulder lug groove 10 at a fifth groove bent portion 11 a that is bent in the tire width direction outside of the main groove bent portion 11.
  • each of the pair of circumferential main grooves 12 is connected to the center lug groove 14 at a sixth groove bent portion 11 b that is bent in the tire width direction inside of the main groove bent portion 11.
  • the position of the sixth groove bending portion 11b in the tire circumferential direction is displaced with respect to the sixth groove convex bending portion 11b in the opposite half tread region.
  • the center lug groove 14 extends in a direction inclined with respect to the tire width direction.
  • the groove width of the pair of circumferential main grooves 12 is narrower than that of the shoulder lug groove 10.
  • the center block 16 is defined by a center lug groove 14 and a pair of circumferential main grooves 12 described later, and a plurality of the center blocks 16 are formed in a row in the tire circumferential direction.
  • a tire equator line (tire center line) CL passes through the center block 16.
  • a plurality of center lug grooves 14 are provided at intervals in the tire circumferential direction.
  • the center lug groove 14 has both ends extending to the half tread regions on both sides (first side and second side) in the tire width direction with respect to the tire equator line CL so as to cross the tire equator line CL.
  • Both ends of the center lug groove 14 are connected to a sixth groove bent portion 11b that is bent in a tire width direction inside of the main groove bent portion 11 to be bent. Therefore, the center lug groove 14 is a groove connecting the sixth groove bent portions 11b.
  • the center lug groove 14 intersects the tire equator line CL.
  • the wave shapes of the pair of circumferential main grooves 12 are both wave shapes having a predetermined wavelength, and the phases of the two wave shapes in the tire circumferential direction are shifted from each other by approximately a half pitch. That is, the position in the tire circumferential direction of the fifth groove bending portion 11a of one circumferential main groove 12 of the pair of circumferential main grooves 12 is the fifth adjacent to the tire circumferential direction of the other circumferential main groove 12. It exists between the positions in the tire circumferential direction of the groove bending part 11a.
  • the fifth groove bent portion 11a of one circumferential main groove 12 and the fifth groove bent portion 11b of the other circumferential main groove 12 are provided at substantially the same position in the tire circumferential direction. It has been.
  • the center lug groove 14 is provided with a first groove bent portion 14a and a second groove bent portion 14b, which are two bent lug groove bent portions.
  • FIG. 3 is an enlarged view of the bent first groove bent portion 14 a and the second groove bent portion 14 b of the center lug groove 14.
  • the first groove bent portion 14a and the second groove bent portion 14b are bent, but may be curved.
  • the curved shape includes a shape in which the corner of the rubber block that is in contact with the corner of the groove with a radius of curvature is rounded, that is, a curved shape of the groove formed by chamfering the corner of the rubber block.
  • the center lug groove 14 has a first groove bent portion 14a and a second groove bent portion 14b, so that the center lug groove 14 is displaced in a wave shape in the tire circumferential direction.
  • the shape of the first groove bent portion 14a and the second groove bent portion 14b is such that, for example, the angle ⁇ (see FIG. 3) of the center lug groove 14 formed by the first groove bent portion 14a and the second groove bent portion 14b is an obtuse angle. It is preferable that the shape becomes.
  • the first groove bent portion 14a and the second groove bent portion 14b are provided on both sides of the tire equator line CL in the tire width direction at positions spaced apart from the tire equator line CL by the same distance.
  • the center lug groove 14 is preferably provided so that the tire equator line CL passes through a portion between the first groove bent portion 14a and the second groove bent portion 14b. Moreover, in this part, it is preferable that the inclination direction of the center lug groove 14 with respect to the tire width direction is different from the inclination direction of the part other than this part.
  • the center lug groove 14 is provided with the first groove bent portion 14a and the second groove bent portion 14b, but it is preferable that at least one is provided.
  • the center lug groove 14 of the present embodiment has a configuration including a linear portion that extends linearly between the pair of circumferential main grooves 12, a first groove bent portion 14a, and a second groove bent portion 14b.
  • a curved groove may be used instead of the portion.
  • one of the first groove bent portion 14a and the second groove bent portion 14b may be bent and the other may be curved.
  • the curved shape includes a shape in which the corner of the rubber block that is in contact with the corner of the groove with a radius of curvature is rounded, that is, a curved shape in which the corner of the rubber block is chamfered.
  • the two curved shapes may be curved with the same curvature radius.
  • one of the first groove bent portion 14a and the second groove bent portion 14b is a bent groove bent portion formed by connecting a linear shape and a curved groove, and the other is a curved groove. It may be a bent part.
  • the shape of the center lug groove 14 is preferably a groove shape extending in the tire width direction while being displaced in the tire circumferential direction into a wave shape.
  • FIG. 4 is a diagram illustrating an example of a preferable shape of the center lug groove 14 that defines the shape of the center block 14.
  • the illustration of the circumferential sub-groove 20 connected to the center lug groove 14 is omitted.
  • the first groove bent portion 14a of the center lug groove 14 is a third side in the tire circumferential direction on the first side (the left side in FIG. 4) with respect to the tire equator line CL (see FIG. 4). 3 is bent or curved so as to protrude toward the upper side in the drawing.
  • the second groove bent portion 14b of the center lug groove 14 has a fourth side in the tire circumferential direction on the second side (the right side in the drawing in FIG.
  • the fourth side is opposite to the third side.
  • the portion 14d corresponds to the inner end of the circumferential circumferential groove 12 in the tire width direction, that is, the sixth groove bent portions 11b and 11b.
  • the second connection end 14d of the center lug groove 14 is closer to the third side in the tire circumferential direction than the first connection end 14c (in FIG. 3).
  • the first groove bent portion 14 a and the first connection projecting from the third side in the tire circumferential direction (upward side in FIG. 3) and the first connection.
  • the inclination angle of the second straight line 14f connecting the protruding end and the second connection end 14d with respect to the tire width direction (inclination angle greater than 0 degrees and smaller by 90 degrees twist) is the same as that of the first connection end 14c of the center lug groove 14 and the second connection end 14d. It is preferable that the inclination angle of the third straight line 14g connecting the two connection ends 14d with respect to the tire width direction (inclination angle larger than 0 degree and smaller by 90 degrees) is larger.
  • the first groove bent portion 14 a protrudes to the third side in the tire circumferential direction with respect to the center position in the groove width direction of the center lug groove 14.
  • the portion of the center lug groove 14 between the end and the first connection end portion 14c is on the first straight line 14e or on the third side with respect to the first straight line 14e, and the second groove bent portion 14b is disposed on the tire circumference.
  • the portion of the center lug groove 14 between the protruding end protruding to the fourth side in the direction and the second connection end 14d is on the second straight line 14f or on the fourth side with respect to the second straight line 14f.
  • the tread rigidity of the center block 16 can be increased. That is, since the center block 16 has an anisotropic shape defined by the center lug groove 14 inclined in one direction with respect to the tire width direction, the center block 16 kicks away from the road surface from the tire contact surface. When this is done, the center block 16 is deformed by being twisted clockwise or counterclockwise by an anisotropic shape. At this time, since the groove width of the circumferential main groove 12 is narrow, the center block 16 has a shoulder block adjacent to the circumferential circumferential groove 12 in the tire width direction, a fifth groove bent portion 11a, and a sixth groove bent portion.
  • the center blocks 16 adjacent to each other in the tire circumferential direction across the center lug groove 14 are meshed at the first groove bending portion 14a and the second groove bending portion 14b and function as a single body.
  • the tread rigidity of the center block 16 can be increased. By increasing the tread rigidity of the center block 16, it is possible to suppress the twist of the center block 16, and it is possible to suppress wear of a local region of the center block 16 on both sides of the center lug groove 14 in the tire circumferential direction.
  • each part of the center block 16 tends to deform and fall down due to the shearing force in the tire circumferential direction received from the road surface.
  • the first groove bent portion 14a and the second groove bent portion 14b are provided in the center lug groove 14, the land portions around the first groove bent portion 14a and the second groove bent portion 14b of the center block 16 are formed.
  • Two blocks that mesh with each other and are adjacent to each other in the tire circumferential direction function as one block to generate a reaction force. Therefore, the tread rigidity of the center block 16 can be increased by providing the first groove bent portion 14 a and the second groove bent portion 14 b in the center lug groove 14.
  • the circumferential sub-groove 20 is a groove that connects the center lug grooves 14 adjacent to each other in the tire circumferential direction.
  • the groove depth of the circumferential sub-groove 20 may be shallower than the maximum groove depth of the circumferential main groove 12.
  • the circumferential sub-groove 20 has at least one bent or curved groove bent portion.
  • the circumferential sub-groove 20 of the present embodiment has a third groove bent portion 21a and a fourth groove bent portion 21b.
  • the circumferential sub-groove 20 includes a connecting groove portion (straight portion) extending in parallel to the tire circumferential direction from the center lug groove 14, a third groove bent portion 21 a connected to the connecting groove portion (straight portion), and It has the 4th groove bending part 21b and the intermediate
  • the curved shape is a shape in which the corner of the rubber block that is in contact with the corner of the groove is rounded by defining the radius of curvature
  • the curved shape of the groove formed by chamfering the corner of the rubber block is also included.
  • One of the third groove bent portion 21a and the fourth groove bent portion 21b may be bent and the other may be bent.
  • one of the third groove bent portion 21a and the fourth groove bent portion 21b is a bent groove bent portion formed by connecting a linear shape and a curved groove, and the other is a curved groove. It may be a bent part. In the example shown in FIG.
  • the third groove bent portion 21 a and the fourth groove bent portion 21 b provided in the circumferential sub groove 20 are bent, and the third groove bent portion 21 a and the fourth groove bent are formed.
  • the bending angle ⁇ (see FIG. 2) of the circumferential sub-groove 20 formed by the portion 21b is an obtuse angle.
  • the circumferential sub-groove 20 is, for example, a tire formed from the positions of the tips of the first groove bent portion 14a and the second groove bent portion 14b of the center lug groove 14 (specifically, a virtual straight line connecting both ends of the center lug groove 14). It is preferable to be connected to the center lug groove 14 at a position that protrudes most in the circumferential direction.
  • the connecting groove portion (straight line portion) in the circumferential sub-groove 20 may not extend in parallel to the tire circumferential direction. Further, as shown in FIG. 2, it is preferable that the tire equator line CL crosses in an intermediate groove portion connecting the third groove bent portion 21 a and the fourth groove bent portion 21 b in the circumferential sub-groove 20.
  • the connecting groove portion (straight portion) of the circumferential sub-groove 20 has a linear shape extending in parallel to the tire circumferential direction, but instead of this linear shape, the connecting groove portion is curved. There may be.
  • the circumferential sub-groove 20 includes the connecting groove, the third groove bent portion 21a and the fourth groove bent portion 21b, and the intermediate groove portion. It may be a groove shape extending in the tire circumferential direction while being displaced in the circumferential direction.
  • the connecting groove portion is curved and the third groove bent portion 21a and the fourth groove bent portion 21b are curved, the two curved shapes may be curved shapes having the same radius of curvature.
  • the excessive height of the block rigidity of the center block 16 can be reduced.
  • the radius of curvature of the profile shape showing the outer shape of the tread portion 2 at the time of air pressure filling is large in the center region (region with the center block 16), and sharply decreases in the shoulder region (region with the shoulder lug groove 10).
  • An irregular shape can be prevented, and the profile shape of the tread portion 2 from the center region to the shoulder region can be changed to a profile shape in which the change in the radius of curvature is moderate.
  • produce around the circumferential direction main groove 12 in which the said curvature changes a lot can be suppressed.
  • the third groove bent portion 21a and the fourth groove bent portion 21b in the circumferential sub-groove 20, when the center block 16 is kicked off the road surface while the tire 1 is traveling on the road surface, When each of the portions of the center block 16 divided into two regions by the directional sub-groove 20 is deformed and falls by the tire circumferential shearing force received from the road surface, the third groove bending portion 21a and the second portion Since the land portion of the center block 16 around the four-groove bent portion 21b is engaged with the third groove bend portion 21a and the fourth groove bend portion 21b to function as one block, a reaction force is generated. Even in the center block 16 in which the groove 20 is formed, an excessive decrease in the tread rigidity can be suppressed. An excessive decrease in the tread rigidity of the center block 16 can be suppressed, and the collapse of the center block 16 can be suppressed, so that heel and toe wear of the center block 16 can be suppressed.
  • the ratio D3 / LB of the maximum groove depth D3 (see FIG. 1) of the center lug groove 14 to the maximum width LB (see FIG. 2) in the tire circumferential direction of the center block is 0.1 to 0.3. .
  • the ratio D3 / LB within the above range, the decrease in the block rigidity of the center block 16 is suppressed, and the slip on the road surface in the center block 16 approaches a constant regardless of the location, so that the heel and toe can be suppressed. it can.
  • the groove bottom of the center lug groove 14 is indicated by a dotted line.
  • each of the pair of circumferential main grooves 12 includes a bottom raised portion 12a in which the groove depth is partially shallow.
  • FIG. 5 is a diagram illustrating an example of the raised bottom portion 12a.
  • the bottom raised portion 12a is provided in a portion extending between the fifth groove bent portion 11a and the sixth groove bent portion 11b so as to be inclined with respect to the tire circumferential direction.
  • the groove 12 may be provided in the region of the fifth groove bent portion 11a and the sixth groove bent portion 11b.
  • the circumferential main groove 12 has a constant maximum depth region where the groove depth is the deepest, and a portion where the groove depth becomes shallower from this region is the bottom raised portion 12a.
  • the deepest groove depth of the circumferential main groove 12 is preferably the same as the shoulder lug groove 10.
  • the form of the raised portion 12a may be a form in which the groove depth becomes discontinuously shallow with steps from the maximum depth area, or a form in which the groove depth gradually decreases from the maximum depth area. After the depth becomes shallower, the groove depth may be deepened within a range shallower than the groove depth in the maximum depth region.
  • the bottom raised portion 12a may have a constant shallow groove depth, but need not have a constant shallow groove depth, and the groove depth may vary.
  • the ratio D2 / T may be less than 0.05. preferable.
  • the ratio D2 / T When the ratio D2 / T is 0.05 or more, the groove depth of the bottom raised portion becomes deeper than the tread width T, so that it is difficult to suppress the collapse of the block of the center block 16.
  • the ratio D2 / T is more preferably 0.04 or less, for example 0.03.
  • the lower limit of the ratio D2 / T is not particularly limited, but is, for example, 0.01.
  • the groove depth of the bottom raised portion becomes deeper than the tread width T, so that the block rigidity around the bottom raised portion of the center block 16 and the center portion (bottom raised) of the center block 16 are increased. The difference between the block rigidity of the inner portion away from the edge of the groove having the portion increases, and uneven wear tends to occur.
  • the ratio D1 / T of the maximum groove depth D1 (see FIG. 5) of the circumferential main groove 12 to the tread width T of the tread portion 2 is preferably 0.03 to 0.09.
  • the maximum groove depth D1 of the circumferential main groove 12 is deep and the ratio D1 / T exceeds 0.09, the block rigidity of the center block 16 is excessively lowered, and heel and toe wear tends to increase.
  • the maximum groove depth D1 of the circumferential main groove 12 is shallow and the ratio D1 / T is less than 0.03, the center lug groove 14 tends to disappear and the wear life is extremely shortened.
  • the connecting groove portion of the circumferential sub-groove 20 described above includes a connection point between each of the third groove bent portion 21a and the fourth groove bent portion 21b and one of the circumferential sub-groove 20 and the center lug groove 14. It is preferable that the inclination angle of the connecting groove portion with respect to the tire circumferential direction is 0 to 5 degrees. Even when a curved groove is used for the connecting groove portion, the inclination angle is preferably 0 to 5 degrees. When the center block 16 is deformed to fall in the tire circumferential direction due to the shearing force when the center block 16 is kicked off the road surface, the inclination angle is set to 5 degrees or less, so it will fall down.
  • the third groove bent portion 21a and the fourth groove bent portion 21b can suppress the collapse as described above. Therefore, heel and toe wear of the center block 16 can be suppressed.
  • the maximum groove depth D5 (see FIG. 1) of the connecting groove portion of the circumferential sub-groove 20 is shallower than the maximum groove depth D3 (see FIG. 1) of the center lug groove 14, so that heel and toe wear is achieved. It is preferable in that the tread rigidity of the center block 16 that affects the above can be prevented from excessively decreasing. More specifically, the ratio D5 / D3 of the maximum groove depth D5 to the maximum groove depth D3 is preferably 0.3 to 0.75. When the ratio D5 / D3 is in the above range, heel and toe wear in the center block 16 can be efficiently suppressed.
  • the maximum groove width P6 (see FIG. 2) of the intermediate groove portion connecting the third groove bent portion 21a and the fourth groove bent portion 21b of the circumferential sub groove 20 is one of the circumferential sub groove 20 and the center lug groove 14. It is preferable that it is equal to or wider than the maximum groove width P5 (see FIG. 2) of the above-mentioned connecting groove portion connecting between the two connecting points. Thereby, the difference between the local block stiffness near the edge of the outer edge of the center block 16 and the local block stiffness near the intermediate groove can be reduced, and the wear in the region of the center block 16 can be made uniform. can do. Specifically, by setting the ratio P6 / P5 to 1 or more and 2.5 or less, it is possible to efficiently make wear in the region of the center block 16 uniform.
  • the two starting positions in the tire width direction of the circumferential sub-grooves 20 extending from the center lug grooves 14, as shown in FIG. This is preferable in that the start positions of the sub-grooves 20 can be dispersed. Further, the two start positions of the circumferential sub-grooves 20 in the tire width direction in the center lug groove 14 are located on different sides in the tire width direction with respect to the tire equator line CL. It is preferable in that the start position can be distributed to suppress wear.
  • the top of the center block 16 formed corresponding to the fifth groove bent portion 11a, which is a portion that curves and curves outward in the tire width direction of the wave-shaped circumferential main groove 12, Both of them are obtuse corners, so that the corners receive braking force, driving force or lateral force to prevent the center block 16 from falling down, and the corners do not become the core of wear generation.
  • the groove widths of the pair of circumferential main grooves 12 and the center lug grooves 14 are both 7 to 20 mm so that the edge component of the center block 16 necessary for the traction performance can be obtained. 12 and the center lug groove 14 are preferable in that local wear that easily occurs around the center lug groove 14 can be suppressed.
  • the tire 1 is preferably mounted on a construction vehicle or an industrial vehicle.
  • Construction vehicles or industrial vehicles include dump trucks, scrapers, graders, excavator loaders, tire rollers, wheel cranes, truck cranes, or vehicles such as COMPACTOR, EARTHMOVER, GREADER, LOADER AND DOZER.
  • the circumferential sub-groove 20 that connects the center lug grooves 14 adjacent to each other in the tire circumferential direction among the center lug grooves 14 is formed in the center block 16 region.
  • Each of the circumferential sub-grooves 20 is provided with at least one groove bending portion.
  • the profile shape of the outer shape of the tread portion 2 can be a profile shape in which the change in curvature is moderate. Thereby, local wear can be suppressed.
  • Example, conventional example, comparative example In order to investigate the effect of the tire of the present embodiment, various tires having different tread patterns were manufactured and examined for heel and toe wear.
  • the prototype tire is 46 / 90R57. Mounted on rim size 29.00-6.0 (TRA specified rim), 700 kPa (TRA specified air pressure), load load 617.81 kPa (TRA standard load) as test conditions, using a 200 ton dump truck, the same off Running on the road surface, the amount of block step due to heel and toe wear in the center block after running for 5000 hours was determined and indexed by the reciprocal thereof.
  • the index is based on the conventional example (index 100). A higher index means less heel and toe wear.
  • FIG. 6 is a diagram showing a tread pattern of a conventional example.
  • the tread pattern shown in FIG. 6 includes a shoulder lug groove 110, a pair of circumferential main grooves 112, a center lug groove 114, and a center block 116.
  • the shoulder lug groove 110, the pair of circumferential main grooves 112, the center lug groove 114, and the center block 116 are respectively the shoulder lug groove 10, the pair of circumferential main grooves 12, the center lug groove 14, and the center lug groove.
  • the width of the shoulder lug groove 110 and the width of the circumferential main groove 112 are the same as the width of the shoulder lug groove 110. Since the groove width of the circumferential main groove 112 is the same as that of the shoulder lug groove 110, it is not a circumferential main groove narrower than the groove width of the shoulder lug groove 10 like the circumferential main groove 12 shown in FIG. In Table 1 below, it is assumed that there are no corrugated circumferential main grooves. In Examples 1 to 28 and Comparative Examples 1 to 4, the tread pattern shown in FIG. 2 or FIG. 6 was used. Tables 1 to 6 below show each element of the tread pattern and evaluation results of heel and toe wear at that time.
  • tread patterns (Examples 14 to 17) in which the inclination angle of the connecting groove portion extending in parallel with the tire circumferential direction from the center lug groove 14 with respect to the tire circumferential direction in the circumferential sub-groove 20 are variously changed are shown.
  • Table 5 on the basis of the tread pattern shown in FIG. 2, the ratio D3 / LB is fixed to 0.2, the ratio D2 / T is fixed to 0.03, the ratio D1 / T is fixed to 0.06, Evaluation results of tread patterns (Examples 18 to 22) in which the inclination angle of the connecting groove portion with respect to the tire circumferential direction is fixed at 3 degrees and the ratio D5 / D3 is variously changed are shown.
  • the ratio D1 / T is preferably 0.03 to 0.09 in order to improve heel and toe wear.
  • the inclination angle of the connecting groove is preferably 0 to 5 degrees in order to improve the heel and toe wear.
  • the ratio D5 / D3 is preferably 0.3 to 0.7 in order to improve heel and toe wear.
  • the ratio P6 / P5 is preferably 1.0 to 2.5 in order to improve the heel and toe wear. Further, from comparison between Example 25 and Example 28 in Table 6, it can be seen that it is preferable to improve the heel and toe wear that the start position of the circumferential sub-groove is displaced in the tire width direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

トレッドパターン付き空気入りタイヤにおいて、ヒールアンドトウ摩耗を抑える。 接地端に開口するショルダーラグ溝(10)と、両端を有するセンターラグ溝(14)と、前記センターラグ溝の端と、前記ショルダーラグ溝のタイヤ幅方向の内側の端を交互に接続して波形状に形成された周方向主溝(12)と、前記センターラグ溝と前記一対の周方向主溝によって画されたセンターブロック(16)と、前記センターブロックの領域に形成され、タイヤ周方向に隣り合うセンターラグ溝間を接続する周方向副溝(20)と、を備える。 前記周方向副溝は、副溝曲がり部(21a,21b)を有し、前記センターラグ溝は、ラグ溝曲がり部(14a,14b)を有し、前記ラグ溝曲がり部において前記周方向副溝と接続している。前記センターラグ溝の最大溝深さD3の、前記センターブロックのタイヤ周方向における最大幅LBに対する比D3/LBは、0.1~0.3である。

Description

重荷重用空気入りタイヤ
 本発明は、トレッドパターン付き重荷重用空気入りタイヤに関する。
 現在の空気入りタイヤは、種々の性能の向上が求められ、この性能向上を実現するように、トレッドパターンが設けられている。重荷重用タイヤでは、トラクション性能の向上を実現するようにトレッドパターンが設けられている。
 例えば、摩耗末期まで悪路走行時のトラクション性と高速走行時のウエット性能を両立させて向上させる重荷重用空気入りタイヤが知られている(特許文献1)。当該重荷重用空気入りタイヤでは、周方向に延びる少なくとも1本の周方向溝と、該周方向溝に繋がり、該周方向溝の両側に周方向に間隔をおいて配置された多数の横方向溝とをトレッドに具えた空気入りタイヤにおいて、
(1)該周方向溝は、トレッド幅の50%に相当するトレッド中央領域内で周方向に延び、
(2)該周方向溝の溝深さがトレッド幅の5%以上で、
(3)該横方向溝の内、少なくともトレッド両側部に具えられた横方向溝の溝深さが該周方向溝の溝深さの109%以上である。
 これにより、悪路走行時のトラクション性と高速走行時のウエット性能を両立させて向上させることができる、とされている。
特開平09-136514号公報
 上記重荷重用空気入りタイヤでは、摩耗末期におけるトラクション性を向上させることができる反面、摩耗末期にいたる前に、トレッドセンター領域におけるヒールアンドトウ摩耗が発生し易くなる。ヒールアンドトウ摩耗は、ラグ溝を挟んで、ラグ溝のタイヤ周方向の両側に位置するブロックのエッジ部分における摩耗量が異なって、段差を形成する異常摩耗の1つである。
 特に、バスやトラック等に装着されるタイヤにおいて、あるいは鉱山等で用いられるダンプトラックに装着される、例えば49インチ以上の大型タイヤにおいて、トラクション性能を向上しつつ、ヒールアンドトウ摩耗を抑えることが、タイヤを効果的に使用する点から好ましい。
 そこで、本発明は、トレッドパターン付き空気入りタイヤであって、ヒールアンドトウ摩耗を抑える重荷重用空気入りタイヤを提供することを目的とする。
 本技術の一態様は、トレッドパターン付き空気入りタイヤである。
前記トレッドパターンは、
 タイヤ周方向に間隔をあけて複数設けられ、タイヤ赤道線を横切るようにタイヤ赤道線を基準としたタイヤ幅方向の第1の側及び第2の側の半トレッド領域のそれぞれに延びて両端を有するセンターラグ溝と、
タイヤ周方向に間隔をあけて複数設けられ、前記半トレッド領域のそれぞれにおいて、タイヤ幅方向外側に延びて、タイヤ幅方向外側の端がタイヤ幅方向の両側にある接地端に開口するショルダーラグ溝であって、タイヤ周方向において、前記センターラグ溝のうちタイヤ周方向に隣りあう隣接センターラグ溝の端の間に1つずつ設けられたショルダーラグ溝と、
 前記半トレッド領域のそれぞれにおいて、前記センターラグ溝の端と、前記ショルダーラグ溝のタイヤ幅方向の内側の端を交互に接続するようにタイヤ周上全周にわたって波形状に形成され、前記ショルダーラグ溝より溝幅が狭く、前記半トレッド領域に設けられた一対の周方向主溝と、
 前記センターラグ溝と前記一対の周方向主溝によって画されてタイヤ周方向に一列に複数形成されたセンターブロックと、
 前記センターブロックの領域に形成され、前記センターラグ溝のうちタイヤ周方向に隣り合うセンターラグ溝間を接続する周方向副溝と、を備える。
 前記センターラグ溝のそれぞれは、屈曲形状あるいは湾曲形状のラグ溝曲がり部を少なくとも1つ以上有し、
 前記周方向副溝のそれぞれは、屈曲形状あるいは湾曲形状の副溝曲がり部を少なくとも1つ以上有し、前記ラグ溝曲がり部において前記センターラグ溝と接続し、
 前記センターラグ溝の最大溝深さD3の、前記センターブロックのタイヤ周方向における最大幅LBに対する比D3/LBは、0.1~0.3である。
 前記ラグ溝曲がり部は、前記第1の側においてタイヤ周方向の第3の側に突出するように屈曲又は湾曲する第1溝曲がり部と、前記第2の側においてタイヤ周方向の前記第3の側の反対側である第4の側に突出するように屈曲又は湾曲する第2溝曲がり部と、を含み、
 前記センターラグ溝が前記周方向主溝と接続する前記第1の側の第1接続端部及び前記第2の側の第2接続端部は、前記周方向主溝のタイヤ幅方向の内側の先端と接続し、前記センターラグ溝の前記第2接続端部は、前記第1接続端部よりもタイヤ周方向の第3の側にあり、
 前記センターラグ溝の溝幅方向の中心位置に関し、前記第1接続端部と前記第1溝曲がり部がタイヤ周方向の前記第3の側に突出する突出端とを結ぶ第1直線のタイヤ幅方向に対する傾斜角度、および、前記第2接続端部と前記第2溝曲がり部がタイヤ周方向の前記第4の側に突出する突出端とを結ぶ第2直線のタイヤ幅方向に対する傾斜角度は、前記センターラグ溝の前記第1接続端部と前記第2接続端部を結ぶ第3直線のタイヤ幅方向に対する傾斜角度よりも大きい、ことが好ましい。
 前記センターラグ溝の溝幅方向の中心位置に関し、前記第1溝曲がり部がタイヤ周方向の前記第3の側に突出する突出端と前記第1接続端部との間の前記センターラグ溝の部分は、前記第1直線上、あるいは前記第1直線に対して前記第3の側にあり、前記第2溝曲がり部がタイヤ周方向の前記第4の側に突出する突出端と前記第2接続端部との間の前記センターラグ溝の部分は、前記第2直線上、あるいは前記第2直線に対して前記第4の側にある、ことが好ましい。
 前記一対の周方向主溝それぞれにおいて、溝深さが部分的に浅くなった底上げ部を備える、ことが好ましい。
 前記底上げ部における溝深さD2及び前記トレッド部のタイヤ幅方向のトレッド幅Tに関して、比D2/Tは、0.05未満である、ことが好ましい。
 前記周方向主溝の最大溝深さD1の、前記トレッド部のトレッド幅Tに対する比D1/Tは、0.03~0.09である、ことが好ましい。
 前記副溝曲がり部は、第3溝曲がり部と第4溝曲がり部を備え、前記第3溝曲がり部と前記第4溝曲がり部の位置と、前記周方向副溝と前記センターラグ溝の1つとの接続部との間を連結する連結溝部を有し、前記連結溝部の、タイヤ周方向に対する傾斜角は0~5度である、ことが好ましい。
 前記連結溝部の最大溝深さD5は、前記センターラグ溝の最大溝深さD3に比べて浅い、ことが好ましい。このとき、前記最大溝深さD5の、前記最大溝深さD3に対する比D5/D3は、0.3~0.75である、ことが好ましい。
 前記第3溝曲がり部と前記第4溝曲がり部の位置を結ぶ中間溝部をタイヤ赤道線が横切る、ことが好ましい。
 前記中間溝部の最大溝幅P6は、前記連結溝部の最大溝幅P5と同等か、前記最大溝幅P5に比べて大きい、ことが好ましい。このとき、前記最大溝幅P6の、前記最大溝幅P5に対する比P6/P5は、1~2.5である、ことが好ましい。
 前記センターラグ溝それぞれから延びる前記周方向副溝のタイヤ幅方向の2つの開始位置は、お互いに位置ずれしている、ことが好ましい。このとき、タイヤ幅方向における前記2つの開始位置は、タイヤ赤道線を基準としてタイヤ幅方向のお互いに異なる側に位置する、ことが好ましい。
 波形状の前記周方向主溝のうちタイヤ幅方向外側に凸状を成して曲がる主溝曲がり部に対応して形成される前記センターブロックの頂部は、いずれも鈍角の角部である、ことが好ましい。
 前記一対の周方向主溝及び前記センターラグ溝の溝幅は、いずれも7~20mmである、ことが好ましい。
 前記重荷重用空気入りタイヤは、建設用車両または産業用車両に装着される、ことが好ましい。
 上述の重荷重用空気入りタイヤによれば、トラクション性能を低下させることなく、ヒールアンドトウ摩耗を抑えることができる。
本実施形態の空気入りタイヤの一例の断面図である。 本実施形態の空気入りタイヤのトレッド部に設けられたトレッドパターンを平面展開したパターン図である。 本実施形態のトレッドパターンにおけるセンターラグ溝の溝曲がり部の周辺領域を拡大して示す図である。 本実施形態のトレッドパターンにおけるセンターラグ溝の好ましい形状の例を説明する図である。 本実施形態のトレッドパターンにおける周方向主溝の底上げ部の一例を示す図である。 従来のトレッドパターンを示す図である。
 以下、本発明の空気入りタイヤについて添付の図面を参照しながら詳細に説明する。
 本明細書においてタイヤ幅方向とは、空気入りタイヤの回転中心軸方向をいい、タイヤ周方向とは、タイヤ回転中心軸を中心にタイヤを回転させたときにできるトレッド表面の回転面の回転方向をいう。タイヤ径方向とは、タイヤ回転中心軸から放射状に向く方向をいう。タイヤ径方向外側とは、タイヤ回転中心軸から遠ざかる側をいい、タイヤ径方向内側とは、タイヤ回転中心軸に近づく側をいう。また、タイヤ幅方向外側とは、タイヤ赤道線からタイヤ幅方向において遠ざかる側をいい、タイヤ幅方向内側とは、タイヤ幅方向においてタイヤ赤道線に近づく側をいう。
 また、本明細書でいう重荷重用タイヤとは、JATMA(日本自動車タイヤ協会規格)YEAR BOOK 2014のC章に記載されるタイヤの他に、D章に記載される1種(ダンプトラック、スクレーバ)用タイヤ、2種(グレーダ)用タイヤ、3種(ショベルローダ等)用タイヤ、4種(タイヤローラ)用タイヤ、モビールクレーン(トラッククレーン、ホイールクレーン)用タイヤ、あるいはTRA 2013 YEAR BOOKのSECTION 4 あるいは、section 6に記載される車両用タイヤをいう。
 図1は本実施形態の空気入りタイヤ(以降、単にタイヤという)の断面図である。図1は、後述する図2中のX-X’線を通り、タイヤ回転軸を通る平面で切断した断面図である。図1中、タイヤ径方向はR(異なる側に向いた2つの矢印)で、タイヤ幅方向はW(異なる側に向いた2つの矢印)で方向を示している。
 図1に示すタイヤ1は、トレッド部2、サイドウォール部3、ビード部4を有する。ビード部4は、タイヤ幅方向の両側に、一対のビードコア4aを有する。一対のビードコア4aの間には、カーカス層5が装架されている。カーカス層5の両端部は、ビードコア4aの廻りにタイヤ内側から外側に折り返されている。カーカス層5は、一枚のカーカスプライで構成されてもよいし、複数枚のカーカスプライで構成されてもよい。
 トレッド部2におけるカーカス層5の外周側にはベルト層6が設けられている。ベルト層6は、タイヤ径方向の内側から外側に向かう方向に沿って、第1の交差ベルト層6aと、第2の交差ベルト層6bと、第3の交差ベルト層6cと、がその順番で設けられている。第1の交差ベルト層6a、第2の交差ベルト層6b、第3の交差ベルト層6c、のそれぞれは、2つのベルトで構成されている。第1の交差ベルト層6a、第2の交差ベルト層6b、第3の交差ベルト層6cのそれぞれの一対のベルトでは、補強コードがタイヤ周方向に対して互いに異なる側に傾斜している。図1に示すベルト層6の形態では、第1の交差ベルト層6aの2つのベルトのうち、タイヤ径方向の内側に位置するベルトは、タイヤ径方向の外側に位置するベルトに比べてタイヤ幅方向のベルト幅が狭い。第2の交差ベルト層6bの2つのベルトのうち、タイヤ径方向の内側に位置するベルトは、タイヤ径方向の外側に位置するベルトに比べてタイヤ幅方向のベルト幅が広い。第3の交差ベルト層6cの2つのベルトのうち、タイヤ径方向の内側に位置するベルトは、タイヤ径方向の外側に位置するベルトに比べてタイヤ幅方向のベルト幅が広い。ベルト幅は、特に制限されず、図1に示すベルト幅の形態は一例である。また、ベルト層6は、3つの交差ベルト層により構成されているが、2層の交差ベルト層で構成されてもよく、ベルト構成について特に制限はない。また、第2の交差ベルト層6bのベルト層間に、シート状のゴム層を部分的に設けてもよい。
 第1の交差ベルト層6aの各ベルトの補強コードの中でタイヤ周方向に対して最も低い角度のベルトコードの、タイヤ周方向に対する傾斜角度は、20~24度であることが、タイヤがタイヤ径方向に膨張しようとする変形をベルトが抑制する、いわゆるタガ効果を効果的に得ることができる点から好ましい。第2の交差ベルト層6bの各ベルトの補強コードの中でタイヤ周方向に対して最も低い角度のベルトコードの、タイヤ周方向に対する傾斜角度は、16~20度であることがタガ効果を効果的に得ることができる点から好ましい。また、第3の交差ベルト層16cの各ベルトの補強コードの中でタイヤ周方向に対して最も低い角度のベルトコードの、タイヤ周方向に対する傾斜角度は、22~26度であることが好ましい。第1の交差ベルト層16aの各ベルトの補強コードにおける上記傾斜角度は、第2の交差ベルト層6bにおける上記傾斜角度に比べて大きいことが好ましい。
このようなタイヤ1の構成は、一例であり、タイヤ1は、これ以外の公知の構成を備えてもよい。
(トレッドパターン)
 図2は、タイヤ1のトレッド部2に設けられたトレッドパターンを平面展開したパターン図である。図2中、タイヤ周方向はCで、タイヤ幅方向はWで方向を示している。
 トレッド部2は、ショルダーラグ溝10と、一対の周方向主溝12と、センターラグ溝14と、センターブロック16と、周方向副溝20と、をトレッドパターンとして備える。
 ショルダーラグ溝10は、タイヤ赤道線CLを基準としたタイヤ幅方向の両側の半トレッド領域のそれぞれに、タイヤ周方向に間隔をあけて複数設けられている。ショルダーラグ溝10は、タイヤ赤道線CLを基準としたタイヤ幅方向の両側の半トレッド領域のそれぞれにおいて、タイヤ幅方向外側に延びて、タイヤ幅方向外側の端が、タイヤ幅方向の両側にあるトレッド端(接地端)18に開口する。トレッド端18は、図1に示すように、トレッド部2とサイド部3の外形形状が接続する部分であり、この接続する部分が丸まっている場合は、トレッド部2の外形形状をこの形状に沿って延長した延長線と、サイド部3の外形形状をこの形状に沿って延長した延長線との交点をいう。
 タイヤ幅方向の両側に位置するショルダーラグ溝10において、一方の半トレッド領域における1つのショルダーラグ溝10のタイヤ周方向の位置は、他方の半トレッド領域にある隣接する2つのショルダーラグ溝のタイヤ周方向の位置の間にある。
 さらに、ショルダーラグ溝10は、半トレッド領域のそれぞれにおいて、ショルダーラグ溝10が有するタイヤ幅方向内側の端のタイヤ幅方向の位置が、後述するセンターラグ溝14の端のタイヤ幅方向の位置に比べてタイヤ幅方向外側にあり、かつ、ショルダーラグ溝10は、タイヤ周方向において、センターラグ溝14のうちタイヤ周方向に隣りあう隣接センターラグ溝14の間のショルダー領域に1つずつ設けられている。これにより、後述する周方向主溝12は、センターラグ溝14の端とショルダーラグ溝10のタイヤ幅方向の内側の端を交互に接続して波形状を成す。
 一対の周方向主溝12は、タイヤ赤道線CLを基準としたタイヤ幅方向の両側(第1の側及び第2の側)の半トレッド領域に設けられている。周方向主溝12のそれぞれは、半トレッド領域のそれぞれにおいて、後述するセンターラグ溝14の端と、ショルダーラグ溝10のタイヤ幅方向内側の端を交互に接続してタイヤ周上全周にわたって波形状に形成されている。一対の周方向主溝12の溝幅は、ショルダーラグ溝10の溝幅より狭い。溝が波形状であるとは、溝が蛇行する形状をいい、溝の波形状を成すタイヤ幅方向外側あるいは内側に凸状を成して曲がる主溝曲がり部は、角形状であってもよく、丸まった湾曲形状であってもよい。湾曲形状には、曲率半径を定めて溝の角部に接するゴムブロックの角部を丸くした形状、すなわち、ゴムブロックの角部を面取りしてつくられる溝の湾曲形状も含まれる。また、上記主溝曲がり部以外の部分は、直線形状であっても湾曲形状であってもよい。主溝曲がり部と主溝曲がり部以外の部分を湾曲形状にする場合、2つの湾曲形状を同じ曲率半径の湾曲形状にしてもよい。また、タイヤ周方向に隣り合う2つの主溝曲がり部のうち、一方を、直線形状と湾曲形状の溝が接続して形成される屈曲形状の主溝曲がり部とし、他方を、湾曲形状の主溝曲がり部としてもよい。
 具体的には、周方向主溝12は、タイヤ幅方向の外側及び内側に凸状を成して曲がる主溝曲がり部11をタイヤ周上に複数有し、タイヤ幅方向に波形状に蛇行しながらタイヤ周方向に延びる。一対の周方向主溝12それぞれは、主溝曲がり部11のうちタイヤ幅方向外側に凸状を成して曲がる第5溝曲がり部11aでショルダーラグ溝10と接続する。また、一対の周方向主溝12それぞれは、主溝曲がり部11のうちタイヤ幅方向内側に凸状を成して曲がる第6溝曲がり部11bでセンターラグ溝14と接続する。第6溝曲がり部11bのタイヤ周方向の位置は、反対側の半トレッド領域の第6溝凸曲がり部11bに対して位置ずれしている。したがって、センターラグ溝14は、タイヤ幅方向に対して傾斜した方向に延びている。さらに、一対の周方向主溝12の溝幅は、ショルダーラグ溝10の溝幅よりも狭い。
 センターブロック16は、後述するセンターラグ溝14と一対の周方向主溝12によって画されてタイヤ周方向に一列に複数形成されている。センターブロック16には、タイヤ赤道線(タイヤセンターライン)CLが通過している。
 センターラグ溝14は、タイヤ周方向に間隔をあけて複数設けられている。センターラグ溝14は、タイヤ赤道線CLを横切るように、タイヤ赤道線CLを基準としたタイヤ幅方向の両側(第1の側及び第2の側)の半トレッド領域に延びて両端を有する。センターラグ溝14の両端は、主溝曲がり部11のうちのタイヤ幅方向内側に凸状を成して曲がる第6溝曲がり部11bと接続する。したがってセンターラグ溝14は、第6溝曲がり部11b同士を接続した溝である。センターラグ溝14は、タイヤ赤道線CLと交差する。なお、一対の周方向主溝12の波形状は、いずれも所定の波長を有する波形状であり、この2つの波形状のタイヤ周方向における位相はお互いに略半ピッチずれている。すなわち、一対の周方向主溝12のうち一方の周方向主溝12の第5溝曲がり部11aのタイヤ周方向の位置は、他方の周方向主溝12の、タイヤ周方向に隣り合う第5溝曲がり部11aのタイヤ周方向における位置の間にある。一対の周方向主溝12のうち一方の周方向主溝12の第5溝曲がり部11aと、他方の周方向主溝12の第5溝曲がり部11bとがタイヤ周方向の略同じ位置に設けられている。
 センターラグ溝14には、屈曲形状の2つのラグ溝曲がり部である第1溝曲がり部14a及び第2溝曲がり部14bが設けられている。図3は、センターラグ溝14の屈曲形状の第1溝曲がり部14a及び第2溝曲がり部14bを拡大して示す図である。なお、本実施形態では、第1溝曲がり部14a及び第2溝曲がり部14bは屈曲形状であるが、湾曲形状であってもよい。湾曲形状には、曲率半径を定めて溝の角部に接するゴムブロックの角部を丸くした形状、すなわち、ゴムブロックの角部を面取りしてつくられる溝の湾曲形状も含まれる。
 センターラグ溝14は、第1溝曲がり部14a及び第2溝曲がり部14bを有することで、タイヤ周方向に波形状に変位する。第1溝曲がり部14a及び第2溝曲がり部14bの形状は、例えばこの第1溝曲がり部14a及び第2溝曲がり部14bによりつくられるセンターラグ溝14の曲がる角度θ(図3参照)が鈍角になる形状であることが好ましい。第1溝曲がり部14a及び第2溝曲がり部14bは、タイヤ赤道線CLのタイヤ幅方向両側に、タイヤ赤道線CLから同じ距離離間した位置に設けられることが好ましい。センターラグ溝14のうち、第1溝曲がり部14aと第2溝曲がり部14bとの間の部分にタイヤ赤道線CLが通過するように設けられことが好ましい。また、この部分において、タイヤ幅方向に対するセンターラグ溝14の傾斜の向きが、この部分以外の部分の傾斜の向きと異なっていることが好ましい。センターラグ溝14には、第1溝曲がり部14a及び第2溝曲がり部14bが設けられているが、少なくとも1つ設けられているとよい。
 本実施形態のセンターラグ溝14は、一対の周方向主溝12の間を、直線状に延びる直線部と第1溝曲がり部14a及び第2溝曲がり部14bを含む構成を有するが、上記直線部に代えて湾曲状の溝を用いてもよい。また、第1溝曲がり部14a及び第2溝曲がり部14bの一方を、屈曲形状、他方を湾曲形状としてもよい。また、湾曲形状には、曲率半径を定めて溝の角部に接するゴムブロックの角部を丸くした形状、すなわち、ゴムブロックの角部を面取りした湾曲形状も含まれる。第1溝曲がり部14a及び第2溝曲がり部14bを湾曲形状にし、上記直線部を湾曲形状にする場合、2つの湾曲形状は、同じ曲率半径の湾曲形状にしてもよい。また、第1溝曲がり部14a及び第2溝曲がり部14bのうち、一方を、直線形状と湾曲形状の溝が接続して形成される屈曲形状の溝曲がり部とし、他方を、湾曲形状の溝曲がり部としてもよい。センターラグ溝14の形状は、波形状にタイヤ周方向に変位しながらタイヤ幅方向に延びる溝形状であるとよい。
 図4は、センターブロック14の形状を定めるセンターラグ溝14の好ましい形状の例を説明する図である。図4では、センターラグ溝14に接続する周方向副溝20の図示は省略されている。
 図4に示すように、センターラグ溝14の第1溝曲がり部14aは、タイヤ赤道線CLを基準として第1の側(図4中の紙面左側)においてタイヤ周方向の第3の側(図3中の紙面上方向の側)に突出するように屈曲又は湾曲する。センターラグ溝14の第2溝曲がり部14bは、タイヤ赤道線CLを基準として第2の側(図4中の紙面右側)においてタイヤ周方向の第4の側(図3中の紙面下方向の側)に突出するように屈曲又は湾曲する。第4の側は、第3の側に対して反対側である。ここで、センターラグ溝14が周方向主溝12と接続する第1の側の第1接続端部14c及びセンターラグ溝14が周方向主溝12と接続する第2の側の第2接続端部14dは、周方向周溝12のタイヤ幅方向の内側の先端、すなわち第6溝曲がり部11b,11bに該当する。センターラグ溝14がタイヤ幅方向に対して傾斜しているため、センターラグ溝14の第2接続端部14dは、第1接続端部14cよりもタイヤ周方向の第3の側(図3中の紙面上方向の側)にある。
 このとき、センターラグ溝14の溝幅方向の中心位置に関し、第1溝曲がり部14aがタイヤ周方向の第3の側(図3中の上方向の側)に突出する突出端と第1接続端部14cとを結ぶ第1直線14eのタイヤ幅方向に対する傾斜角度(0度より大きく90度撚り小さい傾斜角度)、および、第2溝曲がり部14bがタイヤ周方向の第4の側に突出する突出端と第2接続端部14dとを結ぶ第2直線14fのタイヤ幅方向に対する傾斜角度(0度より大きく90度撚り小さい傾斜角度)は、センターラグ溝14の第1接続端部14cと第2接続端部14dを結ぶ第3直線14gのタイヤ幅方向に対する傾斜角度(0度より大きく90度撚り小さい傾斜角度)よりも大きいことが好ましい。 
 本実施形態のより好ましい形態では、図2,4に示すように、センターラグ溝14の溝幅方向の中心位置に関し、第1溝曲がり部14aがタイヤ周方向の第3の側に突出する突出端と第1接続端部14cとの間のセンターラグ溝14の部分は、第1直線14e上、あるいは第1直線14eに対して第3の側にあり、第2溝曲がり部14bがタイヤ周方向の第4の側に突出する突出端と第2接続端部14dとの間のセンターラグ溝14の部分は、第2直線14f上、あるいは第2直線14fに対して第4の側にある。
 このようなセンターブロック16が形成されることにより、センターブロック16のトレッド剛性を高くすることができる。すなわち、センターブロック16は、タイヤ幅方向に対して一方向に傾斜したセンターラグ溝14によって形状が規定された異方性形状であるので、タイヤ接地面からセンターブロック16が路面から離れて蹴りだされるとき、センターブロック16は、異方性形状によって時計回転あるいは反時計回転にねじれて変形する。このとき、周方向主溝12の溝幅が狭いので、センターブロック16は、周方向周溝12を挟んでタイヤ幅方向に隣り合うショルダーブロックと、第5溝曲がり部11a、第6溝曲がり部11bにおいて噛み合って一体として機能する他、センターラグ溝14を挟んでタイヤ周方向に隣り合うセンターブロック16同士が、第1溝曲がり部14a及び第2溝曲がり部14bにおいて噛み合って一体として機能するので、センターブロック16のトレッド剛性を高くすることができる。センターブロック16のトレッド剛性を高くすることにより、センターブロック16のねじれを抑制でき、センターラグ溝14のタイヤ周方向の両側におけるセンターブロック16の局部的な領域の摩耗を抑えることができる。
 さらに、センターブロック16が路面からはなれて蹴りだされるとき、センターブロック16の各部分が路面から受けるタイヤ周方向のせん断力によって上記各部分が変形し倒れ込もうとする。このとき、第1溝曲がり部14a及び第2溝曲がり部14bがセンターラグ溝14に設けられているので、センターブロック16の第1溝曲がり部14a及び第2溝曲がり部14b周りの陸部が互いに噛み合ってタイヤ周方向に隣接する2つのブロックが1つのブロックとして機能して反力を発生する。したがって、第1溝曲がり部14a及び第2溝曲がり部14bをセンターラグ溝14に設けることにより、センターブロック16のトレッド剛性を高くすることができる。センターブロック16のトレッド剛性を高くすることにより、センターブロック16の倒れこみを抑制できるので、センターラグ溝14のタイヤ周方向の両側におけるセンターブロック16の局部的な領域の摩耗を抑えることができる。
 周方向副溝20は、センターラグ溝14のうち、タイヤ周方向に隣り合うセンターラグ溝14間を接続する溝である。周方向副溝20の溝深さは、周方向主溝12の最大溝深さに比べて浅くてもよい。その際、周方向副溝20は、屈曲形状あるいは湾曲形状の溝曲がり部を少なくとも1つ以上有する。本実施形態の周方向副溝20は、第3溝曲がり部21a及び第4溝曲がり部21bを有する。
 周方向副溝20は、図2に示すように、センターラグ溝14からタイヤ周方向に平行に延びる連結溝部(直線部)と、連結溝部(直線部)と接続した第3溝曲がり部21a及び第4溝曲がり部21bと、第3溝曲がり部21a及び第4溝曲がり部21bの間を延びるタイヤ周方向に傾斜した中間溝部と、を有する。第3溝曲がり部21a及び第4溝曲がり部21bの形状が湾曲形状である場合、湾曲形状には、曲率半径を定めて溝の角部に接するゴムブロックの角部を丸くした形状、すなわち、ゴムブロックの角部を面取りしてつくられる溝の湾曲形状も含まれる。第3溝曲がり部21a及び第4溝曲がり部21bの一方を屈曲形状、他方を湾曲形状としてもよい。また、第3溝曲がり部21a及び第4溝曲がり部21bのうち、一方を、直線形状と湾曲形状の溝が接続して形成される屈曲形状の溝曲がり部とし、他方を、湾曲形状の溝曲がり部としてもよい。
 図2に示される例では、周方向副溝20に設けられる第3溝曲がり部21a及び第4溝曲がり部21bの形状は、屈曲形状であり、この第3溝曲がり部21a及び第4溝曲がり部21bによりつくられる周方向副溝20の曲がる角度φ(図2参照)が鈍角になる形状であることが好ましい。周方向副溝20は、例えば、センターラグ溝14の第1溝曲がり部14a及び第2溝曲がり部14bの先端の位置(具体的には、センターラグ溝14の両端を結んだ仮想直線からタイヤ周方向に最も突出した位置)で、センターラグ溝14に接続されていることが好ましい。周方向副溝20における上記連結溝部(直線部)は、タイヤ周方向に平行に延びなくてもよい。また、図2に示すように、周方向副溝20のうち、第3溝曲がり部21a及び第4溝曲がり部21bの間を結ぶ中間溝部において、タイヤ赤道線CLが横切ることが好ましい。
 図3に示すように、周方向副溝20の上記連結溝部(直線部)はタイヤ周方向に平行に延びる直線形状を有するが、この直線形状に替えて、上記連結溝部が湾曲した湾曲形状であってもよい。また、周方向副溝20は、上述したように、連結溝部と、第3溝曲がり部21a及び第4溝曲がり部21bと、中間溝部とを有するが、この形状に替えて、波形状にタイヤ周方向に変位しながらタイヤ周方向に延びる溝形状であってもよい。上記連結溝部を湾曲形状にし、第3溝曲がり部21a及び第4溝曲がり部21bを湾曲形状にする場合、2つの湾曲形状は、同じ曲率半径を有する湾曲形状にしてもよい。
 このように周方向副溝20を設けることにより、センターブロック16のブロック剛性の過度な高さを緩和できる。これにより、空気圧充填時のトレッド部2の外形を示すプロファイル形状の曲率半径がセンター領域(センターブロック16のある領域)で大きく、ショルダー領域(ショルダーラグ溝10のある領域)で急激に小さくなる、いびつな形状を防止でき、上記センター領域から上記ショルダー領域にかけてトレッド部2のプロファイル形状を曲率半径の変化が穏かなプロファイル形状にすることができる。これにより、上記曲率が大きく変化する周方向主溝12周りで発生しやすい局部的な摩耗を抑制することができる。
 さらに、第3溝曲がり部21a及び第4溝曲がり部21bを周方向副溝20に設けることにより、タイヤ1が路面上を走行中、センターブロック16が路面からはなれて蹴りだされるとき、周方向副溝20により2つの領域に分けられたセンターブロック16の各部分に路面から受けるタイヤ周方向のせん断力によって上記各部分が変形し倒れ込もうとするとき、第3溝曲がり部21a及び第4溝曲がり部21b周りの、センターブロック16の陸部が第3溝曲がり部21a及び第4溝曲がり部21bによって互いに噛み合ってあたかも1つのブロックとして機能して反力を発生するので、周方向副溝20が形成されたセンターブロック16であってもトレッド剛性の過度な低下を抑制することができる。センターブロック16のトレッド剛性の過度な低下を抑制することができ、センターブロック16の倒れこみを抑制できるので、センターブロック16のヒールアンドトウ摩耗を抑えることができる。
 さらに、センターラグ溝14の最大溝深さD3(図1参照)の、センターブロックのタイヤ周方向における最大幅LB(図2参照)に対する比D3/LBは、0.1~0.3である。比D3/LBを上記範囲にすることにより、センターブロック16のブロック剛性の低下を抑制し、センターブロック16内の路面に対する滑りが場所に拠らず一定に近づくので、ヒールアンドトウを抑えることができる。図1では、センターラグ溝14の溝底を点線で示している。
 トレッドパターンの好ましい形態として、一対の周方向主溝12それぞれにおいて、溝深さが部分的に浅くなった底上げ部12aを備えることが好ましい。図5は、底上げ部12aの一例を示す図である。底上げ部12aを周方向主溝12に設けることにより、センターブロック16のトレッド剛性を所定の範囲になるように確保してトラクション性能に有効なセンターブロック16の倒れこみを抑えることができる。さらにセンターブロック16の倒れこみが抑えられるので、センターブロック16のヒールアンドトウ摩耗を抑えることができる。
 底上げ部12aは、図5に示すように、第5溝曲がり部11a及び第6溝曲がり部11bとの間をタイヤ周方向に対して傾斜して延びる部分に設けられているが、周方向主溝12における第5溝曲がり部11a及び第6溝曲がり部11bの領域に設けられてもよい。周方向主溝12には、溝深さが最も深い一定の最大深さ領域があり、この領域から、溝深さが浅くなった部分が底上げ部12aである。なお、周方向主溝12の最も深い溝深さは、ショルダーラグ溝10の溝深さと同じであることが好ましい。
 底上げ部12aの形態は、上記最大深さ領域から段差をもって不連続に溝深さが浅くなる形態でもよいし、上記最大深さ領域から徐々に溝深さが浅くなる形態でもよく、一度溝深さが浅くなった後、最大深さ領域の溝深さよりも浅い範囲内で溝深さが深くなる形態でもよい。このように、底上げ部12aは、一定の浅い溝深さであってもよいが、一定の浅い溝深さである必要はなく、溝深さは変動してもよい。
 このとき、底上げ部12aにおける最も浅い溝深さD2(図5参照)及びトレッド部のタイヤ幅方向のトレッド幅T(図2参照)に関して、比D2/Tは、0.05未満であることが好ましい。比D2/Tが0.05以上である場合、底上げ部の溝深さがトレッド幅T対比深くなるので、センターブロック16のブロックの倒れこみを抑えることは難しくなる。比D2/Tはより好ましくは0.04以下であり、例えば0.03である。比D2/Tの下限は特に制限されないが、例えば0.01である。また、比D2/Tが0.05以上である場合、底上げ部の溝深さがトレッド幅T対比深くなるので、センターブロック16の底上げ部周りのブロック剛性と、センターブロック16の中央部(底上げ部を有する溝のエッジから離れた内側部分)のブロック剛性との間の差が大きくなり、偏摩耗が発生しやすくなる。
 また、周方向主溝12の最大溝深さD1(図5参照)の、トレッド部2のトレッド幅Tに対する比D1/Tは、0.03~0.09であることが好ましい。周方向主溝12の最大溝深さD1が深く、比D1/Tが0.09を超える場合、センターブロック16のブロック剛性が過度に低下し、ヒールアンドトウ摩耗が大きくなり易い。周方向主溝12の最大溝深さD1が浅く、比D1/Tが0.03未満である場合、センターラグ溝14が消滅し易くなり、摩耗寿命が極端に短くなる。
 また、上述した周方向副溝20の上記連結溝部は、第3溝曲がり部21a及び第4溝曲がり部21bのそれぞれと、周方向副溝20とセンターラグ溝14の1つとの接続点との間を連結する部分であって、この連結溝部の、タイヤ周方向に対する傾斜角は0~5度であることが好ましい。上記連結溝部に湾曲形状の溝が用いられる場合においても、上記傾斜角は0~5度であることが好ましい。センターブロック16が路面からはなれて蹴りだされるときのせん断力によりセンターブロック16がタイヤ周方向へ倒れ込もうとする変形を受けたとき、上記傾斜角度を5度以下とするので、倒れ込もうとする変形を第3溝曲がり部21a及び第4溝曲がり部21b近傍に伝えることができる。第3溝曲がり部21a及び第4溝曲がり部21bはこの倒れ込みを上述したように抑えることができる。したがって、センターブロック16のヒールアンドトウ摩耗を抑えることができる。
 また、周方向副溝20の上記連結溝部の最大溝深さD5(図1参照)は、センターラグ溝14の最大溝深さD3(図1参照)に比べて浅いことが、ヒールアンドトウ摩耗に対して影響を与えるセンターブロック16のトレッド剛性が過度に低下することを抑制することができる点で、好ましい。より具合的には、最大溝深さD5の、最大溝深さD3に対する比D5/D3は、0.3~0.75であることが好ましい。比D5/D3が上記範囲にあることにより、センターブロック16におけるヒールアンドトウ摩耗を効率よく抑制することができる。
 周方向副溝20の第3溝曲がり部21aと第4溝曲がり部21bとの間を結ぶ中間溝部の最大溝幅P6(図2参照)は、周方向副溝20とセンターラグ溝14の1つとの接続点との間を連結する上記連結溝部の最大溝幅P5(図2参照)と同等か、最大溝幅P5に比べて広いことが好ましい。これにより、センターブロック16の外縁のエッジ近傍の局所的なブロック剛性と、上記中間溝部近傍の局所的なブロック剛性との差を小さくすることができ、センターブロック16の領域内における摩耗を均一にすることができる。具体的には、比P6/P5を1以上2.5以下とすることで、センターブロック16の領域内における摩耗を均一にすることを効率よくできる。
 センターラグ溝14それぞれから延びる周方向副溝20のタイヤ幅方向の2つの開始位置は、図4に示すように、お互いに位置ずれしていることが、局部的に摩耗の核となり易い周方向副溝20の開始位置を分散させることができる点で好ましい。
 また、センターラグ溝14における、タイヤ幅方向における周方向副溝20の2つの開始位置を、タイヤ赤道線CLを基準としてタイヤ幅方向のお互いに異なる側に位置することが、タイヤ幅方向の両側に上記開始位置を振り分けて摩耗を抑制することができる点で好ましい。
 センターブロック16における、波形状の周方向主溝12のうちタイヤ幅方向外側に凸状を成して曲がる部分である第5溝曲がり部11aに対応して形成されるセンターブロック16の頂部は、いずれも鈍角の角部であることが、角部が制動力、駆動力あるいは横力を受けてセンターブロック16が倒れこむことを抑制し、角部が摩耗の発生の核にならないようにする点から好ましい。
 また、一対の周方向主溝12及びセンターラグ溝14の溝幅は、いずれも7~20mmであることが、トラクション性能に必要なセンターブロック16のエッジ成分を持つことができ、周方向主溝12及びセンターラグ溝14の周りで発生しやすい局部的な摩耗を抑制できる点から好ましい。
 なお、タイヤ1は、建設用車両または産業用車両に装着されることが好ましい。建設用車両または産業用車両は、ダンプトラック、スクレーバ、グレーダ、ショベルローダ、タイヤローラ、ホイールクレーン、トラッククレーン、あるいは、COMPACTOR、 EARTHMOVER、GREADER、LOADER AND DOZER等の車両を含む。
 このように、本実施形態のタイヤ1のトレッドパターンでは、センターブロック16の領域に、センターラグ溝14のうちタイヤ周方向に隣り合うセンターラグ溝14間を接続する周方向副溝20を形成し、周方向副溝20のそれぞれに、少なくとも1つ以上の溝曲がり部を設けている。このため、トレッド部2の外形のプロファイル形状は曲率の変化が穏かなプロファイル形状にすることができる。これにより局部的な摩耗を抑制することができる。一方、周方向副溝20を設けたことにより、センターブロック16のトレッド剛性の低下が懸念されるが、第3溝曲がり部21a及び第4溝曲がり部21bにより、センターブロック16のトレッド剛性の低下を抑制できる。これにより、転動するタイヤ1において、センターブロック16が路面から離れて蹴り出されるとき、路面から受けるタイヤ周方向のせん断力により発生するセンターブロック16の倒れ込みを抑えることができる。したがって、センターブロック16におけるヒールアンドトウ摩耗を抑制することができる。
(実施例、従来例、比較例)
 本実施形態のタイヤの効果を調べるために、トレッドパターンの異なるタイヤを種々試作し、ヒールアンドトウ摩耗を調べた。試作したタイヤは、46/90R57である。リムサイズ29.00-6.0(TRA規定リム)に装着し、700kPa(TRA規定空気圧)、負荷荷重617.81kN(TRA規格荷重)を試験条件として、200トン用ダンプトラックを用いて、同じオフロード路面の走行を行ない、5000時間走行後のセンターブロックにおけるヒールアンドトウ摩耗によるブロック段差量を求め、その逆数によって指数化した。指数は従来例を基準(指数100)とした。指数が高いほどヒールアンドトウ摩耗は小さいことを意味する。
 試作したタイヤは、従来例と、実施例1~28と、比較例1~4である。
 図6は、従来例のトレッドパターンを示す図である。図6に示すトレッドパターンは、ショルダーラグ溝110と、一対の周方向主溝112と、センターラグ溝114と、センターブロック116と、を備える。ショルダーラグ溝110と、一対の周方向主溝112と、センターラグ溝114と、センターブロック116は、それぞれ、ショルダーラグ溝10と、一対の周方向主溝12と、センターラグ溝14と、センターブロック16と同様な構成を有するが、ショルダーラグ溝110の溝幅と周方向主溝112の溝幅は、ショルダーラグ溝110の溝幅と同じである。周方向主溝112の溝幅がショルダーラグ溝110と同じであることから、図2に示す周方向主溝12のように、ショルダーラグ溝10の溝幅より狭い周方向主溝ではないので、下記表1では、波形状の周方向主溝は無い、としている。
 実施例1~28及び比較例1~4は、図2または図6に示すトレッドパターンを用いた。
 下記表1~6については、トレッドパターンの各要素とそのときのヒールアンドトウ摩耗の評価結果を示す。
 表1では、図2に示すトレッドパターンを基準として、波形状の周方向主溝の有無、センターラグ溝のラグ溝曲がり部(第1溝曲がり部14a及び第2溝曲がり部14b)と周方向副溝の有無、周方向副溝の第3溝曲がり部21a及び第4溝曲がり部21bの有無、比D3/LB、を種々変更したトレッドパターン(実施例1~3,比較例1~4)の評価結果を示す。
 また、表2では、図2に示すトレッドパターンを基準として、比D2/Tを種々変更したトレッドパターン(実施例4~8)の評価結果を示す。
 表3では、図2に示すトレッドパターンを基準として、比D3/LBを0.2に固定し、比D2/Tを0.03に固定して、比D1/Tを種々変更したトレッドパターン(実施例9~13)の評価結果を示す。
 表4では、図2に示すトレッドパターンを基準として、比D3/LBを0.2に固定し、比D2/Tを0.03に固定し、比D1/Tを0.06に固定して、周方向副溝20の、センターラグ溝14からタイヤ周方向に平行に延びる連結溝部のタイヤ周方向に対する傾斜角度を種々変更したトレッドパターン(実施例14~17)の評価結果を示す。
 表5では、図2に示すトレッドパターンを基準として、比D3/LBを0.2に固定し、比D2/Tを0.03に固定し、比D1/Tを0.06に固定し、連結溝部のタイヤ周方向に対する傾斜角度を3度に固定して、比D5/D3を種々変更したトレッドパターン(実施例18~22)の評価結果を示す。
 表6では、図2に示すトレッドパターンを基準として、比D3/LBを0.2に固定し、比D2/Tを0.03に固定し、比D1/Tを0.06に固定し、連結溝部のタイヤ周方向に対する傾斜角度を3度に固定し、比D5/D3を0.5に固定して、比P6/P5を種々変更したトレッドパターン(実施例23~28)の評価結果を示す。
 また、表1~6の中で、「センターラグ溝における、周方向副溝のタイヤ幅方向2つの開始位置の位置ずれの有無」とは、図2に示すように、1つのセンターラグ溝14を挟んでタイヤ周方向の両側の方向に向かって延びる2つの周方向副溝20の開始位置がタイヤ幅方向において位置ずれしているか否かを示す。上記位置ずれが有る場合、位置ずれは、トレッド幅Tの8%の距離とした。
 表1より、周方向主溝が有り、第1溝曲がり部14a及び第2溝曲がり部14bと、周方向副溝20と、第3溝曲がり部21a及び第4溝曲がり部21bと、が有り、比D3/LBを0.1~0.3とすることにより、ヒールアンドトウ摩耗が改善されることがわかる。
 表2の実施例4と表1の実施例1の比較より、周方向副溝の底上げ部があることにより、ヒールアンドトウ摩耗を改善することがわかる。また、表2の実施例4~8より、比D2/Tは、0.05未満であることがヒールアンドトウ摩耗を改善する上で好ましいことがわかる。
 表3の実施例9~13より、比D1/Tは、0.03~0.09であることがヒールアンドトウ摩耗を改善する上で好ましいことがわかる。
 表4の実施例14~17より、連結溝部の傾斜角度は、0~5度であることが、ヒールアンドトウ摩耗を改善する上で好ましいことがわかる。
 表5の実施例18~22より、比D5/D3は、0.3~0.7であることが、ヒールアンドトウ摩耗を改善する上で好ましいことがわかる。
 表6の実施例23~27より、比P6/P5は1.0~2.5であることが、ヒールアンドトウ摩耗を改善する上で好ましいことがわかる。また、表6の実施例25と実施例28の比較より、周方向副溝の開始位置がタイヤ幅方向で位置ずれしていることが、ヒールアンドトウ摩耗を改善する上で好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上より、本実施形態のタイヤの効果は明らかである。
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1 空気入りタイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
4a ビードコア
5 カーカス層
6 ベルト層
6a 第1の交差ベルト層
6b 第2の交差ベルト層
6c 第3の交差ベルト層
10,110 ショルダーラグ溝
11 主溝曲がり部
11a 第5溝曲がり部
11b 第6溝曲がり部
12,112 周方向主溝
12a 底上げ部
14,114 センターラグ溝
14a 第1溝曲がり部
14b 第2溝曲がり部
16,116 センターブロック
18 トレッド端
20 周方向副溝
21a 第3溝曲がり部
21b 第4溝曲がり部

Claims (17)

  1.  トレッドパターン付き空気入りタイヤであって、
    前記トレッドパターンは、
     タイヤ周方向に間隔をあけて複数設けられ、タイヤ赤道線を横切るようにタイヤ赤道線を基準としたタイヤ幅方向の第1の側及び第2の側の半トレッド領域のそれぞれに延びて両端を有するセンターラグ溝と、
     タイヤ周方向に間隔をあけて複数設けられ、前記半トレッド領域のそれぞれにおいて、タイヤ幅方向外側に延びて、タイヤ幅方向外側の端がタイヤ幅方向の両側にある接地端に開口するショルダーラグ溝であって、タイヤ周方向において、前記センターラグ溝のうちタイヤ周方向に隣りあう隣接センターラグ溝の端の間に1つずつ設けられたショルダーラグ溝と、
     前記半トレッド領域のそれぞれにおいて、前記センターラグ溝の端と、前記ショルダーラグ溝のタイヤ幅方向の内側の端を交互に接続するようにタイヤ周上全周にわたって波形状に形成され、前記ショルダーラグ溝より溝幅が狭く、前記半トレッド領域に設けられた一対の周方向主溝と、
     前記センターラグ溝と前記一対の周方向主溝によって画されてタイヤ周方向に一列に複数形成されたセンターブロックと、
     前記センターブロックの領域に形成され、前記センターラグ溝のうちタイヤ周方向に隣り合うセンターラグ溝間を接続する周方向副溝と、を備え、
     前記センターラグ溝のそれぞれは、屈曲形状あるいは湾曲形状のラグ溝曲がり部を少なくとも1つ以上有し、
     前記周方向副溝のそれぞれは、屈曲形状あるいは湾曲形状の副溝曲がり部を少なくとも1つ以上有し、前記ラグ溝曲がり部において前記センターラグ溝と接続し、
     前記センターラグ溝の最大溝深さD3の、前記センターブロックのタイヤ周方向における最大幅LBに対する比D3/LBは、0.1~0.3である、ことを特徴とする重荷重用空気入りタイヤ。
  2.  前記ラグ溝曲がり部は、前記第1の側においてタイヤ周方向の第3の側に突出するように屈曲又は湾曲する第1溝曲がり部と、前記第2の側においてタイヤ周方向の前記第3の側の反対側である第4の側に突出するように屈曲又は湾曲する第2溝曲がり部と、を含み、
     前記センターラグ溝が前記周方向主溝と接続する前記第1の側の第1接続端部及び前記第2の側の第2接続端部は、前記周方向主溝のタイヤ幅方向の内側の先端と接続し、前記センターラグ溝の前記第2接続端部は、前記第1接続端部よりもタイヤ周方向の第3の側にあり、
     前記センターラグ溝の溝幅方向の中心位置に関し、前記第1接続端部と前記第1溝曲がり部がタイヤ周方向の前記第3の側に突出する突出端とを結ぶ第1直線のタイヤ幅方向に対する傾斜角度、および、前記第2接続端部と前記第2溝曲がり部がタイヤ周方向の前記第4の側に突出する突出端とを結ぶ第2直線のタイヤ幅方向に対する傾斜角度は、前記センターラグ溝の前記第1接続端部と前記第2接続端部を結ぶ第3直線のタイヤ幅方向に対する傾斜角度よりも大きい、請求項1に記載の重荷重用空気入りタイヤ。
  3.  前記センターラグ溝の溝幅方向の中心位置に関し、前記第1溝曲がり部がタイヤ周方向の前記第3の側に突出する突出端と前記第1接続端部との間の前記センターラグ溝の部分は、前記第1直線上、あるいは前記第1直線に対して前記第3の側にあり、前記第2溝曲がり部がタイヤ周方向の前記第4の側に突出する突出端と前記第2接続端部との間の前記センターラグ溝の部分は、前記第2直線上、あるいは前記第2直線に対して前記第4の側にある、請求項2に記載の重荷重用空気入りタイヤ。
  4.  前記一対の周方向主溝それぞれにおいて、溝深さが部分的に浅くなった底上げ部を備える、請求項1~3のいずれか1項に記載の重荷重用空気入りタイヤ。
  5.  前記底上げ部における溝深さD2及び前記トレッド部のタイヤ幅方向のトレッド幅Tに関して、比D2/Tは、0.05未満である、請求項4に記載の重荷重用空気入りタイヤ。
  6.  前記周方向主溝の最大溝深さD1の、前記トレッド部のトレッド幅Tに対する比D1/Tは、0.03~0.09である、請求項1~5のいずれか1項に記載の重荷重用空気入りタイヤ。
  7.  前記副溝曲がり部は、第3溝曲がり部と第4溝曲がり部を備え、前記第3溝曲がり部と前記第4溝曲がり部の位置と、前記周方向副溝と前記センターラグ溝の1つとの接続部との間を連結する連結溝部を有し、前記連結溝部の、タイヤ周方向に対する傾斜角は0~5度である、請求項1~6のいずれか1項に記載の重荷重用空気入りタイヤ。
  8.  前記連結溝部の最大溝深さD5は、前記センターラグ溝の最大溝深さD3に比べて浅い、請求項7に記載の重荷重用空気入りタイヤ。
  9.  前記最大溝深さD5の、前記最大溝深さD3に対する比D5/D3は、0.3~0.75である、請求項8に記載の重荷重用空気入りタイヤ。
  10.  前記第3溝曲がり部と前記第4溝曲がり部の位置を結ぶ中間溝部をタイヤ赤道線が横切る、請求項7~9のいずれか1項に記載の重荷重用空気入りタイヤ。
  11.  前記中間溝部の最大溝幅P6は、前記連結溝部の最大溝幅P5と同等か、前記最大溝幅P5に比べて大きい、請求項10に記載の重荷重用空気入りタイヤ。
  12.  前記最大溝幅P6の、前記最大溝幅P5に対する比P6/P5は、1~2.5である、請求項11に記載の重荷重用空気入りタイヤ。
  13.  前記センターラグ溝それぞれから延びる前記周方向副溝のタイヤ幅方向の2つの開始位置は、お互いに位置ずれしている、請求項1~12のいずれか1項に記載の重荷重用空気入りタイヤ。
  14.  タイヤ幅方向における前記2つの開始位置は、タイヤ赤道線を基準としてタイヤ幅方向のお互いに異なる側に位置する、請求項13に記載の重荷重用空気入りタイヤ。
  15.  波形状の前記周方向主溝のうちタイヤ幅方向外側に凸状を成して曲がる主溝曲がり部に対応して形成される前記センターブロックの頂部は、いずれも鈍角の角部である、請求項1~14のいずれか1項に記載の重荷重用空気入りタイヤ。
  16.  前記一対の周方向主溝及び前記センターラグ溝の溝幅は、いずれも7~20mmである、請求項1~15のいずれか1項に記載の重荷重用空気入りタイヤ。
  17.  建設用車両または産業用車両に装着される、請求項1~16のいずれか1項に記載の重荷重用空気入りタイヤ。
PCT/JP2015/070932 2014-07-23 2015-07-23 重荷重用空気入りタイヤ WO2016013602A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015536688A JP6229724B2 (ja) 2014-07-23 2015-07-23 重荷重用空気入りタイヤ
AU2015293162A AU2015293162B2 (en) 2014-07-23 2015-07-23 Pneumatic tire for heavy loads
CN201580038831.0A CN106660403B (zh) 2014-07-23 2015-07-23 重载荷用充气轮胎
RU2017105482A RU2633048C1 (ru) 2014-07-23 2015-07-23 Пневматическая шина для высоконагруженных машин
US15/328,466 US9962997B2 (en) 2014-07-23 2015-07-23 Heavy duty pneumatic tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014149823 2014-07-23
JP2014-149823 2014-07-23
JPPCT/JP2015/063719 2015-05-13
PCT/JP2015/063719 WO2016013276A1 (ja) 2014-07-23 2015-05-13 重荷重用空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2016013602A1 true WO2016013602A1 (ja) 2016-01-28

Family

ID=55163126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070932 WO2016013602A1 (ja) 2014-07-23 2015-07-23 重荷重用空気入りタイヤ

Country Status (6)

Country Link
US (1) US9962997B2 (ja)
JP (1) JP6229724B2 (ja)
CN (1) CN106660403B (ja)
AU (1) AU2015293162B2 (ja)
RU (1) RU2633048C1 (ja)
WO (1) WO2016013602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724546B2 (en) 2018-01-16 2023-08-15 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235345A1 (ja) * 2017-06-22 2018-12-27 株式会社ブリヂストン 重荷重用タイヤ
JP7115132B2 (ja) * 2018-08-10 2022-08-09 横浜ゴム株式会社 空気入りタイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098914A (ja) * 2002-09-11 2004-04-02 Bridgestone Corp 重荷重用タイヤ
JP2004224131A (ja) * 2003-01-21 2004-08-12 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
WO2006001202A1 (ja) * 2004-06-23 2006-01-05 Bridgestone Corporation 空気入りタイヤ
JP2006151083A (ja) * 2004-11-26 2006-06-15 Bridgestone Corp 重荷重車両用タイヤ
JP2007191093A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 建設車両用タイヤ
JP2008279976A (ja) * 2007-05-14 2008-11-20 Bridgestone Corp 建設車両用重荷重空気入りラジアルタイヤ
JP2010125999A (ja) * 2008-11-27 2010-06-10 Bridgestone Corp タイヤ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569056B2 (ja) 1995-11-15 2004-09-22 株式会社ブリヂストン 空気入りタイヤ
USD457128S1 (en) * 2001-02-20 2002-05-14 The Goodyear Tire & Rubber Company Tire tread
JP4330561B2 (ja) * 2005-07-12 2009-09-16 住友ゴム工業株式会社 重荷重用タイヤ
ES2355158T3 (es) * 2005-08-08 2011-03-23 Bridgestone Corporation Neumático para vehículo de construcción.
JP2008114738A (ja) 2006-11-06 2008-05-22 Bridgestone Corp 重荷重用タイヤおよびその使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098914A (ja) * 2002-09-11 2004-04-02 Bridgestone Corp 重荷重用タイヤ
JP2004224131A (ja) * 2003-01-21 2004-08-12 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
WO2006001202A1 (ja) * 2004-06-23 2006-01-05 Bridgestone Corporation 空気入りタイヤ
JP2006151083A (ja) * 2004-11-26 2006-06-15 Bridgestone Corp 重荷重車両用タイヤ
JP2007191093A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 建設車両用タイヤ
JP2008279976A (ja) * 2007-05-14 2008-11-20 Bridgestone Corp 建設車両用重荷重空気入りラジアルタイヤ
JP2010125999A (ja) * 2008-11-27 2010-06-10 Bridgestone Corp タイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724546B2 (en) 2018-01-16 2023-08-15 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
AU2015293162B2 (en) 2017-08-03
US20170210181A1 (en) 2017-07-27
JPWO2016013602A1 (ja) 2017-04-27
CN106660403B (zh) 2019-03-08
RU2633048C1 (ru) 2017-10-11
US9962997B2 (en) 2018-05-08
CN106660403A (zh) 2017-05-10
AU2015293162A9 (en) 2017-04-20
AU2015293162A1 (en) 2017-03-02
JP6229724B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6229727B2 (ja) 重荷重用空気入りタイヤ
JP6229735B2 (ja) 重荷重用空気入りタイヤ
JP6229722B2 (ja) 重荷重用空気入りタイヤ
WO2016013604A1 (ja) 重荷重用空気入りタイヤ
JP6229723B2 (ja) 重荷重用空気入りタイヤ
US9987885B2 (en) Heavy duty pneumatic tire
JP6432518B2 (ja) 空気入りタイヤ
JP6229724B2 (ja) 重荷重用空気入りタイヤ
JP6229734B2 (ja) 空気入りタイヤ
JP5910795B1 (ja) 重荷重用空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015536688

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15328466

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017105482

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015293162

Country of ref document: AU

Date of ref document: 20150723

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15825049

Country of ref document: EP

Kind code of ref document: A1