WO2016008610A1 - Verfahren zur herstellung eines anisotropen weichmagnetischen materialkörpers und dessen verwendung - Google Patents

Verfahren zur herstellung eines anisotropen weichmagnetischen materialkörpers und dessen verwendung Download PDF

Info

Publication number
WO2016008610A1
WO2016008610A1 PCT/EP2015/060541 EP2015060541W WO2016008610A1 WO 2016008610 A1 WO2016008610 A1 WO 2016008610A1 EP 2015060541 W EP2015060541 W EP 2015060541W WO 2016008610 A1 WO2016008610 A1 WO 2016008610A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndfeb
magnetic
powder
ndfeb powder
sintering
Prior art date
Application number
PCT/EP2015/060541
Other languages
English (en)
French (fr)
Inventor
Manfred Rührig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2016008610A1 publication Critical patent/WO2016008610A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • JP 4343281 discloses a rotor of a reluctance motor having a bonding magnetic circuit generated between magnetic poles having high crystal compound crystal grains
  • An anisotropic, soft magnetic material for use in reluctance machines is disclosed, wherein the
  • Directional dependence of the permeability of this material is achieved in that a highly anisotropic powder is aligned in ei ⁇ nem magnetic field, so that the preferred direction as possible all tester particles along the field lines is aligned.
  • This state is compacted to a green compact and from the green compact, a dense body is produced by sintering.
  • the preparation of the powder is a relatively ⁇ wecker on process, and in particular coarse and fine mills, wherein the process due to the high reactivity of the powder generally must be carried out under protective gas.
  • the anisotropic, soft magnetic Ma ⁇ TERIAL is prepared analogously to Seltenerddauermagneten, particularly by powder metallurgy, namely by the master alloys are milled under protective gas to powder, pressed powder in the magnetic field into green compacts, and then sintered sigphasensintern by liquid-be.
  • a starting material can be provided with which simple magnetization processes can be carried out.
  • soft magnetic material ⁇ tables body can be produced for applications for example in reluctance machines, suitably large anisotropy.
  • the object is achieved by a method according to the main claim and a use according to the independent claim.
  • a method for producing an anisotropic soft magnetic material body comprising the steps of: making one as one
  • Starting material used for starting NdFeB powder by means of recycling hard magnetic NdFeB permanent magnets containing recycled scrap. Mixing the starting NdFeB powder with thermoplastic binders to create a working mass. By means of an injection molding process carried out pressing a green compact in a mold. Producing a browning by removing the binders from the green bodies. Produced by sintering generating the anisotropic, soft magnetic material body.
  • an invention Herge ⁇ notified anisotropic soft magnetic material is used in a reluctance machine.
  • a process for the preparation of anisotropic flexible magnet is proposed that uses targeted NdFeB powders, which are obtained by a recycling process of permanent ⁇ magnet, the used Recyclingpro ⁇ process means that the powders are highly anisotropic, well in a magnetic field align and produce high density sintered bodies with low coercivity.
  • a method for producing the sintered bodies is proposed, in which the powders are mixed with thermoplastic binders, from the "feedstock" or the working mass thus produced in one
  • the manufacturing of serving as a starting material output NdFeB powder by digesting NdFeB permanent magnets having Re ⁇ cycling scrap can be carried out by means of a Wasserstoffversprödungsreaes, along the permanent magnet material
  • Rare earth-rich grain boundaries bursts open so that it monocrystalline to a hydrogenated, comminuted intermediate NdFeB powder falls, where a is the rare earth-rich material of the grain sizes ⁇ zen-tasting fine fraction of the intermediate NdFeB powder removed with ⁇ means of a cleaning device.
  • 100 x can by means of the Wasserstoffversprödungsreaes and by means of the Entfer ⁇ nens of the fine fraction in the generate output NdFeB powder due to increasing particle sizes and effective magnetic coupling between grains decreasing coercive field strength, in particular less than 10 3 A / m, can be set ,
  • maintaining effective crystal anisotropy within grains in the produced starting NdFeB powder can be enabled due to the effective crystal anisotropy within the hard magnetic NdFeB permanent magnets of the recycled scrap.
  • a running during the injection molding process applying a Magnetic field are carried out with a magnetic preferred direction during pressing of the green compact.
  • setting of sintering conditions can take place such that powder particles of the browning grow during sintering.
  • the preferred magnetic direction during the injection molding process the magnetic preferred direction during sintering.
  • the arrival fangs NdFeB powder may be anisotropic, alignment in a magnetic field ⁇ bar, to a sintered body having a high density, in particular greater than 7 g / cm 3, and a coercive field strength along the preferred direction, especially less than 100 x 10 3 A / m, be sintered.
  • the starting NdFeB powder having a high saturation field strength having a high saturation field strength
  • the removal of the binder from the green compact by means of organic solvents, in particular toluene, are performed.
  • Figure 1 shows an embodiment of the method according to the invention
  • Figure 2 shows an embodiment of a second erfindungsge ⁇ MAESSEN method.
  • FIG. 1 shows an exemplary embodiment of a method according to the invention.
  • Preparing an anisotropic soft magnetic material ⁇ 's body can be carried out by means of a first step Sl, a manufacturing a serving as a starting material output NdFeB powder by recycling of hard magnetic NdFeB permanent magnets having Recycling scrap.
  • the starting NdFeB powder is mixed with thermoplastic binders to produce a working mass, which may also be referred to as a "feedstock”.
  • a greening is pressed in a mold by means of an injection molding process.
  • the binders are removed from the green compact so that so-called browning slips are produced.
  • a fifth step S5 sintering and thus generation of the desired anisotropic, soft magnetic material body or magnet takes place.
  • Hydrogen embrittlement process was obtained. From [1] a method for recycling NdFeB magnets is known, wherein, for example, hard disk scrap serving as Ninth Generational NdFeB powder is obtained. A hydrogen embrittlement process SD is used, which breaks up the permanent magnet material along the rare earth-rich grain boundaries, thereby breaking it down to single crystal, hydrogenated intermediate NdFeB powder even at low mechanical stress. In addition, the fine fraction contains the rare earth-rich material of the grain boundaries. This one will be in another
  • Step SF in the subsequent cleaning part together with other impurities for example from the nickel Layering of the magnets, separated.
  • other impurities for example from the nickel Layering of the magnets
  • This starting NdFeB powder has approximately stoichiometric composition of the Nd2Fel4Bl phase and is now used according to the invention to produce anisotropic soft magnetic material therefrom. Since ⁇ to the output NdFeB powder is first mixed with an organic polymer or thermoplastic Sl in order to transform it in a third step S3 in green compacts. Typically, for the transformation in step S3
  • Injection molding can be used.
  • magnetic fields can be applied to the viscose mass , so that the preferred axes of the powder particles along predetermined directions in the
  • a fourth step S4 the binder can be removed from the green compact. Either a conventional catalytic process can be used for this, or alternatively the binder can be dissolved out of the green body by means of organic solvents, such as toluene, leaving a dimensionally stable, but relatively porous, shaped body which becomes a fully dense material a fifth step S5 can be sintered. Since, according to the invention, the rare-earth-rich fines were removed from the starting NdFeB powder, no or only to a very small extent rare-earth-rich grain boundary phase will form at the grain boundaries. As a result, the material no longer achieves the permanent magnetic properties of the original hard magnetic NdFeB
  • Permanent magnets but instead will have a relatively low stability against remagnetization. This is favored even if the sintering conditions are chosen so that the powder particles grow during sintering, as this decreases their magenta hardness and the magnetizability is facilitated ⁇ tert. Conventionally, this grain growth is prevented in the herstel ⁇ development of conventional permanent magnets by means of appropriate process control of temperature and addition of inhibitors, since thereby the coercive field strength would be weakened drama ⁇ table. In contrast, in the method according to the invention, this conventionally undesired effect is deliberately made use of by means of the
  • the starting NdFeB powder is prepared so that it has the lowest possible KoerzitivfeidGood. This means that the largest possible grains and the best possible coupling between the grains (properties that would be detrimental to a permanent magnet) are advantageous here.
  • the alloy composition remains relatively unchanged from the starting hard magnetic phase of the original NdFeB permanent magnets, the high crystal anisotropy of the rare earth-FeB (2-14-1) phase persists within the grains.
  • Step S3 in the magnetic field of the mold a good distribution of the preferred axes of the grain with respect to a texture can be achieved and thus the desired very high Anisotro ⁇ pie for use, for example, in reluctance machines. Additionally, during sintering, it may be in the fifth
  • Step S5 make sense to apply a magnetic field in the direction of the preferred direction of the green compact to additionally fix the original preferred axis.
  • FIG. 2 shows an exemplary embodiment of a subprocess according to the invention.
  • the intended OF INVENTION ⁇ dung proper starting material of the output NdFeB powder aufwei- with ⁇ means of recycling of hard magnetic NdFeB permanent magnet send recycled scrap to be generated.
  • a first sub-step SA is a recovery of base material, which here can be recycled scrap, which has computer hard disks.
  • a second substep SB is used to refine and concentrate hard-magnetic NdFeB permanent magnets.
  • With a third signature SC a casting alloy of the permanent magnet starting material is obtained.
  • Hydrogen embrittlement takes place with a fourth sub-step SD, with a single-crystalline, hydrogenated intermediate NdFeB powder being obtained in a step SE.
  • a rare earth-rich grain boundaries of the material aufwei ⁇ sender fine fraction is, for example, by jet milling ent ⁇ removed in a sixth sub-step SF.
  • a vacuum sintering to obtain the inventive use ⁇ th output NdFeB powder.
  • This powder can also be referred to as a hydrogen-recycled NdFeB powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines anisotropen weichmagnetischen Materialkörpers, insbesondere zur Verwendung in Reluktanzmaschinen, mit den Schritten: - Herstellen (S1) eines als ein Ausgangsmaterial dienenden Ausgangs-NdFeB-Pulvers mittels Recyceln von hartmagnetische NdFeB-Dauermagnete aufweisendem Recyclingschrott; - Mischen (S2) des Ausgangs-NdFeB-Pulvers mit thermoplastischen Bindern zur Erzeugung einer Arbeitsmasse; - Mittels eines Spritzgussverfahrens ausgeführtes Pressen (S3) eines Grünlings in einer Pressform; - Mittels Entfernen (S4) der Binder aus dem Grünling ausgeführtes Erzeugen eines Bräunlings; - Mittels Sintern (S5) ausgeführtes Erzeugen des anisotropen weichmagnetischen Materialkörpers.

Description

Patentanmeldung
Verfahren zur Herstellung eines anisotropen weichmagnetischen Materialkörpers und dessen Verwendung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstel¬ lung eines anisotropen weichmagnetischen Materialkörpers und dessen Verwendung. Die JP 4343281 offenbart einen Rotor eines Reluktanzmotors mit einem bindenden Magnetkreis, der zwischen Magnetpolen erzeugt ist, die Verbundkristallkörner mit hohen
magnetokristallinen, anisotropischen Eigenschaften enthalten. Es wird ein anisotropisches , weichmagnetisches Material für die Anwendung in Reluktanzmaschinen offenbart, wobei die
Richtungsabhängigkeit der Permeabilität bei diesem Material dadurch erreicht wird, dass ein hochanisotropes Pulver in ei¬ nem Magnetfeld ausgerichtet wird, so dass die Vorzugsrichtung möglichst aller Prüferteilchen entlang der Feldlinien ausge- richtet ist. Dieser Zustand wird zu einem Grünling verdichtet und aus dem Grünling wird mittels Sintern ein dichter Körper hergestellt. Die Herstellung des Pulvers ist ein relativ auf¬ wändiger Prozess, insbesondere auf Grob-und Feinmühlen, wobei der Prozess aufgrund der hohen Reaktivität des Pulvers in der Regel unter Schutzgas durchgeführt werden muss.
Herkömmlicherweise wird das anisotrope, weichmagnetische Ma¬ terial analog zu Seltenerddauermagneten, insbesondere pulvermetallurgisch, hergestellt, und zwar indem die Vorlegierungen unter Schutzgas zu Pulver gemahlen werden, die Pulver im Magnetfeld zu Grünlingen gepresst und anschließend durch Flüs- sigphasensintern gesintert werden.
Es ist Aufgabe der vorliegenden Erfindung für ein Verfahren zur Herstellung eines anisotropen weichmagnetischen Materialkörpers ein geeignetes Ausgangsmaterial bereitzustellen, um von diesem ausgehend mittels eines geeigneten Verfahrens den Materialkörper mit einer Mindestdichte herzustellen. Es soll ein Ausgangsmaterial bereitgestellt werden, mit dem einfache Magnetiserungsprozesse ausführbar sind. Es sollen weichmagne¬ tische Materialkörper mit, für Anwendungen beispielsweise in Reluktanzmaschinen, geeigneten großen Anisotropien erzeugt werden können. Es soll ein Verfahren zur Herstellung eines geeigneten Pulvers vorgeschlagen werden und das Pulver soll zu einem Grünling und anschließend zu einem Körper umge¬ wandelt werden, der eine große Dichte aufweist. Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch und eine Verwendung gemäß dem Nebenanspruch gelöst.
Gemäß einem ersten Aspekt wird ein Verfahren zur Herstellung eines anisotropen, weichmagnetischen Materialkörpers mit den folgenden Schritten vorgeschlagen: Herstellen eines als ein
Ausgangsmaterial dienenden Ausgangs-NdFeB-Pulvers mittels Re- cyceln von hartmagnetische NdFeB-Dauermagnete aufweisendem Recyclingschrott. Mischen des Ausgangs-NdFeB-Pulvers mit thermoplastischen Bindern zur Erzeugung einer Arbeitsmasse. Mittels eines Spritzgussverfahrens ausgeführtes Pressen eines Grünlings in einer Pressform. Mittels Entfernen der Binder aus den Grünlingen ausgeführtes Erzeugen eines Bräunlings. Mittels Sintern ausgeführtes Erzeugen des anisotropen, weichmagnetischen Materialkörpers.
Gemäß einem zweiten Aspekt wird ein erfindungsgemäß herge¬ stelltes anisotropes weichmagnetisches Material in einer Reluktanzmaschine verwendet. Erfindungsgemäß wird ein Verfahren zur Herstellung von anisotropen Weichmagneten vorgeschlagen, das gezielt NdFeB- Pulver verwendet, die durch einen Recyclingprozess aus Dauer¬ magneten gewonnen werden, wobei der eingesetzte Recyclingpro¬ zess dazu führt, dass die Pulver hochgradig anisotrop sind, sich gut in einem Magnetfeld ausrichten lassen und hochdichte Sinterkörper mit geringer Koerzitivfeidstärke ergeben. Weiter wird ein Verfahren zur Herstellung der Sinterkörper vorgeschlagen, bei denen die Pulver mit thermoplastischen Bindern vermischt werden, aus dem so hergestellten "Feed- Stock" oder der so hergestellten Arbeitsmasse in einem
Spritzgussverfahren, insbesondere unter Anlegen eines Magnetfeldes, Grünlinge mit einer magnetischen Vorzugsrichtung ge- presst, der Binder entfernt wird und die Formkörper zu hoch¬ dichten Körpern gesintert werden. Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht.
Gemäß einer vorteilhaften Ausgestaltung kann das Herstellen des als ein Ausgangsmaterial dienenden Ausgangs-NdFeB-Pulvers mittels Aufschließen von NdFeB-Dauermagnete aufweisenden Re¬ cyclingschrott mittels eines Wasserstoffversprödungsprozesses ausgeführt werden, der das Dauermagnetmaterial entlang
Seltenerd-reicher Korngrenzen derart aufsprengt, dass es zu einem einkristallinen, hydrierten Zwischen-NdFeB-Pulver zer- fällt, wobei ein das Seltenerd-reiche Material der Korngren¬ zen aufweisender Feinanteil des Zwischen-NdFeB-Pulvers mit¬ tels einer Reinigungseinrichtung entfernt wird.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann mittels des Wasserstoffversprödungsprozesses und mittels des Entfer¬ nens des Feinanteils in dem erzeugen Ausgangs-NdFeB-Pulver infolge zunehmender Korngrößen und wirksamer magnetischer Kopplung zwischen Körnern eine abnehmende Koerzitivfeidstärke , insbesondere kleiner 100 x 103 A/m, eingestellt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein Beibehalten einer wirksamen Kristallanisotropie innerhalb von Körnern in dem erzeugten Ausgangs-NdFeB-Pulver infolge der wirksamen Kristallanisotropie innerhalb der hartmagnetischen NdFeB-Dauermagnete des Recyclingschrotts ermöglicht werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein während des Spritzgussverfahrens ausgeführtes Anlegen eines Magnetfeldes mit einer magnetischen Vorzugsrichtung beim Pressen des Grünlings ausgeführt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein Einstellen von Sinterbedingungen derart erfolgen, dass Pulverteilchen des Bräunlings beim Sintern wachsen.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann während des Sinterns ein Anlegen eines Magnetfeldes mit einer magne- tischen Vorzugsrichtung ausgeführt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die magnetische Vorzugsrichtung während des Spritzgussverfahrens die magnetische Vorzugsrichtung während des Sinterns sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das An- fangs-NdFeB-Pulver anisotrop, in einem Magnetfeld ausricht¬ bar, zu einem Sinterkörper mit einer großen Dichte, insbesondere größer 7 g/cm3, und einer Koerzitivfeidstärke entlang der Vorzugsrichtung, insbesondere kleiner 100 x 103 A/m, sinterbar sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das An- fangs-NdFeB-Pulver mit einer hohen Sättigungsfeldstärke
(Anisotropiefeld) senkrecht zur Vorzugsrichtung, insbesondere größer als 2000 x 103 A/m, und einer hohen Sättigungsmagneti¬ sierung insbesondere größer als 1 Tesla sinterbar sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Entfernen der Binder aus dem Grünling mittels organischer Lösungsmittel, insbesondere Toluol, ausgeführt werden.
Die Erfindung wird anhand von Ausführungsbeispielen in Verbindung mit den Figuren näher beschreiben. Es zeigen:
Figur 1 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens ; Figur 2 ein Ausführungsbeispiel eines zweiten erfindungsge¬ mäßen Verfahrens .
Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. Das Herstellen eines anisotropen, weichmagneti¬ schen Materialkörpers kann mittels eines ersten Schrittes Sl, eines Herstellen eines als ein Ausgangsmaterial dienenden Ausgangs-NdFeB-Pulvers mittels Recyceln von hartmagnetischen NdFeB-Dauermagnete aufweisenden Recyclingschrotts ausgeführt werden. Mit einem zweiten Schritt S2 erfolgt ein Mischen des Ausgangs-NdFeB-Pulvers mit thermoplastischen Bindern zur Erzeugung einer Arbeitsmasse, die ebenso als ein "Feed-Stock" bezeichnet werden kann. Mit einem dritten Schritt S3 erfolgt mittels eines Spritzgussverfahrens ein Pressen eines Grün- lings in einer Pressform. Mit einem vierten Schritt S4 werden die Binder aus dem Grünling entfernt, so dass sogenannte Bräunlinge erzeugt werden. Mittels eines fünften Schrittes S5 erfolgt ein Sintern und damit ein Erzeugen des angestrebten anisotropen, weichmagnetischen Materialkörpers beziehungs- weise Magnetes.
Erfindungsgemäß wird also vorgeschlagen, als Ausgangspunkt Pulver zu verwenden, das durch den Aufschluss von Recyclingschrott aus NdFeB-Dauermagneten über einen
Wasserstoffversprödungsprozess gewonnen wurde. Aus [1] ist ein Verfahren zum Recyceln von NdFeB-Magneten bekannt, wobei beispielsweise aus Festplattenschrott das als Ausgangsmateri¬ al dienende Ausgangs-NdFeB-Pulver erhalten wird. Es wird ein Wasserstoffversprödungsprozess SD angewendet, der das Dauer- magnetmaterial entlang der Seltenerd-reichen Korngrenzen aufsprengt, wodurch es bereits bei geringer mechanischer Belastung zu einkristallinem, hydrierten Zwischen-NdFeB-Pulver zerfällt . Zusätzlich befindet sich im Feinanteil das Seltenerd-reiche Material der Korngrenzen. Dieser wird in einem weiteren
Schritt SF im anschließenden Reinigungsteil zusammen mit anderen Verunreinigungen, beispielsweise aus der Nickelbe- Schichtung der Magnete, abgetrennt. Grundsätzlich muss herkömmlicherweise zur Herstellung von neuen Dauermagneten aus diesem Pulver das fehlende Nd erneut zugegeben werden, um auch in den neu gesinterten Dauermagneten eine magnetische Entkopplung der Körner durch die Nd-reiche Korngrenzen-Phase zu gewährleisten.
Dieses Ausgangs-NdFeB-Pulver weist näherungsweise stöchiomet- rische Zusammensetzung der Nd2Fel4Bl-Phase entsprechend auf und wird nun erfindungsgemäß dazu verwendet, um daraus anisotropisches , weichmagnetisches Material herzustellen. Da¬ zu wird das Ausgangs-NdFeB-Pulver zunächst mit einem organischen Polymer beziehungsweise Thermoplast vermischt Sl, um es in einem dritten Schritt S3 in Grünlinge umformen zu können. Typischerweise soll für die Umformung im Schritt S3 ein
Spritzgussverfahren verwendet werden. Beim Pressen während des dritten Schrittes S3 können an die Viskosemasse Magnet¬ felder angelegt werden, so dass sich die Vorzugsachsen der Pulverteilchen entlang vorbestimmter Richtungen in der
Spritzgussform ausrichten. Anschließend kann in einem vierten Schritt S4 der Binder aus dem Grünling entfernt werden. Dazu kann entweder ein herkömmlicher katalytischer Prozess verwendet werden, oder alternativ kann der Binder mittels organischer Lösungsmittel, wie es beispielsweise Toluol ist, aus dem Grünling herausgelöst werden, so dass ein formstabiler, aber relativ poröser, Formkörper übrig bleibt, der zu einem volldichten Material in einem fünften Schritt S5 gesintert werden kann. Da erfindungsgemäß der Seltenerd-reiche Feinstanteil aus dem Ausgangs-NdFeB-Pulver entfernt wurde, wird sich an den Korngrenzen keine beziehungsweise lediglich zu einem sehr geringen Anteil Seltenerd-reiche Korngrenzen-Phase bilden. Dadurch erreicht das Material nicht mehr die dauermagnetischen Eigen- schaffen der ursprünglichen hartmagnetischen NdFeB-
Dauermagnete, sondern wird stattdessen eine relativ geringe Stabilität gegen Ummagnetisierung aufweisen. Begünstigt wird dies noch, wenn die Sinterbedingungen so gewählt werden, dass die Pulverteilchen beim Sintern wachsen, da dadurch deren magentische Härte abnimmt und die Magnetisierbarkeit erleich¬ tert wird. Herkömmlicherweise wird dieses Kornwachstum bei der Herstel¬ lung von herkömmlichen Dauermagneten mittels geeigneter Prozessführung, hinsichtlich Temperatur und Zugabe von Inhibitoren, verhindert, da dadurch die Koerzitivfeidstärke drama¬ tisch geschwächt würde. Im Gegensatz dazu wird im erfindungs- gemäßen Verfahren von diesem herkömmlicherweise unerwünschten Effekt gezielt Gebrauch gemacht, indem mittels der
Wasserstoffversprödung und dem anschließenden Pulverprozess vom Zwischen-NdFeB-Pulver zum Ausgangs-NdFeB-Pulver das Aus- gangs-NdFeB-Pulver so aufbereitet wird, dass es möglichst ge- ringe Koerzitivfeidstärken aufweist, indem sich ein Gefüge einstellt, das möglichst konträr zu dem eines Dauermagneten aussieht. Das heißt möglichst große Körner und eine möglichst gute Kopplung zwischen den Körnern (Eigenschaften, die für einen Dauermagneten schädlich wären) sind hier vorteilhaft. Da jedoch die Legierungszusammensetzung gegenüber der hartmagnetischen Ausgangsphase der ursprünglichen NdFeB- Dauermagnete relativ unverändert bleibt, bleibt die hohe Kristallanisotropie der Seltenerd-FeB (2-14-1 ) -Phase innerhalb der Körner bestehen. Durch die Ausrichtung von Pulverteilchen die diese anisotrope Phase aufweisen während des dritten
Schrittes S3 im Magnetfeld der Pressform lässt sich eine gute Verteilung der Vorzugsachsen des Körner hinsichtlich einer Textur erreichen und somit die erwünschte sehr hohe Anisotro¬ pie für die Anwendung beispielsweise in Reluktanzmaschinen. Zusätzlich kann es während des Sinterns in dem fünften
Schritt S5 sinnvoll sein, ein Magnetfeld in die Richtung der Vorzugsrichtung des Grünlings anzulegen, um die ursprüngliche Vorzugsachse zusätzlich zu fixieren. Figur 2 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Unterverfahrens. Mittels dieses Verfahrens soll das erfin¬ dungsgemäße Ausgangsmaterial des Ausgangs-NdFeB-Pulvers mit¬ tels Recyceln von hardmagnetische NdFeB-Dauermagnet aufwei- senden Recyclingschrott erzeugt werden. [1] offenbart ein derartiges Verfahren. Dabei ist ein erster Unterschritt SA eine Gewinnung von Grundmaterial, das hier Recyclingschrott sein kann, der Computerfestplatten aufweist. Mit einem zwei- ten Unterschritt SB erfolgt Raffinieren und Aufkonzentrieren hardmagnetischer NdFeB-Dauermagneten . Mit einem dritten Unterschrift SC wird eine Gusslegierung des Dauermagnet- Ausgangsmaterials erhalten. Mit einem vierten Unterschritt SD erfolgt eine Wasserstoffversprödung, wobei mit einem Schritt SE ein einkristallines, hydriertes Zwischen-NdFeB-Pulver erhalten wird. Aus diesem wird in einem sechsten Unterschritt SF ein das Seltenerd-reiche Material der Korngrenzen aufwei¬ sender Feinanteil beispielsweise mittels Strahlmahlens ent¬ fernt. Abschließend erfolgt in einem siebten Unterschritt SG ein Ausrichten und Pressen sowie in einem achten Unterschritt SH ein Vakuumsintern zum Erhalt des erfindungsgemäß verwende¬ ten Ausgangs-NdFeB-Pulvers . Dieses Pulver kann auch als ein Wasserstoff recyceltes NdFeB-Pulver bezeichnet werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines anisotropen weichmagnetischen Materialkörpers mit den Schritten:
- Herstellen (Sl) eines als ein Ausgangsmaterial dienenden Ausgangs-NdFeB-Pulvers mittels Recyceln von hartmagneti¬ sche NdFeB-Dauermagnete aufweisendem Recyclingschrott; Mischen (S2) des Ausgangs- NdFeB-Pulvers mit thermoplas¬ tischen Bindern zur Erzeugung einer Arbeitsmasse;
- Mittels eines Spritzgussverfahrens ausgeführtes Pressen (S3) eines Grünlings in einer Pressform;
Mittels Entfernen (S4) der Binder aus dem Grünling ausgeführtes Erzeugen eines Bräunlings;
Mittels Sintern (S5) ausgeführtes Erzeugen des anisotro- pen weichmagnetischen Materialkörpers.
2. Verfahren gemäß Anspruch 1,
gekennzeichnet durch
Herstellen des als ein Ausgangsmaterial dienenden Aus- gangs- NdFeB-Pulvers mittels
Aufschließen von NdFeB-Dauermagnete aufweisendem Recyclingschrott mittels eines
Wasserstoffversprödungsprozesses (SD) , der das Dauermag¬ netmaterial entlang Seltenerd-reicher Korngrenzen derart aufsprengt, dass es zu einem einkristallinen hydrierten
Zwischen- NdFeB-Pulver zerfällt;
Entfernen (SF) eines das Seltenerd-reiche Material der Korngrenzen aufweisenden Feinanteils des Zwischen- NdFeB- Pulvers mittels einer Reinigungseinrichtung.
3. Verfahren gemäß Anspruch 2,
gekennzeichnet durch
mittels des Wasserstoffversprödungsprozesses und des Entfer¬ nens des Feinanteils in dem erzeugten Ausgangs- NdFeB-Pulver infolge zunehmender Korngrößen und wirksamer magnetischer
Kopplung zwischen Körnern eine abnehmende Koerzitivfeidstärke, insbesondere kleiner 100 x 103 A/m, eingestellt wird.
4. Verfahren gemäß Anspruch 2 oder 3,
gekennzeichnet durch
Beibehalten einer wirksamen Kristallanisotropie innerhalb von Körnern in dem erzeugten Ausgangs- NdFeB-Pulver infolge der wirksamen Kristallanisotropie innerhalb der hartmagnetischen NdFeB-Dauermagnete des Recyclingschrotts.
5. Verfahren gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch
während des Spritzgussverfahrens ausgeführtes Anlegen eines Magnetfeldes mit einer magnetischen Vorzugsrichtung beim Pressen des Grünlings.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch
Einstellen von Sinterbedingungen derart, dass Pulverteilchen des Bräunlings beim Sintern wachsen.
7. Verfahren gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch
während des Sinterns ausgeführtes Anlegen eines Magnetfeldes mit einer magnetischen Vorzugsrichtung.
8. Verfahren gemäß Anspruch 5 und 7,
dadurch gekennzeichnet, dass
die magnetische Vorzugsrichtung während des Spritzgussverfahrens die magnetische Vorzugsrichtung während des Sinterns ist . 9. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Anfangs- NdFeB-Pulver anisotrop, in einem Magnetfeld aus¬ richtbar, zu einem Sinterkörper mit einer großen Dichte, insbesondere größer 7 g/cm3, einer geringen Koerzitivfeidstärke entlang der Vorzugsrichtung, insbesondere kleiner 100 x 103 A/m, sinterbar ist.
Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Anfangs- NdFeB-Pulver mit einer hohen Sättigungsfeldstärke (Anisotropiefeld) senkrecht zur Vorzugsrichtung, insbeson¬ dere größer als 2000 x 103 A/m, und einer hohen Sättigungs- magnetisierung insbesondere größer als 1 Tesla sinterbar ist.
11. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Entfernen der Binder aus dem Grünling mittels organischer Lösungsmittel, insbesondere Toluol, ausgeführt wird.
12. Verwendung eines nach einem der vorhergehenden Ansprüche hergestellten anisotropen weichmagnetischen Materialkörpers in einer Reluktanzmaschine.
PCT/EP2015/060541 2014-07-15 2015-05-13 Verfahren zur herstellung eines anisotropen weichmagnetischen materialkörpers und dessen verwendung WO2016008610A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014213723.3A DE102014213723A1 (de) 2014-07-15 2014-07-15 Verfahren zur Herstellung eines anisotropen weichmagnetischen Materialkörpers und dessen Verwendung
DE102014213723.3 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016008610A1 true WO2016008610A1 (de) 2016-01-21

Family

ID=53274497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/060541 WO2016008610A1 (de) 2014-07-15 2015-05-13 Verfahren zur herstellung eines anisotropen weichmagnetischen materialkörpers und dessen verwendung

Country Status (2)

Country Link
DE (1) DE102014213723A1 (de)
WO (1) WO2016008610A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112756379A (zh) * 2020-12-31 2021-05-07 浙江富华电子股份有限公司 一种软磁铁废料二次回收工艺及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715018B1 (de) * 2019-03-29 2022-07-20 Siemens Aktiengesellschaft Texturierung von elektroblechen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155911A (ja) * 1997-06-05 1999-02-26 Masato Sagawa リラクタンスモータ
EP1096517A2 (de) * 1999-10-26 2001-05-02 Matsushita Electric Industrial Co., Ltd. Verfahren zur Herstellung eines wiederverwendeten Pulvers für die Benutzung in einem Verbundmagnet und Verfahren zur Wiederverwendung eines Verbundmagneten
US20040020563A1 (en) * 2001-05-30 2004-02-05 Koki Tokuhara Method of making sintered compact for rare earth magnet
GB2506683A (en) * 2012-10-08 2014-04-09 Vacuumschmelze Gmbh & Co Kg Anisotropic soft magnetic article and method for its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343281A (ja) 1991-05-21 1992-11-30 Nec Corp 電歪効果素子およびその製造方法
US6770242B2 (en) * 2001-05-08 2004-08-03 Romain L. Billiet Voice coil motor magnets and method of fabrication thereof
US20030063993A1 (en) * 2001-10-03 2003-04-03 Reiter Frederick B. Metal injection molding multiple dissimilar materials to form composite electric machine rotor and rotor sense parts
DE10255604B4 (de) * 2002-11-28 2006-06-14 Vacuumschmelze Gmbh & Co. Kg Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155911A (ja) * 1997-06-05 1999-02-26 Masato Sagawa リラクタンスモータ
JP4343281B2 (ja) 1997-06-05 2009-10-14 眞人 佐川 リラクタンスモータ
EP1096517A2 (de) * 1999-10-26 2001-05-02 Matsushita Electric Industrial Co., Ltd. Verfahren zur Herstellung eines wiederverwendeten Pulvers für die Benutzung in einem Verbundmagnet und Verfahren zur Wiederverwendung eines Verbundmagneten
US20040020563A1 (en) * 2001-05-30 2004-02-05 Koki Tokuhara Method of making sintered compact for rare earth magnet
GB2506683A (en) * 2012-10-08 2014-04-09 Vacuumschmelze Gmbh & Co Kg Anisotropic soft magnetic article and method for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112756379A (zh) * 2020-12-31 2021-05-07 浙江富华电子股份有限公司 一种软磁铁废料二次回收工艺及设备

Also Published As

Publication number Publication date
DE102014213723A1 (de) 2016-01-21

Similar Documents

Publication Publication Date Title
EP1514282B1 (de) Weichmagnetischer pulververbundwerkstoff; verfahren zu dessen hersellung und dessen verwendung
DE19626049C2 (de) Magnetwerkstoff und Verbundmagnet
DE60319800T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis und magnetzusammensetzung
DE10155898A1 (de) Induktives Bauelement und Verfahren zu seiner Herstellung
DE60317767T2 (de) R-t-b-seltenerd-permanentmagnet
DE102015115217A1 (de) Hochtemperatur-Hybridpermanentmagnet
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE102020102930A1 (de) Verbundmagnet mit hart- und weichmagnetischen phasen
WO2016008610A1 (de) Verfahren zur herstellung eines anisotropen weichmagnetischen materialkörpers und dessen verwendung
DE102020130671A1 (de) Verbundmagnete und verfahren zur herstellung von verbundmagneten
DE102017223268A1 (de) Verfahren zur Herstellung eines magnetischen Materials, magnetisches Material, Hartmagnet, Elektromotor, Starter und Generator
DE102020128947A1 (de) Verfahren zur herstellung eines anisotropen magnetpulvers aus seltenerdelement
EP3105764B1 (de) Magnetischer werkstoff
DE3626360C2 (de) Herstellungsvefahren für zwei- und mehrpolige Dauermagnete mit hoher magnetischer Energiedichte
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
EP3357074A1 (de) Verfahren zum herstellen eines permanentmagneten
EP1032940B1 (de) Verfahren zur herstellung eines magnetlegierungspulvers
EP4268995A1 (de) Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
DE102013207194A1 (de) Verfahren zum Erzeugen eines magnetischen Pulvers und eines Magneten
DE19942939A1 (de) Weichmagnetische Folie und Verfahren zu deren Herstellung
DE60213973T2 (de) Herstellungsverfahren für einen permanentmagneten und presseinrichtung
DE102020130672A1 (de) Magnete aus verbundwerkstoff und verfahren zur herstellung von magneten aus verbundwerkstoff
WO2016034338A1 (de) Anisotrop weichmagnetisches material mit mittlerer anisotropie und geringer koerzitivfeldstärke sowie dessen herstellungsverfahren
DE102011108173A1 (de) Magnetisches Material und Verfahren zu dessen Herstellung
EP3572165A1 (de) Verfahren und anlage zur herstellung eines materials für die herstellung von seltenerd-magneten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15725530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15725530

Country of ref document: EP

Kind code of ref document: A1