WO2016005632A2 - Dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca - Google Patents

Dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca Download PDF

Info

Publication number
WO2016005632A2
WO2016005632A2 PCT/ES2015/070498 ES2015070498W WO2016005632A2 WO 2016005632 A2 WO2016005632 A2 WO 2016005632A2 ES 2015070498 W ES2015070498 W ES 2015070498W WO 2016005632 A2 WO2016005632 A2 WO 2016005632A2
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcements
joining
reinforcement
coupling means
threaded ends
Prior art date
Application number
PCT/ES2015/070498
Other languages
English (en)
French (fr)
Other versions
WO2016005632A3 (es
Inventor
Íñigo CALDERÓN URISZAR - ALDACA
Amaia Aramburu Ibarlucea
José Antonio Chica Paez
Original Assignee
Fundación Tecnalia Research & Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Tecnalia Research & Innovation filed Critical Fundación Tecnalia Research & Innovation
Priority to US15/324,370 priority Critical patent/US10378199B2/en
Priority to MX2017000105A priority patent/MX2017000105A/es
Publication of WO2016005632A2 publication Critical patent/WO2016005632A2/es
Publication of WO2016005632A3 publication Critical patent/WO2016005632A3/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • E04B1/215Connections specially adapted therefor comprising metallic plates or parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B1/1903Connecting nodes specially adapted therefor
    • E04B1/1912Connecting nodes specially adapted therefor with central cubical connecting element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the object of the present invention is a union between pillars and beams prefabricated in reinforced concrete with dry joint, that is, by means of a joint that does not need on site, formwork, pouring of fresh concrete and setting period of the concrete to acquire the necessary resistance and that allows the construction of buildings in height in a competitive way even in areas with seismic risk.
  • the present invention proposes a system that is open and universal and adaptable to the different possible geometries and cases, and whose joint is dry and simple to join the different parts, guaranteeing stability even with dynamic loads. Therefore, this document describes a universal solution made of steel and a structural filler material (concrete, resin, composite, etc.) that is adaptable, easy to execute and resistant.
  • the technical problem that solves the present invention is the union of precast concrete beams and pillars, which is related to the construction of high-rise buildings, in an economically competitive way.
  • an open and universal system that adapts to the different geometries and possible cases is necessary to join the parts without having to wait for the concrete to set and without requiring specialized work in the work as a welder or formwork, which They end up making construction more expensive.
  • the part of said invention that solves the joint between beams and pillars is that formed by all the joints between beams, BLM, and that corresponding to the joining node, HM.
  • the union node, HM is formed by up to four brackets of Structural steel formed by T-profiles, located every 90 degrees, which act as a starter for the beams and are joined together in various ways, either welded together or connected by bolts to a concrete core.
  • the vertical load of the pillar is transmitted from the upper part of the node to the lower part either by a connection made with structural steel, which penalizes the passage of the reinforcements from one side to the other, both beam and pillar, or leaving the hole, passing the armor and concreting in situ.
  • the union between the bracket and the beam, BLM is made by connecting at the planned point of zero bending two structural steel brackets with joint covers, connecting the reinforcements to each other and concreting the assembly in situ forming the beam and the encounter between pillar and beam. Not being at the bottom a means of connection between beam and prefabricated pillar but between provide and pillar.
  • JP5160907 details certain connections between the continuous beam elements with other beams, through tongue and groove, pins and joint covers.
  • the means of connection to the prefabricated pillars is similar.
  • a segment of pillar and beam brackets can be joined in a continuous piece.
  • the pillar segment has some waiting to make a male on one side and some holes at the other end to fit the reinforcements of the next segment.
  • the connection is made using lace and resins.
  • the brackets presented with this system cover half the light of the beams, making the connection at the midpoint, which minimizes the shear and maximizes the axil.
  • JP5154962 presents a solution based on the same principle, being not so much a means of joining prefabricated beam and pillar as a prefabricated closed beam-pillar connectable with itself.
  • connection device between prefabricated reinforced concrete beams and pillars with dry joint comprising:
  • each of said joining reinforcements comprising a reinforcement and two threaded ends (the joining reinforcements may be constituted by reinforcements at whose ends welded threaded studs or may be reinforcements having their threaded ends),
  • first coupling means with the abutments arranged between the joining reinforcements and perpendicular to the foreground defined by the joining reinforcements (these coupling means are provided to engage or allow the passage of the joining reinforcements of the abutments),
  • the anchoring plates will contain a plurality of holes, at least one per threaded end and in position coinciding with said threaded ends, so that through the said holes the threaded ends of the joining reinforcements are accessible,
  • the joining device may comprise a second group of joining reinforcements arranged in a second plane and parallel to each other, the second plane being parallel to the first plane.
  • This second group of reinforcements is also partially embedded in filler material (for example concrete, resin or composite).
  • These reinforcements can be oriented in parallel with the reinforcements of the first group, for example to join beams with several rows of reinforcements or they can be arranged in a direction perpendicular to the first set of reinforcements, when it comes to joining beams arranged orthogonally, for example beams that make up a corner of a building, or that cross an intermediate pillar.
  • the device can incorporate three or more groups of reinforcements that will form several parallel planes of joint reinforcements, the reinforcements of each plane can be oriented in the same direction or in perpendicular directions to each other.
  • the joining reinforcements are forked, comprising two reinforcements and two threaded ends, the reinforcements being parallel to each other in such a way that they allow a passage space for the first coupling means.
  • the bifurcated reinforcements will be used depending on the position of the reinforcement of the beams to be joined and the position of the reinforcement of the pillars, so that in cases where the reinforcement of the pillars intersect with the reinforcement of the beams proceed to the bifurcation of the joint reinforcements to leave room for the passage of the reinforcement of the pillars, while when it is not necessary to use joint reinforcement without branch.
  • the bifurcated armor is constituted, by welding a first stud or threaded segment of armor to the two armor at one end, leaving an overlap of at least two diameters of armor and a half, so that these are located diametrically opposite a of another respect to the stud or segment, performing the same operation with a second stud or segment at the other end of the reinforcements.
  • the first coupling means with the pillars are tubes configured to accommodate the ends of the pillar reinforcements (the First coupling means may simply be means of passage of the reinforcement of the abutments through the joining device of the invention, so that the end of the reinforcements thereof is accessible for connection with the reinforcement of an adjacent abutment. ).
  • the second coupling means are nuts configured to join the threaded ends of the reinforcements with threaded ends of the reinforcements of at least one beam. These nuts remain on the outside of the frame defined by the anchor plates, allowing the part of the threaded ends that protrude through the holes of the plates to be connected to the ends of the reinforcement of the beams.
  • a joint reinforcement comprising a reinforcement and two threaded ends (the joint reinforcements may be constituted by reinforcements at whose ends threaded studs are welded or they may be reinforcements having their threaded ends),
  • first coupling means with the pillars between the joining reinforcements and perpendicular to the foreground (in such a way as to allow the coupling or passage of the reinforcement of a pillar),
  • the anchor plates are welded in position by means of an angle weld bead welded on the inside of the corner, leaving a space up to the edge of 10 mm on both sides and with a throat of at minus 5 mm
  • the method comprises superimposing a second group of joining reinforcements in a second plane parallel to the foreground.
  • This second group of armors is arranged in a direction perpendicular to the first group of armors.
  • This second group of reinforcements is also partially embedded in the structural filler material.
  • These reinforcements can be oriented in parallel with the reinforcements of the first group, for example to join beams with various levels of reinforcements or they can be arranged in a direction perpendicular to the first set of reinforcements, when it comes to joining beams arranged orthogonally, for example beams that make up a corner of a building, or that cross an intermediate pillar.
  • the device can incorporate three or more groups of reinforcements that will form several parallel planes of joint reinforcements, the reinforcements of each plane may be oriented in the same direction or in directions perpendicular to each other.
  • the joint reinforcements are formed of bifurcated shape, comprising two reinforcements and two threaded ends, the reinforcements being parallel to each other in such a way that they allow a passage space for the first coupling means.
  • the first coupling means are tubes, while in another particular embodiment, the second coupling means are nuts.
  • the joining device described above with a prefabricated abutment comprising at least one bracket for the support of at least one beam and a plurality of ends of the vertical reinforcement of the abutment such that said joining device is placed on the ends of the vertical reinforcement of the abutment joining said ends by means of first coupling means of said joining device , allowing the device to rest on the abutment of the abutment, so that at least one prefabricated beam is placed on at least one bracket allowing the weight to rest on it and approaches, facing threaded ends of the beam reinforcement with second coupling means of the connecting device, joining together.
  • a joint is obtained that is made of steel and a structural filler material (concrete, resin, composite, etc.) and that is of universal use, that is, that it is an open solution adaptable to different sections , geometries and assemblies, being compatible with a great variety of cases.
  • a structural filler material concrete, resin, composite, etc.
  • it is of simple manufacture and has a dry joint, that is, that the joint is completed immediately by tightening screws, without waiting times for the setting of concrete.
  • FIG 1 - Shows the manufacturing sequence of the joining device object of the invention.
  • FIG 2 - Shows a perspective view of a prefabricated concrete beams receiving pillar.
  • FIG 3 - Shows a perspective view of the pillar of Figure 1 with a joining device according to the present invention.
  • FIG 4 - Shows a perspective view of the pillar and the joining device as shown in Figure 3, with two precast concrete beams being observed in the approach position.
  • FIG 5 - Shows a perspective view of the pillar, the beams and the joining device as shown in Figure 4, in the final screwed position.
  • FIG 6 - Shows a plan view of phase E of the joining device, object of the present invention, with simple reinforcements, including a detail of said simple reinforcement.
  • FIG 7 - Shows a plan view of phase E of the joining device, object of the present invention, combining bifurcated reinforcements and simple reinforcements.
  • the joining device of the present invention is manufactured according to the following sequence.
  • First (A) threaded studs (2), at least one threaded stud (2) are welded to each reinforcement (1) on each side of each reinforcement (1), forming a joint reinforcement (10.10 ' ).
  • a first group of reinforcements (10) are aligned in the same plane and parallel to each other.
  • a second group of perpendicularly oriented reinforcements (10 ') is superimposed on the first set of reinforcements (10).
  • a plurality of anchoring plates (20) are placed, introducing each threaded stud (2) of the joining reinforcements (10,10' ) through the holes (21) of each anchor plate (20) forming a fence and the anchor plates (20) being welded in this position by means of an angle weld welded by the internal part of the corner, leaving a space up to the edge of 10 mm on both sides and with a throat of at least 5 mm.
  • a plurality is introduced of tubes (30) of plastic or rubber between the spaces of the joining reinforcements (10.10 ') for the passage of vertical reinforcements of a pillar.
  • a plurality of nuts (40) are placed to close the holes (21) through which the studs (2) exit and are filled with a structural filler material (concrete, resin, composite, etc.) (50) the interior space delimited by the anchor plates (20), making the formwork fence itself.
  • a structural filler material concrete, resin, composite, etc.
  • the joining device (100) thus obtained comprises a plurality of joining reinforcements (10,10 ') arranged in two planes perpendicular to each other, where each of said joining reinforcement (10.10') comprises , in turn, an armor (1) and a threaded stud (2) welded at each end of the armor (1); and wherein said joining reinforcements (10,10 ') are surrounded by a plurality of anchor plates (20) arranged perimetrically around the assembly and with at least one sheet (20) per side comprising a plurality of holes (21) to the minus one per stud (2) and in a position coinciding therewith, the assembly being completed with a plurality of nuts (40), at least one per stud (2).
  • the joining device comprises a plurality of tubes (30) arranged vertically between the joining reinforcements (10,10 '), the assembly being stiffened by concreting (50) of the internal region defined by the frame of anchoring plates (20 ).
  • the tubes (30) in this embodiment configure first coupling means with the pillars (200) while the nuts (40) in this particular embodiment are second coupling means with the beams (300).
  • other coupling means other than the said tubes and nuts may be valid as long as they are configured to perform their coupling function.
  • the joining reinforcements (10,10 ') can be bifurcated reinforcements depending on the design conditions (as in the example shown in Figure 1) or simple, as in the example shown in Figure 6, or by combining both types of armor, as in figure 7.
  • the joining device shown in Figure 2 is manufactured with great simplicity, as shown in Figure 1, with common and cheap components, repeated several times by symmetry.
  • the geometry of the union is defined by the following external variables used as boundary conditions in the design.
  • n p x Number of rounds in the x direction, with n ViX ⁇ [3,5].
  • the reinforcements (1) are joined in one component, the joining reinforcements (10,10 '), which may be forked or not, in the latter case the studs would not be essential since it would be enough with an armor whose two ends are machined forming a thread.
  • the continuous joining reinforcements are composed either of a section of reinforcement whose ends have been machined by making a thread, or of a section of reinforcement in whose ends are welded together asparagus, aligned in the same direction, with the threads facing out.
  • the geometric constraints are the diameter and steel of the reinforcement of the incident beam, ⁇ ⁇ , the side of the pillar in that direction, L, and the thickness of the anchor plates, t.
  • the continuous joint reinforcement will have at least the same resistance as the incident beam reinforcement, it will be sufficient to ensure that the steel and diameter, ⁇ , of the continuous joining reinforcement are equal to those of the incident beam, ⁇ ⁇ ,
  • the diameter may be larger, or even smaller if the steel is more resistant.
  • the welded studs will have greater resistance than that of the reinforcement section, guaranteeing that the breakage will not occur in any case in the stud itself.
  • its metric, Met, and the minimum nominal values of the steel, expressed in terms of its elastic limit, f and b , and ultimate strength, f ub will be selected to meet said minimum condition.
  • the welding of the studs to the ends of the reinforcement section will be carried out guaranteeing the total transmission of efforts between the stud and the reinforcement section, guaranteeing that the reinforcement section will fail before welding. In a particular embodiment, to ensure this, they will be joined by butt welding.
  • the total length of the joint reinforcement formed by the reinforcement section with two threaded ends or the reinforcement section with two welded studs, will be sufficient to overcome the side of the pillar in the corresponding direction, L, twice the thickness of the plates, t, and twice the length necessary to thread a nut that transmits all the effort.
  • S is the separation between the reinforcements and the stud when welding them to form the fork. 1-2 mm is usual, do not weld glued.
  • the following table shows, for the particular case of reinforcements whose nominal elastic limit tension fsk is 500 MPa or less, some minimum conditions are given depending on the diameter of the equivalent horizontal reinforcement.
  • the values of the variables expressed in the table are the minimum, and others may be used at discretion.
  • the value of S is the separation between the reinforcements and the stud when welding them to form the fork. 1-2 mm is usual, do not weld glued.
  • the following table shows, for the particular case of reinforcements whose nominal elastic limit tension f sk is 500 MPa or less, the minimum stud geometry, Met, the characteristics of the stud steel, expressed in minimum nominal values of the elastic limit , f and b , and ultimate resistance, f ub , minimum diameter of bifurcated reinforcements, ⁇ P bif, and definition of the minimum welding arcs for the manual arc of the stud and the bifurcated reinforcement, with its length L cor , throat a, width w and separation s.
  • this inequality implies that the gap between the reinforcement of the fork, which is the sum of the stud metric, twice the separation between stud and reinforcement and twice the thickness of the tube, is greater than the diameter of the corresponding vertical reinforcement.
  • the metric of the stud in the x direction, Met x will be conditioned also by the inequality (4) and in the direction y, Met and , will be conditioned by the inequality (5), the appropriate metric being the minimum to simultaneously meet the conditions of the
  • the value of S is the separation between the reinforcements and the stud when welding to form the fork. 1-2 mm is usual, do not weld glued.
  • the length of the stud shaft L c that is, the part of the total unthreaded length, shall be at least equal to the sum of the thickness of the anchor plate t and the length of the weld bead L cor , as expressed in the following inequality (6)
  • the length of the threaded part L ros will be greater than or equal to 2 times the height of the standardized nut corresponding to high strength bolts of the stud metric, therefore it will be greater than or equal to the length expressed in Table 1.
  • the length of the bifurcated reinforcements L b ⁇ f in each of the x and y directions will depend on the side of the corresponding pillar, L x or L and, depending on the case, on the concrete covering r, on the lengths of the weld seam L c obtained according to the value of S is the separation between the reinforcements and the stud when welding them to form the fork. 1-2 mm is usual, do not weld glued.
  • the following table shows, for the particular case of reinforcements whose nominal elastic limit tension fsk is 500 MPa or less, in the corresponding direction, as well as the thickness of the chosen tube e t .
  • the anchor plates shall be made of steel whose nominal elastic limit resistance is at least 275 MPa or of greater characteristic strength.
  • the anchor sheets in the x direction will have a thickness t x, a long L ca, x and h x a song.
  • the joining device (100) object of the invention For the placement of the joining device (100) object of the invention, initially there is a section of prefabricated abutment (200) as presented in Figure 2. It is a classic pillar design, with two brackets (201, 202 ) for the support of the beams (300) and the ends of the reinforcements (203) of the vertical reinforcement of the pillar. Firstly, the connecting device (100) is placed on the ends (203) of the vertical reinforcement of the abutment (200) by passing said ends (203) through the holes in the tubes (30), allowing the device to rest (100) on the start of the pillar (200), as shown in Figure 3.
  • the prefabricated beams (300) are placed on the brackets (201, 202) allowing the weight to rest on them and approach, leaving a space (d) to operate, as shown in Figure 4.
  • the beams (300) approach the joining device (100), facing the threaded ends (301) of the beams (300) with the nuts (40) of the joining device (100), unscrewing from one side to screw on the other, completing the joint as shown in figure 5.
  • the pillar (200) is of edge or corner, a commercial walnut nut with skirt and a washer is left on the other hand to distribute the load in such a way that the reinforcement is anchored, although the fence formed by the stud and the bifurcated reinforcement wrapping the vertical reinforcement and the adhesion between the reinforcement and the structural filler material (concrete, resin, composite, etc.) will also collaborate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

Dispositivo de unión (100) para prefabricados de hormigón armado con junta seca que comprende un primer grupo de armaduras de unión (10') dispuestas en un primer plano y paralelas entre sí, comprendiendo cada una de dichas armaduras de unión (10) una armadura (1) y dos extremos roscados (2). El dispositivo comprende unos primeros medios de acoplamiento (30) con los pilares (200) dispuestos entre las armaduras de unión (10) y perpendiculares al primer plano definido por las armaduras de unión (10) y una pluralidad de chapas de anclaje (20) dispuestas definiendo un marco cerrado en cuyo interior quedan dispuestas las armaduras de unión (10), estando la región interna definida por las chapas de anclaje (20) está rellena de un material de relleno estructural (hormigón, resina, composite, etc.) (50). Las chapas de anclaje (20) comprenden una pluralidad de agujeros (21), al menos uno por extremo roscado (2) y en posición coincidente con las mismas a través de los cuales quedan accesibles los extremos roscados (2). El dispositivo comprende unos segundos medios de acoplamiento (40) entre los extremos roscados (2) y las armaduras de las vigas (300).

Description

DISPOSITIVO DE UNIÓN ENTRE VIGAS Y PILARES PREFABRICADOS DE HORMIGÓN
ARMADO CON JUNTA SECA
DESCRIPCIÓN
El objeto de la presente invención es una unión entre pilares y vigas prefabricados en hormigón armado con junta seca, es decir, mediante una junta que no necesite en obra, encofrado, vertido de hormigón fresco y periodo de fraguado del hormigón para adquirir la resistencia necesaria y que posibilite la construcción de edificios en altura de forma competitiva incluso en zonas con riesgo sísmico. Para ello, la presente invención propone un sistema que sea abierto y universal y adaptable a las distintas geometrías y casos posibles, y cuya junta sea seca y sencilla para unir las distintas partes, garantizando la estabilidad incluso con cargas de tipo dinámico. Por tanto, en el presente documento se describe una solución universal realizada con acero y un material de relleno estructural (hormigón, resina, composite, etc.) que sea adaptable, fácil de ejecutar y resistente.
Estado de la técnica
El problema técnico que soluciona la presente invención es la unión de vigas y pilares prefabricados de hormigón, que está relacionado con la construcción de edificios en altura, de forma económicamente competitiva. Para construir de forma competitiva es necesario un sistema abierto y universal que se adapte a las distintas geometrías y casos posibles para unir las partes sin tener que esperar a que el hormigón fragüe y sin que sean necesarios oficios especializados en obra como soldador o encofrador, que terminan encareciendo la construcción. Para construir en altura y más aún en zona con riesgo sísmico es necesario considerar, además del peso y las sobrecargas, las acciones horizontales, viento y sismo, de manera que los medios de unión garanticen la estabilidad incluso ante cargas de tipo dinámico.
En el estado de la técnica actual se exponen distintas soluciones para las conexiones pilar-pilar y para la conexión pilar-viga. Entre ellas, se puede destacar el documento coreano KR101260392 en el que se definen unas uniones para pilares y vigas prefabricados constituidas por tres elementos fundamentales: uniones entre pilares, llamados CLM, nodos de unión, llamados HM, y uniones de vigas, llamados BLM.
La parte de dicha invención que resuelve la unión entre vigas y pilares es la formada por el conjunto de las uniones entre vigas, BLM, y la correspondiente al nodo de unión, HM.
Por su parte, el nodo de unión, HM, está formado por hasta cuatro ménsulas de acero estructural formadas por perfiles en T, situadas cada 90 grados, que actúan de arranque de las vigas y van unidas entre sí de diversas formas, bien soldadas entre sí o conectadas mediante pernos a un núcleo de hormigón. La carga vertical del pilar se transmite de la parte superior del nodo a la parte inferior bien mediante una conexión ejecutada con acero estructural, lo que penaliza el paso de las armaduras de un lado a otro, tanto de viga como de pilar, o bien dejando el hueco, pasando las armaduras y hormigonando in situ.
Por otro lado, la unión entre la ménsula y la viga, BLM, se realiza conectando en el punto previsto de flector nulo sendas ménsulas de acero estructural con cubrejuntas, conectando las armaduras entre sí y hormigonando el conjunto in situ formando la viga y el encuentro entre pilar y viga. No siendo en el fondo un medio de conexión entre viga y pilar prefabricado sino entre previga y pilar.
Por lo tanto, las diferencias entre este sistema y el que se propone se enumeran a continuación:
En primer lugar no es un sistema puramente de unión entre vigas y pilares prefabricados de hormigón, sino entre previgas y pilares de hormigón.
En segundo lugar no resuelve el problema por medio de un solo sistema sino de dos, claramente separados e identificados como BLM y HM.
En tercer lugar no es un sistema abierto, requiere de elementos prefabricados específicos, no pudiéndose realizar operaciones de adaptación para los tipos más comunes, usualmente existentes, ya que requiere elementos de acero estructural embebidos, de unas determinadas condiciones. Más allá de elementos rectos, prismáticos, con unas determinadas esperas.
En cuarto lugar no es un sistema de junta seca, ya que la unión requiere siempre de hormigonado in situ para ser resistente, lo que penaliza los tiempos de construcción de edificación en altura ya que hay que esperar tiempos de fraguado y demás.
En quinto lugar no es una unión antisísmica, las armaduras en algunas soluciones tienen continuidad, pero no se dispone de almas capaces de transmitir los esfuerzos, únicamente un pequeño perfil en doble T transmitiendo los esfuerzos de compresión y cortante, pero centrado en el pilar haciéndolo completamente ineficaz a flexión. Los arranques de pilar están en puntos de cortante nulo en una dirección, pero dichos puntos no coincidirán en ambas direcciones salvo en edificios con doble simetría, con regularidad completa en planta y en alzado, lo que es un caso demasiado particular. La solución de dichos arranques de pilar no conecta armaduras entre sí, las pasa a través de la pieza de conexión, al estar situados en todo caso en lugares con flector no nulo, esto penaliza el comportamiento estructural. Finalmente, tampoco hay una solución específica para transmitir por cortante en el pilar el esfuerzo axil de las vigas.
El documento JP5160907 detalla ciertas conexiones entre los elementos continuos de viga con otras vigas, mediante machihembrados, pasadores y cubrejuntas. No obstante el medio de conexión a los pilares prefabricados es similar. Para evitar acercar la junta entre elementos demasiado a la zona de máximo cortante y evitar que las armaduras trabajen así, se puede juntar en una pieza continua un segmento de pilar y unas ménsulas de viga. El segmento de pilar presenta unas esperas para hacer de macho por un lado y unos agujeros al otro extremo para encajar las armaduras del segmento siguiente. La conexión se realiza mediante encaje y resinas. Las ménsulas presentadas con este sistema cubren la mitad de la luz de las vigas, haciendo la conexión en el punto medio, lo que minimiza el cortante y maximiza el axil. Es un sistema cerrado, puesto que no está pensado para la conexión de sistemas habituales de viga y pilar, sino de elementos ya formados por medios tramos de pilar y medias vigas. Por último se presentan las leyes de cortantes y flectores en vigas frente a cargas permanentes, no considerándose otras acciones como el sismo, que tienen otras leyes. La patente JP5154962 presenta una solución basada en el mismo principio, no siendo tanto un medio de unión de prefabricados viga y pilar como un prefabricado cerrado viga-pilar conectable consigo mismo.
Los sistemas anteriores son húmedos, pues requieren de hormigonado in situ o uso de resinas, y cerrados, con lo que sólo son válidos para ser usados con elementos prediseñados para actuar con ellos. No son sistemas adaptables, ya que las variaciones de geometría, como las distintas secciones de pilar en altura o distintas luces de viga hacen que estas soluciones no sean viables, al tener que combinarlas de forma imposible. Tampoco son un solo medio de unión para elementos viga y pilar prefabricados, sino la misma solución dividida en dos partes o un prefabricado distinto, con su medio de unión. Finalmente, no consideran el efecto de acciones horizontales como el sismo y, en algunos casos, los posibles efectos de corte en las armaduras al situar las secciones de junta en puntos que pueden sufrir importantes cortantes. Sólo presentan leyes de acciones permanentes, como el peso propio y las cargas muertas, verificándose la ausencia de la consideración de otras acciones fundamentales como el viento o el sismo. Por lo tanto, estos sistemas requieren una gran inversión de implantación, al necesitar moldes y piezas propias para todo. Estos sistemas no son compatibles con otros sistemas prefabricados y su aplicación no será posible para multitud de geometrías de edificios ni garantizará la seguridad estructural en las zonas sísmicas, limitando su aplicabilidad.
Descripción de la invención
En aras de solventar los problemas técnicos descritos, la presente invención describe, en un primer aspecto, un dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca que comprende:
un primer grupo de armaduras de unión dispuestas en un primer plano y paralelas entre sí (las armaduras de unión están orientadas en el primer plano de tal forma que con el dispositivo montado para su uso las armaduras quedan alineadas con las armaduras de las vigas a unir), comprendiendo cada una de dichas armaduras de unión una armadura y dos extremos roscados (las armaduras de unión pueden estar constituidas por una armaduras en cuyos extremos se sueldan espárragos roscados o pueden ser armaduras que tiene sus extremos roscados),
unos primeros medios de acoplamiento con los pilares dispuestos entre las armaduras de unión y perpendiculares al primer plano definido por las armaduras de unión (estos medios de acoplamiento están previstos para acoplarse o permitir el paso de las armaduras de unión de los pilares),
una pluralidad de chapas de anclaje dispuestas definiendo un marco cerrado en cuyo interior quedan dispuestas las armaduras de unión, y donde la región interna definida por las chapas de anclaje está rellena de un material de relleno estructural (hormigón, resina, composite, etc, realizado en taller, no en obra), de forma que las armaduras de unión y los primeros medios de acoplamiento quedan parcialmente embebidos dentro de dicho material de relleno estructural (en concreto las armaduras quedaran completamente embebidas pero los extremos roscados no). Las chapas de anclaje contendrán una pluralidad de agujeros, al menos uno por extremo roscado y en posición coincídente con los citados extremos roscados, de forma que a través de los citados agujeros quedan accesibles los extremos roscados de las armaduras de unión,
unos segundos medios de acoplamiento entre los extremos roscados y las armaduras de las vigas (estos segundos medios de acoplamiento quedan por la parte exterior del marco definido por las chapas de anclaje, permitiendo conectar la parte de los extremos roscados que sobresale por los orificios de las chapas con los extremos de las armaduras de las vigas)..
El dispositivo de unión puede comprender un segundo grupo de armaduras de unión dispuestas en un segundo plano y paralelas entre sí, siendo el segundo plano paralelo al primer plano. Este segundo grupo de armaduras queda también parcialmente embebido en material de relleno (por ejemplo hormigón, resina o composite). Estas armaduras pueden estar orientadas en paralelo con las armaduras del primer grupo, por ejemplo para unir vigas con varias filas de armaduras o pueden estar dispuestas en una dirección perpendicular al primer grupo de armaduras, cuando se trata de unir vigas dispuestas ortogonalmente, por ejemplo vigas que conforman una esquina de un edificio, o que se cruzan en un pilar intermedio.
Por supuesto el dispositivo puede incorporar tres o más grupos de armaduras que conformaran varios planos paralelos de armaduras de unión, pudiendo estar orientadas las armaduras de cada plano en la misma dirección o en direcciones perpendiculares entre sí.
En una realización particular las armaduras de unión están bifurcadas, comprendiendo dos armaduras y dos extremos roscados, quedando las armaduras paralelas entre sí de tal forma que habilitan un espacio de paso para los primeros medios de acoplamiento. Las armaduras bifurcadas se utilizaran dependiendo de la posición de las armaduras de las vigas a unir y de la posición de las armaduras de los pilares, de forma que en los casos en los que las armaduras de los pilares intersectaran con las armaduras de las vigas se procederá a la bifurcación de las armaduras de unión para dejar espacio para el paso de las armaduras de los pilares, mientras que cuándo no sea necesario se utilizaran armaduras de unión sin bifurcar.
La armadura bifurcada se constituye, soldando un primer espárrago o segmento de armadura roscados a las dos armaduras por uno de sus extremos, dejando un solape de al menos dos diámetros de armadura y medio, de tal manera que estas queden situadas de forma diametralmente opuesta una de otra respecto al espárrago o segmento, realizando la misma operación con un segundo espárrago o segmento en el otro extremo de las armaduras.
En otra realización particular, los primeros medios de acoplamiento con los pilares son unos tubos configurados para alojar los extremos de las armaduras de los pilares (los primeros medios de acoplamiento pueden ser simplemente unos medios de paso de las armaduras de los pilares a través del dispositivo de unión de la invención, de forma que el extremo de las armaduras de los mismos quede accesible para su unión con la armadura de un pilar contiguo).
En otra realización particular, los segundos medios de acoplamiento son unas tuercas configuradas para unir los extremos roscados de las armaduras con unos extremos roscado de las armaduras de al menos una viga. Estas tuercas quedan por la parte exterior del marco definido por las chapas de anclaje, permitiendo conectar la parte de los extremos roscados que sobresale por los orificios de las chapas con los extremos de las armaduras de las vigas.
Es también objeto de la invención un método de fabricación de un dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca que se caracteriza por que comprende las etapas de:
a) obtener una armadura de unión que comprende una armadura y dos extremos roscados (las armaduras de unión pueden estar constituidas por una armaduras en cuyos extremos se sueldan espárragos roscados o pueden ser armaduras que tiene sus extremos roscados) ,
b) alinear una primer grupo de armaduras de unión en un primer plano y en paralelo entre sí (las armaduras de unión están orientadas en el primer plano de tal forma que con el dispositivo montado para su uso las armaduras quedan alineadas con las armaduras de las vigas a unir ,
c) incorporar unos primeros medios de acoplamiento con los pilares entre las armaduras de unión y perpendiculares al primer plano (de tal forma que permitan el acoplamiento o paso de las armaduras de un pilar),
d) colocar una pluralidad de chapas de anclaje dispuestas definiendo un marco cerrado en cuyo interior queda dispuesto el primer grupo de armaduras de unión,
e) introducir cada extremo roscado de las armaduras de unión por unos orificios de cada chapa de anclaje,
f) rellenar la región interna definida por las chapas de anclaje con un material de relleno estructural (hormigón, resina, composite, etc.) de tal forma que las armaduras quedaran completamente embebidas, pero los extremos roscados no,
g) colocar unos segundos medios de acoplamiento entre los extremos roscados y las armaduras de las vigas para cerrar los orificios por donde sobresalen los espárragos (de tal forma que los segundos medios de acoplamiento queden por la parte exterior del marco definido por chapas de anclaje, permitiendo conectar la parte de los extremos roscados que sobresale por los orificios de las chapas con los extremos de las armaduras de las vigas).
En una realización particular del método, las chapas de anclaje se sueldan en su posición mediante un cordón de soldadura en ángulo soldado por la parte interna de la esquina, dejando un espacio hasta el borde de 10 mm por ambos lados y con una garganta de al menos 5 mm.
En otra realización particular el método comprende superponer en un segundo plano paralelo al primer plano un segundo grupo de armaduras de unión. Este segundo grupo de armaduras está dispuesto en una dirección perpendicular al primer grupo de armaduras. Este segundo grupo de armaduras queda también parcialmente embebido en el material de relleno estructural. Estas armaduras pueden estar orientadas en paralelo con las armaduras del primer grupo, por ejemplo para unir vigas con varios niveles de armaduras o pueden estar dispuestas en una dirección perpendicular al primer grupo de armaduras, cuando se trata de unir vigas dispuestas ortogonalmente, por ejemplo vigas que conforman una esquina de un edificio, o que se cruzan en un pilar intermedio.
Por supuesto el dispositivo puede incorporar tres o más grupos de armaduras que conformaran varios planos paralelos de armaduras de unión, pudiendo estar orientadas las armaduras de cada plano en la misma dirección o en direcciones perpendiculares entre sí En otra realización las armaduras de unión están conformadas de forma bifurcada, comprendiendo dos armaduras y dos extremos roscados, quedando las armaduras paralelas entre sí de tal forma que habilitan un espacio de paso para los primeros medios de acoplamiento. En otra realización particular, los primeros medios de acoplamiento son unos tubos, mientras que en otra realización particular, los segundos medios de acoplamiento son unas tuercas.
Finalmente, es también objeto de la invención el uso del dispositivo de unión descrito anteriormente con un pilar prefabricado que comprende, al menos, una ménsula para el apoyo de al menos una viga y una pluralidad de extremos de la armadura vertical del pilar de tal forma que dicho dispositivo de unión se coloca sobre los extremos de la armadura vertical del pilar uniendo dichos extremos mediante unos primeros medios de acoplamiento de dicho dispositivo de unión, dejando reposar el dispositivo sobre el arranque del pilar, de tal forma que al menos una viga prefabricada se sitúa sobre al menos una ménsula dejando descansar el peso sobre la misma y se aproxima, enfrentando unos extremos roscados de la armadura de la viga con unos segundos medios de acoplamiento del dispositivo de unión, uniéndose entre sí. Gracias a la invención descrita, se obtiene una unión que está fabricada en acero y un material de relleno estructural (hormigón, resina, composite, etc.) y que es de uso universal, es decir, que es una solución abierta adaptable a distintas secciones, geometrías y armados, siendo compatible con una gran variedad de casos. Frente a las soluciones actuales descritas en el estado de la técnica, es de manufactura simple y dispone de una junta seca, es decir, que la unión se completa inmediatamente apretando tornillos, sin tiempos de espera para el fraguado de hormigón. Finalmente, cabe indicar que está pensada para transmitir esfuerzos entre elementos de hormigón prefabricado como si fuera una sección de hormigón continua, siendo más resistente la unión que los propíos elementos de prefabricado a unir, considerando la transmisión de flectores y cortantes que en su caso cabría esperar en zonas con riesgo sísmico, así como la conexión de armaduras, buscando el trabajo a negativos y el efecto membrana en caso de fallo
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que restrinjan la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.
Breve descripción de las figuras
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. FIG 1 - Muestra la secuencia de fabricación del dispositivo de unión objeto de la invención.
FIG 2 - Muestra una vista en perspectiva de un pilar de recepción de vigas prefabricado en hormigón.
FIG 3 - Muestra una vista en perspectiva del pilar de la figura 1 con un dispositivo de unión de acuerdo con la presente invención.
FIG 4 - Muestra una vista en perspectiva del pilar y el dispositivo de unión tal y como se muestra en la figura 3, observándose además dos vigas prefabricadas en hormigón en posición de aproximación.
FIG 5 - Muestra una vista en perspectiva del pilar, las vigas y el dispositivo de unión tal y como se han mostrado en la figura 4, en la posición final de atornillado.
FIG 6 - Muestra una vista en planta de la fase E, del dispositivo de unión, objeto de la presente invención, con armaduras sencillas, incluyendo un detalle de dicha armadura sencilla.
FIG 7 - Muestra una vista en planta de la fase E, del dispositivo de unión, objeto de la presente invención, combinando armaduras bifurcadas y armaduras sencillas.
Exposición de un modo detallado de realización de la invención
Tal y como se muestra en la figura 1 , el dispositivo de unión de la presente invención se fabrica según la siguiente secuencia. En primer lugar (A), se sueldan a unas armaduras (1) unos espárragos roscados (2), al menos un espárrago roscado (2) por cada lateral de cada armadura (1), conformando una armadura de unión (10,10'). En una segunda etapa (B) se alinean un primer grupo de armaduras (10) en un mismo plano y en paralelo entre sí. En una tercera etapa (C) se superpone un segundo grupo de armaduras orientadas perpendicularmente (10') sobre el primer grupo de armaduras (10). Se podrán superponer de este modo, en cada caso, tantos planos como direcciones de vigas y número de filas de armaduras por dirección haya. En una cuarta etapa (D) y una vez colocadas las armaduras de unión (10,10') perpendicularmente se colocan una pluralidad de chapas de anclaje (20) introduciendo cada espárrago roscado (2) de las armaduras de unión (10,10') por los orificios (21) de cada chapa de anclaje (20) formando un cerco y soldándose las chapas de anclaje (20) en esta posición mediante un cordón de soldadura en ángulo soldado por la parte interna de la esquina, dejando un espacio hasta el borde de 10 mm por ambos lados y con una garganta de al menos 5 mm. En una quinta etapa (E) se introducen una pluralidad de tubos (30) de plástico o goma entre los espacios de las armaduras de unión (10,10') para el paso de unas armaduras verticales de un pilar. Finalmente, en una sexta etapa (F) se colocan una pluralidad de tuercas (40) para cerrar los orificios (21) por donde sobre salen los espárragos (2) y se rellena de un material de relleno estructural (hormigón, resina, composite, etc.) (50) el espacio interior delimitado por las chapas de anclaje (20), haciendo el propio cerco de encofrado.
Por lo tanto, el dispositivo de unión (100) así obtenido, comprende una pluralidad de armaduras de unión (10,10') dispuestas en dos planos perpendiculares entre sí, donde cada una de dichas armaduras de unión (10,10') comprende, a su vez, una armadura (1) y un espárrago roscado (2) soldado en cada uno de los extremos de la armadura (1); y donde dichas armaduras de unión (10,10') están cercadas por una pluralidad de chapas de anclaje (20) dispuestas perimetralmente alrededor del conjunto y con al menos una chapa (20) por lateral que comprenden una pluralidad de orificios (21) al menos uno por espárrago (2) y en posición coincidente con los mismos, completándose el conjunto con una pluralidad de tuercas (40), al menos una por espárrago (2). Además, el dispositivo de unión comprende una pluralidad de tubos (30) dispuestos verticalmente entre las armaduras de unión (10,10') rigidizándose el conjunto mediante el hormigonado (50) de la región interna definida por el cerco de chapas de anclaje (20).
Los tubos (30) configuran en esta realización unos primeros medios de acoplamiento con los pilares (200) mientras que las tuercas (40) en esta realización particular, son unos segundos medios de acoplamiento con las vigas (300). No obstante, otros medios de acoplamiento que no sean los referidos tubos y tuercas pueden ser válidos con tal que estén configurados para desarrollar su función de acoplamiento.
Por otro lado, las armaduras de unión (10,10') pueden ser armaduras bifurcadas en función de las condiciones del diseño (como en el ejemplo mostrado en la figura 1) o bien sencillas, como en el ejemplo mostrado en la figura 6, o bien combinando ambos tipos de armaduras, como en la figura 7.
Así pues, el dispositivo de unión mostrado en la figura 2 se fabrica con una gran sencillez, como muestra la figura 1 , con componentes comunes y baratos, repetidos varias veces por simetría. La geometría de la unión se define mediante las siguientes variables externas empleadas como condiciones de contorno en el diseño. Variables externas generales r Recubrimiento geométrico de la armadura, con r>10 mm Variables externas relacionadas con el pilar
Lx Lado en la dirección x, con Lx≥ 200 mm.
Ly Lado en la dirección y, con Ly≥ 200 mm.
Φχ Diámetro de la armadura de flexión para el flector Mx, con φχ ε [10,40] mm.
np,x Número de redondos en la dirección x, con nViX ε [3,5].
Φν Diámetro de la armadura de flexión para el flector My, con 0y ε [10,40] mm.
np,y Número de redondos en la dirección y, con ny e [3,5].
Tipo Tipo de pilar en planta: esquina, borde, interior
Variables externas relacionadas con las vigas
Bx Ancho de la viga alineada en la dirección alineada con x, con Bx 6
Φν,χ Diámetro de la armadura de la viga alineada con x.
nv,x Número de redondos de la viga alineada con x.
fv,x Número de filas de redondos de la viga alineada con x.
Sfv.x Separación entre filas de redondos de la viga alineada con x.
By Ancho de viga alineada en la viga alineada con la dirección y.
Φν,γ Diámetro de la armadura en la viga alineada con la dirección y.
nv,y Número de redondos de la viga alineada con y.
fv,y Número de filas de redondos de la viga alineada con y.
Sf .x Separación entre filas de redondos de la viga alineada con y.
En base a las variables generales, asociadas a los pilares y a las vigas hay tres componentes fundamentales que se unen formando la unión: las armaduras (1), las chapas (20) y en su caso los espárragos (2). Las armaduras (1) y los espárragos (2) se unen en un componente, las armaduras de unión (10,10'), que podrán ser bifurcadas o no, en este último caso no serían imprescindibles los espárragos puesto que bastaría con una armadura cuyos dos extremos estén mecanizados formando una rosca.
Condiciones de diseño de las armaduras de unión (10,10') continuas, según figura 6 Las armaduras de unión continuas se componen bien de un tramo de armadura cuyos extremos han sido mecanizados realizando una rosca, o bien de un tramo de armadura en cuyos extremos se sueldan sendos espárragos, alineados en la misma dirección, con las roscas hacia afuera. Los condicionantes geométricos son el diámetro y acero de la armadura de la viga incidente, Φν, el lado del pilar en esa dirección, L, y el espesor de las chapas de anclaje, t.
La armadura de unión continua tendrá al menos la misma resistencia que la armadura de la viga incidente, bastará para garantizar esto con que el acero y diámetro, Φ, de la armadura de unión continua sean iguales a los de la viga incidente, Φν, pudiendo ser el diámetro mayor, o incluso menor si el acero fuera más resistente.
Los espárragos soldados tendrán mayor resistencia que la del tramo de armadura, garantizando que la rotura no se producirá en ningún caso en el propio espárrago. Para ello su métrica, Met, y los valores nominales mínimos del acero, expresados en función de su límite elástico, fyb, y resistencia última, fub, serán seleccionados para cumplir dicha condición mínima.
La soldadura de los espárragos a los extremos del tramo de armadura se realizará garantizando la transmisión total de esfuerzos entre el espárrago y el tramo de armadura, garantizando que el tramo de armadura fallará antes que la soldadura. En una realización particular, para garantizar esto, se unirán mediante soldadura a tope.
La longitud total de la armadura de unión, formado por el tramo de armadura con dos extremos roscados o el tramo de armadura con dos espárragos soldados, será suficiente para superar el lado del pilar en la dirección correspondiente, L, dos veces el espesor de las chapas, t, y dos veces la longitud necesaria para roscar una tuerca que transmita todo el esfuerzo.
En el caso particular de armaduras con límite elástico nominal fsk de 500 MPa o menos las características mínimas de los espárragos, armaduras y cordones de soldadura será la mostrada en la siguiente tabla:
Figure imgf000013_0001
16 16 640 800 16
20 20 640 800 20
25 24 900 1000 25
32 33 640 800 32
Condiciones de diseño de las armaduras de unión (10,10') bifurcadas, según figura 1 En aquellos casos en los que, por el número de redondos de armadura del pilar en cualquiera de sus direcciones las armaduras se intersecten en el espacio con las armaduras de las vigas se propone la bifurcación de estas, dejando el espacio de paso suficiente para las armaduras verticales. Hay pues dos condicionantes geométricos para la bifurcación de las armaduras. Por un lado, el diámetro de la armadura horizontal equivalente <Deq que condicionará el tamaño mínimo del perno y por tanto su métrica et y la calidad mínima del acero, así como el diámetro de las dos armaduras de la bifurcación <Pb¡f y la geometría mínima del cordón de soldadura con su longitud Lcor, garganta a y ancho w, en función de su resistencia. Por otro lado, el diámetro de la armadura vertical, según el caso Φχ o Oy, que puede producir que la métrica del espárrago varíe para ajustarse al diámetro de la armadura pasante.
El valor de S es la separación entre las armaduras y el espárrago al soldarlos para formar la bifurcación. 1-2 mm es lo habitual, no se sueldan pegados.
En la tabla siguiente se muestra, para el caso particular de armaduras cuya tensión de límite elástico nominal fsk sea 500 MPa o menor, se dan algunas condiciones mínimas en función del diámetro de la armadura horizontal equivalente. Los valores de las variables expresadas en la tabla son los mínimos, pudiendo utilizarse a discreción otros mayores. El valor de S es la separación entre las armaduras y el espárrago al soldarlos para formar la bifurcación. 1-2 mm es lo habitual, no se sueldan pegados.
En la tabla siguiente se muestra, para el caso particular de armaduras cuya tensión de límite elástico nominal fsk sea 500 MPa o menor, la geometría mínima de espárrago, Met, las características del acero del espárrago, expresado en valores nominales mínimos del limite elástico, fyb, y resistencia última, fub, diámetro mínimo de las armaduras bifurcadas, <Pbif, y definición de los cordones mínimos de soldadura en arco manual del espárrago y la armadura bifurcada, con su longitud Lcor, garganta a, ancho w y separación s.
Figure imgf000015_0001
Considerando que la entrada <t>eq de la El valor de S es la separación entre las armaduras y el espárrago al soldarlos para formar la bifurcación. 1-2 mm es lo habitual, no se sueldan pegados.
En la tabla siguiente se muestra, para el caso particular de armaduras cuya tensión de límite elástico nominal fsk sea 500 MPa o menor, anterior será, según el caso, 0eq,x en la dirección x, de acuerdo a la ecuación (1), y <t>eq,y en la dirección y, de acuerdo a la ecuación (2), mostradas ambas a continuación:
Φ eq,x = Φ v,x
Φ^ = Φν. (1 )
(2)
Así mismo, tal como se comentaba, habrá que garantizar el paso de las armaduras verticales por lo que, una vez más, según el caso fex, y}≤Met + 2-s + 2-e, (3)
Básicamente esta inecuación implica que el hueco entre armaduras de la bifurcación, que es la suma de la métrica del espárrago, dos veces la separación entre espárrago y armadura y dos veces el espesor del tubo, sea mayor que el diámetro de la armadura vertical correspondiente.
Por lo que la métrica del espárrago en la dirección x, Metx, vendrá condicionada también por la inecuación (4) y en la dirección y, Mety, vendrá condicionada por la inecuación (5), siendo la métrica adecuada la mínima para cumplir simultáneamente las condiciones de la El valor de S es la separación entre las armaduras y el espárrago al soldarlos para formar la bifurcación. 1-2 mm es lo habitual, no se sueldan pegados.
En la tabla siguiente se muestra, para el caso particular de armaduras cuya tensión de límite elástico nominal fsk sea 500 MPa o menor, que son condiciones estructurales y de las inecuaciones (4) y (5) que son condiciones de tipo geométrico:
Figure imgf000016_0001
Metyy -2-s-2-et (4)
(5)
La longitud de la caña del espárrago Lc, es decir, la parte de la longitud total no roscada, será al menos igual a la suma del espesor de la chapa de anclaje t y de la longitud del cordón de soldadura Lcor, tal como se expresa en la siguiente inecuación (6)
Lc≥LC0l. +t (6)
La longitud de la parte roscada Lros será mayor o igual a 2 veces la altura de la tuerca normalizada correspondiente a tornillos de alta resistencia de la métrica del espárrago, por lo tanto será mayor o igual que la longitud expresada en la Tabla 1.
Tabla 1 , Longitudes roscadas Lros mínimas en función de la métrica del espárrago.
Met Lros
[mm] [mm]
10 16
12 20
16 26
20 32
22 36
24 38
27 44
30 48
33 52
36 58 La longitud de las armaduras bifurcadas Lb¡f en cada una de las direcciones x e y, dependerá del lado del pilar correspondiente, Lx o Ly según el caso, del recubrimiento r del hormigón, de las longitudes del cordón de soldadura Lc obtenido según la El valor de S es la separación entre las armaduras y el espárrago al soldarlos para formar la bifurcación. 1-2 mm es lo habitual, no se sueldan pegados.
En la tabla siguiente se muestra, para el caso particular de armaduras cuya tensión de límite elástico nominal fsk sea 500 MPa o menor, en la dirección correspondiente, así como del espesor del tubo escogido et.
Lb¡ y = Ly -2-r + 2-LCO!. +2- et (7)
(8)
Condiciones de diseño de las chapas de anclaje (20).
En todo caso, las chapas de anclaje se ejecutarán en acero cuya resistencia de límite elástico nominal sea al menos de 275 MPa o de mayor resistencia característica. Las chapas de anclaje en la dirección x tendrán un espesor tx, un largo Lca,x y un canto hx. Tendrán nv x agujeros circulares de diámetro d0,x pasantes todo el espesor, situados en una misma fila, las distancias entre filas de un mismo lado serán iguales a las separaciones de las armaduras incidentes, sfv,xy sfViy, según el caso del lateral, y habrá tantas filas como filas de armaduras haya, fViX y fv,y, según el caso del lateral, con unas distancias de las filas extremas a los bordes del canto β|ιΧ y er,x y unas distancias de los agujeros extremos de cada fila a los bordes del largo et,x y eb,x, manteniendo la equidistancia entre los agujeros de una misma fila igual a px. Las dimensiones mínimas así definidas guardarán las relaciones entre sí y con el resto de elementos de la unión expresadas en las siguientes ecuaciones (9) y (15).
/ > 0,4 - OVJ,
h -rv≥ett,xx + el,,yv +^ 2 L + ^ 2 - O)
(10) 30 (11)
d0 x = Φν v + 2 · mm
(12)
Figure imgf000018_0001
(15) Por su parte, los valores mínimos de e¡,x (distancia al borde izquierdo) y et,x distancia al borde superior se pueden obtener de la siguiente tabla 3 ¡Error! No se encuentra el origen de la referencia.:
Figure imgf000018_0002
En la dirección y se aplicarían las mismas ecuaciones (9) a (15) y la tabla 3 anterior, pero intercambiando la por la y y viceversa.
A modo de ejemplo se presenta un dispositivo de unión (100) realizado en base a las especificaciones realizadas con anterioridad para el caso de un pilar 30x30 cm, con todas las armaduras de Φ=25 mm y 3 redondos en cada dirección.
Para la colocación del dispositivo de unión (100) objeto de la invención, inicialmente se tiene un tramo de pilar prefabricado (200) como el presentado en la figura 2. Se trata de un diseño clásico de pilar, con dos ménsulas (201 ,202) para el apoyo de las vigas (300) y los extremos de las armaduras (203) de la armadura vertical del pilar. En primer lugar se procede a colocar el dispositivo de unión (100) sobre los extremos (203) de la armadura vertical del pilar (200) haciendo pasar dichos extremos (203) por los huecos de los tubos (30), dejando reposar el dispositivo (100) sobre el arranque del pilar (200), tal y como se muestra en la figura 3.
Posteriormente, las vigas prefabricadas (300) se sitúan sobre las ménsulas (201 ,202) dejando descansar el peso sobre las mismas y se aproximan, dejando un espacio (d) para operar, tal y como se muestra en la figura 4.
Finalmente, las vigas (300) se acercan al dispositivo de unión (100), enfrentando los extremos roscados (301) de las vigas (300) con las tuercas (40) del dispositivo de unión (100), desenroscándose de un lado para enroscarse en el otro, completando la unión tal y como muestra la figura 5. Si el pilar (200) es de borde o esquina, se deja por el otro lado una tuerca comercial de valona con faldón y una arandela para repartir la carga de tal forma que la armadura quede anclada, aunque el cerco formado por el espárrago y la armadura bifurcada envolviendo a la armadura vertical y la adherencia entre la armadura y el material de relleno estructural (hormigón, resina, composite, etc.) también colaborarán.

Claims

REIVINDICACIONES
1 - Dispositivo de unión (100) entre vigas (300) y pilares (200) prefabricados de hormigón armado con junta seca caracterizado por que comprende: un primer grupo de armaduras de unión (10') dispuestas en un primer plano y paralelas entre sí, comprendiendo cada una de dichas armaduras de unión (10) al menos una armadura (1) y dos extremos roscados (2) ; unos primeros medios de acoplamiento (30) con los pilares (200) dispuestos entre las armaduras de unión (10) y perpendiculares al primer plano definido por las armaduras de unión (10) ;
una pluralidad de chapas de anclaje (20) dispuestas definiendo un marco cerrado en cuyo interior quedan dispuestas las armaduras de unión (10), y donde la región interna definida por las chapas de anclaje (20) está rellena de un material de relleno estructural (50), de forma que las armaduras de unión (10) y los primeros medios de acoplamiento (30) quedan parcialmente embebidos dentro del material de relleno estructural, comprendiendo dichas chapas de anclaje (20) una pluralidad de agujeros (21), al menos uno por extremo roscado (2) y en posición coincidente con los citados extremos roscados (2), de forma que a través de los citados agujeros (21) quedan accesibles los extremos roscados (2) de las armaduras de unión (10);
unos segundos medios de acoplamiento (40) entre los extremos roscados (2) y las armaduras de las vigas (300).
2 - Dispositivo de unión (100) según reivindicación 1 que comprende una segundo grupo de armaduras de unión (10') dispuestas en un segundo plano y paralelas entre sí, siendo el segundo plano paralelo al primer plano.
3 - Dispositivo de unión (100) según la reivindicación 1 o 2 en el cual el segundo grupo de armaduras de unión (10') está dispuesto en una dirección perpendicular al primer grupo de armaduras (10).
4.- Dispositivo de unión según cualquiera de las reivindicaciones 1 a 3 donde las armaduras de unión (10,10') están bifurcadas, comprendiendo dos armaduras (1) y dos extremos roscados (2), quedando las armaduras (1) paralelas entre sí de tal forma que habilitan un espacio de paso para los primeros medios de acoplamiento (30).
5 - Dispositivo de unión (100) según cualquiera de las reivindicaciones 1 a 4 donde los primeros medios de acoplamiento (30) con los pilares (200) son unos tubos configurados para alojar los extremos (203) de las armaduras de los pilares (200).
6 - El dispositivo de unión (100) de cualquiera de las reivindicaciones 1 a 5 donde los segundos medios de acoplamiento (40) son unas tuercas (40) configuradas para unir los extremos roscados (2) de las armaduras (10, 10') con unos extremos roscados (301) de las armaduras de al menos una viga (300).
7 - Método de fabricación de un dispositivo de unión (100) entre vigas (300) y pilares (200) prefabricados de hormigón armado con junta seca que se caracteriza por que comprende las etapas de:
h) obtener una armadura de unión (10) que comprende una armadura (1) y dos extremos roscados (2),
i) alinear una primer grupo de armaduras de unión (10) en un primer plano y en paralelo entre sí,
j) incorporar unos primeros medios de acoplamiento (30) con los pilares (200) entre las armaduras de unión (10) y perpendiculares al primer plano,
k) colocar una pluralidad de chapas de anclaje (20) dispuestas definiendo un marco cerrado en cuyo interior queda dispuesto el primer grupo de armaduras de unión
(10),
I) introducir cada extremo roscado (2) de las armaduras de unión (10) por unos orificios (21) de cada chapa de anclaje (20),
m) rellenar la región interna definida por las chapas de anclaje (20) con un material de relleno estructural (50),
n) colocar unos segundos medios de acoplamiento (40) entre los extremos roscados (2) y las armaduras de las vigas (300) para cerrar los orificios (21) por donde sobresalen los espárragos (2).
8 - Método de fabricación según reivindicación 7 donde las chapas de anclaje (20) se sueldan en su posición mediante un cordón de soldadura en ángulo soldado por la parte interna de la esquina, dejando un espacio hasta el borde de 10 mm por ambos lados y con una garganta de al menos 5 mm 9 - Método de fabricación según cualquiera de las reivindicaciones 7 o 8 que comprende superponer en un segundo plano paralelo al primer plano un segundo grupo de armaduras de unión (10' ).
10 - Método de fabricación según cualquiera de las reivindicaciones 7 o 9 donde el segundo grupo de armaduras (10') está dispuesto en una dirección perpendicular al primer grupo de armaduras (10). 11 - Método de fabricación según cualquiera de las reivindicaciones 7 a 10 en el cual las armaduras de unión (10,10') están conformadas de forma bifurcada, comprendiendo dos armaduras (1) y dos extremos roscados (2), quedando las armaduras paralelas entre sí de tal forma que habilitan un espacio de paso para los primeros medios de acoplamiento (30). 12 - Método de fabricación según cualquiera de las reivindicaciones 7 a 11 donde los primeros medios de acoplamiento (30) son unos tubos.
13 - Método de fabricación según cualquiera de las reivindicaciones 7 a 12 donde los segundos medios de acoplamiento (40) son unas tuercas.
14 - Uso del dispositivo de unión (100) de acuerdo con cualquiera de las reivindicaciones 1 a 13 con un pilar prefabricado (200) que comprende, al menos, una ménsula (201 ,202) para el apoyo de al menos una viga (300) y una pluralidad de extremos (203) de la armadura vertical del pilar (200) de tal forma que dicho dispositivo de unión (100) se coloca sobre los extremos (203) de la armadura vertical del pilar (200) uniendo dichos extremos (203) mediante unos primeros medios de acoplamiento (30) de dicho dispositivo de unión (100), dejando reposar el dispositivo (100) sobre el arranque del pilar (200), de tal forma que al menos una viga prefabricada (300) se sitúa sobre al menos una ménsula (201 ,202) dejando descansar el peso sobre la misma y se aproxima, enfrentando unos extremos roscados (301) de la armadura de la viga (300) con unos segundos medios de acoplamiento (40) del dispositivo de unión ( 00), uniéndose entre sí.
PCT/ES2015/070498 2014-07-07 2015-06-25 Dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca WO2016005632A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/324,370 US10378199B2 (en) 2014-07-07 2015-06-25 Dry joint joining device between columns and beams of precast reinforced concrete
MX2017000105A MX2017000105A (es) 2014-07-07 2015-06-25 Dispositivo de union entre vigas y pilares prefabricados de hormigon armado con junta seca.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14382262.5A EP2966232B8 (en) 2014-07-07 2014-07-07 Dry joint joining device between columns and beams of precast reinforced concrete
EP14382262.5 2014-07-07

Publications (2)

Publication Number Publication Date
WO2016005632A2 true WO2016005632A2 (es) 2016-01-14
WO2016005632A3 WO2016005632A3 (es) 2016-05-06

Family

ID=51492912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070498 WO2016005632A2 (es) 2014-07-07 2015-06-25 Dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca

Country Status (7)

Country Link
US (1) US10378199B2 (es)
EP (1) EP2966232B8 (es)
CL (1) CL2016003362A1 (es)
ES (1) ES2623461T3 (es)
MX (1) MX2017000105A (es)
PT (1) PT2966232T (es)
WO (1) WO2016005632A2 (es)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3327214T (pt) * 2015-07-17 2020-06-08 Sumitomo Mitsui Construction Co Ltd Estrutura de esqueleto e respetivo método de construção
US10024047B2 (en) * 2015-08-17 2018-07-17 Tindall Corporation Method and apparatus for constructing a concrete structure
CN106545086B (zh) * 2016-10-17 2019-03-05 华南理工大学 一种钢筋再生块体混凝土梁-柱节点及其施工方法
US10619342B2 (en) 2017-02-15 2020-04-14 Tindall Corporation Methods and apparatuses for constructing a concrete structure
CN106836479B (zh) * 2017-03-31 2022-08-23 浙江工业大学工程设计集团有限公司 一种装配式预应力混凝土框架结构
US10781582B2 (en) 2017-09-14 2020-09-22 South Dakota Board Of Regents Apparatus, systems and methods for repairable precast moment-resisting buildings
US10895071B2 (en) * 2017-12-29 2021-01-19 Envision Integrated Building Technologies Inc. Structural frame for a building and method of constructing the same
TWI674345B (zh) * 2018-01-23 2019-10-11 潤弘精密工程事業股份有限公司 梁柱接頭結構及其施工方法
CN108915085A (zh) * 2018-06-29 2018-11-30 中国冶集团有限公司 梁底构造柱锚固钢筋预埋组装模块及施工方法
CN108867862B (zh) * 2018-08-14 2023-09-05 大连理工大学 后张无粘结预应力预制混凝土可恢复梁柱节点
CN109853739B (zh) * 2019-02-27 2020-06-23 青岛理工大学 装配式钢木组合节点
KR102134926B1 (ko) * 2019-07-04 2020-07-16 한국건설기술연구원 가새형 버팀구조와 수평긴장장치를 이용한 기초보강장치 및 이를 이용한 기초보강방법
CN110318342A (zh) * 2019-07-12 2019-10-11 上海城建市政工程(集团)有限公司 一种节段预制盖梁悬臂拼装施工装置
CN110616808B (zh) * 2019-09-04 2020-07-14 青岛理工大学 拼装楼板式钢木组合节点及其组装方法
CN110644619B (zh) * 2019-09-21 2020-10-09 青岛理工大学 装配式限位增强钢木磨砂套筒组合节点
CN110747994A (zh) * 2019-10-31 2020-02-04 福州大学 钢筋混凝土框架延性节点结构
JP6749673B1 (ja) * 2019-12-25 2020-09-02 黒沢建設株式会社 コンクリート製柱と鉄骨梁との接合構造
US11951652B2 (en) 2020-01-21 2024-04-09 Tindall Corporation Grout vacuum systems and methods
US20220010545A1 (en) * 2020-07-09 2022-01-13 Meadow Burke, Llc Reinforcement for a connector in a precast concrete panel
CN112459355A (zh) * 2020-12-08 2021-03-09 宝冶(郑州)建筑工程有限公司 一种用于控制梁底保护层厚度的垫块装置及其施工方法
CN112681514A (zh) * 2020-12-24 2021-04-20 上海宝冶集团有限公司 一种装配式节点套筒及其安装方法
CN113774781A (zh) * 2021-09-07 2021-12-10 湖南路桥建设集团有限责任公司 一种组合梁桥的剪力件接缝复合结构及其施工方法
CN114892886B (zh) * 2022-05-27 2023-09-29 上海上大建筑设计院有限公司 一种便于调节的钢筋混凝土梁
CN115162507A (zh) * 2022-07-09 2022-10-11 舜元建设(集团)有限公司 一种装配式框架梁柱连接节点及施工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154962B2 (ja) 2008-02-01 2013-02-27 株式会社竹中工務店 プレキャストコンクリート構造部材の接合構造、建物、及び建物の施工方法
JP5160907B2 (ja) 2008-01-08 2013-03-13 株式会社竹中工務店 プレキャストコンクリート柱梁部材の接合構造、建物、及び建物の施工方法
KR101260392B1 (ko) 2011-12-07 2013-05-07 (주)케이에이치하우징솔루션스 저모멘트존에서 연결되는 pc기둥 및 보유닛의 조립식 구조

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666326A (en) * 1982-09-11 1987-05-19 Metal Bond (Technology) Limited Reinforcing bar coupling system
JPH0819716B2 (ja) * 1990-05-21 1996-02-28 佐藤工業株式会社 プレキャスト鉄筋コンクリート柱梁の接合方法
GB2252142B (en) * 1990-12-12 1994-11-09 Kajima Corp Junction structure between a steel beam and a column
JPH06146478A (ja) * 1992-11-09 1994-05-27 Taisei Corp Rc造柱・梁パネルゾーンにおける梁筋の継手方法
US5675943A (en) * 1995-11-20 1997-10-14 Southworth; George L. Lateral load-resisting structure having self-righting feature
JPH1129979A (ja) * 1997-07-10 1999-02-02 Ohbayashi Corp 柱・梁接合部における梁主筋の定着構造
DE19947963A1 (de) * 1999-10-05 2001-05-17 Aloys Kerber Verbindungselement zur Kraftübertragung
US6345473B1 (en) * 2000-04-24 2002-02-12 Charles Pankow Builders, Ltd. Apparatus for use in the construction of precast, moment-resisting frame buildings
JP4866641B2 (ja) * 2006-03-30 2012-02-01 前田建設工業株式会社 プレキャスト柱の製造方法、プレキャスト柱の施工方法
ITGE20060108A1 (it) * 2006-11-15 2008-05-16 Giorgio Agostena Metodo per la prefabbricazione dell'armatura metallica di travi e colonne per strutture miste acciaio-calcestruzzo di lunghezzestandard con possibilita' di utilizzo su luci superiori alle travi stesse.
US20120085050A1 (en) * 2010-10-07 2012-04-12 Robert Greenwood Modular consumer assembled stamped metal post base that allows framing before concrete is poured
DE102015106296A1 (de) * 2015-04-23 2016-10-27 Schöck Bauteile GmbH Wärmedämmelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160907B2 (ja) 2008-01-08 2013-03-13 株式会社竹中工務店 プレキャストコンクリート柱梁部材の接合構造、建物、及び建物の施工方法
JP5154962B2 (ja) 2008-02-01 2013-02-27 株式会社竹中工務店 プレキャストコンクリート構造部材の接合構造、建物、及び建物の施工方法
KR101260392B1 (ko) 2011-12-07 2013-05-07 (주)케이에이치하우징솔루션스 저모멘트존에서 연결되는 pc기둥 및 보유닛의 조립식 구조

Also Published As

Publication number Publication date
PT2966232T (pt) 2017-05-03
EP2966232A1 (en) 2016-01-13
EP2966232B8 (en) 2017-08-02
ES2623461T3 (es) 2017-07-11
WO2016005632A3 (es) 2016-05-06
CL2016003362A1 (es) 2017-03-24
US20170175376A1 (en) 2017-06-22
US10378199B2 (en) 2019-08-13
MX2017000105A (es) 2017-04-27
EP2966232B1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2016005632A2 (es) Dispositivo de unión entre vigas y pilares prefabricados de hormigón armado con junta seca
WO2016005631A1 (es) Dispositivo de unión para pilares prefabricados de hormigón armado con junta seca
US4666344A (en) Truss systems and components thereof
WO2011015681A2 (es) Sistema de ejecución de vigas mixtas y forjados de edificaciones mediante perfiles plegados de acero y otro material unidos mediante conectores conformados en el perfil de acero
US9551163B2 (en) Modular systems for constructing liquid storage tanks
CN108729564A (zh) 装配式建筑体系
KR101982520B1 (ko) 내화피복구조를 갖는 강관 기둥
JP6719877B2 (ja) プレキャストコンクリート基礎、接合部材および接合構造
ES2847211T3 (es) Dispositivo de conexión para conectar piezas prefabricadas de paredes delgadas y piezas prefabricadas equipadas con ellas
US11718987B2 (en) Building element
JP4419087B2 (ja) 建築物の耐震補強構造
US3332195A (en) Pole frames
US8661764B2 (en) Method of forming multilayered netlock girder system
JP4040174B2 (ja) セグメント
JP3596280B2 (ja) 建物用構造体
CN208533696U (zh) 一种钢-混凝土组合板柱结构
JP6893789B2 (ja) 切梁火打接続構造および切梁火打接続ピース
WO2017072389A1 (es) Sistema constructivo
US3601939A (en) Means for connecting together relatively inclined reinforced concrete supporting members
KR101832291B1 (ko) 강성 향상을 위한 체결부재가 결합하는 철근콘크리트 강합형 파형강판 보강 구조물
JP4547431B2 (ja) コンクリート構造体
ES2555633A1 (es) Sistema constructivo
US1974427A (en) Wall
JP2019011675A (ja) 複合構造
KR102524252B1 (ko) 콘크리트 충전이 용이한 고강도 조립형 cft기둥 구조체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: NC2016/0005756

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000105

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15324370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735986

Country of ref document: EP

Kind code of ref document: A2