WO2016010317A1 - 광학투명레진을 이용한 디스플레이 모듈 제조방법 - Google Patents

광학투명레진을 이용한 디스플레이 모듈 제조방법 Download PDF

Info

Publication number
WO2016010317A1
WO2016010317A1 PCT/KR2015/007243 KR2015007243W WO2016010317A1 WO 2016010317 A1 WO2016010317 A1 WO 2016010317A1 KR 2015007243 W KR2015007243 W KR 2015007243W WO 2016010317 A1 WO2016010317 A1 WO 2016010317A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent resin
curing
substrate
display module
optically transparent
Prior art date
Application number
PCT/KR2015/007243
Other languages
English (en)
French (fr)
Inventor
송준용
신승협
최미경
지석환
최준호
김용우
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201580036632.6A priority Critical patent/CN106471563A/zh
Publication of WO2016010317A1 publication Critical patent/WO2016010317A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a novel display module manufacturing method, and more particularly, after coating one type of optically transparent resin on a substrate, the curing is selectively performed by UV scanning using a shutter-type LED bar or scanning using a mask. It relates to a display module manufacturing method using an optically transparent resin comprising the step of.
  • the air gap between the touch panel and display can be changed to optically clear resin (OCA), optically clear adhesive (OCA) or liquid optically clear adhesive (LOCA).
  • OCA optically clear resin
  • OCA optically clear adhesive
  • LOCA liquid optically clear adhesive
  • Optically transparent resins are easier to rework than adhesive tapes and have better gap filling capabilities, making the use of optically transparent resins (OCR or LOCA) partly popular in the manufacture of display applications.
  • OCR or LOCA optically transparent resins
  • optically transparent resins are in liquid form, special care must be taken when applying them to substrates to avoid introducing bubbles or voids between the substrates.
  • the optically transparent resin may be difficult to control various parameters depending on the manufacturing method, and the inconsistency in the mechanical or control parts may lead to high parts failure rate or defects in the visual quality of the final product. . It can also have a significant impact on productivity and manufacturing costs.
  • a display module manufacturing method using an optically transparent resin is recognized as an important factor in manufacturing a display device (display), and various methods for this are currently being developed.
  • Such a manufacturing method is a Y map method and a dam method using two kinds of optical transparent resin (OCR or LOCA) materials.
  • OCR or LOCA optical transparent resin
  • the Y map method has the largest overflow control problem
  • the DAM method uses two kinds of optically transparent resin materials.
  • There are problems such as process control problems and interface stain between different materials.
  • it is also a problem to be solved for product defects caused by bubbles or voids after bonding.
  • stable bonding due to the weight and sagging of the bonding substrate during bonding may also be a problem, which may also cause a defect.
  • the present invention uses one type of optically transparent resin and after coating the optically transparent resin on the substrate by selectively curing by using a scanning method or a mask method using a UV lamp equipped with a shutter
  • An object of the present invention is to provide a display module manufacturing method using an optically transparent resin that can minimize processability, productivity, and minimize component defects.
  • the present invention to achieve the above object
  • It provides a display module manufacturing method using an optically transparent resin comprising a.
  • the first substrate may include at least one display panel selected from the group consisting of a liquid crystal display (LCD) panel, an organic light emitting diods (OLED) panel, a cover glass, and a cover plastic. Display panel).
  • LCD liquid crystal display
  • OLED organic light emitting diods
  • the refractive index of the optically transparent resin that is selectively cured in the selective curing using the scan and mask method is 1.30 to 1.70 and the degree of curing is 30% to 100% of the degree of curing.
  • the dot can be formed and the degree of cure can be measured by Fourier transform infrared spectroscopy (FT-IR).
  • the UV lamp performs scanning and simultaneously attaches the shutter to the UV lamp to operate the shutter with respect to the desired and undesired areas.
  • Selective curing can be carried out accordingly.
  • the shutter is covered at the part not desired to be hardened, and the shutter is opened at the part desired to be hardened to harden only the part desired to be hardened, thereby forming a dam, partition, or dot through selective hardening. .
  • selective curing is performed by forming a pattern in which ultraviolet light is not transmitted to a portion that does not want to be cured, or an optically transparent resin is desired for each portion using a mask whose transmittance is controlled.
  • the second substrate may be at least one of a cover glass, a cover glass, a cover plastic, or a film for a touch screen panel.
  • the bonding process using the second substrate may be performed in a vacuum or normal pressure.
  • the present invention also provides a display module manufactured according to the above manufacturing method.
  • an overflow of the liquid optically transparent resin material flows out of the first substrate by forming a dam, a partition or a dot through selective curing through a scan or mask method.
  • the phenomenon can be prevented and only one type of optically transparent resin can be used to exhibit dam effect. It also has a favorable advantage in yield management, and it also solves the problem of interface staining between dissimilar materials that may occur when using two kinds of materials.
  • narrow bezel Narrow bezel
  • the optically transparent resin exists in the liquid state for the part not cured through selective curing, it is advantageous to control bubbles and voids that may occur when bonding with the second substrate, thereby maintaining a high product yield.
  • the final product failure rate can be significantly lowered.
  • the development of narrow bezel has the advantage that can accurately apply and control the material to the desired position.
  • the optically transparent resin when the optically transparent resin is applied to a large-area substrate, an overflow and adhesion failure of the material due to the weight and sag of the substrate occur.
  • the optically transparent resin is formed by forming a dam, a partition, or a dot through selective curing. This large area substrate can be supported to increase the fairness and significantly lower the defects.
  • the optical transparent resin OCR or LOCA
  • alignment can be performed by moving from side to side in a state where the first substrate and the second substrate are bonded together, and after that, the process can be finished through a complete curing process. have.
  • the reason why this process is possible is a process in which the uncured portion can be present in the liquid state by performing selective curing. Since the alignment process can be performed after bonding, eliminating the need to perform the optical transparent resin (OCR or LOCA) removal process and the bonding process again in case of alignment failure, thereby eliminating the process, time and cost aspects. Has many advantages.
  • the display module when the display module is attached through the scan and mask method, it is possible to easily cope with various sizes of smartphones and tablet devices that are diversified and diversified, and even ultraviolet rays lamps can be made even if they are large-scaled like monitors and TVs.
  • By adjusting the size of the bar or shutter and replacing the mask it can be easily applied to various display devices to manufacture the display module, and it is advantageous in terms of productivity and productivity.
  • the method of the present invention can be applied to a display module including a display panel, a touch screen panel and various functional substrates.
  • FIG. 1 is an overall configuration diagram of a display module according to an embodiment of the present invention.
  • FIG. 2 is a flow chart sequentially showing a manufacturing process according to an embodiment of the present invention.
  • 3 to 10 is a configuration diagram sequentially showing a manufacturing process according to an embodiment of the present invention.
  • a display module includes a first substrate, an optically transparent resin (OCR or LOCA) to be coated on the first substrate, an ultraviolet lamp to selectively cure for the optically transparent resin and a post-bonding curing, and A shutter and a mask for curing, and a second substrate to be combined with the first substrate coated with the optical transparent resin to be configured as a display module.
  • OCR optically transparent resin
  • LOCA ultraviolet lamp
  • a shutter and a mask for curing and a second substrate to be combined with the first substrate coated with the optical transparent resin to be configured as a display module.
  • FIG. 1 shows an overall configuration diagram of a display module 100 according to an embodiment of the present invention.
  • the display module 100 shown in FIG. 1 uses a scan method for selective curing, and includes a first substrate 110, an optically transparent resin 120, and an ultraviolet lamp (UV or UV-LED) 130. And a shutter 140 and a second substrate 150.
  • a scan method for selective curing uses a scan method for selective curing, and includes a first substrate 110, an optically transparent resin 120, and an ultraviolet lamp (UV or UV-LED) 130.
  • UV or UV-LED ultraviolet lamp
  • the first substrate 110 may be a display panel, for example, a liquid crystal display (LCD) panel, an organic light emitting diods (OLED) panel, a cover glass, and a cover plastic. plastic) and one or more selected from the group consisting of.
  • LCD liquid crystal display
  • OLED organic light emitting diods
  • the material designated as the optically transparent resin 120 refers to an ultraviolet curable resin based on a material cured in response to ultraviolet rays.
  • the optically transparent resin 120 is used to eliminate the air gap existing between the first substrate 110 and the second substrate 150, thereby improving the durability and optical characteristics of the display module. Can be.
  • the optical transparent resin 120 has a point and adhesive property, the first substrate 110 and the second substrate 150 may be bonded to each other.
  • the optically transparent resin 120 may be cured with ultraviolet rays, the refractive index is preferably having a level of 1.30 to 1.70.
  • the optically transparent resin 120 may be coated on the first substrate 110 by a desired area according to the purpose, and the coating may be performed using a dispensing, screen printing, or slit die method. It can be performed using.
  • the optically transparent resin 120 may include a dam, a partition, or a dot area formed by selective curing.
  • the degree of hardening of the dam, the partition wall or the dot region may be about 30% to 100%, and more preferably maintaining about 55% to 100% is suitable to serve as the dam, the partition wall or the dot.
  • the degree of cure may be measured through Fourier transform infrared spectroscopy (FT-IR).
  • the dam, bulkhead, or dot formed through selective hardening prevents overflow, so that the material is applied as much as desired area, and the material flows in the process of adhering with the second substrate 150.
  • the large-area substrate may also serve as a support according to the weight and sag of the substrate.
  • the ultraviolet lamp 130 is a bar type (Bar) type used for the purpose of performing the front curing after the selective curing of the optical transparent resin 120 and the bonding with the second substrate 150, mercury lamp, metal lamp, It includes lamps capable of ultraviolet (UV) irradiation such as gallium lamps, arc lamps, xenon lamps, UV-LED lamps.
  • UV-LED lamp it may be a lamp capable of UV irradiation using LED chips such as 365 nm, 385 nm, 395 nm, 405 nm, preferably using a UV-LED lamp excellent in lamp life, heat generation, etc. desirable.
  • the UV lamp 130 shown in FIG. 1 may pass through an area requiring curing in a bar type.
  • the shutter 140 is mounted to the ultraviolet lamp 130 to be used for the purpose of enabling selective curing when the ultraviolet lamp 130 goes through, and in the area to be cured, the shutter 140 does not irradiate the irradiated portion at all. Since the shutter 140 covers the optically transparent resin 120 in a desired region for curing, the selective curing of the desired part may be performed after coating the optically transparent resin 120. . In addition, after bonding to the second substrate 150, the shutter 140 may irradiate the entire surface by irradiating the UV lamp 130 at all.
  • the shutter 140 operates horizontally or vertically with respect to the UV lamp 130 to selectively cover a portion where the UV lamp 130 does not want to be irradiated, and adjusts the width of the shutter 140 to cure. It is possible to selectively irradiate the necessary parts.
  • the material of the shutter 140 may be any material that can prevent more than 90% of UV transmission to the UV lamp 130, and more preferably, metal, plastic, or glass that can block 98% of UV transmission. Etc., but is not limited thereto.
  • the second substrate 150 may be a substrate that can be manufactured by bonding to a display panel, such as tempered glass, LCD glass, or a plastic substrate for a flexible panel.
  • a cover glass for a touch screen panel is provided.
  • Cover glass, cover plastic and film may be one or more selected from the group consisting of.
  • the first substrate 110 and the second substrate 150 may be used interchangeably depending on the purpose. That is, after the optical transparent resin 120 is coated on the second substrate 150, the side hardening is performed, and after bonding with the first substrate 110, the substrate is turned upside down and then turned over to the front surface through photocuring or thermal curing. The process of hardening is also possible.
  • a method of manufacturing a display module using an optically transparent resin may include applying an optically transparent resin to a first substrate (P110), and selectively curing the optically transparent resin layer using a scan or mask method using an ultraviolet lamp. Forming dams, barrier ribs, or dot regions through (P120, P121), bonding the vacuum or atmospheric pressure by using a second substrate (P130), and bonding the first substrate and the second substrate by using an ultraviolet lamp. Irradiating in a front or scan manner (P140).
  • the optical transparent resin is applied to the first substrate by a slit die method (P110).
  • the entire surface or scan curing through the ultraviolet lamp is performed using a mask drawn by opening a lattice pattern or a dot pattern on a portion to be cured.
  • the parts except the lattice pattern and the dot pattern are blocked by metal or film that can block UV rays, so that curing by UV rays is not possible.
  • only the lattice pattern and the dot pattern portion are opened to the mask, thereby forming a selective lattice and dot (P121).
  • the degree of curing may be selectively adjusted so that the optically transparent resin is cured for each part by using a mask having a controlled transmittance.
  • the second substrate is bonded to the first substrate coated with the optically transparent resin, and the bonding may be performed under vacuum or atmospheric pressure (P130).
  • the front surface of the first substrate and the second substrate bonded together is completely cured through an ultraviolet lamp of bar type or front irradiation type (P140).
  • an ultraviolet lamp of bar type or front irradiation type P140
  • thermal curing may also be used.
  • FIG. 3 is a configuration diagram sequentially showing a manufacturing process according to an embodiment of the present invention, each step of Figures 4 to 10 as follows.
  • the optically transparent resin 120 may be coated by various methods such as dispensing, slit die, and screen printing, and preferably, the slit die 160 may be coated.
  • FIG. 5 illustrates a step of forming a dam (FIGS. 7 and 121) by performing selective side partial curing through scanning using the UV-LED ultraviolet lamp 130.
  • the optically transparent resin 120 is a material that is cured in response to the ultraviolet lamp 130, and the light source refers to an ultraviolet light source (Ultra-Violet).
  • Mercury, a metal, a gallium, a xenon lamp, a UV-LED lamp etc. are mentioned as a kind of ultraviolet light source,
  • ramp which can irradiate ultraviolet rays can be applied to the said process.
  • the step of FIG. 5 includes a step of performing selective side hardening of the optically transparent resin 120 through the movement of the shutter 140 when the ultraviolet lamp 130 is scanned.
  • the side portion of the flowable optical transparent resin 120 may be cured to prevent the overflow of the optical transparent resin 120 flowing out of the first substrate 110.
  • the first substrate 110 and the second substrate 150 is bonded in the step of the overflow that flows out of the substrate can be prevented.
  • the size of the ultraviolet lamp 130 and the shutter 140 can be adjusted to be applicable to the display module of various models and sizes, it is possible to greatly improve the investment cost, fairness and productivity.
  • FIG. 7 shows the dam 121 region formed in the optically transparent resin 120 and the inner liquid region 122 present in a coated state through the process of FIG. 5.
  • the dam 121 region prevents the overflow of the optically transparent resin 120, and since the inner liquid region 122 is in a liquid phase, defects due to bubbles and voids in the bonding process of FIG. Can be removed.
  • FIG. 6 illustrates a selective curing using a bar type UV lamp 130 or a front irradiation type UV lamp 170 using a barrier 180 or a dot patterned mask 180 to form a partition wall (FIGS. 8 and 121). Represents a step.
  • the optically transparent resin 120 is a material that is cured in response to the ultraviolet lamps 130 and 170, and the selective hardening is performed only on a portion that transmits light through a pattern engraved in the mask 180 to form a partition wall (FIGS. 8 and 121). Form. Therefore, the portion of the optically transparent resin 120 having flow is cured by being exposed to light, thereby preventing an overflow phenomenon flowing out of the first substrate 110 of the optically transparent resin 120, and through a large-area substrate. When bonding, it is possible to prevent overflow, bubbles, and void defects due to the weight and sag of the second substrate 150.
  • the size of the mask 180 and the pattern of the partition wall and the dot it can be applied to a display module of various models and sizes, it is possible to greatly improve the investment cost, fairness and productivity.
  • FIG. 8 illustrates the partition (FIGS. 8 and 121) region formed by the optically transparent resin 120 and the internal liquid phase regions (FIGS. 8 and 122) present in a coated state through the FIG. 6 process.
  • the optically transparent resin 120 By selectively curing the optically transparent resin 120 as described above, not only the optically transparent resin 120 can be applied to a desired area, but also overflow can be prevented, and the internal liquid region (FIGS. 8 and 122) is a liquid phase. Since present in FIG. 9 can be eliminated defects due to bubbles and voids in the bonding process of FIG.
  • the bonding process may be performed at atmospheric pressure or vacuum, and since the inside of the optically transparent resin 120 maintains a liquid state even after the bonding, bubble and void defects may be significantly reduced.
  • the vacuum chamber is unnecessary, so the investment cost is low compared to the vacuum bonding, but it has a disadvantage in that the bonding time is longer and the bubble and void defect rate is higher than that of the vacuum bonding.
  • Vacuum bonding has advantages such as fast bonding time, low defect rate for bubbles and voids as opposed to atmospheric bonding, but has a disadvantage in that the investment cost for constructing the vacuum chamber is high.
  • Such a bonding process may be appropriately selected in consideration of the size, productivity, and processability of the display module.
  • the front surface irradiation may proceed through the front side scanning using the bar type ultraviolet lamp 130, or may be cured through the front side irradiation using the front side irradiation type ultraviolet lamp 170.
  • Such a process may be selected in consideration of the characteristics, processability and productivity of the optically transparent resin 120.
  • the display module when the display module is bonded using the optically transparent resin according to the method of the present invention, it is possible to control the overflow phenomenon during coating and bonding, which is a disadvantage of the conventional Y map method. It also solves the problems of material management and process control for the use of two types of materials, which are disadvantages of dams using two types of optically transparent resins, and due to the use of different materials, they appear on the interface between the dam and the filling resin. The problem of staining can also be solved.
  • an overflow of the liquid optically transparent resin material flows out of the first substrate by forming a dam, a partition or a dot through selective curing through a scan or mask method.
  • the phenomenon can be prevented and only one type of optically transparent resin can be used to exhibit a dam effect. Therefore, it can be used for material management, fairness, and bonding products in preparation for the existing process of forming a dam using two types of optically transparent resin. It also has a favorable advantage in yield management, and it also solves the problem of interface staining between dissimilar materials that may occur when using two kinds of materials.
  • narrow bezel Narrow bezel
  • the optically transparent resin exists in the liquid state for the part not cured through selective curing, it is advantageous to control bubbles and voids that may occur when bonding with the second substrate, thereby maintaining a high product yield.
  • the final product failure rate can be significantly lowered.
  • the development of narrow bezel has the advantage that can accurately apply and control the material to the desired position.
  • the optically transparent resin when the optically transparent resin is applied to a large-area substrate, an overflow and adhesion failure of the material due to the weight and sag of the substrate occur.
  • the optically transparent resin is formed by forming a dam, a partition, or a dot through selective curing. This large area substrate can be supported to increase the fairness and significantly lower the defects.
  • the optical transparent resin OCR or LOCA
  • alignment can be performed by moving from side to side in a state where the first substrate and the second substrate are bonded together, and after that, the process can be finished through a complete curing process. have.
  • the reason why this process is possible is a process in which the uncured portion can be present in the liquid state by performing selective curing. Since the alignment process can be performed after bonding, eliminating the need to perform the optical transparent resin (OCR or LOCA) removal process and the bonding process again in case of alignment failure, thereby eliminating the process, time and cost aspects. Has many advantages.
  • the display module when the display module is attached through the scan and mask method, it is possible to easily cope with various sizes of smartphones and tablet devices that are diversified and diversified, and even ultraviolet rays lamps can be made even if they are large-scaled like monitors and TVs.
  • By adjusting the size of the bar or shutter and replacing the mask it can be easily applied to various display devices to manufacture the display module, and it is advantageous in terms of productivity and productivity.
  • the method of the present invention can be applied to a display module including a display panel, a touch screen panel and various functional substrates.

Abstract

본 발명은 신규한 디스플레이 모듈 제조방법에 관한 것으로, 더욱 상세하게는 1종의 광학투명레진을 기판에 코팅한 후, 셔터 방식의 LED 바를 이용한 자외선 스캔 또는 마스크를 이용한 스캔을 통하여 선택적으로 경화를 실시하는 단계를 포함하는 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 합착 방법에 관한 것이다. 본 발명의 제조방법은 1종의 광학투명레진을 사용하고 광학투명레진을 기판에 코팅한 후에 셔터를 이용하는 자외선 스캔 또는 마스크 방식을 이용하여 선택적으로 경화시킴으로써 오버플로우(overflow), 버블(Bubbles) 및 보이드(Voids) 불량을 제어하여 공정성, 생산성향상 및 부품결함을 최소화할 수 있으므로, 디스플레이 패널, 터치 스크린 패널 및 다양한 기능성 기판을 포함하는 디스플레이 모듈에 적용될 수 있다.

Description

광학투명레진을 이용한 디스플레이 모듈 제조방법
본 발명은 신규한 디스플레이 모듈 제조방법에 관한 것으로, 더욱 상세하게는 1종의 광학투명레진을 기판에 코팅한 후, 셔터 방식의 LED 바를 이용한 자외선 스캔 또는 마스크를 이용한 스캔을 통하여 선택적으로 경화를 실시하는 단계를 포함하는 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법에 관한 것이다.
최근 스마트폰, 태블릿 PC의 보편화로 스마트 시대가 본격적으로 열리기 시작하였다. 기존의 휴대폰이 통신 기능에 특화되어 있었다면, 최근의 스마트 기기들은 통신기능 외에 데스크탑, 노트북 등을 대체할 수준의 성능을 나타내고 있다.
이로 인해 고성능 디스플레이에 대한 필요성 및 중요성이 더욱 강조되고 있으며, 특히 모바일 및 태블릿 기기들의 야외시인성 및 화질 특성에 대한 요구가 끊임없이 증가하고 있다.
이러한 추세에 편승해, 터치패널과 디스플레이(LCD, OLED)간의 에어갭(air gap)을 광학투명레진(optically clear resin(OCA), optically clear adhesive(OCA) 또는 liquid optically clear adhesive(LOCA))으로 충진하게 되면 야외시인성 및 전반적인 시인성 향상 효과가 매우 크고, 디스플레이의 성능 향상으로 인해 전체 제품의 이미지 상승에 지대한 영향을 미친다. 현재 스마트폰으로는 광학투명레진으로 에어갭을 모두 없앤 제품들이 시장의 주류를 이루고 있으며, 이는 태블릿, 노트북 등으로 점차 확대되고 있는 추세이다.
이러한 추세에 따라, 시장에서 많은 형태의 기기들이 공격적으로 개발되고 있다. 이러한 기기들은 사용 목적에 따라, 다수의 기판 또는 필름들이 적층되어 사용되며, 이러한 기판들 중 하나 이상은 광학투명레진을 이용하여 함께 합착(bonding)된다.
광학투명레진은 접착 테이프에 비해 재작업이 용이하고 우수한 갭 충전(gap filling) 능력을 갖기 때문에, 디스플레이 애플리케이션의 제조에 있어서 부분적으로 광학투명레진(OCR or LOCA)의 사용이 대중화 되었다. 그러나 광학투명레진은 액체 형태이므로, 이들을 기판들에 도포할 때 기판들 사이에 버블(bubbles) 또는 보이드(voids)의 도입을 피하도록 특별히 주의해야한다.
또한 광학투명레진은 제조방법에 따라, 다양한 파라미터를 제어하는 것이 어려울 수 있으며, 기구적 또는 제어적인 부분에서 일관성이 떨어질수록 높은 부품의 불량율 또는 최종 제품의 시각적 품질에 있어서의 결함들로 이어질 수 있다. 이는 또한 생산성 및 제조원가에도 적지 않은 영향을 미칠 수 있다.
이러한 이유로 광학투명레진을 이용한 디스플레이 모듈 제조방법은 화면표시장치(디스플레이)의 제조에 있어서 중요한 요인으로 인식되고 있으며, 현재 이에 대한 다양한 방법들이 개발되고 있다.
이러한 제조방법의 대표적인 예로는 와이맵(Y map)방법과 두 종류의 광학투명레진(OCR or LOCA) 재료를 이용한 댐(DAM) 방법이 있다. 그러나 이러한 제조방법들은 다양한 문제점들을 가지고 있는데, 와이맵(Y map) 방법의 경우에는 오버플로우(Overflow) 컨트롤 문제가 가장 크며, 댐(DAM) 방법의 경우에는 두 종류의 광학투명레진 재료를 사용함에 따른 공정 컨트롤 문제 및 이종 재료간의 경계면 얼룩 등의 문제점을 가지고 있다. 이러한 문제점 이외에도 합착 후에 버블 또는 보이드 생성으로 인한 제품불량문제도 해결해야 할 과제이다. 또한, 대면적화 되었을 경우, 합착시에 합착 기판의 무게 및 쳐짐 등으로 인한 안정적인 합착도 문제시 될 수 있으며, 이로 인한 불량도 야기될 수 있다.
상기와 같은 문제점을 해결하기 위해, 본 발명은 1종의 광학투명레진을 사용하고 광학투명레진을 기판에 코팅한 후에 셔터가 장착된 자외선 램프를 이용한 스캔 방식 또는 마스크 방식을 이용하여 선택적으로 경화시킴으로써 공정성, 생산성 향상 및 부품결함을 최소화할 수 있는 광학투명레진을 이용한 디스플레이 모듈 제조방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명은
1) 제1기판에 1종의 광학투명레진(OCR or LOCA)을 도포하는 단계;
2) i) 셔터(shutter)가 장착된 자외선 램프를 이용하여 스캔(Scan) 방식으로 상기 광학투명레진 층을 선택적으로 경화시켜 댐(DAM), 격벽 또는 닷(Dot)을 형성하는 단계; 또는
ii) 광경화를 원하는 부분에 대하여 패터닝된 마스크(Mask)를 이용하여 자외선 램프로 스캔 또는 전면 조사하는 방식으로 상기 광학투명레진 층을 선택적으로 경화시켜 댐, 격벽 또는 닷을 형성하는 단계;
3) 상기 부분 경화된 제1기판과 제2기판을 진공 또는 상압으로 합착하는 단계; 및
4) 상기 합착된 제 1기판과 제2기판을 자외선램프를 이용한 스캔 또는 전면조사, 또는 열을 이용한 열경화로 완전 경화시키는 단계
를 포함하는 광학투명레진을 이용한 디스플레이 모듈 제조방법을 제공한다.
본 발명에서 상기 제1기판은 LCD(Liquid Crystal Display)패널, OLED(Organic Light Emitting Diods)패널, 커버글라스(Cover glass) 및 커버플라스틱(Cover plastic)으로 이루어진 군에서 선택되는 1 종 이상의 디스플레이 패널(Display panel)일 수 있다.
본 발명에서 스캔 및 마스크 방식을 이용한 선택적인 경화에서 선택적으로 경화되는 광학투명레진의 굴절률은 1.30 내지 1.70이고 경화 정도는 30% 내지 100%의 경화도 수준으로, 선택적인 경화를 통해 댐, 격벽 또는 닷을 형성할 수 있으며, 경화도는 FT-IR(Fourier transform infrared spectroscopy)을 통해서 측정할 수 있다.
본 발명의 스캔 및 마스크 방식을 이용한 선택적인 경화에서, 스캔 방식의 경우에는 자외선 램프가 스캔을 진행함과 동시에 자외선 램프에 셔터를 장착하여 경화를 원하는 부분과 원하지 않는 부분에 대하여 셔터의 작동여부에 따라 선택적인 경화를 실시할 수 있다. 즉, 경화를 원하지 않는 부분에서는 셔터를 가려주고, 경화를 원하는 부분에 대해서는 셔터가 오픈(Open) 되어 경화를 원하는 부분에만 경화를 실시함으로서 선택적인 경화를 통해 댐, 격벽 또는 닷을 형성할 수 있다.
다음으로, 마스크 방식의 경우에는 경화를 원하지 않는 부분에 대하여 자외선 빛이 투과되지 않는 패턴(Pattern) 형성을 통하여 선택적인 경화를 실시하거나, 투과도가 조절된 마스크를 이용하여 부분별로 광학투명레진이 원하는 만큼 경화되도록 선택적으로 경화도를 조절함으로서 댐, 격벽 또는 닷을 형성할 수 있다.
본 발명에서 상기 제2기판은 터치 스크린 패널(Touch screen panel)용 커버글라스(Cover glass), 커버글라스, 커버플라스틱 또는 필름(Film) 중 적어도 하나일 수 있다.
본 발명에서 상기 제2기판을 이용한 합착 공정은 진공 또는 상압에서 진행될 수 있다.
본 발명은 또한 상기 제조방법에 따라 제조된 디스플레이 모듈을 제공한다.
본 발명의 광학투명레진을 이용한 디스플레이 모듈 제조방법에 의하면, 스캔 또는 마스크 방식을 통한 선택적 경화를 통해 댐, 격벽 또는 닷을 형성함으로써, 액상인 광학투명레진 재료가 제1기판 외부로 흘러나가는 오버플로우 현상을 방지할 수 있으며, 광학투명레진을 한 종류만 사용하여 댐 효과를 나타낼 수 있으므로, 두 종류의 광학투명레진을 사용하여 댐을 형성하는 기존의 공정에 대비하여 재료관리, 공정성, 합착 제품에 대한 수율관리에도 유리한 이점을 가지고 있고, 두 종의 재료를 사용하면서 나타날 수 있는 이종 재료간의 경계면 얼룩에 대한 부분도 해결할 수 있다.
또한, 선택적인 경화를 통하여 경화를 실시하지 않은 부분에 대해서는 광학투명레진이 액상 상태로 존재하기 때문에 제2기판과 합착시에 발생할 수 있는 버블과 보이드의 제어가 유리하여 높은 제품 수율을 유지할 수 있으며, 최종 제품 불량률도 현격히 낮출 수 있다. 또한, 네로우 베젤(Narrow bezel)로 개발될수록 원하는 위치까지 재료를 정확히 도포 및 제어할 수 있는 장점도 가지고 있다.
아울러, 대면적 기판에 광학투명레진을 적용하는 경우에는 기판 무게 및 쳐짐 등으로 인한 재료의 오버플로우 및 합착 불량이 발생하는데, 본 발명에서는 선택적 경화를 통해 댐, 격벽 또는 닷을 형성함으로써 광학투명레진이 대면적 기판을 지지할 수 있게 되어 공정성을 높이고 불량을 현저히 낮출 수 있게 된다.
또한, 제1기판과 제2기판 합착 공정을 진행한 후에 두 기판간의 얼라인(Align)이 틀어졌을 경우, 기존에는 제1기판과 제2기판을 분리해서 광학투명레진(OCR 또는 LOCA)를 제거한 후에 다시 공정을 진행해야 되었으나, 본 발명에서는 제1기판과 제2기판을 합착한 상태에서 좌우로 움직여서 얼라인(Align)을 수행할 수 있으며, 그 이후에 완전경화 공정을 통하여 공정을 마무리 할 수 있다. 이러한 공정이 가능한 이유는 선택적 경화를 실시함으로써 경화가 되지 않은 부분은 액상상태로 존재하기에 가능한 공정이다. 합착후 얼라인(Align) 공정을 수행할 수 있게 됨으로써 얼라인(Align) 불량시 광학투명레진(OCR 또는 LOCA) 제거 공정 및 합착 공정을 다시 수행해야 되는 번거로움이 없어져서 공정, 시간, 비용적인 측면에서 많은 이점을 가지고 있다.
따라서, 스캔 및 마스크 방식을 통한 디스플레이 모듈 합착을 실시할 경우, 다변화, 다양화 되고 있는 스마트폰, 태블릿 기기의 다양한 사이즈에 대하여, 쉽게 대응할 수 있고, 모니터, TV와 같이 대면적화로 가더라도 자외선 램프 바(Bar) 또는 셔터의 사이즈 조절 및 마스크 교체를 통하여 다양한 디스플레이 기기에 손쉽게 적용하여 디스플레이 모듈을 제조할 수 있는 장점이 있으며, 경제적일 뿐 아니라 생산성에서도 유리한 이점을 가지고 있다.
본 발명의 방법은 디스플레이 패널, 터치 스크린 패널 및 다양한 기능성 기판을 포함하는 디스플레이 모듈에 적용될 수 있다.
도 1은 본 발명의 일실시예에 따른 디스플레이 모듈의 전체적인 구성도이다.
도 2는 본 발명의 일실시예에 따른 제조 공정을 순차적으로 나타내는 순서도이다.
도 3 내지 도 10은 본 발명의 일실시예에 따른 제조 공정을 순차적으로 나타내는 구성도이다.
이하, 본 발명에 따른 방법 및 장치에 대한 대표적인 예를 설명하고자 한다. 이러한 예들은 단지 본 발명의 실시예의 이해를 돕기 위해 제공되는 것으로, 본 명세서에 제시되는 방법들은 일부 또는 전부가 설명되지 않더라도 실시될 수 있다. 즉, 실시예를 통한 설명을 충분히 하겠지만 이러한 실시예에 한정되는 것은 아니다. 또한, 본 명세서에 설명되는 실시예에 대한 사상 및 범위를 벗어나지 않는 변경들에 대해서는 언제든지 이루어질 수 있으며, 본 명세서에 제시되는 도면은 설명을 쉽게 하기 위한 것일 뿐, 첨부된 도면에 제한되고 국한되는 것은 아니다.
본 발명의 일실시예에 따른 디스플레이 모듈은 제1기판, 제1기판에 코팅될 광학투명레진(OCR 또는 LOCA), 광학투명레진에 대한 선택적인 경화 및 합착 후 경화를 실시할 자외선램프, 선택적인 경화를 위한 셔터(shutter) 및 마스크(mask), 및 광학투명레진이 코팅된 제1기판과 합착하여 디스플레이 모듈로 구성될 제2기판으로 구성된다.
도 1은 본 발명의 일실시예에 따른 디스플레이 모듈(100)의 전체적인 구성도를 나타낸다. 도 1에서 제시되는 디스플레이 모듈(100)은 선택적 경화를 위해 스캔(scan) 방법을 사용하며, 제1기판(110), 광학투명레진(120), 자외선램프(UV 또는 UV-LED)(130), 셔터(140), 제2기판(150)로 구성된다.
상기 제 1기판(110)은 디스플레이 패널(Display panel)일 수 있으며, 예를 들어, LCD(Liquid Crystal Display)패널, OLED(Organic Light Emitting Diods)패널, 커버글라스(Cover glass) 및 커버플라스틱(Cover plastic)으로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
상기 광학투명레진(120)으로 명칭되는 재료는 자외선에 반응하여 경화되는 재료를 기본으로 하는 자외선 경화형 레진을 의미한다. 상기 광학투명레진(120)은 상기 제1기판(110) 및 제2기판(150) 사이에 존재하는 에어갭(Air gap)을 없애는 목적으로 사용되며, 이로 인해 디스플레이 모듈의 내구성 및 광학특성이 향상될 수 있다. 또한 상기 광학투명레진(120)은 점,접착 특성을 가지고 있어서, 상기 제1기판(110)과 제2기판(150)을 접합시킬 수 있다. 상기 광학투명레진(120)은 자외선으로 경화시킬 수 있으며, 굴절률은 1.30 내지 1.70 수준을 갖는 것이 바람직하다.
상기 광학투명레진(120)은 목적에 따라 상기 제1기판(110)에 원하는 영역만큼 코팅될 수 있으며, 이때 코팅은 디스펜싱(Dispensing), 스크린(Screen) 인쇄 또는 슬릿다이(Silt die) 방법을 이용하여 수행될 수 있다.
또한 상기 광학투명레진(120)은 선택적인 경화에 의해 형성되는 댐(DAM), 격벽 또는 닷(Dot) 영역을 포함할 수 있다. 상기 댐, 격벽 또는 닷 영역에 대한 경화도는 30% 내지 100% 정도일 수 있으며, 더욱 바람직하게는 55% 내지 100% 정도를 유지하는 것이 댐, 격벽 또는 닷으로서의 역할을 수행하기에 적합하다. 상기 경화도는 FT-IR(Fourier transform infrared spectroscopy) 등을 통해서 측정할 수 있다.
선택적인 경화를 통해 형성된 댐, 격벽 또는 닷은 오버플로우(Overflow)를 방지하여 원하는 영역만큼 재료가 도포된 상태를 유지할 수 있게 하고, 제2기판(150)과 합착을 진행하는 과정에서 재료가 흐르는 것을 방지하는 역할도 할 수 있을 뿐 아니라, 대면적 기판에서는 기판무게 및 쳐짐에 따른 지지대 역할도 수행할 수 있다.
상기 자외선램프(130)는 바(Bar) 타입으로 광학투명레진(120)의 선택적인 경화 및 제2기판(150)과의 합착 후에 전면 경화를 실시하는 목적으로 사용되며, 수은 램프, 메탈 램프, 갈륨 램프, 아크 램프, 제논 램프, UV-LED 램프 등 자외선(UV) 조사가 가능한 램프를 포함한다. UV-LED 램프의 경우에는 365 nm, 385 nm, 395 nm, 405 nm 등 LED 칩을 이용하여 UV 조사가 가능한 램프일 수 있으며, 바람직하게는 램프 수명, 발열 등에서 우수한 UV- LED 램프를 사용하는 것이 바람직하다. 또한 도 1에서 제시하는 자외선램프(130)는 바 타입으로 경화가 필요한 영역을 훑고 지나갈 수 있다.
상기 셔터(140)는 자외선램프(130)에 장착되어 자외선램프(130)가 훑고 지나갈 때, 선택적인 경화를 가능하게 하는 목적으로 사용되며, 경화를 원하는 영역에서는 셔터(140)가 조사 부분을 전혀 가리지 않고, 경화를 원하는 영역에서는 셔터(140)가 광학투명레진(120)을 가리게 되어 선택적인 경화를 가능하게 하므로, 광학투명레진(120) 코팅 후에 원하는 부분에 대한 선택적인 경화를 실시할 수 있다. 또한 제2기판(150)과 합착 후에는 셔터(140)가 자외선램프(130)를 전혀 가리지 않고 조사를 실시함으로써 전면 조사를 실시할 수 있다.
상기 셔터(140)는 자외선램프(130)에 대하여, 수평 또는 수직으로 작동하여 자외선램프(130)의 조사를 원하는 않는 부분에 대해서는 선택적으로 가릴 수 있게 되고, 셔터(140) 폭을 조정할 수 있어서 경화가 필요한 부분에 대한 선택적인 광조사가 가능하다. 셔터(140)의 재질로는 자외선램프(130)에 대한 자외선 투과를 90% 이상 막을 수 있는 재질이면 어떤 것이든 가능하며, 더욱 바람직하게는 98%의 자외선 투과를 차단할 수 있는 금속, 플라스틱, 유리 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 제2기판(150)은 강화유리, LCD 글라스, 플렉시블 패널용 플라스틱 기판 등 디스플레이 패널과 합착을 통해 제조 가능한 기판일 수 있으며, 바람직하게는 터치 스크린 패널(Touch screen panel)용 커버글라스(Cover glass), 커버글라스, 커버플라스틱 및 필름으로 이루어진 군에서 선택되는 1종 이상의 것일 수 있다.
상기 제1기판(110)과 제2기판(150)은 목적에 따라 서로 바뀌어서 사용될 수도 있다. 즉, 제2기판(150)에 광학투명레진(120)을 코팅한 후, 사이드(Side) 경화를 실시하고 제1기판(110)과의 합착을 진행한 후에 뒤집어서 광경화 또는 열경화를 통하여 전면 경화를 실시하는 공정도 가능하다.
이하, 도 2 및 도 3을 참조하여, 본 발명을 보다 상세히 설명한다.
본 발명의 일시예에 따른 광학투명레진을 이용한 디스플레이 모듈 제조방법은 제1기판에 광학투명레진을 도포하는 단계(P110), 상기 광학투명레진 층에 자외선램프를 이용한 스캔 또는 마스크 방식으로 선택적인 경화를 통해 댐, 격벽 또는 닷 영역을 형성하는 단계(P120, P121), 제2기판을 이용하여 진공 또는 상압으로 합착하는 단계(P130), 및 합착된 제1기판과 제2기판을 자외선램프를 이용하여 전면 또는 스캔 방식으로 조사하는 단계(P140)를 포함한다.
구체적으로, 먼저, 제1기판에 광학투명레진을 슬릿다이 방식으로 도포한다(P110).
다음으로, 스캔 방식의 경우에는, 램프 사이드 2 mm 부분을 제외한 나머지 부분을 셔터로 가리면서 UV-LED 자외선램프를 스캔 방식으로 광학투명레진이 코팅된 전면에 스캐닝을 실시하고 사이드 경화를 통해 댐을 형성한다. 이때, 사이드 2 mm 부분은 UV-LED가 셔터에 의해 가려지지 않고 항상 오픈되어 있으며, 광학투명레진이 코팅된 스타트 부분과 끝 부분은 셔터가 UV-LED자외선램프를 전혀 가리지 않게 작동하여 광학투명레진의 네 면 모두에서 사이드 경화가 이루어 질 수 있게 한다(P120).
다음으로, 마스크 방식의 경우에는, 경화를 원하는 부분을 격자무늬 또는 닷 무늬가 오픈되어 그려진 마스크를 이용하여 자외선램프를 통한 전면 또는 스캔 경화를 실시한다. 격자무늬 및 닷 무늬를 제외한 부분은 자외선 차단이 가능한 메탈이나 필름 등으로 막혀있어 자외선에 의한 경화가 이루어지지 않게 된다. 이 경우, 격자무늬 및 닷(Dot) 무늬 부분만 마스크에 오픈됨으로써, 선택적인 격자 및 닷을 형성할 수 있게 된다(P121). 또한, 경우에 따라, 투과도가 조절된 마스크를 이용하여 부분별로 광학투명레진이 원하는 만큼 경화되도록 선택적으로 경화도를 조절할 수도 있다.
다음으로, 상기 제2기판을 이용하여 광학투명레진이 코팅된 제1기판과의 합착을 실시하며, 상기 합착은 진공 또는 상압 조건에서 이루어 질 수 있다(P130).
다음으로, 제1기판과 제2기판이 합착된 전면을 바 타입 또는 전면조사 타입의 자외선램프를 통해 완전 경화를 실시한다(P140). 이때, 경우에 따라, 자외선 램프를 이용한 광경화 외에 열경화도 사용될 수 있다.
도 3은 본 발명의 일실시예에 따른 제조 공정을 순차적으로 나타내는 구성도이며, 도 4 내지 도 10의 각 단계를 설명하면 다음과 같다.
도 4는 광학투명레진(120)을 제1기판(110)에 코팅하는 단계를 나타낸다. 광학투명레진(120)은 디스펜싱, 슬릿다이, 스크린 인쇄 등 다양한 방법으로 코팅될 수 있으며, 바람직하게는 슬릿다이(160) 코팅방법을 사용할 수 있다.
도 5는 UV-LED 자외선램프(130)를 이용한 스캐닝을 통해 선택적인 사이드 부분 경화를 실시하여 댐(도 7, 121)을 형성하는 단계를 나타낸다. 상기 광학투명레진(120)은 자외선램프(130)에 반응하여 경화되는 재료이며, 상기 광원은 자외선 광원(UV(Ultra-Violet))을 의미한다. 자외선 광원의 종류로는 수은, 메탈, 갈륨, 제논램프, UV-LED 램프 등을 들 수 있으며, 이외에도 자외선 조사가 가능한 램프면 어느 것이라도 상기 공정에 적용할 수 있다.
도 5의 단계는 자외선램프(130) 스캐닝시에 셔터(140)의 움직임을 통하여 광학투명레진(120)의 선택적인 사이드 경화를 실시하는 공정을 포함하고 있다. 이를 통하여 사이드 경화를 실시함으로써 흐름성을 가진 광학투명레진(120)의 사이드 부분이 경화되어 광학투명레진(120)이 제1기판(110) 밖으로 흘러나오는 오버플로우)를 방지할 수 있으며, 도 9의 단계에서 제1기판(110)과 제2기판(150)의 합착 시에 기판 밖으로 흘러나오는 오버플로우도 방지할 수 있다. 또한 자외선램프(130) 및 셔터(140)의 사이즈를 조절할 수 있게 설계함으로써 다양한 모델 및 사이즈의 디스플레이 모듈에 적용이 가능하며, 따라서 투자비, 공정성 및 생산성을 크게 향상시킬 수 있다.
도 7은 도 5의 공정을 통해 광학투명레진(120)에 형성된 댐(121)영역과 코팅된 상태로 존재하는 내부액상영역(122)을 나타낸다. 상기 댐(121)영역은 광학투명레진(120)의 오버플로우를 방지하며, 내부액상영역(122)은 액상으로 존재하기 때문에 도 9의 합착 공정에서 버블(Bubbles) 및 보이드(voids)에 의한 결함을 제거할 수 있다.
도 6은 격벽 또는 닷 무늬가 형성된 마스크(180)를 이용하여 바 타입 자외선 램프(130) 또는 전면조사타입 자외선 램프(170)를 이용한 선택적인 경화를 실시하여 격벽(도 8, 121)을 형성하는 단계를 나타낸다.
상기 광학투명레진(120)은 자외선 램프(130,170)에 반응하여 경화되는 재료로서, 마스크(180)에 새겨진 무늬를 통해서 빛을 투과하는 부분만 선택적인 경화가 실시되어 격벽(도 8, 121)을 형성한다. 따라서 흐름성을 가진 광학투명레진(120)이 빛에 노출된 부분이 경화됨으로서 광학투명레진(120)의 제1기판(110) 밖으로 흘러나오는 오버플로우 현상을 방지할 수 있으며, 대면적 기판을 통한 합착시에 제2기판(150)의 무게 및 쳐짐에 의한 오버플로우, 버블 및 보이드 불량을 방지할 수 있다. 또한 마스크(180)의 사이즈, 및 격벽 및 닷의 패턴을 원하는 모양으로 설계함으로서 다양한 모델 및 사이즈의 디스플레이 모듈에 적용이 가능하며, 투자비, 공정성 및 생산성을 크게 향상시킬 수 있다.
도 8은 도 6 공정을 통해 광학투명레진(120)에 의해 형성된 격벽(도 8, 121)영역과 코팅된 상태로 존재하는 내부액상영역(도 8, 122)을 나타낸다. 이렇게 광학투명레진(120)의 선택적인 경화를 실시함으로서 광학투명레진(120)을 원하는 영역까지 도포할 수 있을 뿐 아니라, 오버플로우도 방지할 수 있고, 내부액상영역(도 8, 122)은 액상으로 존재하므로 도 9의 합착 공정에서 버블 및 보이드에 의한 결함을 제거할 수 있다.
도 9는 선택적 경화를 통해 형성된 광학투명레진(120)을 제2기판(150)과 합착시키는 단계를 나타낸다. 상기 합착 공정은 상압 또는 진공에서 진행될 수 있으며, 합착 후에도 광학투명레진(120) 내부가 액상 상태를 유지하고 있기 때문에 버블 및 보이드 불량을 현저히 줄일 수 있다. 상압 합착의 경우에는 진공 챔버가 불필요하여 진공 합착 대비 투자비가 적게 들지만, 합착 시간이 오래 걸리고 진공 합착 보다 버블 및 보이드 불량률이 높다는 단점을 가지고 있다. 진공 합착은 상압 합착과 반대로 빠른 합착시간, 버블 및 보이드에 대한 낮은 불량률 등의 장점이 있으나, 진공 챔버를 구성해야 되는 투자비가 높다는 단점을 가지고 있다. 이러한 합착 공정은 만들고자하자 디스플레이 모듈의 사이즈, 생산성, 공정성 등을 고려하여 적절히 선택될 수 있다.
도 10은 합착된 제1기판(110)과 제2기판(150)을 자외선램프 전면조사를 통해 완전 경화를 실시하는 단계를 나타낸다. 전면 조사는 바 타입 자외선램프(130)를 이용하여 전면 스캐닝을 통하여 진행할 수 있고, 전면조사 타입 자외선램프(170)를 이용하여 전면 조사를 통한 경화를 실시할 수도 있다. 이러한 공정은 광학투명레진(120)의 특징, 공정성 및 생산성 등을 고려하여 선택될 수 있다.
상기에 기재한 바와 같이, 본 발명의 방법에 따라 광학투명레진을 이용하여 디스플레이 모듈을 합착할 경우, 기존의 와이맵(Y map) 방식의 단점인 코팅 및 합착시의 오버플로우 현상을 제어할 수 있으며, 두 종류의 광학투명레진을 사용하는 댐 방식의 단점인 두 종류의 재료사용에 대한 재료관리 및 공정 컨트롤 문제도 해결할 수 있고, 이종 재료의 사용으로 인해 댐과 내부 충진 레진 사이의 경계면에 나타나는 얼룩의 문제도 해결할 수 있다.
또한 합착 시에 사이드를 제외한 내부 광학투명레진이 액상으로 존재하므로 합착 공정에 따른 버블 및 보이드 불량도 크게 낮출 수 있다.
마지막으로, 셔터 및 마스크의 사이즈 조절 및 패턴 모양 조절을 통하여 네로우베젤(Narrow bezel)화 되고 있는 스마트 기기 뿐 아니라, 다양화 및 다변화 되고 있는 디스플레이 기기에 발 빠르게 대응할 수 있어, 시장의 다양한 요구에 쉽게 대응할 수 있는 이점을 가지고 있고, 이는 장비투자 및 생산성 측면에서도 유리하다.
[부호의 설명]
100: 디스플레이 모듈
110: 제1기판
120: 광학투명레진
121: 댐, 격벽, 닷 영역
122: 액상영역(미경화)
130: 바 타입 자외선램프
140: 셔터
150: 제2기판
160: 코터(Coater)
170: 전면조사 타입 자외선램프
180: 마스크
본 발명의 광학투명레진을 이용한 디스플레이 모듈 제조방법에 의하면, 스캔 또는 마스크 방식을 통한 선택적 경화를 통해 댐, 격벽 또는 닷을 형성함으로써, 액상인 광학투명레진 재료가 제1기판 외부로 흘러나가는 오버플로우 현상을 방지할 수 있으며, 광학투명레진을 한 종류만 사용하여 댐 효과를 나타낼 수 있으므로, 두 종류의 광학투명레진을 사용하여 댐을 형성하는 기존의 공정에 대비하여 재료관리, 공정성, 합착 제품에 대한 수율관리에도 유리한 이점을 가지고 있고, 두 종의 재료를 사용하면서 나타날 수 있는 이종 재료간의 경계면 얼룩에 대한 부분도 해결할 수 있다.
또한, 선택적인 경화를 통하여 경화를 실시하지 않은 부분에 대해서는 광학투명레진이 액상 상태로 존재하기 때문에 제2기판과 합착시에 발생할 수 있는 버블과 보이드의 제어가 유리하여 높은 제품 수율을 유지할 수 있으며, 최종 제품 불량률도 현격히 낮출 수 있다. 또한, 네로우 베젤(Narrow bezel)로 개발될수록 원하는 위치까지 재료를 정확히 도포 및 제어할 수 있는 장점도 가지고 있다.
아울러, 대면적 기판에 광학투명레진을 적용하는 경우에는 기판 무게 및 쳐짐 등으로 인한 재료의 오버플로우 및 합착 불량이 발생하는데, 본 발명에서는 선택적 경화를 통해 댐, 격벽 또는 닷을 형성함으로써 광학투명레진이 대면적 기판을 지지할 수 있게 되어 공정성을 높이고 불량을 현저히 낮출 수 있게 된다.
또한, 제1기판과 제2기판 합착 공정을 진행한 후에 두 기판간의 얼라인(Align)이 틀어졌을 경우, 기존에는 제1기판과 제2기판을 분리해서 광학투명레진(OCR 또는 LOCA)를 제거한 후에 다시 공정을 진행해야 되었으나, 본 발명에서는 제1기판과 제2기판을 합착한 상태에서 좌우로 움직여서 얼라인(Align)을 수행할 수 있으며, 그 이후에 완전경화 공정을 통하여 공정을 마무리 할 수 있다. 이러한 공정이 가능한 이유는 선택적 경화를 실시함으로써 경화가 되지 않은 부분은 액상상태로 존재하기에 가능한 공정이다. 합착후 얼라인(Align) 공정을 수행할 수 있게 됨으로써 얼라인(Align) 불량시 광학투명레진(OCR 또는 LOCA) 제거 공정 및 합착 공정을 다시 수행해야 되는 번거로움이 없어져서 공정, 시간, 비용적인 측면에서 많은 이점을 가지고 있다.
따라서, 스캔 및 마스크 방식을 통한 디스플레이 모듈 합착을 실시할 경우, 다변화, 다양화 되고 있는 스마트폰, 태블릿 기기의 다양한 사이즈에 대하여, 쉽게 대응할 수 있고, 모니터, TV와 같이 대면적화로 가더라도 자외선 램프 바(Bar) 또는 셔터의 사이즈 조절 및 마스크 교체를 통하여 다양한 디스플레이 기기에 손쉽게 적용하여 디스플레이 모듈을 제조할 수 있는 장점이 있으며, 경제적일 뿐 아니라 생산성에서도 유리한 이점을 가지고 있다.
본 발명의 방법은 디스플레이 패널, 터치 스크린 패널 및 다양한 기능성 기판을 포함하는 디스플레이 모듈에 적용될 수 있다.

Claims (9)

1) 제1기판에 1종의 광학투명레진(OCR or LOCA)을 도포하는 단계;
2) i) 셔터(shutter)가 장착된 자외선램프를 이용하여 스캔(Scan) 방식으로 상기 광학투명레진 층을 선택적으로 경화시켜 댐(DAM), 격벽 또는 닷(Dot)을 형성하는 단계; 또는
ii) 광경화를 원하는 부분에 대하여 패터닝된 마스크(Mask)를 이용하여 자외선램프로 스캔 또는 전면 조사하는 방식으로 상기 광학투명레진 층을 선택적으로 경화시켜 댐, 격벽 또는 닷을 형성하는 단계;
3) 상기 부분 경화된 제1기판과 제2기판을 진공 또는 상압으로 합착하는 단계; 및
4) 상기 합착된 제 1기판과 제2기판을 자외선램프를 이용한 스캔 또는 전면조사, 또는 열을 이용한 열경화로 완전 경화시키는 단계
를 포함하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 1)의 제1기판은 LCD(Liquid Crystal Display)패널, OLED(Organic Light Emitting Diods)패널, 커버글라스(Cover glass) 및 커버플라스틱(Cover plastic)으로 이루어지는 군으로부터 선택되는 1종 이상의 디스플레이 패널(Display panel)인 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 1)의 광학투명레진의 굴절률이 1.30 내지 1.70인 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
단계 2)의 선택적인 경화에서 선택적으로 경화되는 광학투명레진의 경화 정도는 30% 내지 100%의 경화도 수준인 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 2)의 i)에서 스캔 방식의 선택적 경화는, 자외선램프가 스캔을 진행함과 동시에 자외선램프에 장착된 셔터가 경화를 원하지 않는 부분에서는 가려지고, 경화를 원하는 부분에 대해서는 셔터가 오픈(Open) 되어 경화를 원하는 부분만 선택적으로 경화시키는 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 2)의 ii)에서 마스크 방식의 선택적 경화는, 경화를 원하지 않는 부분에 대하여 자외선 빛이 투과되지 않는 패턴(Pattern) 형성을 통하여 선택적인 경화를 실시하거나, 투과도가 조절된 마스크를 이용하여 부분별로 광학투명레진이 원하는 만큼 경화되도록 선택적으로 경화도를 조절하는 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 3)의 상기 제2기판은 터치 스크린 패널(Touch screen panel)용 커버글라스(Cover glass), 커버글라스, 커버플라스틱 및 필름(Film)으로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항에 있어서,
상기 단계 3)의 합착 공정은 진공 또는 상압에서 진행되는 것을 특징으로 하는 광학투명레진을 이용한 디스플레이 모듈 제조방법.
제1항 내지 제8항 중 어느 하나의 방법에 따라 제조된 디스플레이 모듈.
PCT/KR2015/007243 2014-07-14 2015-07-13 광학투명레진을 이용한 디스플레이 모듈 제조방법 WO2016010317A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580036632.6A CN106471563A (zh) 2014-07-14 2015-07-13 利用光学透明树脂的显示模块制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088294A KR20160008307A (ko) 2014-07-14 2014-07-14 광학투명레진을 이용한 디스플레이 모듈 제조방법
KR10-2014-0088294 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016010317A1 true WO2016010317A1 (ko) 2016-01-21

Family

ID=55078742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007243 WO2016010317A1 (ko) 2014-07-14 2015-07-13 광학투명레진을 이용한 디스플레이 모듈 제조방법

Country Status (4)

Country Link
KR (1) KR20160008307A (ko)
CN (1) CN106471563A (ko)
TW (1) TW201609275A (ko)
WO (1) WO2016010317A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367423A (zh) * 2022-01-17 2022-04-19 深圳市洲明科技股份有限公司 一种显示模组灯缝灌胶方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040468B1 (ko) * 2016-01-26 2019-11-05 주식회사 엘지화학 광학 소자의 제조 방법
KR20180032719A (ko) 2016-09-22 2018-04-02 삼성디스플레이 주식회사 표시 장치
KR102632168B1 (ko) 2016-09-27 2024-02-01 삼성디스플레이 주식회사 표시장치
FR3058424B1 (fr) * 2016-11-10 2022-06-10 Bnl Eurolens Installation de depot par evaporation d'un revetement sur des articles
CN107450780A (zh) * 2017-08-09 2017-12-08 长沙市宇顺显示技术有限公司 一种遮光装置及用其制作触控产品的方法
CN107526470A (zh) * 2017-08-23 2017-12-29 信利光电股份有限公司 一种触摸屏的水胶贴合预固化夹具及预固化方法
KR102015035B1 (ko) 2017-11-08 2019-08-27 엘지전자 주식회사 차량용 인스트루먼트 패널
KR20200083839A (ko) 2018-12-31 2020-07-09 현대자동차주식회사 저반사 얼비침 방지필름을 이용한 자동차용 디스플레이 구조
CN110590190A (zh) * 2019-10-22 2019-12-20 中国计量大学 一种叠层玻璃粘合加工专用工作台
KR102297923B1 (ko) 2020-10-20 2021-09-07 유버 주식회사 테두리경화기
KR102314872B1 (ko) 2020-10-21 2021-10-19 유버 주식회사 액정마스크를 적용한 자외선 경화시스템
KR102599659B1 (ko) 2021-07-12 2023-11-06 유버 주식회사 스캔식 광 경화기
CN113905114A (zh) * 2021-09-03 2022-01-07 Oppo广东移动通信有限公司 电子设备、显示屏组件及其贴合方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780367B1 (ko) * 2006-12-22 2007-11-30 (주)리드 액정표시패널용 기판의 밀봉재 경화장치 및 이를 이용한경화방법
JP2009048214A (ja) * 2005-11-29 2009-03-05 Seiko Instruments Inc 表示装置の製造方法、及び、貼り合わせ方法
KR20130094610A (ko) * 2012-02-16 2013-08-26 엘지전자 주식회사 기능성 플레이트를 포함하는 디스플레이 모듈 및 기능성 플레이트의 접합방법
KR20130094611A (ko) * 2012-02-16 2013-08-26 엘지전자 주식회사 디스플레이 패널에 접합되는 플레이트를 포함하는 디스플레이 모듈 및 플레이트의 접합방법
KR20140027898A (ko) * 2013-12-31 2014-03-07 유중석 디스플레이 패널의 제조를 위한 플레이트의 접합 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976004B (zh) * 2010-09-03 2012-09-12 深圳市华星光电技术有限公司 液晶面板的紫外线固化装置以及固化方法
JP5468039B2 (ja) * 2011-04-11 2014-04-09 株式会社ジャパンディスプレイ 表示装置の製造方法
CN103320087A (zh) * 2013-06-03 2013-09-25 曹坚林 一种液体光学透明有机硅材料及其制备方法
CN103555210A (zh) * 2013-10-26 2014-02-05 深圳市中显微电子有限公司 一种液态光学胶粘剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048214A (ja) * 2005-11-29 2009-03-05 Seiko Instruments Inc 表示装置の製造方法、及び、貼り合わせ方法
KR100780367B1 (ko) * 2006-12-22 2007-11-30 (주)리드 액정표시패널용 기판의 밀봉재 경화장치 및 이를 이용한경화방법
KR20130094610A (ko) * 2012-02-16 2013-08-26 엘지전자 주식회사 기능성 플레이트를 포함하는 디스플레이 모듈 및 기능성 플레이트의 접합방법
KR20130094611A (ko) * 2012-02-16 2013-08-26 엘지전자 주식회사 디스플레이 패널에 접합되는 플레이트를 포함하는 디스플레이 모듈 및 플레이트의 접합방법
KR20140027898A (ko) * 2013-12-31 2014-03-07 유중석 디스플레이 패널의 제조를 위한 플레이트의 접합 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367423A (zh) * 2022-01-17 2022-04-19 深圳市洲明科技股份有限公司 一种显示模组灯缝灌胶方法
CN114367423B (zh) * 2022-01-17 2023-03-21 深圳市洲明科技股份有限公司 一种显示模组灯缝灌胶方法

Also Published As

Publication number Publication date
TW201609275A (zh) 2016-03-16
CN106471563A (zh) 2017-03-01
KR20160008307A (ko) 2016-01-22

Similar Documents

Publication Publication Date Title
WO2016010317A1 (ko) 광학투명레진을 이용한 디스플레이 모듈 제조방법
CN104777665B (zh) 黑色矩阵的制作方法
US9046771B2 (en) Photosensitive composition for display device, black matrix having the composition, and method of forming black matrix using the composition
CN104309267B (zh) 一种基板贴合方法、触控显示基板、显示装置
CN104777664A (zh) 黑色矩阵的制作方法
CN104765190B (zh) 黑色矩阵的制作方法
CN103991255B (zh) 防蓝光屏幕保护膜及其制备方法
US20190113800A1 (en) Color Filter Substrate and Method for Manufacturing the Same, Display Panel and Display Device
WO2013166736A1 (zh) 液晶显示面板和液晶显示器
WO2012074167A1 (ko) 도광판 및 그 제조방법 및 제조장비
WO2012023832A2 (ko) 복합 기능성 입체영상표시장치용 광학 필터 및 이를 포함하는 입체영상표시장치
CN105093806A (zh) 一种uv掩膜板及其曝光方法
WO2013004053A1 (zh) 液晶面板预倾角的制作装置和方法、样品台、光源装置
WO2011007979A2 (ko) 광경화형 함불소 수지 조성물 및 이를 이용한 수지 몰드의 제조방법
KR101319353B1 (ko) 평판 표시 소자의 제조 장치 및 방법
CN106970481A (zh) 显示面板中有机功能层的制作方法
CN106501991B (zh) 黑色矩阵、液晶显示面板边框胶的固化方法及液晶显示面板
CN105068375A (zh) 用于光配向的光罩及光配向方法
WO2016041217A1 (zh) 液晶显示面板及其制造方法
TW201100226A (en) Vacuum forming apparatus and method for vacuum forming substrate
WO2016117931A1 (ko) 백라이트 유닛을 위한 광학 시트 및 그 제조 방법
CN104015438B (zh) 防蓝光耐指纹薄膜及其制备方法
WO2013019040A2 (ko) 광경화형 유-무기 하이브리드 수지 조성물
CN107908048B (zh) 一种隔垫物及其制作方法、显示装置
CN106733543B (zh) 一种紫外固化机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822029

Country of ref document: EP

Kind code of ref document: A1