WO2016008712A1 - Verfahren zur dekontamination von kontaminiertem graphit - Google Patents

Verfahren zur dekontamination von kontaminiertem graphit Download PDF

Info

Publication number
WO2016008712A1
WO2016008712A1 PCT/EP2015/064747 EP2015064747W WO2016008712A1 WO 2016008712 A1 WO2016008712 A1 WO 2016008712A1 EP 2015064747 W EP2015064747 W EP 2015064747W WO 2016008712 A1 WO2016008712 A1 WO 2016008712A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
contaminated
base mixture
glass
heating
Prior art date
Application number
PCT/EP2015/064747
Other languages
English (en)
French (fr)
Inventor
Johannes Fachinger
Karl-Heinz Grosse
Original Assignee
Ald Vacuum Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ald Vacuum Technologies Gmbh filed Critical Ald Vacuum Technologies Gmbh
Priority to RU2017102039A priority Critical patent/RU2017102039A/ru
Priority to LTEP15732683.6T priority patent/LT3170187T/lt
Priority to US15/326,834 priority patent/US20170200519A1/en
Priority to EP15732683.6A priority patent/EP3170187B1/de
Publication of WO2016008712A1 publication Critical patent/WO2016008712A1/de

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the present invention relates to the decontamination of contaminated graphite including irradiated graphite. According to the invention, this is understood to mean a process for separating volatile radionuclides from contaminated graphite, together with simultaneous conversion of the graphite, including the non-volatile radionuclides, into a form suitable for final disposal.
  • Irradiated graphite may typically include various radionuclides such as H-3, C-14, Co-60, CI-36, Cs-137, Sr-90.
  • the content of such radionuclides is particularly due to the neutron activation of nitrogen, which is present as an impurity in the graphite or in the cooling gas, but also due to neutron activation of the naturally occurring C-13 isotope.
  • the radionuclides are distributed more or less homogeneously in the entire volume of the irradiated graphite. Because of this distribution of radionuclides, the total volume of irradiated graphite is classified as radioactive waste. The total irradiated graphite is sometimes even classified as medium-active waste, depending on the country-specific classification.
  • the C-14 content of irradiated graphite from Spain prevents its disposal in the El Cabril near-surface repository.
  • the radionuclide concentration may be considered in the safety records according to the currently valid regulations for near-surface disposal. Even if a matrix material would guarantee a safe enclosure of the irradiated graphite, this must not be included in the safety considerations. Therefore, if such a graphite is safely integrated, a near-surface, space-saving and cost-effective final disposal is not permitted due to the radionuclide content, with volatile radionuclides being considered particularly critical.
  • the radioactive waste which can also be irradiated graphite, is either mixed directly with the matrix material and, if appropriate, cold pre-pressed together with matrix material at room temperature.
  • the waste is then introduced into cavities of a pre-pressed shaped body of matrix material and then finally pressed.
  • the waste can be final pressed directly with the matrix mixture to form a finished shaped article.
  • the final pressing takes place at elevated temperatures and elevated pressure. In particular, as a result of the process control, higher temperatures prevail in areas near the edge of the material compared to the interior of the material. Due to the process, volatile radionuclides of the waste accumulate in the interior of the container. In addition, the waste is embedded in the form in which it is obtained without any previous treatment.
  • the manufactured containers thus contains the radionuclides of the waste including volatile radionuclides and must therefore be stored under correspondingly strict safety requirements, in particular in deep soil regions.
  • WO 201 1/1 17354 A1 containers are described comprising an impermeable glass-graphite matrix, IGG short, in which radioactive waste can be embedded in metallumhüllter form. This achieves a so-called inverse design.
  • the metal shell around the waste acts as a diffusion barrier and prevents the leakage of radionuclides contained in the waste into the IGG.
  • the waste is optionally filled together with a binder in metal sheaths and then extruded in the metal shell to composite pressed bars. A prior treatment of the waste is not provided. Thus, any volatile radionuclides are still contained in the waste after embedding. Consequently, as explained above, disposal in deep soil regions will not be dispensable depending on the country-specific classification.
  • a near-surface disposal and / or a final disposal on the surface should be permitted depending on country-specific requirements to relieve underground landfills.
  • the object is achieved by the method for decontaminating contaminated graphite described herein.
  • the method of the present invention includes
  • the heating of the base mixture for the separation of the volatile radionuclides is preferably carried out in the same device as the compression, so that no further Handling of graphite is required. As a result, the method according to the invention is even more cost-effective and faster to carry out.
  • the molded article produced by the process according to the invention is suitable according to the invention for the final disposal of the treated graphite, ie preferably for safe storage over geological periods, ideally up to 1 million years or longer.
  • the molded article may preferably be disposed of and stored under reduced safety requirements as compared to storage of contaminated graphite which has not undergone decontamination according to the invention.
  • safe and near-surface final disposal and / or even safe disposal of the shaped body produced according to the invention on the surface are permitted.
  • the volume of such material which requires a particularly complex and thus particularly cost-intensive disposal and storage, in particular an underground storage in deep soil regions, can be significantly reduced.
  • the latter is extremely advantageous in view of the very limited storage capacities and the regular occurrence of high amounts of contaminated, in particular irradiated graphite.
  • the cost of disposal of contaminated graphite can be significantly reduced.
  • Contaminated graphite is a graphite containing proportions of radionuclides
  • contaminated graphite is a graphite having an activity of> 10 3 Bq / g, in particular> 10 4 Bq / g or even> 10 5 Bq / g
  • the "contaminated graphite” is preferably at least a weakly active material with activity values in the middle range of the usual range for "weakly active", in particular even a medium-active material.
  • the radionuclides may be due to contamination in the graphite, for example, if the graphite is part of fuel assemblies, converted. However, the content of radionuclides can also be caused by neutron activations during the irradiation of the graphite or impurities in the graphite.
  • the term "contaminated graphite” thus also includes an "irradiated graphite” according to the invention, which has radionuclides as a result of the irradiation.
  • radionuclides which may be present in contaminated graphite include H-3, C-14, CI-36, Co-60, Cs-135, Cs-137, 1-131, Sr-90, Pu-239, U-235 and other radioactive isotopes of uranium, Th-232 and other radioactive isotopes of thorium, Pb-203 and other radioactive isotopes of lead and mixtures thereof.
  • the inventive method is suitable for such contaminated graphite, which comprises at least one volatile radionuclide.
  • a "contaminated graphite" according to the invention thus comprises at least one volatile radionuclide.
  • volatile radionuclides are radionuclides which, under standard conditions according to DIN 1343 (publication date 1990-01) or when the contaminated graphite is heated to at least 350 ° C. and at most 1600 ° C. under a pressure of less than 15 MPa, preferably less than 10 MPa, more preferably less than 5 MPa, in the gaseous state or in the form of gaseous chemical compounds or under the conditions mentioned in the gaseous state or gaseous compounds can be converted.
  • Gaseous compounds of radionuclides are in particular those of radionuclide in elemental form and / or in the form of oxides or halides of the radionuclide.
  • volatile radionuclides are H-3, C-14, CI-36, 1-131, Cs-135 and Cs-137.
  • the contaminated graphite thus preferably comprises at least one volatile radionuclide selected from the group consisting of H-3, C-14, CI-36, 1-131, Cs-135 and Cs-137. It may contaminate one of the mentioned volatile radionuclides
  • radionuclides selected from H-3, C-14 and CI-36 can be separated particularly advantageously from the contaminated graphite with the method according to the invention.
  • the process according to the invention is therefore particularly suitable for
  • a contaminated graphite comprising at least one volatile radionuclide selected from the group consisting of H-3, C-14, CI-36 and mixtures thereof.
  • the contaminated graphite is one in which the total activity of volatile radionuclides is> 10 "1 Bq / g, more preferably> 10 1 Bq / g, even more preferably> 10 2 Bq / g and especially> 10 3 Bq / g.
  • the total activity of volatile radionuclides in the contaminated graphite is> 10 5 Bq / g and in particular> 10 6 B / g
  • the method according to the invention is particularly suitable for contaminated graphite having relatively medium or high total activities of volatile radionuclides allows separation of the volatile radionuclides, thereby a particularly effective and cost-saving disposal of the contaminated graphite is possible.
  • the activity of CI-36 is preferably> 10 ⁇ 1 Bq / g, in particular> 10 1 Bq / g, and preferably> 10 3 Bq / g.
  • the activity of C-14 should preferably be at least> 10 2 Bq / g, in particular> 10 4 Bq / g and preferably> 10 6 Bq / g.
  • the activity of H-3 is preferably> 10 3 Bq / g, more preferably> 10 5 Bq / g and even more preferably> 10 7 Bq / g in the contaminated graphite. If the aforementioned preferred minimum activities are exceeded, the advantages of the method according to the invention are particularly evident.
  • the contaminated graphite may include other non-volatile radionuclides.
  • radionuclides include, in particular, Co-60, Sr-90, Pu-239, U-235 and other radioactive isotopes of uranium, Th-232 and other radioactive isotopes of thorium, Pb-203 and other lead radioactive isotopes and mixtures thereof.
  • the list is exemplary and not exhaustive. Any other radionuclides may be present in the contaminated graphite in addition to the at least one volatile radionuclide, which are not explicitly mentioned here.
  • the contaminated graphite may contain, in addition to graphite and the at least one volatile radionuclide, other ingredients added to the graphite, depending on its use, or contained as impurities.
  • the contaminated graphite is preferably derived from fuel element balls and / or reflector blocks and / or the reactor core. This list is not exhaustive. In particular, the contaminated graphite can also come from thermal columns of research equipment and sleeves from Magnox and UNGG reactors.
  • a “base mixture” is a mixture which comprises the contaminated graphite and at least one glass
  • the base mixture may comprise further components besides the contaminated graphite and glass
  • at least one oxidizing agent may be present
  • the base mixture is preferably obtainable by mixing the constituents contained therein, in particular the contaminated graphite and the glass and the oxidizing agent
  • the base mixture is a homogeneous mixture, ie the constituents are uniform in the base mixture
  • suitable methods of mixing Powder form wherein the average particle diameter of the constituents contained therein are preferably less than 100 ⁇ . If in this invention of a mean grain diameter is mentioned, so it always means the Ferret diameter.
  • treated graphite refers to the product obtained by heating the base mixture according to the invention.
  • the "treated graphite” comprises the constituents of the base mixture, but preferably has a markedly reduced content of volatile radionuclides. According to the invention, the treated graphite is further processed by compacting to give a shaped body which is suitable for disposal.
  • the treated graphite is thus preferably one which has a markedly reduced content of volatile radionuclides.
  • a "significantly reduced content" of volatile radionuclides is present in accordance with the invention if the content of at least one volatile radionuclide of the volatile radionuclides contained in the contaminated graphite in the treated graphite is at least 60%, preferably at least 70%, more preferably at least 80% and even more preferably reduced by at least 90% based on the amount of volatile radionuclide in the contaminated graphite.
  • Liquid scintillation spectrometry the total alpha-beta activity measurement
  • Mass spectrometry Mass spectrometry, a Neutronen2011techniksanalyse and optionally a radiochemical separation as a method for the selective and quantitative determination of volatile radionuclides available.
  • the treated graphite is preferably such that at most only 25%, more preferably at most only 15% and more preferably less than 5% and most preferably less than 2% H-3 based on the amount of H-3 in the contaminated graphite.
  • the contaminated graphite comprises C-14, preferably less than 65%, more preferably less than 55%, and even more preferably less than 50% of C-14 in the treated graphite is present in the contaminated graphite, based on the amount of C-14.
  • the treated graphite contains less than 80%, more preferably less than 60% and even more preferably less than 50% of CI-36, based on the amount of CI-36 in the contaminated graphite.
  • the treated graphite is preferably one in which the activity at H-3 is ⁇ 10 3 Bq / g, more preferably ⁇ 10 2 Bq / g, and most preferably H-3 no longer detectable in the treated graphite with conventional detection methods.
  • the activity at C-14 in the treated graphite is preferably ⁇ 10 2 Bq / g, more preferably ⁇ 10 1 Bq / g.
  • the contaminated graphite comprises CI-36
  • the activity on CI-36 in the treated graphite is preferably only ⁇ 10 -1 Bq / g.
  • the graphite treated according to the invention may be a material which is no longer radioactive, that is to say a free, or only weakly active one. This also applies to the molding, which is obtained according to the invention by compacting the base mixture.
  • the shaped body according to the invention can therefore be a material which is no longer radioactive, that is to say a free, or only weakly active material.
  • the shaped body preferably has a markedly reduced content of volatile radionuclides.
  • the heating of the base mixture to separate the volatile radionuclides from the contaminated graphite preferably the volatile radionuclides are separated during heating of the base mixture of contaminated graphite.
  • the radionuclides are preferably "separated" from the contaminated graphite when a treated graphite is obtained which has a markedly reduced content of volatile radionuclides This is ensured, in particular, by the composition according to the invention of the base mixture and the process procedure according to the invention
  • the separation of the volatile radionuclides can be carried out by They contribute to the liberation of volatile radionuclides from the contaminated graphite due to their oxidising effect, in particular, such substances may contribute to the opening of closed pores in which they are trapped Volatile radionuclides are and / or trigger the implementation of chemically bonded radionuclides under the process conditions to gaseous compounds.
  • the use of oxidizing agents is dispensed with, so that no oxidizing agents are added to the base mixture.
  • the glass in the base mixture already has an optimum oxidative effect, so that the process according to the invention can be made even more cost-effective and simpler.
  • the content of these substances should preferably be at most 8 wt.% And more preferably at most 5 wt.%, More preferably at most 2 wt Do not exceed the total weight of the base mix. If an excessive amount of oxidizing agents is used, the material of the equipment used is attacked, which reduces the life of the equipment.
  • oxidizing agents are organic peroxides.
  • the contaminated graphite is preferably present in the base mixture as graphite powder, preferably, the contaminated graphite has a mean grain diameter of less than 100 ⁇ , more preferably at most 50 ⁇ and more preferably at most 30 ⁇ . If the contaminated graphite is not already present in such grain diameters, the contaminated graphite is comminuted before heating.
  • the person skilled in the art is well aware of methods for comminution. The smaller the grain diameter of the graphite powder, the higher the densities can be achieved in the treated graphite or in the shaped body, and the better the volatile radionuclides can be separated from the contaminated graphite. Optionally, therefore, comminution of the contaminated graphite takes place before heating up.
  • the glass in the base mixture has, in addition to a binding effect and a certain oxidative effect, in particular also a structuring function and contributes to the production of a particularly dense and non-porous treated graphite or of the molding obtainable by compaction.
  • Glass has the advantage that during the heating of the base mixture no gaseous cracking products are formed, which could lead to pore formation in the treated graphite. This means that the glass goes through little or no conversion processes. Also, due to the process of the invention pore formation is thus effectively prevented.
  • the glass wets in the softened or molten state, the contaminated graphite and optionally the other constituents of the base mixture, so that the cavities between the Particles can be closed by capillary or adhesion forces and a dense and almost pore-free shaped body can be obtained after compression of the base mixture, which is sufficiently stable for further processing.
  • the process according to the invention makes it possible to produce a shaped body which is preferably essentially free from pores, namely a density of preferably at least 90%, more preferably at least 95%, even more preferably at least 98%, even more preferably in the range of> 99%. and most preferably in the range of> 99.5% of the theoretical density. It is advantageous if the shaped body has a high density, so that the risk of moisture penetration into the shaped body is further reduced and any non-volatile radionuclides are particularly effectively included in the contaminated graphite. This can even better prevent leakage of these radionuclides into an optional matrix material into which the shaped body can be embedded.
  • the shaped body further preferably has a good hardness due to the structural effect of the glass.
  • the glass of the base mixture is preferably selected from
  • Borosilicate glasses Alumophosphatgläsern, lead glasses, phosphate glasses, alkali glasses, alkaline earth glasses and mixtures thereof. More preferably, the glass of the base mixture is selected from borosilicate glasses, aluminophosphate glasses, lead glasses and mixtures thereof. Most preferably, the glass of the base mixture is a borosilicate glass.
  • Borosilicate glasses are also very chemical and temperature resistant glasses.
  • the good chemical resistance, for example to water and many chemicals is explained by the boron content of the glasses.
  • Borosilicate glass to sudden temperature changes are a result of low thermal expansion coefficient of about 3,3x10 "6 K" 1 of borosilicate.
  • Common borosilicate glasses for the registration are, for example, Jenaer Glas, Duran®, Pyrex®, llmabor®, Simax®, Solidex® and Fiolax®.
  • a typical composition for borosilicate glasses is known to the person skilled in the art and is, for example, in percent by weight:
  • alkali oxides such as Na 2 0 or K 2 0
  • alkaline earth oxides such as CaQ, qQ.
  • aluminophosphate glasses is the high radiation resistance and resistance to high temperatures and water.
  • Phosphate glasses are again suitable because of the possible absorption of ionic radiation. Phosphate glasses are characterized by low melting points, so that their use is also advantageous. As a result, lower temperatures can be used in the heating of the base mixture, so that the process can be made overall cost and energy saving.
  • Alkaline glasses are characterized by low viscosities. As a result, the ability to wet the contaminated graphite is favored. Thus, pores can be easily closed, and preferably a high density of the treated graphite can be achieved.
  • Alkaline earth glasses in turn have an increased acid stability, can be easily processed and are inexpensive, so that they can also be used according to the invention.
  • the glass is preferably used in the form of a powder in the base mixture, so that an optimal binding effect and structure effect can be achieved.
  • the average particle diameter of the glass powder is preferably less than 100 ⁇ m, more preferably not more than 50 ⁇ m, and particularly preferably not more than 30 ⁇ m. The smaller the grain diameter, the easier it is for the glass to close any pores between the other constituents of the base mix. It is advantageous if the base mixture contains at least 5% by weight of glass, more preferably at least 7% by weight, even more preferably at least 10% by weight and particularly preferably at least 12% by weight of glass Total amount of the base mixture contained in the base mixture. If too little glass is used, a sufficient binding and structural effect can often not be achieved.
  • the base mixture preferably comprises up to 30% by weight, more preferably up to 20% by weight and particularly preferably up to 18% by weight of glass. If too much glass is used in the base mixture, it is no longer possible to incorporate sufficiently contaminated graphite. The moldings according to the invention are then no longer suitable for a space-saving end storage of the graphite, since less contaminated graphite is effectively processed per area. Thus, while sufficient, but as little as possible of glass in the base mixture should be used to supply as much contaminated graphite to the inventive method.
  • the base mixture When heating the base mixture, i. In the heat treatment of the base mixture, the base mixture is preferably heated to a target temperature of at least 650 ° C, more preferably at least 700 ° C, and even more preferably at least 800 ° C, and most preferably at least 1000 ° C. If the target temperature to be heated is too low, the glass will be insufficiently softened to penetrate between the pores of the other constituents of the base mixture. Also, the volatile radionuclides can often be insufficiently separated from the contaminated graphite at too low temperatures. In particular, it may also be necessary for bonds in the graphite to be cleaved to release volatile radionuclides.
  • the target temperature of the base mixture should preferably be not more than 1600 ° C, preferably not more than 1500 ° C, more preferably not more than 1400 ° C, even more preferably not more than 1350 ° C, and most preferably not more than 1200 ° C. If the target temperature is too high, the process becomes too expensive overall and there is a risk of undesired reactions in the base mixture.
  • Target temperatures between 700 ° C and 1300 ° C, especially between 750 ° C and 1250 ° C, and even more preferably between 800 ° C and 1200 ° C have been found to be particularly suitable. At these temperatures, a particularly clear binding and structural effect of the glass was shown and the volatile radionuclides could be separated very well.
  • the heating of the base mixture preferably initially comprises heating to at least one intermediate temperature which is below the target temperature, before it is heated to the target temperature.
  • the heating of the base mixture runs on the Target temperature at least two-phase.
  • the term "heating phase” refers to specific heating up to a specific setpoint temperature, which can then be maintained for a predetermined time, preferably at least 5 minutes, more preferably at least 10 minutes
  • the second heating phase comprises the further heating from the intermediate temperature to reach the "target temperature.”
  • a temperature control has proved to be particularly advantageous and has enabled a particularly effective separation of volatile radionuclides and an overall cost-effective and rapid process design
  • the content of volatile radionuclides is already markedly reduced already in the first heating phase, so that graphite treated after the first heating phase can be obtained, and the second heating phase is then used for separation Any remaining volatile radionuclides while optimally softening the glass of the base mixture.
  • the intermediate temperature is preferably at least 350 ° C, more preferably at least 400 ° C, even more preferably at least 420 ° C. If the intermediate temperature of the base mixture is too low, there is a risk that volatile radionuclides can not be sufficiently removed in the first heating phase.
  • the intermediate temperature is more preferably between 400 ° C and 500 ° C, more preferably between 420 ° C and 480 ° C, especially at 450 ° C ⁇ 20 ° C.
  • the pressing pressure during heating of the base mixture is preferably below 15 MPa, more preferably below 12 MPa and particularly preferably below 10 MPa.
  • the pressure during the first heating phase is preferably below 5 MPa, more preferably below 3 MPa, even more preferably below 2 MPa and more preferably below 0.5 MPa and even more preferably below 0 , 2 MPa and most preferably at atmospheric pressure, ie about 0.101325 MPa +/- 20%.
  • the heating to the intermediate temperature is carried out according to the invention preferably without external pressure.
  • the second heating phase is preferably carried out at a pressure below 15 MPa, more preferably below 12 MPa and even more preferably below 10 MPa.
  • the pressure in the second heating phase is between 5 MPa and 10 MPa, more preferably between 6.5 and 9.5 MPa and particularly preferably between 7.5 and 8.5 MPa.
  • Such a Compression has proven to be particularly advantageous to separate any remaining volatile radionuclides while optimally softening the glass component.
  • the heating rate during heating is preferably at least 5 ° C / min, preferably at least 8 ° C / min, and more preferably at least 10 ° C / min. Such slow heating facilitates the separation of volatile radionuclides from the contaminated graphite.
  • the heating rate during heating should not be too high, so preferably below
  • Heating ie heating until reaching a target temperature of preferably at least 650 ° C. and preferably at most 1600 ° C., preferably lasts for at least 5 minutes, more preferably at least 10 minutes and more preferably at least 12 minutes, and even more more preferably at least 18 minutes, and more preferably at least 25 minutes. If heating is too fast, ie in too short a time, there is a risk that the volatile radionuclides can not be separated sufficiently from the contaminated graphite. However, it is preferably heated for a maximum of 60 hours, preferably over a maximum of 50 hours and even more preferably over a maximum of 24 hours, more preferably over a maximum of 10 hours.
  • a target temperature of the base mixture of preferably at least 650 ° C, and preferably at most 1600 ° C, is preferably maintained for at least 5 minutes, more preferably at least 10 minutes, and most preferably at least 12 minutes. If such a target temperature is maintained for too short a time, there may be a risk that possibly still remaining volatile radionuclides will not be sufficiently separated from the contaminated graphite.
  • the target temperature is preferably maintained for a maximum of 15 hours, more preferably for a maximum of 10 hours.
  • the intermediate temperature is preferably maintained for at least 5 minutes, more preferably at least 10 minutes, and particularly preferably for at least 12 minutes.
  • the intermediate temperature may be maintained for up to 30 hours, preferably up to 26 hours, and more preferably up to 24 hours. If the intermediate temperature is maintained for too short a time, there is the danger of an insufficient separation of the volatile radionuclides, since according to the invention a significant reduction of the volatile radionuclides can already be achieved in the first heating phase.
  • the glass viscosity during heating to the target temperature, preferably in the second heating phase, is preferably ⁇ 10 5 dPa ⁇ s, more preferably ⁇ 10 5 dPa ⁇ s. If the viscosity of the glass during heating is too high, the glass can not penetrate sufficiently between the pores of the further constituents of the base mixture, so that it is generally not possible to obtain a sufficiently dense and hard shaped article.
  • the release of volatile radionuclides is preferably monitored during heating, preferably by on-line measurement.
  • the duration of the heating and / or the duration of the duration, preferably of intermediate temperature and target temperature are adjusted such that a treated graphite remains which has a markedly reduced content of volatile radionuclides.
  • the heating is particularly preferably carried out in vacuo, wherein the residual gas pressure is preferably ⁇ 10 ⁇ 3 MPa, more preferably ⁇ 10 ⁇ 4 MPa.
  • the heating may be accomplished by the application of heat, current, microwaves or other methods of heating a material.
  • the heating preferably takes place in such a way that a temperature gradient is achieved between innermost regions of the base mixture and regions of the base mixture close to the edge. In the innermost regions of the base mixture are higher temperatures than in near-edge areas of the base mixture, which according to the invention
  • a negative temperature gradient is ensured according to the invention in particular by the selection of a suitable heating rate and duration of heating and / or the duration of the target temperature and the preferred intermediate temperature.
  • An inventive negative temperature gradient leads to transport processes of the volatile radionuclides such that a separation of the volatile radionuclides is even better possible.
  • a negative temperature gradient in the base mixture is present when the smallest measured temperature difference ( ⁇ ) between a center measurement point and at least 2 outer measurement points, preferably at least 3 outer measurement points, along a horizontal plane within the base mixture is such that the temperature at the center measurement point is greater than 5 ° C, more preferably more than 10 ° C, and more preferably more than 20 ° C and more preferably more than 50 ° C higher than the temperature at the outer measuring points.
  • should therefore be at most 300 ° C, more preferably at most 200 ° C.
  • the horizontal plane within the base mixture is chosen so that it divides the base mixture horizontally into two equal halves based on the volume of base mixture. The center measurement point and the outer measurement points lie along this horizontal plane.
  • the "center measurement point” is at the location of the horizontal plane where the horizontal plane is intersected by a vertical plane dividing the base mixture vertically into two equally sized halves relative to the volume of base mixture on the horizontal plane such that the smallest distance between the center measuring point and each of the outer measuring points is at least 60%, preferably at least 70% and more preferably at least 80% of the length of a straight line from the center measuring point to the edge of the base mixture, the straight line being so in that it intersects the outside measuring point and the center measuring point and runs from edge to edge of the base mixture, thereby ensuring that the external measuring points are sufficiently far away from the center measuring point and sufficiently close to the edge of the base mixture.
  • the largest distance between each outside measuring point and the center measuring point is chosen such that the distance is at most 95% and preferably at most 90% of the length of the straight line from the center measuring point to the edge of the base mixture. This will ensure that the outside measurement points are not too close to the edge of the base mix.
  • the temperature profile in the base mixture can be ideally represented.
  • the heating of the base mixture according to the invention is followed by a densification of the treated graphite, i. exerting increased pressure.
  • a particularly stable and dense treated graphite can be achieved, which can be easily further processed in the process according to the invention.
  • the compression is carried out at elevated temperature, preferably at the target temperature, ie at temperatures between 650 ° C and 1600 ° C, more preferably at temperatures between 700 ° C and 1400 ° C and even more preferably at temperatures between 800 ° C and 1200 ° C.
  • the compacting pressure during densification is preferably up to 250 MPa, more preferably up to 200 MPa, even more preferably up to 180 MPa, and even more preferably up to 150 MPa.
  • the pressure should not be too high, because then the process is too expensive and too expensive.
  • the compacting pressure should be at least 20 MPa, preferably at least 30 MPa, and still more preferably at least 50 MPa, and more preferably at least 60 MPa. If the pressing pressure was in this range, a particularly advantageous compaction of the treated graphite was found.
  • the compression takes place under protective gas.
  • the compression is carried out under vacuum, wherein the residual gas pressure is preferably ⁇ 10 ⁇ 3 MPa, more preferably ⁇ 10 ⁇ 4 MPa.
  • the compression is preferably carried out in a hot isostatic press, a vacuum hot press or a spark plasma sintering plant (SPS).
  • SPS spark plasma sintering plant
  • the heating of the base mixture already takes place in one of the said systems, preferably in the same system as the compression.
  • the pressing force in the SPS is preferably between 80 kN and 500 kN, more preferably between 90 kN and 300 kN, to ensure sufficient compaction.
  • the residual gas pressure in the SPS is according to the invention preferably at most 10 ⁇ 3 MPa, more preferably the residual gas pressure is below 10 ⁇ 3 MPa.
  • the treated graphite filled in an axial mold Preferably, the heating of the base mixture according to the invention already takes place in the mold before. In this case, the treated graphite is already in the axial mold.
  • the heating of the base mixture can be carried out in this plant by applying a current, in particular a direct current, with current strengths in the range of 3 kA to 8 kA, preferably from 3.5 kA to 5 kA and even more preferably from 4 kA to 4.5 kA , and voltages of 4 V to 10 V, preferably 4.5 V to 8 V, even more preferably 5 V to 6 V.
  • the power consumption should be 15 kW to 30 kW, in particular 20 kW to 25 kW.
  • the direct current is passed directly through the base mixture for heating the base mixture.
  • a pressure of from 50 MPa to 250 MPa is preferably applied under protective gas or in vacuo. The method enables the production of a molded body with high density even at low process times.
  • hot isostatic pressing is used for compaction.
  • the treated graphite is poured into a container.
  • the heating of the base mixture takes place in this container.
  • the compression is preferably carried out at a pressure between 20 MPa and 200 MPa, preferably in a vacuum.
  • the pressing pressure of preferably between 20 MPa and 250 MPa can be maintained for up to 15 hours, preferably up to 12 hours, and ideally up to 10 hours. Too long a maintenance of the pressing pressure makes the process on the whole too expensive and expensive.
  • the compacting according to the invention preferably also comprises the cooling of the shaped article obtained. Preferably, first a first cooling of the shaped body while maintaining the pressing pressure of preferably between 20 MPa and 250 MPa to temperatures below 800 ° C, preferably below 600 ° C, more preferably to 500 ° C ⁇ 5 ° C.
  • the first cooling is preferably carried out over a period of at least 1 minute, more preferably 2 minutes. The period is a maximum of 120 minutes, more preferably a maximum of 60 minutes.
  • a period of time for the first cooling of 5 minutes has proven to be particularly suitable.
  • the glass viscosity should be at least 10 6 dPa ⁇ s after this first cooling, preferably> 10 6 dPa ⁇ s.
  • the shaped body produced according to the invention is suitable for disposal, ie preferably for safe storage over geological periods ideally up to 1 million years or longer.
  • the shaped body can also be additionally embedded in a matrix material.
  • the shaped body is therefore embedded in a matrix material. This makes it possible to improve the final storage capacity of the molding even further and to include the treated graphite even safer.
  • such embedding of the shaped body imparts additional radiation and corrosion stability.
  • the shaped body can be embedded in the matrix material without further intermediate steps not mentioned here, such as further working or processing.
  • the shaped body is preferably embedded in the matrix material without an outer metal sheath. This is advantageous because it enables cost-effective storage and simple process control. Also, a metal shell provides only temporary sufficient diffusion protection due to possible corrosion and cracking during prolonged storage.
  • the composition according to the invention of the base mixture and the method according to the invention in particular the heating of the base mixture for separating volatile radionuclides from the contaminated graphite. Therefore, an additional introduction of the shaped body into a metallic shell prior to embedding in the matrix material according to the invention is not required.
  • "embedding" means that the shaped body is enclosed by the matrix material; in accordance with the invention this is referred to as a "coated shaped body".
  • the shaped body of the matrix material is enclosed when more than 95%, preferably more than 98%, of the outer surface of the shaped body is covered by the matrix material and the outer surface of the shaped body is very particularly preferably completely covered by the matrix material.
  • the matrix material comprises according to the invention as matrix constituents graphite which is not contaminated and at least one inorganic binder selected from glasses, Aluminosilicates, silicates, borates and mixtures thereof.
  • Such matrix materials are known in the art.
  • the inorganic binder is selected from glasses, it is in this case a so-called impermeable graphite glass matrix, IGG short.
  • Glass as an inorganic binder, has the advantage that no gaseous cracking products are formed which lead to pore formation in the matrix material.
  • it wets the remaining matrix constituents and the voids between the particles are closed by capillary or adhesive forces. This ensures a high density of the matrix material and excellent corrosion resistance.
  • the glass in the matrix material is preferably selected
  • Borosilicate glasses Alumophosphatgläsern, lead glasses, phosphate glasses, alkali glasses, alkaline earth glasses and mixtures thereof.
  • the person skilled in the art will select a suitable glass according to his specialist knowledge. Particularly preferably, the glass is selected from
  • Borosilicate glasses aluminophosphate glasses, lead glasses and mixtures thereof.
  • the glass is a borosilicate glass due to the high corrosion resistance and high chemical and temperature resistance.
  • the graphite content of the matrix material is preferably at least 60% by weight, more preferably at least 65% by weight.
  • the graphite content is preferably at most 90% by weight.
  • the proportion of inorganic binder is preferably at least 10
  • Wt .-% Preferably, a maximum of 40% by weight of inorganic binder is contained in the matrix material.
  • the graphite in the matrix material is an uncontaminated graphite, so radionuclides are therefore preferably undetectable and / or the graphite has only a natural activity.
  • the activity of the uncontaminated graphite is therefore preferably ⁇ 10 3 Bq / g.
  • the graphite of the matrix material is natural graphite or synthetic graphite or a mixture of both components. It is particularly preferred that the graphite content of the matrix mixture to 60 wt .-% to 100 wt .-% of natural graphite and 0 wt .-% to 40 wt .-% consists of synthetic graphite.
  • the synthetic graphite may also be referred to as graphitized electrographite powder.
  • the natural graphite has the advantage that it is inexpensive, the graphite grain in contrast to synthetic graphite has no nanorises and can be pressed at moderate pressure to give moldings with almost theoretical density.
  • the matrix components in particular the inorganic binder and the graphite, are preferably used in the form of a powder, so that an optimal binding effect and density of the matrix material can be achieved.
  • the average particle diameter of the glass powder is preferably less than 100 ⁇ m, more preferably not more than 50 ⁇ m, and particularly preferably not more than 30 ⁇ m. The smaller the grain diameter, the easier it is for the glass to close any pores between matrix components.
  • the graphite powder of the matrix material preferably also has the mean grain diameters mentioned.
  • the preparation of the matrix material is also known in principle.
  • the preparation of the matrix material involves mixing the matrix components in powder form to obtain a pressed powder.
  • the press powder may comprise adjuvants in amounts of a few percent, based on the total amount. These are, for example, pressing aids which may comprise alcohols.
  • a granulate is produced from the pressed powder.
  • the starting components in particular the two components graphite and glass powder, mixed together, then compacted and by subsequent crushing and sieving a granulate with a grain size of less than 3.14 mm and greater than 0.31 mm is made.
  • the embedding of the shaped body according to the invention in the matrix material is preferably carried out by:
  • the final pressing is preferably carried out by dynamic pressing or hot pressing, preferably under vacuum.
  • a pressing pressure preferably between 80 MPa and 300 MPa can be used.
  • the final pressing may further include heating to temperatures between 800 ° C and 1400 ° C.
  • the embedding of the shaped body according to the invention in the matrix material takes place by joining one or more shaped bodies with the matrix material, which is in the form of a "base body.”
  • the base body is a pre-pressed geometric shape which can assume various configurations, preferably a hexagonal prism , and the one or comprises a plurality of cavities for receiving the / the shaped body (s).
  • the shaped bodies are preferably filled into the cavities.
  • the cavity openings are preferably filled with matrix material before the final pressing or covered with matrix material in the form of a further basic body of matrix material.
  • the shaped bodies are introduced into matrix material, which is in powder form, and the mixture is then pressed by final pressing to form a coated shaped body.
  • a handle-resistant basic body with cavities ie recesses for receiving the shaped bodies
  • the pre-pressing takes place, for example, with a four-column press with three hydraulic drives.
  • recesses serve according to the invention preferably shaped rods, which are composed of two parts: A forming rod member with a larger diameter, which is inserted on a thinner support rod.
  • the matrix material described herein is capable of serving as a corrosion barrier over an ultralong period of time.
  • the matrix material is essentially free of pores, namely it has a density which is preferably in the range of more than 90% and particularly preferably> 99% of the theoretical density.
  • the matrix material has a high density so that moisture can not penetrate into the sheathed body. This is ensured on the one hand by the material selection and on the other hand by the manufacturing process.
  • the coated molding can be safely stored for an ultralong period of time.
  • the present invention enables a volume-saving disposal of high amounts of contaminated graphite.
  • FIG. 1 A particularly preferred embodiment of the method according to the invention is shown in FIG.
  • Example 1 Preparation of a shaped body for disposal
  • the tool consisted of two press cylinders and a hollow cylinder shell.
  • a graphite foil was introduced into the hollow cylinder.
  • the lower punch was inserted and covered with a bottom graphite foil.
  • the filled base mixture was covered with a graphite foil.
  • the upper punch was inserted into the tool.
  • the tool was inserted into a SPS press and pre-pressed to 2 kN with the SPS press punch.
  • the temperature was increased with the method according to the invention ren to a target temperature of 1200 ° C wherein the glass viscosity was ⁇ 10 5 dPa ⁇ s (heating rate 15 ° C / min to 20 ° C / min).
  • the pressing pressure was increased over a period of time to> 64 MPa and the base mixture in the spark plasma sintering plant was compacted into a shaped body with a density of> 98% of the theoretical density. Subsequently, under the increased pressing pressure, cooling of the treated graphite according to the invention took place.
  • the resulting molded article is suitable for safe disposal over very long periods of time and, in particular, depending on country-specific regulations, can be stored close to the surface or on the surface.
  • Example 2 Embedding of the Shaped Body in a Matrix Material to Obtain a Sheathed Shaped Body
  • the molded article of Example 1 was embedded in a matrix material of uncontaminated natural graphite and glass.
  • the starting components used were a nuclear grade natural graphite having a grain diameter of less than 30 ⁇ from Kropfmühl and a borosilicate glass of the same grain size having a melting point of about 1000 ° C. from Schott.
  • the two components were mixed dry in a weight ratio of natural graphite to glass 5: 1 and pressed into briquettes with the compactor Bepex L 200/50 P from Hosokawa.
  • the briquette density was about 1.9 g / cm 3 .
  • a granule having a grain size of less than 3.14 mm and greater than 0.31 mm and having a bulk density of about 1 g / cm 3 was prepared.
  • a base body was pre-pressed with cavities for receiving the molding of Example 1.
  • Example 1 The molding of Example 1 was filled in the cavities and the
  • Cavity openings were then filled with matrix material. Subsequently, a final pressing followed at 1000 ° C. The final pressing was carried out as dynamic pressing. The compact was moved under full load alternately with the upper and lower punches in a die. After cooling to 200 ° C, the jacketed molded body was ejected from the tool.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Die vorliegende Erfindung betrifft die Dekontamination von kontaminiertem Graphit, insbesondere von bestrahltem Graphit. Darunter wird erfindungsgemäß ein Verfahren zur Abtrennung flüchtiger Radionuklide aus kontaminiertem Graphit und die Überführung des Graphits samt nicht-flüchtiger Radionuklide in eine endlagergerechte Form verstanden. Das erfindungsgemäße Verfahren umfasst das Aufheizen des kontaminierten Graphits zum Erhalt von behandeltem Graphit, ein Verdichten des behandelten Graphits zum Erhalt eines Formkörpers und optional ein Einbetten des behandelten Graphits in ein Matrixmaterial zum Erhalt eines ummantelten Formkörpers. Der Formkörper, der den behandelten Graphit umfasst, kann in Abhängigkeit von den landesspezifischen Anforderungen unter geringeren Sicherheitsanforderungen entsorgt und gelagert werden. Dadurch kann das Volumen an solchem Material, das eine besonders aufwändige und damit besonders kostenintensive Entsorgung und Lagerung, insbesondere eine unterirdische Lagerung in tiefen Bodenregionen erfordert, deutlich vermindert werden. Letzteres führt auch zu deutlich verringerten Kosten bei der Entsorgung von kontaminiertem Graphit, der jährlich in hohen Mengen anfällt.

Description

Verfahren zur Dekontamination von kontaminiertem Graphit
Die vorliegende Erfindung betrifft die Dekontamination von kontaminiertem Graphit einschließlich von bestrahltem Graphit. Darunter wird erfindungsgemäß ein Verfahren zur Abtrennung flüchtiger Radionuklide aus kontaminiertem Graphit samt gleichzeitiger Über- führung des Graphits inklusive der nicht flüchtigen Radionuklide in eine endlagerungsge- eignete Form verstanden.
Es fallen jährlich hohe Mengen an kontaminiertem, insbesondere bestrahltem Graphit an, vor allem beim Rückbau von Reaktoren (weltweit existieren ca. 240 000 t derartiger Graphitkomponenten). Weltweit gibt es eine Vielzahl von unterschiedlichen Graphit-moderierten Nuklearreaktoren, wie zum Beispiel UNGG in Frankreich, Magnox und AGR in England oder RMBK in Russland. Diese Reaktoren sind in der Regel gasgekühlt und nutzen metallumhüllte Brennelemente, die in sogenannten SIeeves aus Graphit verpackt durch den Reaktorkern geschoben werden. Als Core-Material werden für diese Art von Reaktoren in der Regel entsprechende Graphitblöcke verwendet, die sowohl als thermische Dämmung, als Moderator zum Aufnehmen freier Neutronen als auch als Gasführungselemente dienen. Viele dieser Anlagen sollen zurückgebaut werden, so dass es zwingend einer kosteneffektiven und einfachen Entsorgungsstrategie für kontaminierten, insbesondere bestrahlten Graphit bedarf. Eine tiefgeologische Einbringung derartiger Komponenten ist mit hohen Kosten verbunden. Eine einfache, oberflächennahe Endlagerung der Komponenten in mit Beton gefüllten Containern wurde bisher weltweit nicht genehmigt, da das Austragen der enthaltenen Radionuklide nicht sicher verhindert wird.
Bestrahlter Graphit kann üblicherweise verschiedene Radionuklide umfassen wie H-3, C- 14, Co-60, CI-36, Cs-137, Sr-90. Der Gehalt an solchen Radionukliden ist insbesondere auf die Neutronenaktivierung von Stickstoff, welcher als Verunreinigung im Graphit oder im Kühlgas vorliegt, aber auch auf Neutronenaktivierung des natürlich vorkommenden C- 13-lsotops zurückzuführen. Die Radionuklide sind mehr oder weniger homogen im gesamten Volumen des bestrahlten Graphits verteilt. Aufgrund dieser Verteilung der Radionuklide ist auch das gesamte Volumen des bestrahlten Graphits als radioaktiver Abfall einzustufen. Der gesamte bestrahlte Graphit wird je nach landesspezifischer Klassifikation teilweise sogar als mittelaktiver Abfall eingestuft. Die Endlagerung von kontaminiertem, insbesondere bestrahltem Graphit wird insbesondere durch solche Radionuklide erheblich erschwert, die flüchtig und damit auch mobil sind, insbesondere H-3, C-14 und CI-36. Eine weitere Erschwernis bilden flüchtige Radionuklide, die darüber hinaus noch langlebig sind wie C-14 und CI-36. Flüchtige Radionuklide können sich auf der Oberfläche, insbesondere auf den Oberflächen des Porensystems des bestrahlten Graphits befinden. Sie können sowohl chemisch gebunden, adsorbiert oder absorbiert vorliegen. Aufgrund des Gehalts solcher Radionuklide ist eine Endlagerung erschwert. Aufgrund der langen Halbwertszeit und der Gefahr einer kontinuierlichen Freisetzung flüchtiger Radionuklide aus dem kontaminierten Graphit ist dieser unter besonderen Sicherheitsanforderungen in tiefen Bodenregionen und damit mit hohem Aufwand und Kosten endzulagern.
Zum Beispiel verhindert der C-14-Gehalt von bestrahltem Graphit aus Spanien dessen Entsorgung in dem oberflächennahen Endlager El Cabril. In Frankreich darf in den Sicherheitsnachweisen nach den momentan gültigen Regularien für die oberflächennahe Endlagerung nur die Radionuklidkonzentration betrachtet werden. Selbst wenn ein Matrixmaterial einen sicheren Einschluss des bestrahlten Graphits garantieren würde, darf dies nicht mit in die Sicherheitsbetrachtungen einbezogen werden. Wenn also ein solcher Graphit sicher eingebunden ist, ist eine oberflächennahe und platzsparende sowie kosteneffektive Endlagerung aufgrund des Radionuklidgehalts nicht zulässig, wobei flüchtige Radionuklide besonders kritisch betrachtet werden.
Denkbar und bekannt ist beispielsweise die sichere Einlagerung von kontaminiertem, insbesondere bestrahltem Graphit in besondere Matrixmaterialien. In der WO
2010/052321 A1 ist ein Matrixmaterial zur Endlagerung von radioaktivem Abfall beschrieben, in das der radioaktive Abfall eingebracht wird. Der radioaktive Abfall, der auch be- strahlter Graphit sein kann, wird dabei entweder direkt mit dem Matrixmaterial vermischt und gegebenenfalls zusammen mit Matrixmaterial bei Raumtemperatur kalt vorgepresst. Der Abfall wird anschließend in Kavitäten eines vorgepressten Formkörpers aus Matrixmaterial eingebracht und dann final gepresst. Alternativ kann der Abfall direkt mit der Matrixmischung zu einem fertigen Formkörper final gepresst werden. Das finale Pressen erfolgt bei erhöhten Temperaturen und erhöhtem Druck. Insbesondere herrschen infolge der Prozessführung höhere Temperaturen in randnahen Bereichen des Materials im Vergleich zum Materialinneren. Aufgrund der Prozessführung reichern sich flüchtige Radionuklide des Abfalls folglich im Inneren des Gebindes an. Außerdem wird der Abfall in der Form eingebettet, in der er anfällt ohne eine etwaige vorherige Behandlung. Das gefertigte Gebinde enthält damit die Radionuklide des Abfalls einschließlich flüchtiger Radionuklide und muss also unter entsprechend strengen Sicherheitsanforderungen, insbesondere in tiefen Bodenregionen, gelagert werden.
In der WO 201 1 /1 17354 A1 sind Gebinde beschrieben umfassend eine impermeable Glas-Graphit-Matrix, kurz IGG, in die radioaktiver Abfall in metallumhüllter Form eingebettet werden kann. Dadurch wird ein sogenanntes inverses Design erreicht. Die Metallhülle um den Abfall wirkt als Diffusionsbarriere und verhindert den Austritt der im Abfall enthaltenen Radionuklide in die IGG. Zur Herstellung der Abfallelemente wird der Abfall gegebenenfalls zusammen mit einem Bindemittel in Metallhüllen eingefüllt und anschließend in der Metallhülle zu verbundgepressten Stäben extrudiert. Eine vorherige Behandlung des Abfalls ist nicht vorgesehen. Damit sind auch etwaige flüchtige Radionuklide nach der Einbettung noch im Abfall enthalten. Folglich wird, wie oben ausgeführt, eine Endlagerung in tiefen Bodenregionen je nach landesspezifischer Klassifikation nicht entbehrlich.
Es ist daher eine Aufgabe der Erfindung, ein Verfahren bereitzustellen, dass eine einfache und kosteneffektive Entsorgung und Endlagerung von kontaminiertem, insbesondere bestrahltem Graphit, unter geringeren Sicherheitsanforderungen möglich macht. Vorzugsweise soll eine oberflächennahe Endlagerung und/oder eine Endlagerung an der Oberfläche je nach landesspezifischen Vorgaben zulässig werden zur Entlastung unterirdischer Deponien. Die Aufgabe wird durch das hierin beschriebene Verfahren zur Dekontamination von kontaminiertem Graphit gelöst. Das Verfahren der vorliegenden Erfindung umfasst die
Schritte:
Aufheizen einer Basismischung umfassend kontaminierten Graphit und wenigstens ein Glas zur Abtrennung flüchtiger Radionuklide von dem kontaminierten Graphit, wobei ein behandelter Graphit erhalten wird;
Verdichten des behandelten Graphits zum Erhalt eines Formkörpers, der zur Endlagerung geeignet ist; optional Einbetten des Formkörpers in ein Matrixmaterial zum Erhalt eines ummantelten Formkörpers.
Das Aufheizen der Basismischung zur Abtrennung der flüchtigen Radionuklide erfolgt vorzugsweise in der gleichen Vorrichtung wie das Verdichten, so dass kein weiteres Handling des Graphits erforderlich ist. Dadurch ist das erfindungsgemäße Verfahren noch kosteneffektiver und schneller durchführbar.
Der mit dem erfindungsgemäßen Verfahren hergestellte Formkörper ist erfindungsgemäß zur Endlagerung des behandelten Graphits geeignet, also vorzugsweise zur sicheren Lagerung über geologische Zeiträume idealerweise bis zu 1 Mio. Jahre oder länger.
Der Formkörper kann vorzugsweise unter verringerten Sicherheitsanforderungen entsorgt und gelagert werden im Vergleich zur Lagerung von kontaminiertem Graphit, der keiner erfindungsgemäßen Dekontamination unterzogen wurde. Je nach Sicherheitsanforderungen an eine Endlagerung sind eine sichere und oberflächennahe Endlagerung und/oder sogar eine sichere Endlagerung des erfindungsgemäß hergestellten Formkörpers an der Oberfläche zulässig. Dadurch kann das Volumen an solchem Material, das eine besonders aufwändige und damit besonders kostenintensive Entsorgung und Lagerung, insbesondere eine unterirdische Lagerung in tiefen Bodenregionen erfordert, deutlich vermindert werden. Letzteres ist in Hinblick auf die stark begrenzten Lagerkapazitäten und den regelmäßigen Anfall hoher Mengen an kontaminiertem, insbesondere bestrahltem Graphit, äußerst vorteilhaft. Außerdem können die Kosten einer Entsorgung kontaminierten Graphits damit erheblich reduziert werden.
„Kontaminierter Graphit" ist ein Graphit, der Anteile an Radionukliden enthält. Vorzugsweise wird als kontaminierter Graphit ein Graphit bezeichnet, der eine Aktivität von > 103 Bq/g aufweist, insbesondere > 104 Bq/g oder sogar > 105 Bq/g. Es handelt sich erfindungsgemäß bei dem„kontaminierten Graphit" also vorzugsweise wenigstens um ein schwachaktives Material mit Aktivitätswerten im mittleren Bereich der üblichen Spanne für „schwachaktiv", insbesondere sogar um ein mittelaktives Material.
Die Radionuklide können infolge einer Kontamination in den Graphit, beispielsweise wenn der Graphit Bestandteil von Brennelementen ist, übergetreten sein. Der Gehalt an Radionukliden kann aber auch durch Neutronenaktivierungen bei der Bestrahlung des Graphits oder Verunreinigungen im Graphit bedingt sein. Der Begriff „kontaminierter Graphit" umfasst also erfindungsgemäß auch einen„bestrahlten Graphit", der infolge der Bestrahlung Radionuklide aufweist. Häufige Radionuklide, die in kontaminiertem Graphit vorliegen können, umfassen H-3, C-14, CI-36, Co-60, Cs-135, Cs-137, 1-131 , Sr-90, Pu-239, U-235 und andere radioaktive Isotope des Urans, Th-232 und andere radioaktive Isotope des Thoriums, Pb-203 und andere radioaktive Isotope des Bleis und Mischungen davon. Das erfindungsgemäße Verfahren eignet sich für solchen kontaminierten Graphit, der wenigstens ein flüchtiges Radionuklid umfasst. Ein erfindungsgemäßer„kontaminierter Graphit" umfasst also wenigstens ein flüchtiges Radionuklid.
Flüchtige Radionuklide sind erfindungsgemäß Radionuklide, die unter Normbedingungen nach DIN 1343 (Ausgabedatum 1990-01 ) oder bei Aufheizen des kontaminierten Graphits auf wenigstens 350°C und höchstens 1600°C bei einer Druckeinwirkung unter 15 MPa, bevorzugt unter 10 MPa, weiter bevorzugt unter 5 MPa, im gasförmigen Zustand oder in Form gasförmiger chemischer Verbindungen vorliegen oder unter den genannten Bedingungen in den gasförmigen Zustand oder gasförmige Verbindungen überführt werden können. Gasförmige Verbindungen der Radionuklide sind insbesondere solche des Radionuklids in elementarer Form und/oder in Form von Oxiden oder Halogeniden des Radionuklids. Flüchtige Radionuklide sind jedenfalls H-3, C-14, CI-36, 1-131 , Cs-135 und Cs-137. Der kontaminierte Graphit umfasst also vorzugsweis wenigstens ein flüchtiges Radionuklid ausgewählt aus der Gruppe bestehend aus H-3, C-14, CI-36, 1-131 , Cs-135 und Cs-137. Es kann eines der genannten flüchtigen Radionuklide im kontaminierten
Graphit vorliegen. Denkbar ist auch, dass Mischungen, umfassend mindestens zwei oder mehr der genannten flüchtigen Radionuklide, im kontaminierten Graphit vorliegen.
Insbesondere Radionuklide ausgewählt aus H-3, C-14 und CI-36 lassen sich mit dem erfindungsgemäßen Verfahren besonders vorteilhaft von dem kontaminierten Graphit abtrennen. Ganz besonders eignet sich das erfindungsgemäße Verfahren daher zur
Dekontamination eines kontaminierten Graphits, der wenigstens ein flüchtiges Radionuklid ausgewählt aus der Gruppe bestehend aus H-3, C-14, CI-36 und Mischungen davon umfasst.
Bevorzugt ist der kontaminierte Graphit ein solcher, bei dem die Gesamtaktivität flüchtiger Radionuklide > 10"1 Bq/g, weiter bevorzugt > 101 Bq/g, noch mehr bevorzugt > 102 Bq/g und insbesondere > 103 Bq/g beträgt. In Ausführungsformen beträgt die Gesamtaktivität flüchtiger Radionuklide im kontaminierten Graphit > 105 Bq/g sowie insbesondere > 106 Bq/g. Das erfindungsgemäße Verfahren eignet sich nämlich insbesondere für kontaminierten Graphit, der verhältnismäßig mittlere oder hohe Gesamtaktivitäten flüchtiger Radionuklide aufweist. Da das erfindungsgemäße Verfahren eine Abtrennung der flüchtigen Radionuklide ermöglicht, wird dadurch eine besonders effektive und kostensparende Entsorgung des kontaminierten Graphits möglich. Insbesondere beträgt die Aktivität von CI-36 in Ausführungsformen, in denen dieses Radionuklid im kontaminierten Graphit enthalten ist, bevorzugt > 10~1 Bq/g, insbesondere > 101 Bq/g, und vorzugsweise > 103 Bq/g. In Ausführungsformen, in denen der kontaminierte Graphit C-14 umfasst, soll die Aktivität von C-14 vorzugsweise mindestens > 102 Bq/g, insbesondere > 104 Bq/g und vorzugsweise > 106 Bq/g betragen. Sofern der kontaminierte Graphit H-3 umfasst, so beträgt die Aktivität von H-3 vorzugsweise > 103 Bq/g, weiter bevorzugt > 105 Bq/g und noch mehr bevorzugt > 107 Bq/g im kontaminierten Graphit. Sind die genannten bevorzugten Mindestaktivitäten überschritten, so kommen die Vorteile des erfindungsgemäßen Verfahrens besonders zum Tragen. Neben dem mindestens einen flüchtigen Radionuklid kann der kontaminierte Graphit weitere Radionuklide umfassen, die nicht flüchtig sind. Solche Radionuklide umfassen insbesondere Co-60, Sr-90, Pu-239, U-235 und andere radioaktive Isotope des Urans, Th-232 und andere radioaktive Isotope des Thoriums, Pb-203 und andere radioaktive Isotope des Bleis und Mischungen davon. Die Aufzählung ist beispielhaft und nicht ab- schließend. Es können im kontaminierten Graphit beliebige andere Radionuklide vorliegen neben dem wenigstens einen flüchtigen Radionuklid, die hier nicht explizit genannt sind.
Der kontaminierte Graphit kann neben Graphit und dem wenigstens einen flüchtigen Radionuklid weitere Bestandteile enthalten, die dem Graphit je nach dessen Verwendung zugesetzt wurden oder als Verunreinigungen enthalten sind. Der kontaminierte Graphit stammt bevorzugt aus Brennelementkugeln und/oder Reflektorblöcken und/oder dem Reaktorkern. Diese Aufzählung ist nicht abschließend. Insbesondere kann der kontaminierte Graphit auch von thermischen Säulen aus Forschungseinrichtungen und Sleeves aus Magnox und UNGG Reaktoren stammen.
Als„Basismischung" wird erfindungsgemäß eine Mischung bezeichnet, die den kontami- nierten Graphit und wenigstens ein Glas umfasst. Die Basismischung kann weitere Komponenten enthalten neben dem kontaminierten Graphit und dem Glas. Optional kann wenigstens ein Oxidationsmittel enthalten sein. Besonders bevorzugt besteht die Basismischung aus dem kontaminierten Graphit und dem Glas sowie optional dem Oxidationsmittel. Die Basismischung ist vorzugsweise erhältlich durch Vermischen der darin enthaltenen Bestandteile, insbesondere des kontaminierten Graphits und des Glases und des Oxidationsmittels. Vorzugsweise ist die Basismischung eine homogene Mischung, d.h. die Bestandteile sind gleichmäßig in der Basismischung verteilt. Dem Fachmann sind geeignete Verfahren zum Mischen bekannt. Die Basismischung liegt vorzugsweise in Pulverform vor, wobei die mittleren Korndurchmesser der darin enthaltenen Bestandteile vorzugsweise unter 100 μηι betragen. Wenn in dieser Erfindung von einem mittleren Korndurchmesser die Rede ist, so ist damit stets der Ferretsche Durchmesser gemeint.
Als„behandelter Graphit" wird erfindungsgemäß das durch das erfindungsgemäße Aufheizen der Basismischung erhaltene Produkt bezeichnet.
Der„behandelte Graphit" umfasst die Bestandteile der Basismischung, hat aber vorzugsweise einen deutlich verminderten Gehalt an flüchtigen Radionukliden. Der behandelte Graphit wird erfindungsgemäß durch Verdichten zu einem Formkörper weiterverarbeitet, der zur Endlagerung geeignet ist.
Der behandelte Graphit ist also vorzugsweise ein solcher, der einen deutlich verminderten Gehalt an flüchtigen Radionukliden aufweist. Ein„deutlicher verminderter Gehalt" an flüchtigen Radionukliden liegt erfindungsgemäß vor, wenn der Gehalt wenigstens eines flüchtigen Radionuklids der im kontaminierten Graphit enthaltenen flüchtigen Radionuklide im behandelten Graphit um wenigstens 60%, bevorzugt um wenigstens 70%, weiter bevorzugt um wenigstens 80% und noch mehr bevorzugt um wenigstens 90% verringert ist bezogen auf die Menge des flüchtigen Radionuklids im kontaminierten Graphit.
Ganz besonders bevorzugt sind im behandelten Graphit nur noch höchstens 50%, bevorzugt höchstens 40% und noch mehr bevorzugt weniger als 30% an flüchtigen Radionukliden bezogen auf die Gesamtmenge an flüchtigen Radionukliden im kontaminierten Graphit vorhanden. Noch mehr bevorzugt sind im behandelten Graphit nur noch weniger als 25%, vorzugsweise sogar weniger als 15% an flüchtigen Radionukliden bezogen auf die Gesamtmenge an flüchtigen Radionukliden im kontaminierten Graphit vorhanden. Der Nachweis und die Ermittlung der Menge an flüchtigen Radionukliden erfolgt nach dem Fachmann bekannten Verfahren. Der Fachmann ist in der Lage, je nach Radionuklid eine geeignete Nachweismöglichkeit zu wählen. Insbesondere stehen die
Flüssigszintillationsspektrometrie, die Alpha-Beta-Gesamtaktivitätsmessung,
Massenspektrometrie, eine Neutronenaktivierungsanalyse und gegebenenfalls eine radiochemische Trennung als Verfahren zur selektiven und quantitativen Bestimmung von flüchtigen Radionukliden zur Verfügung.
Umfasst der kontaminierte Graphit H-3, so ist der behandelte Graphit vorzugsweise ein solcher, der höchstens nur noch 25%, weiter bevorzugt höchstens nur noch 15% und besondere bevorzugt weniger als 5% sowie ganz besonders bevorzugt weniger als 2% an H-3 bezogen auf die Menge an H-3 im kontaminierten Graphit enthält. Umfasst der kontaminierte Graphit C-14, so sind bevorzugt im behandelten Graphit unter 65%, weiter bevorzugt unter 55% und noch mehr bevorzugt unter 50% an C-14 bezogen auf die Menge an C-14 im kontaminierten Graphit enthalten. Umfasst der kontaminierte Graphit CI-36, so sind bevorzugt im behandelten Graphit unter 80%, weiter bevorzugt unter 60% und noch mehr bevorzugt unter 50% an CI-36 bezogen auf die Menge CI-36 im kontaminierten Graphit enthalten.
Ist im kontaminierten Graphit H-3 enthalten, so ist der behandelte Graphit vorzugsweise ein solcher, in dem die Aktivität an H-3 < 103 Bq/g, weiter bevorzugt < 102 Bq/g beträgt und ganz besonders bevorzugt ist H-3 im behandelten Graphit nicht mehr nachweisbar mit üblichen Nachweisverfahren. Ist im kontaminierten Graphit C-14 enthalten, so beträgt die Aktivität an C-14 im behandelten Graphit vorzugsweise < 102 Bq/g, weiter bevorzugt < 101 Bq/g. Umfasst der kontaminierte Graphit CI-36, so beträgt die Aktivität an CI-36 im behandelten Graphit bevorzugt nur noch < 10~1 Bq/g. Je nach landesspezifischer Klassifi- kation kann es sich bei dem erfindungsgemäß behandelten Graphit um ein nicht mehr radioaktives, also ein freigemessenes, oder ein nur noch schwachaktives Material handeln. Dies trifft auch auf den Formkörper zu, der erfindungsgemäß durch Verdichten der Basismischung erhalten wird. Der erfindungsgemäße Formkörper kann also je nach landesspezifischer Klassifikation ein nicht mehr radioaktives, also ein freigemessenes, oder ein nur noch schwach aktives Material sein. Insbesondere weist der Formkörper vorzugsweise einen deutlich verminderten Gehalt an flüchtigen Radionukliden auf.
Erfindungsgemäß erfolgt das Aufheizen der Basismischung zur Abtrennung der flüchtigen Radionuklide vom kontaminierten Graphit, vorzugsweise werden die flüchtigen Radionuklide beim Aufheizen der Basismischung vom kontaminierten Graphit abgetrennt. Die Radionuklide sind vom kontaminierten Graphit vorzugsweise„abgetrennt", wenn ein behandelter Graphit erhalten wird, der einen deutlich verminderten Gehalt an flüchtigen Radionukliden aufweist. Dies wird insbesondere durch die erfindungsgemäße Zusammensetzung der Basismischung und die erfindungsgemäße Verfahrensführung sichergestellt. Die Abtrennung der flüchtigen Radionuklide kann durch den Zusatz von Oxidationsmitteln verstärkt werden. Sie tragen aufgrund ihrer oxidierenden Wirkung zur Freisetzung flüchtiger Radionuklide aus dem kontaminierten Graphit bei. Insbesondere können solche Substanzen zur Öffnung geschlossener Poren beitragen in denen sich eingeschlossene flüchtige Radionuklide befinden und/oder die Umsetzung von chemisch gebundenen Radionukliden unter den Verfahrensbedingungen zu gasförmigen Verbindungen triggern.
In bevorzugten Ausführungsformen wird auf die Verwendung von Oxidationsmitteln verzichtet, es werden also keine Oxidationsmittel der Basismischung zugesetzt. Das Glas in der Basismischung hat überraschenderweise bereits eine optimale oxidative Wirkung, so dass das erfindungsgemäße Verfahren noch kostengünstiger und einfacher gestaltet werden kann. In alternativen Ausführungsformen, in denen Oxidationsmittel der Basismischung zugesetzt werden, sollte der Gehalt dieser Substanzen Werte von vorzugsweise höchstens 8 Gew.-% und weiter bevorzugt höchstens 5 Gew.-% sowie noch mehr bevor- zugt höchstens 2 Gew.-% bezogen auf das Gesamtgewicht der Basismischung nicht übersteigen. Wird eine zu hohe Menge an Oxidationsmitteln eingesetzt, wird das Material der verwendeten Anlagen angegriffen, wodurch die Lebensdauer der Anlagen sinkt. Bevorzugt eingesetzte Oxidationsmittel sind organische Peroxide.
Der kontaminierte Graphit liegt in der Basismischung vorzugsweise als Graphitpulver vor, vorzugsweise weist der kontaminierte Graphit einen mittleren Korndurchmesser von weniger als 100 μηι, weiter bevorzugt höchstens 50 μηι und besonders bevorzugt höchstens 30 μηι auf. Sofern der kontaminierte Graphit nicht bereits in solchen Korndurchmessern vorliegt, wird der kontaminierte Graphit vor dem Aufheizen zerkleinert. Dem Fachmann sind Verfahren zur Zerkleinerung wohlbekannt. Je kleiner der Korndurchmesser des Graphitpulvers ist, umso höhere Dichten können im behandelten Graphit bzw. im Formkörper erreicht werden und umso besser können die flüchtigen Radionuklide von dem kontaminierten Graphit abgetrennt werden. Optional erfolgt also vor dem Aufheizen eine Zerkleinerung des kontaminierten Graphits.
Das Glas in der Basismischung hat neben einer Bindewirkung und einer gewissen oxidativen Wirkung insbesondere auch eine strukturgebende Funktion und trägt zur Herstellung eines besonders dichten und porenfreien behandelten Graphits bzw. des durch Verdichtung erhältlichen Formkörpers bei. Glas hat den Vorteil, dass während des Aufheizens der Basismischung keine gasförmigen Crack- Produkte entstehen, die zur Porenbildung im behandelten Graphit führen könnten. Das bedeutet, das Glas durchläuft kaum oder keine Umsetzungsprozesse. Auch bedingt durch die erfindungsgemäße Verfahrensführung wird eine Porenbildung somit effektiv verhindert. Das Glas benetzt im erweichten bzw. geschmolzenen Zustand den kontaminierten Graphit und gegebenenfalls die weiteren Bestandteile der Basismischung, so dass die Hohlräume zwischen den Partikeln durch Kapillar- bzw. Adhäsionskräfte geschlossen werden können und ein dichter und nahezu porenfreier Formkörper nach Verdichten der Basismischung erhalten werden kann, der ausreichend stabil ist für die weitere Verarbeitung.
Das erfindungsgemäße Verfahren ermöglicht die Herstellung eines Formkörpers, der bevorzugt im Wesentlichen porenfrei ist, nämlich eine Dichte von vorzugsweise wenigstens 90%, weiter bevorzugt von wenigstens 95%, noch weiter bevorzugt von wenigstens 98%, noch mehr bevorzugt sogar im Bereich von > 99% und ganz besonders bevorzugt im Bereich von > 99,5% der theoretischen Dichte aufweist. Es ist vorteilhaft, wenn der Formkörper eine hohe Dichte aufweist, damit die Gefahr des Eindringens von Feuchtigkeit in den Formkörper weiter vermindert wird und etwaige nicht-flüchtige Radionuklide aus dem kontaminierten Graphit besonders wirksam eingeschlossen werden. Damit kann auch ein Austreten dieser Radionuklide in ein optionales Matrixmaterial, in das der Formkörper eingebettet werden kann, noch besser verhindert werden. Der Formkörper weist ferner vorzugsweise eine gute Härte auf infolge der Strukturwirkung des Glases. Erfindungsgemäß bevorzugt ist das Glas der Basismischung ausgewählt aus
Borosilikatgläsern, Alumophosphatgläsern, Bleigläsern, Phosphatgläsern, Alkaligläsern, Erdalkaligläsern und Mischungen davon. Besonders bevorzugt ist das Glas der Basismischung ausgewählt aus Borosilikatgläsern, Alumophosphatgläsern, Bleigläsern und Mischungen davon. Ganz besonders bevorzugt ist das Glas der Basismischung ein Borosilikatglas.
Der Vorteil von Borosilikatgläsern ist eine gute Korrosionsstabilität. Borosilikatgläser sind zudem sehr Chemikalien- und temperaturbeständige Gläser. Die gute chemische Beständigkeit beispielsweise gegenüber Wasser und vielen Chemikalien erklärt sich durch den Bor-Gehalt der Gläser. Die Temperaturbeständigkeit und Unempfindlichkeit der
Borosilikatgläser gegen plötzliche Temperaturschwankungen sind eine Folge des geringen Wärmeausdehnungskoeffizienten von etwa 3,3x10"6 K"1 von Borosilikat. Zum Anmeldungstag gängige Borosilikatgläser sind beispielsweise Jenaer Glas, Duran®, Pyrex®, llmabor®, Simax®, Solidex® und Fiolax®. Eine typische Zusammensetzung für Borosilikatgläser ist dem Fachmann bekannt und ist beispielsweise in Gewichtsprozent:
70 % bis 80 % Si02
7 % bis 13 % B203 4 % bis 8 % Alkalioxide, wie Na20 oder K20
2 % bis 7 % (Al20)
0 % bis 5 % Erdalkalioxide, wie CaQ, qQ.
Auch der Vorteil von Alumophosphatgläsern liegt in der hohen Strahlenbeständigkeit sowie Beständigkeit gegenüber hohen Temperaturen und Wasser.
Bleigläser sind wiederrum geeignet aufgrund der möglichen Absorption ionischer Strahlung. Phosphatgläser zeichnen sich durch niedrige Schmelzpunkte aus, so dass deren Einsatz ebenfalls vorteilhaft ist. Infolgedessen können niedrigere Temperaturen beim Aufheizen der Basismischung eingesetzt werden, so dass das Verfahren insgesamt kosten- und energiesparend gestaltet werden kann.
Alkaligläser zeichnen sich durch geringe Viskositäten auf. Infolgedessen ist die Fä-higkeit, den kontaminierten Graphit zu benetzen, begünstigt. Somit können Poren leicht geschlossen und vorzugsweise kann eine hohe Dichte des behandelten Graphits erzielt werden.
Erdalkaligläser weisen wiederrum eine erhöhte Säurestabilität auf, lassen sich leicht bearbeiten und sind kostengünstig, so dass sie erfindungsgemäß ebenfalls verwendet werden können.
Das Glas wird bevorzugt in Form eines Pulvers in der Basismischung eingesetzt, damit eine optimale Bindewirkung und Strukturwirkung erzielt werden kann. Bevorzugt liegt der mittlere Korndurchmesser des Glaspulvers bei weniger als 100 μηι, weiter bevorzugt höchstens 50 μηι und besonders bevorzugt bei höchstens 30 μηι. Je kleiner der Korndurchmesser ist, umso leichter kann das Glas etwaige Poren zwischen den anderen Bestandteilen der Basismischung schließen. Es ist vorteilhaft, wenn die Basismischung wenigstens 5 Gew.-% Glas enthält, weiter bevorzugt sind wenigstens 7 Gew.-%, noch weiter bevorzugt sind wenigstens 10 Gew.-% und besonders bevorzugt sind wenigstens 12 Gew.-% Glas bezogen auf die Gesamtmenge der Basismischung an der Basismischung enthalten. Wird zu wenig Glas eingesetzt, kann eine ausreichende Binde- und Strukturwirkung oft nicht erreicht werden. Bevorzugt umfasst die Basismischung bis zu 30 Gew.-%, weiter bevorzugt bis zu 20 Gew.-% und besonders bevorzugt bis zu 18 Gew.-% Glas. Wird zu viel Glas in der Basismischung eingesetzt, kann nicht mehr ausreichend kontaminierter Graphit eingearbeitet werden. Die erfindungsgemäßen Formkörper sind dann nicht mehr für eine platzsparende Endlage- rung des Graphits geeignet, da pro Fläche effektiv weniger kontaminierter Graphit verarbeitet ist. Es sollte also zwar ausreichend viel, aber so wenig wie möglich an Glas in der Basismischung eingesetzt werden, um möglichst viel kontaminierten Graphit dem erfindungsgemäßen Verfahren zuzuführen.
Beim Aufheizen der Basismischung, d.h. der Wärmebehandlung der Basismischung, wird die Basismischung vorzugsweise auf eine Zieltemperatur von wenigstens 650°C, weiter bevorzugt von wenigstens 700°C und noch mehr bevorzugt von wenigstens 800°C und ganz besonders bevorzugt von wenigstens 1000°C aufgeheizt. Ist die Zieltemperatur, auf die erhitzt wird, zu gering, so wird das Glas zu wenig erweicht, um zwischen die Poren der weiteren Bestandteile der Basismischung einzudringen. Auch können die flüchtigen Radionuklide bei zu geringen Temperaturen oft nur unzureichend vom kontaminierten Graphit abgetrennt werden. Insbesondere kann es nämlich auch erforderlich sein, dass Bindungen im Graphit zur Freisetzung flüchtiger Radionuklide gespalten werden. Die Zieltemperatur der Basismischung sollte vorzugsweise nicht mehr als 1600°C, vorzugsweise höchstens 1500°C, noch mehr bevorzugt höchstens 1400°C und noch mehr bevor- zugt höchstens 1350°C betragen sowie ganz besonders bevorzugt höchstens 1200°C. Ist die Zieltemperatur zu hoch, so wird das Verfahren insgesamt zu teuer und es besteht die Gefahr unerwünschter Reaktionen in der Basismischung. Zieltemperaturen zwischen 700°C und 1300°C, insbesondere zwischen 750°C und 1250°C, und noch mehr bevorzugt zwischen 800°C und 1200°C haben sich als besonders geeignet erwiesen. Bei diesen Temperaturen zeigte sich eine besonders deutliche Binde- und Strukturwirkung des Glases und die flüchtigen Radionuklide konnten besonders gut abgetrennt werden.
Bevorzugt umfasst das Aufheizen der Basismischung zunächst ein Aufheizen auf wenigstens eine Zwischentemperatur, die unterhalb der Zieltemperatur liegt, bevor auf die Zieltemperatur aufgeheizt wird. Bevorzugt läuft also das Aufheizen der Basismischung auf die Zieltemperatur wenigstens zweiphasig ab. Dabei wird als„Aufheizphase" erfindungsgemäß das gezielte Aufheizen bis auf eine bestimmte Solltemperatur bezeichnet, die anschließend für eine vorbestimmte Zeit, bevorzugt wenigstens 5 min, weiter bevorzugt wenigstens 10 min beibehalten werden kann. Ganz besonders bevorzugt läuft das Aufheizen zweiphasig ab, wobei die erste Aufheizphase das Erreichen einer„Zwischentemperatur" und die zweite Aufheizphase das weitere Aufheizen ausgehend von der Zwischentemperatur zum Erreichen der„Zieltemperatur" umfasst. Eine solche Temperaturführung hat sich als besonders vorteilhaft erwiesen und ermöglichte eine besonders effektive Abtrennung flüchtiger Radionuklide sowie eine insgesamt kostengünstige und schnelle Verfahrensgestaltung. Besonders bevorzugt wird der Gehalt flüchtiger Radionuklide bereits in der ersten Aufheizphase deutlich vermindert, so dass bereits nach der ersten Aufheizphase behandelter Graphit erhalten werden kann. Die zweite Aufheizphase dient dann der Abtrennung etwaiger noch verbliebener flüchtiger Radionuklide bei gleichzeitiger optimaler Erweichung des Glases der Basismischung. Die Zwischentemperatur beträgt bevorzugt wenigstens 350°C, weiter bevorzugt wenigstens 400°C, noch mehr bevorzugt wenigstens 420°C. Ist die Zwischentemperatur der Basismischung zu gering, so besteht die Gefahr, dass flüchtige Radionuklide in der ersten Aufheizphase nicht ausreichend entfernt werden können. Die Zwischentemperatur liegt besonders bevorzugt zwischen 400°C und 500°C, weiter bevorzugt zwischen 420°C und 480°C, insbesondere bei 450°C ± 20°C.
Der Pressdruck beim Aufheizen der Basismischung liegt vorzugsweise unter 15 MPa, weiter bevorzugt unter 12 MPa und besonders bevorzugt unter 10 MPa.
Erfolgt ein zweiphasiges Aufheizen, was erfindungsgemäß besonders bevorzugt ist, so liegt der Pressdruck während der ersten Aufheizphase vorzugsweise unter 5 MPa, weiter bevorzugt unter 3 MPa, noch mehr bevorzugt unter 2 MPa und besonders bevorzugt unter 0,5 MPa sowie noch mehr bevorzugt unter 0,2 MPa sowie ganz besonders bevorzugt bei Normaldruck, also etwa 0,101325 MPa +/- 20%. Das Aufheizen auf die Zwischentemperatur erfolgt erfindungsgemäß bevorzugt ohne äußere Druckeinwirkung. Die zweite Aufheizphase erfolgt bevorzugt bei einem Pressdruck unter 15 MPa, weiter bevorzugt unter 12 MPa und noch mehr bevorzugt unter 10 MPa. Ganz besonders bevorzugt liegt der Pressdruck in der zweiten Aufheizphase zwischen 5 MPa und 10 MPa, weiter bevorzugt zwischen 6,5 und 9,5 MPa und besonders bevorzugt zwischen 7,5 und 8,5 MPa. Ein solcher Pressdruck hat sich als besonders vorteilhaft erwiesen, um noch vorhandene flüchtige Radionuklide abzutrennen bei gleichzeitiger optimaler Erweichung des Glasbestandteils.
Wird ein zu hoher Pressdruck beim Aufheizen der Basismischung ausgeübt, wird also gleichzeitig aufgeheizt und verdichtet, so besteht die Gefahr, dass es infolge des Aufhei- zens von außen bei gleichzeitiger Druckeinwirkung zur Anreicherung flüchtiger Radionuklide im Zentrum der Basismischung kommt und die flüchtigen Radionuklide also nicht vom kontaminierten Graphit abgetrennt werden können. Ein solches Aufheizen von außen bei gleichzeitiger erhöhter Druckeinwirkung entspricht der üblichen Verfahrensführung zur Herstellung einer IGG-Matrix wie in der WO 201 1/1 17354 A1 beschrieben. Ein resultie- rendes Gebinde kann aufgrund des deutlichen Gehalts an flüchtigen Radionukliden nicht unter verringerten Sicherheitsanforderungen, insbesondere nicht oberflächennah gelagert werden. Es ergibt sich von selbst, dass ein Verdichten vor dem Aufheizen der Basismischung erfindungsgemäß nicht erfolgt. Ein Verdichten vor dem Aufheizen kann ebenfalls die Abtrennung der flüchtigen Radionuklide erheblich erschweren und zur Anreicherung von Radionukliden im Inneren der Basismischung führen, was unerwünscht ist.
Die Heizrate beim Aufheizen liegt bei vorzugsweise wenigstens 5°C/min, bevorzugt bei wenigstens 8°C/min und weiter bevorzugt bei wenigstens 10°C/min. Ein derart langsames Aufheizen erleichtert die Abtrennung flüchtiger Radionuklide vom kontaminierten Graphit. Die Heizrate beim Aufheizen sollte nicht zu hoch sein, also vorzugsweise unter
300°C/min, weiter bevorzugt unter 100°C/min. Bei zu hohen Heizraten wird das Verfahren insgesamt zu teuer und zu aufwändig. Als besonders vorteilhaft haben sich Heizraten zwischen 15°C/min und 20°C/min erwiesen, insbesondere in der zweiten Aufheizphase.
Das Aufheizen, also das Erhitzen bis zum Erreichen einer Zieltemperatur von vorzugsweise wenigstens 650°C und bevorzugt höchstens 1600°C, dauert bevorzugt über wenigs- tens 5 Minuten, weiter bevorzugt über wenigstens 10 Minuten und besonders bevorzugt über wenigstens 12 Minuten an, sowie noch mehr bevorzugt über wenigstens 18 Minuten und noch weiter bevorzugt über wenigstens 25 Minuten. Wird zu schnell, also in einer zu kurzen Zeitdauer aufgeheizt, besteht die Gefahr, dass die flüchtigen Radionuklide nicht ausreichend vom kontaminierten Graphit abgetrennt werden können. Es wird jedoch vorzugsweise über maximal 60 Stunden, bevorzugt über maximal 50 Stunden und noch mehr bevorzugt über maximal 24 Stunden aufgeheizt, besonders bevorzugt über maximal 10 Stunden. Findet das Aufheizen über eine zu lange Zeitdauer statt, so besteht die Gefahr von Nebenreaktionen in der Basismischung. Eine Zieltemperatur der Basismischung von vorzugsweise wenigstens 650°C und bevorzugt höchstens 1600°C, wird bevorzugt über wenigstens 5 Minuten, weiter bevorzugt über wenigstens 10 Minuten und besonders bevorzugt über wenigstens 12 Minuten aufrechterhalten. Wird eine solche Zieltemperatur für zu kurze Zeit aufrechterhalten, kann die Gefahr bestehen, dass gegebenenfalls noch vorhandene flüchtige Radionuklide nicht ausreichend vom kontaminierten Graphit abgetrennt werden. Die Zieltemperatur wird vorzugsweise für höchstens 15 Stunden, weiter bevorzugt für höchstens 10 Stunden gehalten. Wird das Aufheizen zweiphasig durchgeführt, was bevorzugt ist, so wird die Zwischentemperatur bevorzugt für wenigstens 5 Minuten, weiter bevorzugt wenigstens 10 Minuten und besonders bevorzugt für wenigstens 12 Minuten gehalten. Die Zwischentemperatur kann bis zu 30 Stunden, bevorzugt bis zu 26 Stunden und weiter bevorzugt bis zu 24 Stunden beibehalten werden. Wird die Zwischentemperatur für zu kurze Zeit aufrechterhalten, besteht die Gefahr einer nicht ausreichenden Abtrennung der flüchtigen Radionuklide, denn gerade in der ersten Aufheizphase kann erfindungsgemäß bereits eine deutliche Verminderung der flüchtigen Radionuklide erzielt werden.
Die Glasviskosität beim Aufheizen auf die Zieltemperatur vorzugsweise in der zweiten Aufheizphase, liegt vorzugsweise bei < 105 dPa χ s, weiter bevorzugt bei < 105 dPa χ s. Ist die Viskosität des Glases beim Aufheizen zu hoch, so kann das Glas nicht ausreichend zwischen die Poren der weiteren Bestandteile der Basismischung eindringen, so dass regelmäßig kein ausreichend dichter und harter Formkörper erhalten werden kann.
Die Freisetzung flüchtiger Radionuklide wird vorzugsweise beim Aufheizen überwacht, bevorzugt durch on-line-Messung. Besonders bevorzugt werden die Zeitdauer des Aufheizens und/oder die Andauer vorzugsweise von Zwischentemperatur und Zieltemperatur so abgestimmt, dass ein behandelter Graphit zurückbleibt, der einen deutlich verminder- ten Gehalt an flüchtigen Radionukliden aufweist.
Das Aufheizen erfolgt besonders bevorzugt im Vakuum, wobei der Restgasdruck bevorzugt < 10~3 MPa, weiter bevorzugt < 10~4 MPa beträgt. Das Aufheizen kann durch Zufuhr von Wärme, Stromeinwirkung, Mikrowellen oder sonstige Verfahren zum Erwärmen eines Materials erfolgen. Erfindungsgemäß bevorzugt erfolgt das Aufheizen derart, dass ein Temperaturgefälle zwischen innersten Bereichen der Basismischung und randnahen Bereichen der Basismischung erreicht wird. Dabei liegen in innersten Bereichen der Basismischung höhere Temperaturen vor als in randnahen Bereichen der Basismischung, was erfindungsgemäß als„negativer Temperaturgradient" bezeichnet wird zur Abgrenzung gegenüber der üblicherweise bestehenden Temperaturverteilung mit höheren Temperaturen in randnahen Bereichen. Ein negativer Temperaturgradient wird erfindungsgemäß insbesondere durch die Wahl einer geeigneten Heizrate und Dauer des Aufheizens und/oder die Dauer der Zieltemperatur und der bevorzugten Zwischentemperatur sichergestellt. Ein erfindungsgemäßer negativer Temperaturgradient führt zu Transportprozessen der flüchtigen Radionuklide derart, dass eine Abtrennung der flüchtigen Radionuklide noch besser möglich wird.
Ein negativer Temperaturgradient in der Basismischung liegt erfindungsgemäß vor, wenn die kleinste gemessene Temperaturdifferenz (ΔΤ) zwischen einem Mittelmesspunkt und wenigstens 2 Außenmesspunkten, vorzugsweise wenigstens 3 Außenmesspunkten, entlang einer horizontalen Ebene innerhalb der Basismischung vorzugsweise derart ist, dass die Temperatur am Mittelmesspunkt um mehr als 5°C, weiter bevorzugt um mehr als 10°C und besonders bevorzugt um mehr als 20°C sowie noch mehr bevorzugt um mehr als 50°C höher ist als die Temperatur an den Außenmesspunkten. Diese Temperaturdifferenz sollte aber auch nicht zu hoch sein, da das Verfahren dann insgesamt zu kostenintensiv und aufwändig wird. ΔΤ sollte also höchstens 300°C, weiter bevorzugt höchstens 200°C betragen. Die horizontale Ebene innerhalb der Basismischung ist dabei so gewählt, dass sie die Basismischung horizontal in zwei gleich große Hälften teilt bezogen auf das Volumen an Basismischung. Der Mittelmesspunkt und die Außenmesspunkte liegen entlang dieser horizontalen Ebene.
Dabei befindet sich der„Mittelmesspunkt" an der Stelle der horizontalen Ebene, an der die horizontale Ebene von einer vertikalen Ebene geschnitten wird, die die Basismischung ihrerseits vertikal in zwei gleich große Hälften teilt bezogen auf das Volumen an Basismi- schung. Die Außenmesspunkte befinden sich auf der horizontalen Ebene derart, dass der kleinste Abstand zwischen dem Mittelmesspunkt und jedem der Außenmesspunkte wenigstens 60%, bevorzugt wenigstens 70% und noch mehr bevorzugt wenigstens 80% der Länge einer Geraden von Mittelmesspunkt bis zum Rand der Basismischung beträgt, wobei die Gerade so verläuft, dass sie den Außenmesspunkt und den Mittelmesspunkt schneidet und von Rand zu Rand der Basismischung verläuft. Damit wird sichergestellt, dass sich die Außenmesspunkte ausreichend weit weg vom Mittelmesspunkt und ausreichend nah am Rand der Basismischung befinden. Der größte Abstand zwischen jedem Außenmesspunkt und dem Mittelmesspunkt ist so gewählt, dass der Abstand höchstens 95% und vorzugsweise höchstens 90% der Länge der Geraden von Mittelmesspunkt bis zum Rand der Basismischung beträgt. Damit wird sichergestellt, dass sich die Außenmesspunkte nicht zu nah am Rand der Basismischung befinden. Damit kann der Temperaturverlauf in der Basismischung ideal abgebildet werden.
An das Aufheizen der Basismischung schließt sich erfindungsgemäß ein Verdichten des behandelten Graphits an, d.h. ein Ausüben von erhöhtem Pressdruck. Dies bedeutet erfindungsgemäß das Ausüben eines Pressdrucks von vorzugsweise wenigstens 20 MPa. Damit kann ein besonders stabiler und dichter behandelter Graphit erreicht werden, der einfach im erfindungsgemäßen Verfahren weiterverarbeitet werden kann. Bevorzugt erfolgt das Verdichten bei erhöhter Temperatur, vorzugsweise bei der Zieltemperatur, also bei Temperaturen zwischen 650°C und 1600°C, weiter bevorzugt bei Temperaturen zwischen 700°C und 1400°C und noch mehr bevorzugt bei Temperaturen zwischen 800°C und 1200°C.
Der Pressdruck beim Verdichten beträgt vorzugsweise bis zu 250 MPa, weiter bevorzugt bis zu 200 MPa, noch weiter bevorzugt bis zu 180 MPa und noch mehr bevorzugt bis zu 150 MPa. Der Druck sollte nicht zu hoch liegen, weil dann das Verfahren insgesamt zu teuer und zu aufwändig wird. Der Pressdruck beim Verdichten sollte aber wenigstens 20 MPa, vorzugsweise wenigstens 30 MPa und noch mehr bevorzugt wenigstens 50 MPa und weiter bevorzugt wenigstens 60 MPa betragen. Lag der Pressdruck in diesem Bereich, zeigte sich eine besonders vorteilhafte Verdichtung des behandelten Graphits. Bevorzugt findet das Verdichten unter Schutzgas statt. Alternativ erfolgt das Verdichten unter Vakuum, wobei der Restgasdruck bevorzugt < 10~3 MPa, weiter bevorzugt < 10~4 MPa beträgt.
Das Verdichten erfolgt vorzugsweise in einer heißisostatischen Presse, einer Vakuumheißpresse oder einer Spark-Plasma-Sinteranlage (SPS). Vorzugsweise erfolgt auch das Aufheizen der Basismischung bereits in einer der genannten Anlagen, vorzugsweise in der gleichen Anlage wie das Verdichten. Die Presskraft in der SPS liegt bevorzugt zwischen 80 kN und 500 kN, besonders bevorzugt zwischen 90 kN und 300 kN, um eine ausreichende Verdichtung sicherzustellen. Der Restgasdruck in der SPS liegt erfindungsgemäß bevorzugt bei höchstens 10~3 MPa, besonders bevorzugt liegt der Restgasdruck unter 10~3 MPa. Vorzugsweise wird der behandelte Graphit in eine axiale Pressform eingefüllt. Vorzugsweise findet in der Pressform zuvor bereits das erfindungsgemäße Aufheizen der Basismischung statt. In diesem Fall liegt der behandelte Graphit bereits in der axialen Pressform vor.
Das Aufheizen der Basismischung kann in dieser Anlage durch Anlegen eines Stroms erfolgen, insbesondere eines Gleichstroms, mit Stromstärken im Bereich von 3 kA bis 8 kA, bevorzugt von 3,5 kA bis 5 kA und noch mehr bevorzugt von 4 kA bis 4,5 kA, und Spannungen von 4 V bis 10 V, bevorzugt 4,5 V bis 8 V, noch mehr bevorzugt 5 V bis 6 V. Die Leistungsaufnahme soll bei 15 kW bis 30 kW liegen, insbesondere bei 20 kW bis 25 kW. Der Gleichstrom wird dabei direkt durch die Basismischung geleitet zum Erhitzen der Basismischung. Zum Verdichten wird vorzugsweise ein Pressdruck von 50 MPa bis 250 MPa angelegt unter Schutzgas oder im Vakuum. Das Verfahren ermöglicht die Herstellung eines Formkörpers mit hoher Dichte bereits bei niedrigen Prozesszeiten.
In einer weiteren Ausführungsform wird heißisostatisches Pressen zum Verdichten verwendet. Hierzu wird der behandelte Graphit in einen Behälter eingefüllt. Vorzugsweise erfolgt auch das Aufheizen der Basismischung in diesem Behälter. Das Verdichten erfolgt vorzugsweise bei einem Pressdruck zwischen 20 MPa und 200 MPa, bevorzugt im Vakuum.
Der Pressdruck von vorzugsweise zwischen 20 MPa und 250 MPa kann für bis zu 15 Stunden, bevorzugt bis zu 12 Stunden und idealerweise bis zu 10 Stunden beibehalten werden. Ein zu langes Aufrechterhalten des Pressdrucks macht das Verfahren insgesamt zu teuer und aufwändig. Das Verdichten umfasst erfindungsgemäß bevorzugt auch das Abkühlen des erhaltenen Formkörpers. Vorzugsweise erfolgt zunächst eine erste Abkühlung des Formkörpers unter Beibehaltung des Pressdrucks von vorzugsweise zwischen 20 MPa und 250 MPa auf Temperaturen unter 800°C, bevorzugt unter 600°C, weiter bevorzugt auf 500°C ± 5°C. Das erste Abkühlen erfolgt bevorzugt über einen Zeitraum von wenigstens 1 min, weiter bevorzugt 2 min. Der Zeitraum beträgt maximal 120 min, weiter bevorzugt maximal 60 min. Als besonders geeignet hat sich ein Zeitraum für das erste Abkühlen von 5 Minuten erwiesen. Die Glasviskosität soll nach diesem ersten Abkühlen mindestens 106 dPa χ s betragen, vorzugsweise > 106 dPa χ s. Bevorzugt schließt sich ein zweites Abkühlen auf Temperaturen unter 35°C, weiter bevorzugt unter 30°C und noch mehr bevorzugt auf 25°C ± 5°C an unter gleichzeitigem Druckabbau.
Es ist ein besonderer Vorteil des erfindungsgemäßen Verfahrens, dass eine Einbettung und/oder Einlagerung des Formkörpers in weitere Materialien oder Metallbehälter, nicht erforderlich ist für eine sichere Endlagerfähigkeit. Vielmehr ist der erfindungsgemäß hergestellte Formkörper zur Endlagerung geeignet, also vorzugsweise zur sicheren Lagerung über geologische Zeiträume idealerweise bis zu 1 Mio. Jahre oder länger. Der Formkörper kann aber auch zusätzlich in ein Matrixmaterial eingebettet werden. In Ausführungsformen des erfindungsgemäßen Verfahrens wird der Formkörper daher in ein Matrixmaterial eingebettet. Damit ist es möglich, die Endlagerfähigkeit des Formkörpers noch weiter zu verbessern und den behandelten Graphit noch sicherer einzuschließen. Insbesondere verleiht ein solches Einbetten des Formkörpers eine zusätzliche Bestrahlungs- und Korrosionsstabilität. Der Formkörper kann ohne weitere, hier nicht aufgeführte Zwischenschritte, wie eine weitere Be- oder Verarbeitung, in das Matrixmaterial eingebettet werden. Es ist erfindungsgemäß insbesondere nicht erforderlich, dass der Formkörper in eine zusätzliche Metallhülle beispielsweise als Diffusionsbarriere eingebracht wird vor der Einbettung in das Matrixmaterial. Der Formkörper wird dagegen vorzugsweise ohne äußere Metallumhüllung in das Matrixmaterial eingebettet. Dies ist vor- teilhaft, weil damit eine kosteneffektive Lagerung und einfache Verfahrensführung möglich ist. Auch bietet eine Metallhülle nur vorrübergehend ausreichenden Diffusionsschutz infolge einer möglichen Korrosion und Rissbildung bei längerer Lagerung. Mit dem erfindungsgemäßen Verfahren wird eine Diffusion von Radionukliden aus dem kontaminierten Graphit in das Matrixmaterial durch die erfindungsgemäße Zusammensetzung der Basis- mischung und die erfindungsgemäße Verfahrensführung, insbesondere das Aufheizen der Basismischung zur Abtrennung flüchtiger Radionuklide vom kontaminierten Graphit, bereits ausreichend verhindert beziehungsweise vermindert. Daher ist ein zusätzliches Einbringen des Formkörpers in eine metallische Hülle vor Einbettung in das Matrixmaterial erfindungsgemäß nicht erforderlich. „Einbetten" bedeutet erfindungsgemäß, dass der Formkörper von dem Matrixmaterial umschlossen wird, erfindungsgemäß wird dies als„ummantelter Formkörper" bezeichnet. Umschlossen ist der Formkörper von dem Matrixmaterial dann, wenn mehr als 95%, vorzugsweise mehr als 98% der Außenfläche des Formkörper von dem Matrixmaterial bedeckt werden und die Außenfläche des Formkörper ganz besonders bevorzugt voll- ständig von dem Matrixmaterial bedeckt wird.
Das Matrixmaterial umfasst erfindungsgemäß als Matrixbestandteile Graphit, der nicht kontaminiert ist, und mindestens ein anorganisches Bindemittel, ausgewählt aus Gläsern, Alumosilikaten, Silikaten, Boraten und Mischungen davon. Solche Matrixmaterialien sind aus dem Stand der Technik bekannt.
Bevorzugt ist das anorganische Bindemittel ausgewählt aus Gläsern, es handelt sich in diesem Fall um eine so genannte impermeable Graphit-Glas-Matrix, kurz IGG. Glas, als anorganisches Bindemittel, hat den Vorteil, dass keine gasförmigen Crack-Produkte entstehen, die zur Porenbildung im Matrixmaterial führen. Außerdem benetzt es im erweichten bzw. geschmolzenen Zustand die restlichen Matrixbestandteile und die Hohlräume zwischen den Partikeln werden durch Kapillar- bzw. Adhäsionskräfte geschlossen. Hierdurch werden eine hohe Dichte des Matrixmaterials und eine hervorragende Korrosi- onsbeständigkeit sichergestellt.
Erfindungsgemäß bevorzugt ist das Glas im Matrixmaterial ausgewählt aus
Borosilikatgläsern, Alumophosphatgläsern, Bleigläsern, Phosphatgläsern, Alkaligläsern, Erdalkaligläsern und Mischungen davon. Der Fachmann wird gemäß seinem Fachwissen ein geeignetes Glas wählen. Besonders bevorzugt ist das Glas ausgewählt aus
Borosilikatgläsern, Alumophosphatgläsern, Bleigläsern und Mischungen davon. Ganz besonders bevorzugt ist das Glas ein Borosilikatglas aufgrund der hohen Korrosionsstabilität sowie hohen Chemikalien- und Temperaturbeständigkeit.
Der Graphitanteil an dem Matrixmaterial liegt bevorzugt bei wenigstens 60 Gew.-%, weiter bevorzugt wenigstens 65 Gew.-%. Der Graphitanteil beträgt bevorzugt höchstens 90 Gew.-%. Der Anteil an anorganischem Bindemittel beträgt vorzugsweise wenigstens 10
Gew.-%. Bevorzugt sind maximal 40 Gew.-% anorganisches Bindemittel im Matrixmaterial enthalten.
Der Graphit im Matrixmaterial ist ein nicht kontaminierter Graphit, Radionuklide sind darin also vorzugsweise nicht nachweisbar und/oder der Graphit weist lediglich eine natürliche Aktivität auf. Die Aktivität des nicht kontaminierten Graphits liegt also vorzugsweise bei < 103 Bq/g. Es ist bevorzugt, dass der Graphit des Matrixmaterials Naturgraphit oder synthetischer Graphit oder eine Mischung aus beiden Komponenten ist. Es ist dabei besonders bevorzugt, dass der Graphitanteil an der Matrixmischung zu 60 Gew.-% bis 100 Gew.-% aus Naturgraphit und zu 0 Gew.-% bis 40 Gew.-% aus synthetischem Graphit besteht. Der synthetische Graphit kann auch als graphitiertes Elektrographitpulver bezeichnet werden. Der Naturgraphit hat den Vorteil, dass er preisgünstig ist, das Graphitkorn im Gegensatz zu synthetischem Graphit keine Nanorisse aufweist und sich bei mäßigem Druck zu Formkörpern mit nahezu theoretischer Dichte verpressen lässt. Die Matrixbestandteile, insbesondere das anorganische Bindemittel und der Graphit, werden bevorzugt in Form eines Pulvers eingesetzt, damit eine optimale Bindewirkung und Dichte des Matrixmaterials erzielt werden kann. Bevorzugt liegt der mittlere Korndurchmesser des Glaspulvers bei weniger als 100 μηι, weiter bevorzugt höchstens 50 μηι und besonders bevorzugt bei höchstens 30 μηι. Je kleiner der Korndurchmesser, umso leichter kann das Glas etwaige Poren zwischen den Matrixbestandteilen schließen. Das Graphitpulver des Matrixmaterials weist vorzugsweise ebenfalls die genannten mittleren Korndurchmesser auf.
Die Herstellung des Matrixmaterials ist ebenfalls grundsätzlich bekannt. Die Herstellung des Matrixmaterials umfasst das Mischen der Matrixbestandteile in Pulverform zum Erhalt eines Presspulvers. Das Presspulver kann Hilfsstoffe in Mengen von einigen Prozent, bezogen auf die Gesamtmenge, umfassen. Dies sind beispielsweise Presshilfsmittel, die Alkohole umfassen können. Vorzugsweise wird aus dem Presspulver ein Granulat hergestellt. Zur Granulatherstellung werden die Ausgangskomponenten, insbesondere die beiden Komponenten Graphit- und Glas-Pulver, miteinander gemischt, dann kompaktiert und durch anschließendes Brechen und Sieben wird ein Granulat mit einer Korngröße von kleiner als 3,14 mm und größer als 0,31 mm angefertigt.
Das Einbetten des erfindungsgemäßen Formkörpers in das Matrixmaterial erfolgt vorzugsweise durch:
• Zusammenfügen wenigstens eines Formkörpers mit dem Matrixmaterial zu einem Pressling, wobei das Matrixmaterial bevorzugt in Form eines so genannten „Grundkörpers" mit Kavitäten vorliegt, und
• finales Pressen des Presslings zum Erhalt eines ummantelten Formkörpers. Das finale Pressen erfolgt vorzugsweise durch dynamisches Pressen oder Heißpressen vorzugsweise im Vakuum. Dabei kann ein Pressdruck von vorzugsweise zwischen 80 MPa und 300 MPa zur Anwendung kommen. Das finale Pressen kann ferner ein Aufheizen auf Temperaturen zwischen 800°C und 1400°C umfassen.
In bevorzugten Ausführungsformen erfolgt das Einbetten des erfindungsgemäßen Formkörpers in das Matrixmaterial durch Zusammenfügen eines oder mehrerer Formkörper mit dem Matrixmaterial, das in Form eines„Grundkörpers" vorliegt. Als Grundkörper wird erfindungsgemäß eine vorgepresste geometrische Form bezeichnet, die verschiedene Ausgestaltungen annehmen kann, vorzugsweise ein Sechskantprisma, und die ein oder mehrere Kavitäten zur Aufnahme des/der Formkörper(s) aufweist. Die Formkörper werden vorzugsweise in die Kavitäten eingefüllt. Bevorzugt werden die Kavitätenöffnungen vor dem finalen Pressen mit Matrixmaterial aufgefüllt oder mit Matrixmaterial in Form eines weiteren Grundkörpers aus Matrixmaterial bedeckt. In alternativen Ausführungsformen werden die Formkörper in Matrixmaterial, das in Pulverform vorliegt, eingebracht und das Gemenge anschließend durch finales Pressen zu einem ummantelten Formkörper verpresst.
In Ausführungsformen, in denen das Matrixmaterial bereits als Grundkörper mit Kavitäten vorliegt, wird zunächst ein hantierfester Grundkörper mit Kavitäten, also Ausnehmungen zur Aufnahme der Formkörper vorgepresst. Das Vorpressen erfolgt beispielsweise mit einer Vier-Säulen-Presse mit drei hydraulischen Antrieben. Zur Herstellung von Ausnehmungen dienen erfindungsgemäß bevorzugt Formstäbe, die sich aus zwei Teilen zusammensetzen: Ein formgebender Stabteil mit einem größeren Durchmesser, der auf einem dünneren Trägerstab steckt. Das hierin beschriebene Matrixmaterial ist geeignet, über einen ultralangen Zeitraum als Korrosionsbarriere zu dienen. Insbesondere ist das Matrixmaterial im Wesentlichen porenfrei, nämlich weist es eine Dichte auf, die vorzugsweise im Bereich von mehr als 90% und besonders bevorzugt > 99% der theoretischen Dichte liegt. Es ist wichtig, dass das Matrixmaterial eine hohe Dichte aufweist, damit keine Feuchtigkeit in den ummantelten Formkörper eindringen kann. Dies wird einerseits durch die Materialauswahl und andererseits durch den Herstellungsprozess gewährleistet. Im Zusammenspiel mit dem erfindungsgemäßen behandelten Graphit kann der ummantelte Formkörper über einen ultralangen Zeitraum sicher endgelagert werden.
Mit dem erfindungsgemäßen Verfahren zur Dekontamination von kontaminiertem Graphit wird eine sichere und ultralange oberflächennahe Endlagerung des Graphits beziehungsweise eine Endlagerung an der Oberfläche je nach landesspezifischen Sicherheitsanforderungen zulässig. Damit ermöglicht die vorliegende Erfindung eine volumensparende Entsorgung hoher Mengen an kontaminiertem Graphit.
Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist in Abbildung 1 dargestellt.
Beispiele
Beispiel 1 : Herstellung eines Formkörpers zur Endlagerung Das Werkzeug bestand aus zwei Presszylindern und einem Hohlzylindermantel. Zur Vermeidung von Anbackung wurde in den Hohlzylinder eine Graphitfolie eingebracht. Der untere Stempel wurde eingesetzt und mit einer Bodengraphitfolie belegt. In das Presswerkzeug wurde eine Basismischung aus 100 g kontaminiertem Graphit umfassend das flüchtige Radionuklid H-3 und 20 g Glas 8800 der Fa. Schott (Borosilikatglas) eingefüllt, die durch Vermischen der Komponenten hergestellt worden war. Die eingefüllte Basismischung wurde mit einer Graphitfolie belegt. Anschließend wurde der obere Pressstempel in das Werkzeug eingesetzt.
Das Werkzeug wurde in eine SPS Presse eingesetzt und mit dem SPS Pressstempel auf 2 kN vorgepresst. Zunächst erfolgte unter 1 ,6 MPa Pressdruck eine Evakuierung. Dieser Schritt wurde bei Erreichen eines erfindungsgemäßen Vakuums beendet. Es folgte eine erfindungsgemäße Temperaturerhöhung bis auf eine Zwischentemperatur von 450°C. Anschließend erfolgte eine Erhöhung des Pressdrucks auf 8 MPa.
In der zweiten Aufheizphase wurde die Temperatur mit dem erfindungsgemäßen Verfah- ren auf eine Zieltemperatur von 1200°C erhöht wobei die Glasviskosität < 105 dPa χ s betrug (Heizrate 15°C/min bis 20°C/min).
Beim erfindungsgemäßen Aufheizen wurde ein negativer Temperaturgradient in der Basismischung erreicht, wobei ΔΤ 10°C betrug. Während dieses Aufheizens wurde das H- 3 aus der Basismischung freigesetzt und in einer Nachoxidationsanlage zu tritiertem Wasser umgesetzt. Der behandelte Graphit wies einen deutlich verminderten Gehalt an flüchtigen Radionukliden auf. Der Gehalt an H-3 war um 99% vermindert im behandelten Graphit in Bezug auf die Menge an H-3 im kontaminierten Graphit. Der behandelte Graphit enthielt alle nicht flüchtigen Bestandteile, wie z.B. Sr-90 oder Co-60.
Nach Erreichen der Zieltemperatur wurde der Pressdruck zeitabhängig erhöht auf > 64 MPa und die Basismischung in der Spark Plasma Sinteranlage zu einem Formkörper verdichtet mit einer Dichte von > 98% der theoretischen Dichte. Im Anschluss erfolgte unter dem erhöhten Pressdruck eine erfindungsgemäße Abkühlung des behandelten Graphits.
Der erhaltene Formkörper eignet sich zur sicheren Endlagerung über sehr lange Zeiträu- me und kann insbesondere je nach landesspezifischen Vorschriften oberflächennah oder an der Oberfläche gelagert werden. Beispiel 2: Einbettung des Formkörpers in ein Matrixmaterial zum Erhalt eines ummantelten Formkörpers
Der Formkörper aus Beispiel 1 wurde in ein Matrixmaterial aus nicht kontaminiertem Naturgraphit und Glas eingebettet. Als Ausgangskomponenten dienten ein nuklearreines Naturgraphit mit einem Korndurchmesser von weniger als 30 μηι der Firma Kropfmühl und ein Borosilikatglas der gleichen Korngröße mit einem Schmelzpunkt von etwa 1000°C der Firma Schott.
Die beiden Komponenten wurden im Gewichtsverhältnis Naturgraphit zu Glas 5:1 trocken gemischt und mit dem Kompaktor Bepex L 200/50 P der Firma Hosokawa zu Briketts verpresst. Die Brikettdichte betrug etwa 1 ,9 g/cm3. Durch anschließendes Brechen und Sieben wurde ein Granulat mit einer Korngröße von kleiner als 3,14 mm und größer als 0,31 mm und mit einer Schüttdichte von etwa 1 g/cm3 angefertigt. Anschließend wurde ein Grundkörper vorgepresst mit Kavitäten zur Aufnahme des Formkörpers aus Beispiel 1 .
Der Formkörper aus Beispiel 1 wurde in die Kavitäten eingefüllt und die
Kavitätenöffnungen wurden anschließend mit Matrixmaterial aufgefüllt. Nachfolgend schloss sich ein finales Pressen an bei 1000°C. Das finale Pressen wurde als dynamisches Pressen durchgeführt. Dabei wurde der Pressling unter Volllast wechselweise mit dem Ober- und Unterstempel in einer Matrize bewegt. Nach dem Abkühlen auf 200°C wurde der ummantelte Formkörper aus dem Werkzeug ausgestoßen.

Claims

Patentansprüche
1 . Verfahren zur Dekontamination von kontaminiertem Graphit umfassend die Schritte: a) Aufheizen einer Basismischung umfassend kontaminierten Graphit und wenigstens ein Glas zur Abtrennung der flüchtigen Radionuklide von dem kontaminierten Graphit, wobei ein behandelter Graphit erhalten wird; b) Verdichten des behandelten Graphits zum Erhalt eines Formkörpers, der zur Endlagerung geeignet ist.
2. Verfahren nach Anspruch 1 , wobei der Formkörpers in das Matrixmaterial zum Erhalt eines ummantelten Formkörpers eingebettet wird, wobei das Matrixmaterial nicht kontaminierten Graphit und mindestens ein anorganisches Bindemittel, ausgewählt aus Gläsern, Alumosilikaten, Silikaten, Boraten und Mischungen davon, umfasst.
3. Verfahren nach Anspruch 1 oder 2, wobei die Basismischung Glas in einem Anteil von 7 Gew.-% bis 30 Gew.-% umfasst.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Glas der Basismischung ein Borosilikatglas ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der kontaminierte Graphit und das Glas in der Basismischung jeweils mit einem mittleren Korndurchmesser von weniger als 100 μηι vorliegen.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Basismischung ferner Oxidationsmittel umfasst.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei der kontaminierte Graphit wenigstens ein Radionuklid ausgewählt aus H-3, CI-36, C-14 oder Mischungen davon umfasst.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Aufheizen der Basismischung auf Zieltemperaturen von wenigstens 800°C und höchstens 1200°C erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Pressdruck beim Aufheizen unter 10 MPa beträgt.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Schritte a) und b) in einer heißisostatischen Presse, Vakuumheißpresse oder Spark Plasma Sinteranlage erfolgen.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, wobei der Formkörper in ein Matrixmaterial eingebettet wird und wobei das anorganische Bindemittel in einem Anteil von 10 bis 40 Gew.-% an der Matrixmischung enthalten ist und wobei das anorganische Bindemittel ein Glas ist.
PCT/EP2015/064747 2014-07-18 2015-06-29 Verfahren zur dekontamination von kontaminiertem graphit WO2016008712A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017102039A RU2017102039A (ru) 2014-07-18 2015-06-29 Способ дезактивации радиоактивно-загрязненного графита
LTEP15732683.6T LT3170187T (lt) 2014-07-18 2015-06-29 Teršalų pašalinimo iš užteršto grafito būdas
US15/326,834 US20170200519A1 (en) 2014-07-18 2015-06-29 Method for the decontamination of contaminated graphite
EP15732683.6A EP3170187B1 (de) 2014-07-18 2015-06-29 Verfahren zur dekontamination von kontaminiertem graphit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014110168.5A DE102014110168B3 (de) 2014-07-18 2014-07-18 Verfahren zur Dekontamination von kontaminiertem Graphit
DE102014110168.5 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016008712A1 true WO2016008712A1 (de) 2016-01-21

Family

ID=53496702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/064747 WO2016008712A1 (de) 2014-07-18 2015-06-29 Verfahren zur dekontamination von kontaminiertem graphit

Country Status (6)

Country Link
US (1) US20170200519A1 (de)
EP (1) EP3170187B1 (de)
DE (1) DE102014110168B3 (de)
LT (1) LT3170187T (de)
RU (1) RU2017102039A (de)
WO (1) WO2016008712A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711292C1 (ru) * 2018-11-21 2020-01-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Способ дезактивации элемента конструкции ядерного реактора
CN113257450B (zh) * 2021-03-30 2023-11-10 北京交通大学 一种退役放射性核石墨的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461185A (en) * 1994-04-19 1995-10-24 Forsberg; Charles W. Radioactive waste material disposal
WO2010052321A1 (de) 2008-11-10 2010-05-14 Ald Vacuum Technologies Gmbh Matrixmaterial aus graphit und anorganischen bindemitteln geeignet zur endlagerung von radioaktiven abfällen, verfahren zu dessen herstellung, dessen verarbeitung und verwendung
DE102009044963A1 (de) * 2008-11-10 2010-07-08 Ald Vacuum Technologies Gmbh Blöcke aus Graphit-Matrix mit anorganischem Bindemittel geeignet zur Lagerung von radioaktiven Abfällen und Verfahren zur Herstellung derselben
WO2011117354A1 (de) 2010-03-25 2011-09-29 Ald Vacuum Technologies Gmbh Gebinde zur lagerung von abfällen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737891C2 (de) * 1997-08-29 2002-08-01 Forschungszentrum Juelich Gmbh Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein
DE102011016272A1 (de) * 2011-04-06 2012-10-11 Forschungszentrum Jülich GmbH Verfahren zur Dekontamination von Radionukliden aus neutronenbestrahlten Kohlenstoff- und/oder Graphitwerkstoffen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461185A (en) * 1994-04-19 1995-10-24 Forsberg; Charles W. Radioactive waste material disposal
WO2010052321A1 (de) 2008-11-10 2010-05-14 Ald Vacuum Technologies Gmbh Matrixmaterial aus graphit und anorganischen bindemitteln geeignet zur endlagerung von radioaktiven abfällen, verfahren zu dessen herstellung, dessen verarbeitung und verwendung
DE102009044963A1 (de) * 2008-11-10 2010-07-08 Ald Vacuum Technologies Gmbh Blöcke aus Graphit-Matrix mit anorganischem Bindemittel geeignet zur Lagerung von radioaktiven Abfällen und Verfahren zur Herstellung derselben
WO2011117354A1 (de) 2010-03-25 2011-09-29 Ald Vacuum Technologies Gmbh Gebinde zur lagerung von abfällen
DE102010003289A1 (de) * 2010-03-25 2011-09-29 Ald Vacuum Technologies Gmbh Gebinde zur Lagerung von radioaktiven Abfällen und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
EP3170187B1 (de) 2020-05-27
US20170200519A1 (en) 2017-07-13
LT3170187T (lt) 2020-07-27
DE102014110168B3 (de) 2015-09-24
EP3170187A1 (de) 2017-05-24
RU2017102039A (ru) 2018-08-20

Similar Documents

Publication Publication Date Title
EP2347422B1 (de) Matrixmaterial aus graphit und anorganischen bindemitteln geeignet zur endlagerung von radioaktiven abfällen, verfahren zu dessen herstellung, dessen verarbeitung und verwendung
EP2550664B1 (de) Verfahren zur herstellung von gebinden zur lagerung von abfällen
EP1771865B1 (de) Verfahren zur behandlung einer mit radiokarbon kontaminierten keramik, insbesondere reaktorgraphit
EP1415306B1 (de) Verfahren zur herstellung eines mischoxid-kernbrennstoff-pulvers und eines mischoxid-kernbrennstoff-sinterkörpers
EP0079031B1 (de) Verfahren zum Herstellen von oxidischen Kernbrennstoffsinterkörpern
EP3170187B1 (de) Verfahren zur dekontamination von kontaminiertem graphit
DE102009044963B4 (de) Blöcke aus Graphit-Matrix mit anorganischem Bindemittel geeignet zur Lagerung von radioaktiven Abfällen und Verfahren zur Herstellung derselben
DE69705271T2 (de) Verfahren zur Verfestigung von radioaktivem Jod enthaltenden Abfällen
DE10249355A1 (de) Brennstoffpellet für einen Kernreaktor und Verfahren zu seiner Herstellung
DE1043534B (de) Material fuer das gleichzeitige Abbremsen und Absorbieren von Neutronen und Verfahren zu seiner Herstellung
DE19837989C2 (de) Verfahren zur Herstellung von Brennelementen, Absorberelementen und Brennstoffkörpern für Hochtemperaturreaktoren
DE2945322A1 (de) Verfahren zum verhueten eines austretens bzw. entweichens toxischer materialien in die umwelt
DE102012112648B4 (de) Graphitmatrix mit kristallinem Bindemittel
DE10148146B4 (de) Verfahren zur Entsorgung eines mit mindestens einem Radiotoxikum kontaminierten Gegenstandes aus Reaktorgraphit und/oder Kohlestein
DE102012112642A1 (de) Graphitmatrix mit Glaskeramik als Bindemittel
EP0136665B1 (de) Verfahren zum Herstellen von oxidischen Kernbrennstoffsinterkörpern
DE69904860T2 (de) Verfahren zur eindämmung von plutonium in apatit- keramik und daraus hergestellte produkte
DE1813582C3 (de) Kernbrenn- und/oder -bnitstoffeermets mit guter Festigkeit und hoher Oxidationsbeständigkeit bei hohen Temperaturen
DE1961768A1 (de) Kobalt-Rhenium-Energiequelle
DE2944720A1 (de) Verfahren zur konditionierung von radioaktiven brennelementhuelsen
Flöter et al. Verarbeitung zu Kernbrennstoffen
DE1902210A1 (de) Verfahren zur Herstellung von Brennstoffkoerpern fuer Hochtemperatur-Brennelemente
DE1745009U (de) Ziegel, platte, blechabschnitt od. dgl. formkoerper, im wesentlichen aus blei oder bleilegierungne bestehend.
DE1639428A1 (de) Radioaktives Brennelement
DE2137133B2 (de) Verfahren zur Herstellung plutoniumhaltiger Kernbrennstoffstäbe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732683

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015732683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015732683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326834

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201700327

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2017102039

Country of ref document: RU

Kind code of ref document: A