WO2016002806A1 - 磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置 - Google Patents

磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置 Download PDF

Info

Publication number
WO2016002806A1
WO2016002806A1 PCT/JP2015/068888 JP2015068888W WO2016002806A1 WO 2016002806 A1 WO2016002806 A1 WO 2016002806A1 JP 2015068888 W JP2015068888 W JP 2015068888W WO 2016002806 A1 WO2016002806 A1 WO 2016002806A1
Authority
WO
WIPO (PCT)
Prior art keywords
skyrmion
current
magnetic body
memory circuit
closed path
Prior art date
Application number
PCT/JP2015/068888
Other languages
English (en)
French (fr)
Inventor
直人 永長
航 小椎八重
惇一 岩崎
川崎 雅司
十倉 好紀
金子 良夫
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2016531404A priority Critical patent/JP6677944B2/ja
Priority to EP15815321.3A priority patent/EP3166138B1/en
Priority to KR1020177003129A priority patent/KR101947618B1/ko
Publication of WO2016002806A1 publication Critical patent/WO2016002806A1/ja
Priority to US15/391,860 priority patent/US9748000B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/085Generating magnetic fields therefor, e.g. uniform magnetic field for magnetic domain stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0858Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. "Hard Bubbles")
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0866Detecting magnetic domains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic element, a skillion memory, a skillion memory circuit, a skillion memory device, a solid electronic device equipped with a skillion memory device, a data recording device, a data processing device, and a communication device.
  • a magnetic element that uses the magnetic moment of a magnetic material as digital information is known.
  • Skyrmion memory using skyrmion which is a magnetic element, has a non-volatile memory element structure that does not require electric power when holding nanoscale information.
  • the magnetic element is expected to be applied as a large-capacity information storage medium due to advantages such as ultra-high density due to a nanoscale magnetic structure, and its importance is increasing as a memory device of an electronic device.
  • the magnetic shift register drives the magnetic domain domain wall, transfers the magnetic moment arrangement with current, and reads stored information (see Patent Document 1).
  • FIG. 36 is a schematic diagram showing the principle of magnetic domain domain wall drive by electric current.
  • a domain domain wall is a boundary between magnetic regions in which the directions of magnetic moments are opposite to each other.
  • the domain domain wall in the magnetic shift register 1 is indicated by a solid line.
  • the magnetic domain domain wall is driven by passing a current in the direction of the arrow through the magnetic shift register 1.
  • the movement of the domain domain wall changes the magnetism due to the direction of the magnetic moment located above the magnetic sensor 2.
  • the magnetic change is detected by the magnetic sensor 2 to extract magnetic information.
  • Such a magnetic shift register 1 has the disadvantages that a large current is required to move the magnetic domain domain wall and the transfer speed of the magnetic domain domain wall is slow. Furthermore, in the case of nano-sized domains, a serious problem arises that spin reversal occurs due to thermal disturbance. LSI reliability assurance requires 10-year data retention.
  • Patent Document 2 a skirmion magnetic element using skirmions generated in a magnetic material as a memory unit.
  • the inventors have shown that skyrmions can be driven by current. Further, it was elucidated in detail that the motion of skyrmion can be driven by electric current, and the result was shown (see Non-Patent Document 2).
  • an arrangement in which the driving current and the skyrmion transfer direction are substantially parallel is defined as a vertical transfer arrangement.
  • a vertical transfer arrangement is applied as a memory
  • electrodes for applying a current are provided at both ends of a magnetic thin wire structure having skyrmions.
  • a sensor for detecting skillion is installed at a specific location of the magnetic thin wire. Therefore, it takes time to transfer the skyrmion to a specific part of the sensor. The same applies to the magnetic shift register proposed by the US IBM (see FIG. 36).
  • Non-patent Document 2 As a second problem to be solved, there is a problem that the skyrmion drive current density is large in the vertical transfer arrangement.
  • the transfer rate of skyrmion is 15 m / s in the vertical transfer arrangement, a large current density of 2 ⁇ 10 11 Am -2 is obtained (Non-patent Document 2).
  • the driving current density is large.
  • Patent Document 2 Japanese Patent Application Laid-Open Publication No. 2014-86470
  • Non-Patent Document 1 Naoto Naganaga, Yoshinori Tokura, “Topological properties and dynamics sciences”, Nature nature, UK, Nature Publishing Group, December 4, 2013, Vol. 8, p899-911.
  • Non-Patent Document 2 Iwasaki, J. et al. Mochizuki, M .; & Nagaosa, N .; Nat. Commun. 4, 1463 (2013)
  • Skyrmion has an extremely small magnetic structure with a diameter of 1 nm to 100 nm, and since the structure can be maintained for a long time, expectations for application to memory elements are increasing.
  • the first problem for using skyrmion as a memory element is to increase the transmission speed of skyrmion by orders of magnitude.
  • the second problem is to reduce the driving current density.
  • a thin film-like magnetic body capable of generating skyrmions
  • the magnetic body has a width W and a length L on the plane of the thin film, and both ends of the length L are connected. And providing a skirmion memory circuit having a closed path shape for circular transmission of skirmions.
  • the magnetic body may have an inner peripheral end that defines the inner periphery of the closed surface of the magnetic body and an outer peripheral end that defines the outer periphery.
  • the Skyrmion Memory Circuit has an inner peripheral electrode made of nonmagnetic metal connected to the inner peripheral end of the magnetic material and a nonmagnetic connection connected to the outer peripheral end of the magnetic material on a plane parallel to the extending direction of the magnetic material. And an outer peripheral electrode made of metal.
  • the skirmion memory circuit may be in a horizontal transfer arrangement in which the direction of the current flowing between the inner and outer peripheral electrodes is arranged substantially perpendicular to the direction in which the skirmions are transferred.
  • the skyrmion memory circuit may transfer one or a plurality of skyrmions in the magnetic body by applying a current between the inner peripheral electrode and the outer peripheral electrode.
  • the width W of the magnetic body is ⁇ , which is the skyrmion diameter. W> 0.5 ⁇ It may be.
  • the interval d between the plurality of skillions to be circulated is, when the diameter of the skillion is ⁇ , d ⁇ 0.5 ⁇ ⁇ It may be.
  • the interval between a plurality of skyrmions to be circulated is d and the diameter of the skyrmion is ⁇ , d ⁇ 2 ⁇ ⁇
  • the plurality of skyrmions perform circular transfer while maintaining the interval d.
  • One or more current paths may be further provided on one surface of the magnetic body, and one or a plurality of skyrmions may be generated or erased by applying current to the current path, or the transfer speed of the skyrmions may be accelerated or decelerated. .
  • the first current path has a width W1 in the same direction as the width and length of the magnetic body, and a length L1 with respect to the skyrmion diameter ⁇ . 0.75 ⁇ ⁇ ⁇ W1> 0.2 ⁇ ⁇ and 0.5 ⁇ ⁇ ⁇ L1> 0.1 ⁇ ⁇
  • An end region in the range may be enclosed. Due to the magnetic field generated by flowing the current in the first direction through the first current path, the magnetic field Ha in the end region is 0.01J ⁇ Ha (Where J represents the magnitude of the magnetic exchange interaction of the magnetic material) In this case, skyrmions may be generated in the magnetic material.
  • the magnetic field Ha in the end region is generated by the magnetic field generated by passing the current in the second direction through the first current path. 0.024J ⁇ Ha> 0.01J When it becomes, you may erase the skyrmion of the magnetic material.
  • the second current path has a width W2 in the same direction as the width and length of the magnetic body, and a length L2 with respect to the skyrmion diameter ⁇ . 0.2 ⁇ ⁇ ⁇ W2 and L2 ⁇ ⁇ , An end region in the range may be enclosed.
  • the transfer speed of one or a plurality of skyrmions that orbitally transfer the magnetic material may be accelerated or decelerated by a magnetic field generated by passing a current through the second current path.
  • the magnetic material exhibits at least a skirmion crystal phase and a ferromagnetic phase in which skirmions are generated in accordance with an applied magnetic field.
  • the magnetic body may be any one of a chiral magnetic body, a dipole magnetic body, a frustrated magnetic body, or a laminated structure of a magnetic material and a nonmagnetic material.
  • the plurality of skyrmion memory circuits according to the first aspect, arranged in a two-dimensional plane, and a first selection line and a first selection for selecting the inner peripheral electrode of the magnetic material
  • a skyrmion memory device comprising a magnetic field generator for applying a magnetic field.
  • the writing line for generating a skillmion wired to one skillion memory circuit may be the same as the writing line of the skillion of the other skillion memory circuit.
  • the word line for detecting a skillmion wired to one skyrmion memory circuit may be the same as the wordline of the skyrmion of the other skyrmion memory circuit.
  • the skill mions in the plurality of skirmion memory circuits may be erased collectively by applying a predetermined current in the width direction of the magnetic body of the plurality of skirmion memory circuits.
  • the skyrmion memory device may have a multilayer stacked structure in which two or more layers are stacked.
  • a solid state electronic device equipped with a skyrmion memory device according to the second aspect and a skyrmion memory device in which a central processing unit is formed in the same chip.
  • FIG. 3 is a schematic diagram showing a configuration example of a skillmion memory device 100 in which a current is passed between an inner peripheral electrode and an outer peripheral electrode through a closed path-shaped magnetic body, and skirmion is circularly transferred substantially perpendicular to the current direction. It is a figure which shows the simulation result which shows the skyrmion memory circuit 30 which carries out circular transfer of the skyrmion in a horizontal transfer arrangement
  • FIG. 1 shows the magnetic phase diagram of the chiral magnetic body used for the magnetic body of closed path shape.
  • FIG. It is a figure which shows the simulation result at the time 1850 / J of the skillion exercise
  • FIG. 6550 / J of the skillion exercise movement which carries out the round transfer of the skillion memory circuit 30.
  • the drive current is a diagram showing a current application condition for flowing all the skyrmions 40 that are circularly transferred in a substantially vertical direction. It is a figure which shows the simulation result which showed a mode that the two skill mions currently circularly transferred are deleted. It is a figure which shows the simulation result which showed a mode that the skyrmion currently carrying out circulation transfer accelerated / decelerated. It is a figure which shows the example of a shape of the 1st electric current path 16-1.
  • FIG. 1 is a schematic diagram showing a skyrmion memory device 100 having a plurality of skyrmion memory circuits 30.
  • FIG. 1 is a schematic diagram showing a skyrmion memory device having a zigzag chain-shaped skyrmion memory circuit 30.
  • FIG. 1 is a schematic diagram showing a coiled skyrmion memory circuit 30.
  • FIG. 2 shows a cross-sectional structure of a skyrmion memory device 110.
  • FIG. 1 Another example of the cross-sectional structure of the skyrmion memory device 110 is shown.
  • a skyrmion memory device 110 in which n layers of skyrmion memory circuits 30 are stacked is shown.
  • a skyrmion memory device 110 having a plurality of magnetic field generators 20 is shown.
  • a cross-sectional view of a skyrmion memory device 110 in which the skyrmion memory device 100 is mounted on the upper layer of the CMOS-FET 90 is shown.
  • 2 is a diagram illustrating an example of a memory circuit 120 using a skyrmion memory device 110.
  • FIG. It is a schematic diagram which shows the structural example of the solid electronic device 200 with a skyrmion memory device.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a data recording device 300.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a data processing device 400.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a communication device 500.
  • FIG. It is a schematic diagram which shows the principle of the magnetic domain drive by an electric current.
  • a magnetic material that can form skyrmions is a chiral magnetic material.
  • a chiral magnetic body is a magnetic body with a magnetic ordered phase in which the magnetic moment arrangement when no external magnetic field is applied rotates on a spiral with respect to the direction of travel of the magnetic moment. By applying an external magnetic field, the chiral magnetic material becomes a ferromagnetic phase through the crystal phase in which skyrmions are arranged in a lattice.
  • FIG. 1 is a schematic diagram showing an example of a skyrmion 40 that is a nanoscale magnetic structure formed in a part of a closed path-shaped magnetic body 10.
  • the closed path shape magnetic body 10 has a thin film shape.
  • the closed path shape magnetic body 10 has a width W and a length L on the thin film plane, and has a closed path shape in which both ends of the length L are connected.
  • a part of the closed path shape is shown. Both ends of the closed path shape magnetic body 10 shown in FIG.
  • the length L is a length that goes through the center of the width W and goes around the closed path once.
  • the width W of the closed path-shaped magnetic body 10 is set so that the diameter of the skyrmion 40 is ⁇ . W> 0.5 ⁇ It is preferable that If the width W is smaller than this, the skyrmion 40 cannot exist in the closed path shape magnetic body 10.
  • each arrow indicates the direction of the magnetic moment in the skillion 40.
  • the x axis and the y axis are axes orthogonal to each other, and the z axis is an axis orthogonal to the xy plane.
  • the closed path shape magnetic body 10 has a plane parallel to the xy plane.
  • the skyrmion 40 has a magnetic moment whose direction changes in a spiral shape according to the position of the closed path-shaped magnetic body 10 on the plane.
  • the direction of the magnetic field applied to the closed path shape magnetic body 10 is the plus z direction.
  • a magnetic field having a predetermined strength is uniformly applied to the entire closed path-shaped magnetic body 10.
  • the magnetic moment on the outermost periphery of the skillion 40 of this example is directed in the plus z direction.
  • the magnetic moment is arranged so as to rotate in a spiral shape from the outermost circumference to the inside. Further, the direction of the magnetic moment gradually changes from the plus z direction to the minus z direction with the spiral rotation.
  • the direction of the magnetic moment is continuously twisted between the center and the outermost periphery. That is, the skyrmion 40 is a nanoscale magnetic structure having a spiral structure of magnetic moment.
  • each magnetic moment constituting the skyrmion is a magnetic moment in the same direction in the thickness direction of the closed path-shaped magnetic body 10. That is, the magnetic moment structure of skyrmion consists of magnetic moments in the same direction from the front surface to the back surface in the depth direction (z direction) of the thin film structure. That is, the skyrmion 40 has a cylindrical shape having the same height as the thickness of the closed path-shaped magnetic body 10.
  • the skyrmion 40 which is a nanoscale magnetic structure having a spiral structure, is characterized by the number of skyrmions.
  • the number of skyrmions is expressed by the following [Equation 1] and [Equation 2].
  • the polar angle ⁇ (r) between the magnetic moment and the z-axis is a continuous function of the distance r from the center of the skyrmion 40.
  • the polar angle ⁇ (r) changes from ⁇ to zero or from zero to ⁇ when r is changed from 0 to ⁇ .
  • n (r) is the magnetic moment of skyrmion at position r.
  • m is a voltility
  • is a helicity.
  • the skyrmion 40 transfers on the closed path shape magnetic body 10.
  • the transfer direction is a direction perpendicular to the direction of electron flow. For example, when the electron flow flows from the x-axis positive side to the negative side, the skyrmion 40 transfers from the y-axis negative side to the positive side.
  • FIG. 2 is a schematic diagram showing skyrmions 40 having different helicities ⁇ .
  • FIG. 2E shows how to coordinate the magnetic moment n (right-handed system). Since a right-handed, to the plane parallel to the n x axis and n y axis, n z axis takes from the rear of the sheet to the front direction. 2A to 2E, the shading indicates the direction of the magnetic moment.
  • Magnetic moments indicated by shading on the circumference in FIG. 2 (E) has the direction of the n x -n y plane.
  • the magnetic moment shown by the thinnest shading (white) at the center of the circle in FIG. 2E has a direction from the back of the paper to the front.
  • the angle with respect to the nz axis of the magnetic moment shown by the shading of each position between the circumference and the center is taken from ⁇ to zero according to the distance from the center.
  • the direction of each magnetic moment in FIGS. 2A to 2D is indicated by the same shading in FIG. 2A to 2D
  • the magnetic moment indicated by the darkest shade (black) has a direction from the front of the paper to the back of the paper.
  • Each arrow in FIG. 2 (A) to FIG. 2 (D) indicates a magnetic moment at a predetermined distance from the center of the magnetic structure.
  • the magnetic structure shown in FIGS. 2A to 2D can be defined as skyrmion 40.
  • the four magnetic structures shown in FIGS. 2A to 2D seem to be different, but are topologically identical.
  • the skyrmions having the structures shown in FIGS. 2A to 2D exist stably once generated, and function as carriers that transmit information in the closed path-shaped magnetic body 10 to which an external magnetic field is applied.
  • FIG. 3 is a diagram illustrating a configuration example of the skyrmion memory device 100.
  • the skyrmion memory device 100 stores information using the skyrmion 40. For example, the presence or absence of the skillmion 40 at a predetermined position of the closed path shape magnetic body 10 corresponds to 1-bit information.
  • the skyrmion memory device 100 of this example includes a skyrmion memory circuit 30, a magnetic field generation unit 20, a current path power supply 50 for one or more current paths, and a measurement unit 70.
  • the current path power supply 50 may not be mounted on the skyrmion memory device 100 but may be disposed outside the skyrmion memory device 100.
  • the skyrmion memory device 100 also receives drive power from the power supply 52.
  • the power source 52 may be provided outside the skyrmion memory device 100.
  • Skillmion memory circuit 30 is capable of generating, erasing, looping transfer, and accelerating / decelerating the transfer speed of skillmion 40.
  • the skyrmion memory circuit 30 includes a closed path shape magnetic body 10, an outer peripheral electrode 12, an inner peripheral electrode 14, one or more current paths 16, and a sensor 72.
  • the closed path shape magnetic body 10 develops at least a skyrmion crystal phase and a ferromagnetic phase according to the applied magnetic field.
  • a magnetic body having a skyrmion crystal phase and a ferromagnetic phase is a necessary condition that the skyrmion 40 is a magnetic body that can be generated in the closed-path shape magnetic body 10.
  • the closed path shape magnetic body 10 is a chiral magnetic body.
  • the closed path shape magnetic body 10 has a thin layer shape.
  • the diameter of the skillion 40 refers to the outermost diameter of the skillion. In this example, the outermost periphery refers to the circumference of a magnetic moment that faces the same direction as the external magnetic field shown in FIG.
  • the closed path shape magnetic body 10 has a closed path shape as described above.
  • the closed path-shaped magnetic body 10 has an inner peripheral side end that defines an inner periphery in a closed path-shaped surface and an outer peripheral side end that defines an outer periphery.
  • the inner peripheral electrode 14 and the outer peripheral electrode 12 are connected to the closed path shape magnetic body 10 on a plane parallel to the extending direction of the closed path shape magnetic body 10.
  • the inner peripheral electrode 14 is connected along the inner peripheral side end of the closed path-shaped magnetic body 10, and the outer peripheral electrode 12 is connected along the outer peripheral side end of the closed path-shaped magnetic body 10.
  • the magnetic field generator 20 applies a first magnetic field to the closed path shape magnetic body 10.
  • the magnetic field generator 20 of this example generates a first magnetic field that makes the closed-path shape magnetic body 10 a ferromagnetic phase.
  • the magnetic field generator 20 applies a first magnetic field substantially perpendicular to the surface of the thin-film closed path shape magnetic body 10 to the closed path shape magnetic body 10.
  • the closed path-shaped magnetic body 10 has a surface (one surface) parallel to the xy plane, and the magnetic field generator 20 includes the first z-direction first z-direction as indicated by an arrow in the magnetic field generator 20.
  • the magnetic field generation unit 20 may be provided to face the back surface of the closed path shape magnetic body 10.
  • the magnetic field generation unit 20 may be separated from or in contact with the closed path shape magnetic body 10. When the magnetic field generation unit 20 is a metal, the magnetic field generation unit 20 is preferably separated from the closed path shape magnetic body 10.
  • a current is passed through the closed-path shape magnetic body 10 in the direction from the outer peripheral electrode 12 toward the inner peripheral electrode 14.
  • the electron flow in the direction opposite to the current is better to consider the electron flow in the direction opposite to the current as the driving force. That is, an electron flow is caused to flow from the inner peripheral electrode 14 to the outer peripheral electrode 12.
  • Skillion 40 receives two forces from the electron flow. One is a force in the same direction as the electron flow. The other is the power created by the balance between confinement and Magnus forces.
  • the first force due to the electron flow presses the skyrmion 40 against the outer peripheral side end of the closed path-shaped magnetic body 10, and the second force transfers the skyrmion 40 in the direction of the arrow that is substantially perpendicular to the electron flow. .
  • An arrangement in which the direction of the drive current of the skyrmion 40 and the transfer direction of the skyrmion 40 are substantially vertical is defined as a horizontal transfer arrangement. This is different from the vertical transfer arrangement defined above. Details of the motion of the skillion in this horizontal transfer arrangement will be described later. In the case of the horizontal transfer arrangement, it is possible to perform transfer at a high speed 10 to 100 times the transfer speed of the skyrmion of the vertical transfer arrangement when the drive current and the direction of the skyrmion are substantially parallel.
  • the electrode arrangement for current taking this horizontal transfer arrangement may be provided along the length direction of the thin line. This determines an electrode arrangement which is important in using a memory having a horizontal transfer arrangement. Further, as shown in FIG. 3, the horizontal transfer arrangement makes it possible to circularly transfer skirmions by forming a magnetic material having skirmions in a closed path shape in which both ends of a thin wire structure are connected.
  • the transfer direction can be uniquely determined by the direction of current flow.
  • the skyrmion in the electron flow direction from the inner peripheral electrode 14 to the outer peripheral electrode 12, the skyrmion always transfers clockwise as viewed from above in the z direction.
  • the order of writing and reading can be determined, and the address of information at the time of writing and reading can be uniquely determined.
  • a plurality of skyrmions that are circularly transferred into the closed path-shaped magnetic body 10 by applying a current having a predetermined current density higher than the current density required for the transfer of the skyrmions to the closed-path shaped magnetic body 10. Can be erased. That is, it can have the same performance as the flash memory of the electronic device. This is also a very big feature in practical use.
  • the current to be applied to the skyrmion memory circuit is required only when the skyrmion is generated (WRITE), erased (ERASE), or read (WORD). During standby, there is no need to transfer skyrmions and power consumption is zero.
  • the current path 16 is provided on the surface of the closed path-shaped magnetic body 10 so as to surround an end region including the end of the closed path-shaped magnetic body 10.
  • the current path power supply 50 applies a second magnetic field to the end region by passing a current through the current path 16.
  • the current path power supply 50 causes a current to flow through the current path 16 so as to generate a second magnetic field opposite to the first magnetic field generated by the magnetic field generator 20.
  • one skyrmion 40 is generated in the ferromagnetic phase in the end region.
  • one end region may be formed in the skirmion memory circuit 30.
  • the number of write lines for writing data to the skyrmion memory circuit 30 can be remarkably reduced. Since the skillmion 40 is transferred in a circular manner, the next skillmion 40 is generated at the timing when the generated skillmion 40 is transferred a predetermined distance. As a result, many skyrmion rows can be formed in the skyrmion memory circuit.
  • a single memory When used in an actual device, a single memory carries several kilobits to several megabits of information. Therefore, thousands of millions of skillmions are transferred to one skillmion memory circuit. It will be. Further, a large-scale nonvolatile memory can be realized by arranging thousands of skyrmion memory circuits in a plane and storing information of several hundred M bits to several G bits.
  • the sensor 72 is provided to face the surface of the closed path shape magnetic body 10.
  • the magnetic sensor includes various sensors such as a TMR element and a magnetoresistive element.
  • the sensor 72 detects skyrmions in the region of the opposed closed path shape magnetic body 10. For example, the resistance value of the sensor 72 changes depending on the presence or absence of skyrmions. The change in the resistance value of the magnetic sensor changes the amount of current flowing through the magnetic sensor.
  • the measurement unit 70 measures the current amount of the sensor 72. Thereby, the sensor 72 and the measurement unit 70 can detect whether or not the skyrmion 40 has passed through the region facing the sensor 72. At least one magnetic sensor for detecting skyrmions on a magnetic material having a closed path shape is sufficient. As a result, the number of read signal lines can be significantly reduced.
  • FIG. 4 shows a skyrmion memory circuit 30 using the closed path shape magnetic body 10.
  • FIG. 4 is a simulation result showing the motion of the skillion 40 in the horizontal transfer arrangement.
  • the closed path shape magnetic body 10 the outer peripheral electrode 12, the inner peripheral electrode 14, and the skirmion 40 are illustrated.
  • the electron current, the sensor 72, the second current path 16-2, and the like are shown in addition to the simulation results for easy understanding.
  • An insulator 161 is disposed outside the outer peripheral electrode 12.
  • the skyrmion 40 transfers the electron flow in a substantially vertical direction (large arrow) by the Magnus force of the electron flow flowing from the inner peripheral electrode 14 to the outer peripheral electrode 12. Since the closed path shape magnetic body 10 has a closed path shape, the skyrmion 40 transfers the closed path shape magnetic body 10 in a circular manner. Further, the current density of the electron current for transferring the skyrmion 40 may be small, and there is no lower limit value.
  • the horizontal transfer rate of skyrmion 40 can be high-speed transfer that is about 100 to 1000 times faster than the vertical transfer rate of skyrmion. On the other hand, a large current density is required for the transfer of the above-described skyrmion.
  • the first magnetic field generated from the magnetic field generator 20 shown in FIG. 3 (the direction from the back side to the front side of the paper) makes the closed path-shaped magnetic body 10 a ferromagnetic phase. Once generated, the skyrmions 40 exist stably in the ferromagnetic phase, so that the skyrmions 40 can be used as information storage media.
  • the skyrmion 40 circulates clockwise (clockwise) at a high speed in a direction substantially perpendicular to the direction of the current.
  • the magnetic moment of the skyrmion 40 has a vortex structure as shown in FIG. 1 from the front surface to the back surface of the closed path-shaped magnetic body 10, and exists stably. It moves stably while maintaining its shape against the irregularities at the end of the magnetic body and the magnetic impurities in the magnetic body.
  • a coil (first current path 16-1) that generates a local magnetic field is installed on the surface of the closed path-shaped magnetic body 10, and a plurality of skyrmions 40 are generated or erased by controlling the strength of the magnetic field formed in the coil. Is possible.
  • the current between the outer peripheral electrode 12 and the inner peripheral electrode 14 is increased as compared with the rotation of the skirmion 40, a plurality of the skirmions 40 on the skirmion memory circuit 30 of the closed path-shaped magnetic body 10 are collectively collected.
  • the memory information can be erased and the memory information can be erased at once, and the erasing time can be shortened.
  • second current path 16-2 a coil that can accelerate and decelerate the skyrmion 40.
  • the position of the circulating skyrmion 40 is read by the sensor 72, and if necessary, the position can be corrected by flowing a current through the second current path 16-2.
  • the closed path shape magnetic body 10 is used for the skyrmion memory circuit 30 that can generate the skyrmion 40.
  • the closed path shape magnetic body 10 is, for example, a chiral magnetic body and is made of FeGe, MnSi, or the like.
  • the closed path-shaped magnetic body 10 can be formed on a magnetic thin film formed using MBE (Molecular Beam Epitaxy), sputtering, or the like using an exposure apparatus, an etching apparatus, or a CMP (Chemical Mechanical Planarization) method.
  • the outer peripheral electrode 12 and the inner peripheral electrode 14 are made of a conductive nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • R (X, Y) indicates the center position of the magnetic structure (skillumion 40 in this example).
  • Vd is the time derivative of R and indicates the velocity of the magnetic structure.
  • the behavior of this magnetic structure follows the equation of motion shown in [Equation 3] below.
  • x indicates an outer product.
  • Vs ⁇ j, indicating the velocity of conduction electrons.
  • 2eM / (pa 3 ), a is the lattice constant, M is the magnitude of the magnetic moment, and p is the spin polarization of the conduction electrons.
  • the third term F is a force acting on the magnetic structure from the boundary between the electrodes (in this example, the outer peripheral electrode 12 and the inner peripheral electrode 14) and the magnetic material, impurities, magnetic field, and the like.
  • G ge z.
  • g 4 ⁇ Nsk using the number of skyrmions. Nsk is the number of skyrmions.
  • the magnetic structure is a domain domain wall disclosed in, for example, Patent Document 1
  • the movement speed of the skyrmion 40 can be made larger than the vertical transfer arrangement and the domain wall speed.
  • Vd horizontal transfer arrangement
  • Vs (0, Vs y , 0)
  • F (0, F y , 0)
  • G (0, 0, g)
  • Vd x is the velocity of the skyrmion in the x direction
  • Vs y is the velocity of the electron flow in the y direction.
  • the speed Vd x of skyrmion in the horizontal transfer arrangement is Vs y / ⁇ .
  • the transfer speed of skyrmion in the vertical transfer arrangement is Vs y . Since ⁇ is about 0.01 to 0.001, it is Vd x to 10 2 Vs y .
  • the skillmion transfer rate Vd x in the x direction is 10 2 to 10 3 times the skillmion transfer rate Vs y in the vertical transfer configuration. This indicates that in the case of the horizontal current arrangement, the speed of the skyrmion 40 can be 100 to 1000 times the speed of the skyrmion of the vertical current arrangement.
  • the current density of the horizontal transfer arrangement can be reduced to 10 ⁇ 2 to 10 ⁇ 3 of the current density of the vertical transfer arrangement when the required skyrmion transfer speed is fixed.
  • the current density is 2 ⁇ 10 11 Am ⁇ 2 (Non-patent Document 2).
  • the skyrmion transfer speed is the same in the horizontal transfer arrangement, it becomes approximately 2 ⁇ 10 8 to 2 ⁇ 10 9 Am ⁇ 2 .
  • the moving speed of the skyrmion 40 is 100 to 1000 times the moving speed of the skyrmion in the vertical current arrangement in the case of the horizontal current arrangement. Since the moving speed of the magnetic domain is approximately the same as the transfer speed of the longitudinal current arrangement, the skillmion moving speed in the transverse current arrangement is similarly 100 to 1000 times the moving speed of the magnetic domain wall. As a result, it is possible to increase the skillmion transfer speed and reduce the current density required for the transfer, which are problems to be solved in applying the skyrmion 40 to the memory element.
  • the above-mentioned conclusion can be applied even if the magnetic body is not a chiral magnetic body exhibiting helical magnetism but a dipole magnetic body, a frustrated magnetic body, or a structure in which a magnetic body and a nonmagnetic body are laminated.
  • a dipole magnetic body is a magnetic body in which magnetic dipole interaction is important.
  • the frustrated magnetic material is a magnetic material including a spatial structure of magnetic interaction that prefers a magnetic incommensurate state.
  • a magnetic body having a laminated structure of a magnetic material and a nonmagnetic material is a magnetic body in which the magnetic moment of the magnetic material in contact with the nonmagnetic material is modulated by the spin-orbit interaction of the nonmagnetic material.
  • the present invention configured as described above is also embodied as a magnetic element capable of erasing one or a plurality of skyrmions generated and transferred in a magnetic material.
  • the current flowing in the closed path-shaped magnetic body 10 in the direction from the outer peripheral electrode 12 to the inner peripheral electrode 14 is made larger than that during the transfer of the skyrmion 40, so that 1 or It is also possible to delete all the plurality of skillions 40.
  • the skyrmion 40 receives a force of a magnitude corresponding to the current in the direction opposite to the current flowing in the closed path shape magnetic body 10 (in the direction of electron flow). For this reason, when the current is sufficiently increased, all transferred skyrmions 40 disappear beyond the potential barrier at the boundary between the outer peripheral electrode 12 and the closed path shape magnetic body 10.
  • the power source 52 causes the current that does not exceed the potential barrier to flow through the closed path-shaped magnetic body 10 during the transfer of the skillion 40, and the skillion 40 during the batch erasing of the skillion 40.
  • An electric current of about 40 exceeding the potential barrier is passed through the closed-path magnetic body 10.
  • the skyrmion memory circuit 30 shown in FIG. 4 is provided with a first current path 16-1 and a second current path 16-2.
  • the first current path 16-1 is used to generate and erase the skyrmion 40.
  • the second current path 16-2 is used for acceleration / deceleration of the circulating skyrmion 40.
  • the first current path 16-1 is provided so as to surround the end of the closed path shape magnetic body 10 on the outer peripheral electrode 12 side.
  • the magnetic field generator 20 makes the closed-path magnetic body 10 a ferromagnetic phase.
  • the magnetic moment in the closed path-shaped magnetic body 10 faces the same direction as the first magnetic field.
  • the magnetic moment at the end of the closed path-shaped magnetic body 10 does not point in the same direction as the first magnetic field, but has an inclination with respect to the first magnetic field.
  • the skyrmion 40 is more likely to occur at the end of the closed path-shaped magnetic body 10 than in other regions.
  • the current path 16 of the present example crosses the end of the closed path-shaped magnetic body 10 at least once from the outer peripheral electrode 12 side to the closed path-shaped magnetic body 10 side in the xy plane, and the closed path-shaped magnetic body It has a continuous conductive path crossing at least once from the 10 side to the outer peripheral electrode 12 side.
  • the current path 16 surrounds a region including the end of the closed path-shaped magnetic body 10.
  • the current path 16 need not form a closed region in the xy plane.
  • the combination of the current path 16 and the end may form a closed region on the surface of the closed path-shaped magnetic body 10.
  • a current is applied to the first current path 16-1 thus formed in the direction of the arrow shown in FIG.
  • a magnetic field opposite to the first magnetic field direction is generated in the current path, and the magnetic field strength in the z direction in the current path is weakened.
  • skyrmions can be generated in the current path.
  • the skyrmions 40 can be used as information storage media.
  • the generated skyrmion 40 circulates and transfers the skyrmion memory circuit 30 of the closed path-shaped magnetic body 10 by a current flowing between the outer peripheral electrode 12 and the inner peripheral electrode 14. Further, when the skyrmion 40 that has been circularly transferred reaches the first current path 16-1, the current skyrmion 40 can be erased by causing a current to flow through the first current path 16-1.
  • This erasing method is different from a method of collectively erasing a plurality of skillmions on the skillmion memory circuit 30 by a current flowing between the outer peripheral electrode 12 and the inner peripheral electrode 14 of the skirmion memory circuit 30.
  • the erasing method provides a bit-wise erasing method.
  • the skyrmion 40 moves in the direction toward the outer peripheral electrode 12. If the Magnus force is sufficiently large, the skyrmion 40 overcomes the potential barrier at the boundary between the closed path shape magnetic body 10 and the outer peripheral electrode 12 and disappears.
  • a method for generating, transferring, and erasing the skillion 40 will be described through examples.
  • Example 1 The simulation experiment result of generation and transfer of skyrmions in Example 1 is shown.
  • the motion of Skyrmion's magnetic moment can be described by the equation of motion of [Equation 8].
  • the following equations with adiabatic and non-adiabatic spin transfer torque terms are solved numerically.
  • h is a Planck's constant.
  • a Mr M ⁇ n (r) , M r denotes a magnetic moment.
  • n (r) is a unit vector indicating the direction of the magnetic moment of the skyrmion 40 at the position r shown in [Equation 2].
  • X represents an outer product.
  • e x and e y are unit vectors in the x and y directions.
  • M r + ex and M r + ey indicate magnetic moments at positions different from M r by unit vectors in the x and y directions.
  • the Hamiltonian H shown in [Equation 9] is a case of a chiral magnetic material.
  • the expression of H may be replaced with a description of each magnetic body.
  • FIG. 5 is a phase diagram showing the magnetic field dependence of the chiral magnetic body magnetic phase used in the closed path-shaped magnetic body 10.
  • the chiral magnetic substance is a magnetic substance that changes from a helical magnetic phase to a skyrmion crystal phase (SkX) with a magnetic field strength Hsk, and from a skyrmion crystal phase (SkX) to a ferromagnetic phase with a higher magnetic field strength Hf.
  • SkX skyrmion crystal phase
  • a plurality of skyrmions 40 are arranged in the close-packed structure and are generated in the xy plane.
  • a is the lattice constant of the closed-path shape magnetic body 10
  • Dm is the physical constant inherent to the substance, which is the magnitude of the Jaroshinsky-Moriya interaction. Therefore, the skyrmion diameter ⁇ is a substance specific constant.
  • the skyrmion diameter ⁇ is, for example, 70 nm for FeGe and 18 nm for MnSi as shown in Prior Art Document 1.
  • the closed-path shape magnetic body 10 used in this example is a chiral magnetic body, and J is 1 meV in magnitude of the magnetic exchange interaction.
  • Dm 0.18J
  • 50a.
  • the orientation relationship between the direction of movement of the skyrmion 40 and the direction of the current flowing from the outer peripheral electrode 12 and the inner peripheral electrode 14 is important.
  • the direction of the transmission of the skyrmion 40 and the direction of the current are horizontal transfer arrangements arranged in a substantially vertical direction.
  • the electron flow flows from the inner peripheral electrode 14 to the outer peripheral electrode 12 as shown in FIG.
  • the current density is 0.001 ⁇ j.
  • is a constant for making the current density dimensionless
  • j is the current density made dimensionless.
  • the skyrmion 40 does not exist on the skyrmion memory circuit.
  • a first magnetic field H from a magnetic field generator 20 (for example, a ferromagnetic thin film) placed on the back surface is applied to the closed path shape magnetic body 10 from the back surface to the front surface (plus z direction).
  • the current path 16 is provided on the closed path shape magnetic body 10.
  • the shape of the current path 16 may be a coil shape wound in multiple layers like a coil.
  • the first current path 16-1 is disposed so as to include the outer peripheral side end of the closed path-shaped magnetic body 10.
  • a region surrounded by the first current path 16-1 is defined as an end region A.
  • the magnetic field strength in the end region A is Ha.
  • the first current path 16-1 may be electrically insulated from the closed path shape magnetic body 10.
  • a coil current is passed through the first current path 16-1 in the direction shown in FIG. This coil current generates a second magnetic field in the minus z direction in the end region.
  • the magnetic field Ha in the plus z direction in the end region is weakened. As a result, it is possible to generate the skyrmion 40 in the end region A.
  • the current path 16-1 does not include the end region A, a skyrmion cannot be generated.
  • Fig. 6 shows the time variation of the magnetic field strength in the edge region in the simulation experiment.
  • the first magnetic field H applied to the closed path shape magnetic body 10 is larger than Hf, and the closed path shape magnetic body 10 starts from a state of being in a ferromagnetic phase.
  • the magnetic field in the end region is 0.03J.
  • a current starts to flow through the first current path 16-1.
  • the magnetic field Ha in the end region is reduced by the second magnetic field generated by the coil current.
  • hold up to t 10000 (1 / J).
  • the following n x which cross each other in view of, shades expressed in the axis of the n y indicates the n x, the direction of the magnetic moment that is represented on the axis of the n y. 7 to 12, the size of the end region surrounded by the first current path 16-1 is the width W1 in the same direction as the width direction and the length direction of the closed path-shaped magnetic body 10.
  • the length of the end region is a length parallel to the end of the closed path magnetic body 10.
  • FIG. 7 is a diagram showing a simulation result at a time 1300 / J of a skillmion exercise in which the skillmion memory circuit 30 is circulated and transferred.
  • a skyrmion 40 is being generated on the skyrmion memory circuit comprising the closed-path-shaped magnetic body 10 of the ferromagnetic phase.
  • the closed-path-shaped magnetic body 10 is entirely a ferromagnetic phase, light and shade are displayed in white.
  • the end portion of the closed path-shaped magnetic body 10 is shaded because the direction of the magnetic moment is inclined even in the ferromagnetic phase.
  • the skyrmion 40 is almost completely formed in the closed path-shaped magnetic body 10. That is, it can be seen that it takes about 1000 (1 / J) to generate the skyrmion 40. In this example, 1000 (1 / J) is about 0.3 nanoseconds, indicating that the generation of skyrmion 40 can be realized with an ultrashort pulse.
  • the skyrmion 40 is transferred in a clockwise direction substantially perpendicular to the electron current by the electron current having a steady current density of 0.001 ⁇ j between the outer peripheral electrode 12 and the inner peripheral electrode 14.
  • the fourth current pulse is applied and the formation of the fourth skyrmion 40 is completed.
  • the direction of the electron flow is also substantially perpendicular to the outer peripheral edge tangent along the curve. Since the transfer direction of the Lumion 40 always proceeds in a direction substantially perpendicular to the electron flow, the Skyrmion 40 curves. As a result, the skyrmion 40 is circulated and transferred without jumping out from the outer peripheral end of the closed path shape magnetic body 10.
  • the skyrmion 40 can be formed by applying a current pulse to the first current circuit 16-1 surrounding the end region and reducing the magnetic field strength of the end region A.
  • the conditions for generating the skyrmion 40 under these conditions are as follows.
  • (Condition 1) As a condition for generating skirmions, the size of the end region A is optimal in the following range with respect to the width ⁇ of the width W1. 0.75 ⁇ ⁇ W1> 0.2 ⁇
  • the size of the end region A is such that L1, which is a length parallel to the end of the closed-path-shaped magnetic body, ends with respect to the diameter ⁇ of the skirmions.
  • the following range is optimal for the height L1 of the partial region. 0.5 ⁇ ⁇ L1> 0.1 ⁇ (Condition 3)
  • the conditions for generating skyrmions are optimal in the following range for the magnetic field intensity Ha of the end region A. Ha ⁇ 0.01J Note that when Ha> 0.01J, the skillion 40 is not generated.
  • the skyrmion 40 can be formed at a desired time.
  • the direction in which the current pulse flows through the first current path 16-1 (first direction) is a direction in which the direction of the magnetic field generated by the current is opposite to the magnetic field generated by the magnetic field generation unit 20.
  • first direction is a direction in which the direction of the magnetic field generated by the current is opposite to the magnetic field generated by the magnetic field generation unit 20.
  • FIGS. 7 to 14 an example is shown in which four skyrmions are generated. The movement of the generated skyrmion reaches the steady speed sufficiently quickly. Since the density of the electron current of the closed path-shaped magnetic body 10 is substantially constant, the skyrmion 40 moves at a constant speed, and the distance between the skyrmions 40 can be kept constant. This transfer rate is determined by the current density between the electrodes.
  • Information “1” and “0” stored in the skyrmion memory device 100 may correspond to the presence or absence of the skyrmion 40. Even when there is no skyrmion 40 at a predetermined interval in the closed path shape magnetic body 10, the interval is maintained.
  • the interval d between the plurality of skillons 40 to be circulated is ⁇ when the diameter of the skillion is ⁇ . d ⁇ 0.5 ⁇ ⁇ It may be. If the distance d is smaller than this, it is difficult to separate and detect the skillion 40, and the skillion 40 may move due to the repulsive force between the skillion 40. Note that the interval between the skillons 40 indicates the shortest distance between the ends of the skillions 40.
  • the interval d of the skill-million 40 to be transferred around the circle is d ⁇ 2 ⁇ ⁇ It is preferable that By arranging the skyrmions 40 at such intervals d, a plurality of skyrmions 40 can be transferred in a circular manner while maintaining the intervals d.
  • the four skyrmions generated in FIG. 12 circulate stably.
  • One skyrmion 40 reaches the first current path 16-1.
  • the direction of the coil current for erasing is the same as the direction of the coil current for generating the skyrmion 40.
  • the peak value of the erasing coil current is smaller than the peak value of the generating coil current.
  • the peak value of the erasing coil current is so large that no new skyrmion 40 is generated by the current.
  • the peak value of the erasing coil current is about half of the peak value of the generating coil current.
  • the magnetic field Ha in the end region is reduced by the second magnetic field generated by the coil current. At this time, the magnetic field Ha in the end region varies from 0.03 J to 0.02 J.
  • the skyrmion 40 moves in the direction of the outer peripheral electrode 12 and is erased by the magnetic field.
  • the current that flows through the first current path 16-1 at the time of erasing has such a magnitude that the skyrmion 40 that makes circular transfer can overcome the potential barrier at the boundary of the closed path-shaped magnetic body 10.
  • This erasing method can be understood from [Equation 3] as follows.
  • the skyrmion 40 that makes round transfer is close to the end region.
  • One skyrmion 40 that has circulated reaches the coil, but does not apply a coil current pulse to the first current path 16-1, and therefore passes without being erased. After that, the laps of the remaining two skillions 40 continue as they are.
  • the simulation result shows that the transmitted skyrmion 40 can be erased when it reaches the first current path 16-1.
  • the current pulse time for clearing skyrmions is 0.3 nanoseconds, the same as the generation time.
  • an appropriate range of the magnetic field Ha in the end region at the time of erasing is 0.024J ⁇ Ha> 0.01J.
  • Ha> 0.024J the skyrmion passes without being erased. When it becomes 0.01 J or less, a new skill mion 40 is generated.
  • the conditions for erasing the skillmion 40 transferred under these conditions are as follows.
  • the condition for erasing the skyrmion that is transferred around the circle is optimal in the following range for L1, which is a length parallel to the end of the closed path shape magnetic body 10 in the end region. 0.5 ⁇ ⁇ L1> 0.1 ⁇
  • the condition for erasing the skyrmion that is circularly transferred is optimal in the following range for the width W1 of the end region in the same direction as the width direction of the closed path shape magnetic body 10. 0.75 ⁇ ⁇ W1> 0.2 ⁇
  • the condition for erasing the skill-million transmitted in round is optimal for the magnetic field intensity Ha in the end region in the following range. 0.024J ⁇ Ha> 0.01J
  • the skyrmion 40 can be erased.
  • the direction in which the current pulse flows in the first current path 16-1 is a direction in which the direction of the magnetic field generated by the current is opposite to the magnetic field generated by the magnetic field generation unit 20. is there.
  • the direction in which the current pulse flows when generating the skyrmion 40 is the same as the direction in which the current pulse flows when erasing the skyrmion 40.
  • the first current path 16-1 If the coil current passed through is made larger than that in the second embodiment, the skyrmion 40 can be eliminated.
  • the width W1 that is the length of the end region in the same direction as the width direction of the closed path-shaped magnetic body 10 is larger than 0.75 ⁇ , the skyrmion 40 cannot be erased.
  • it can be erased by setting the magnetic field Ha to a value close to 0.01J. In the case of W1 0.2 ⁇ , the magnetic field Ha cannot be erased even if it is 0.01J.
  • FIG. 18 shows that a plurality of skillons 40 on the skillion memory circuit of the closed path shape magnetic body 10 can be collectively erased by a current between the outer peripheral electrode 12 and the inner peripheral electrode 14 in the lateral transfer arrangement. And it shows by the simulation result of FIG. FIG. 18 is a diagram illustrating an example of the current density of the current flowing through the closed path-shaped magnetic body 10 in the direction from the outer peripheral electrode 12 to the inner peripheral electrode 14.
  • the current density for the circular transfer in which the skyrmion 40 circulates the skyrmion memory circuit 30 of the closed path shape magnetic body 10 is set to 0.001 ⁇ j.
  • the current density of the current flowing through the closed path shape magnetic body 10 is further increased from 0.001 ⁇ j necessary for transfer in the horizontal transfer arrangement to 0.002 ⁇ j.
  • the time taken to increase the current density to 0.002 ⁇ j is 1000 (1 / J).
  • FIG. 19 shows a simulation result in which two skyrmions 40 are present in the closed path shape magnetic body 10.
  • a part of the skyrmion memory circuit 30 of the closed path shape magnetic body 10 is extracted.
  • the two skyrmions 40 are transferring the closed path shape magnetic body 10.
  • the current density of the current flowing through the closed path-shaped magnetic body 10 is increased.
  • the skillion 40 transferred in the horizontal transfer arrangement is subjected to a force in the direction of the outer peripheral electrode 12.
  • the skyrmion 40 moves with the steady current density.
  • the two skyrmions 40 are close to the outer peripheral electrode 12.
  • the two skyrmions 40 have already been sucked into the outer peripheral electrode 12 and deleted. It takes about 3 nanoseconds from the start of the increase of the current density to the completion of the erase of the skyrmion 40. All of the skyrmions on the closed path shape magnetic body 10 can be erased in a short time.
  • a current is passed from the outer peripheral electrode 12 to the inner peripheral electrode 14, and all the skirmions 40 on the skirmion memory circuit 30 can be erased collectively.
  • the conditions for erasing all the skirmions 40 on the skirmion memory circuit 30 under these conditions are as follows. (Condition 7)
  • the condition for erasing all the kill meons on the corresponding skirmion memory circuit 30 is that the current density Jc flowing from the outer peripheral electrode 12 to the inner peripheral electrode 14 forming the skirmion memory circuit 30 is the skirmion 40. If Jd is the current density for circular transfer of Jc, Jc is a current density that is at least twice that of Jd.
  • This batch erase method provides very important performance when the skyrmion memory device 100 is used. Only the function of selecting individual skillmions 40 and erasing the skillmions 40 increases the erasure time.
  • the batch erase method described above solves a long erase time all at once. A plurality of skill mions 40 of a specific skill mion memory circuit 30 can be erased collectively. Further, even in a block composed of a plurality of skillion memory circuits 30, the skillion 40 of each block can be erased collectively.
  • FIG. 20 shows an example of adjusting the transfer rate of the skyrmion 40 using the second current path 16-2.
  • the second current path 16-2 By using the second current path 16-2, it is possible to adjust the interval between the circulating skyrmions 40 and the like.
  • FIG. 20 a part of the closed path shape magnetic body 10 in the skyrmion memory circuit 30 is extracted. Two long sides of the closed path-shaped magnetic body 10 shown in FIG. 20 are connected to the outer peripheral electrode 12 and the inner peripheral electrode 14.
  • the upper and lower sides of the closed path-shaped magnetic body 10 around the second current path 16-2 are reversed from those in FIG. That is, the outer peripheral electrode 12 is connected to the upper side of the closed path-shaped magnetic body 10 shown in FIG. 20, and the inner peripheral electrode 14 is connected to the lower side.
  • a second current path 16-2 surrounding the end region that is long in the extending direction of the end portion is provided at the end portion of the closed path shape magnetic body 10 on the outer peripheral electrode 12 side.
  • a sensor 72 is installed on the closed path shape magnetic body 10 of the skyrmion memory circuit 30.
  • the sensor 72 may be a magnetoresistive sensor or a tunnel magnetoresistive element.
  • the second current path power supply 50 monitors the signal from the sensor 72 and controls the coil current applied to the second current path 16-2.
  • FIG. 20 shows three operations of the skyrmion 40 when the coil current flowing through the second current path 16-2 is 0, when the coil current is + ⁇ , and when the coil current is ⁇ .
  • the coil current is + ⁇
  • the second magnetic field applied to the end region A by the current is in the same direction as the first magnetic field applied by the magnetic field generator 20.
  • the coil current is ⁇
  • the second magnetic field applied to the end region A by the current is opposite to the first magnetic field applied by the magnetic field generator 20.
  • the coil current is + ⁇
  • the coil current is ⁇
  • the position of each skillion 40 is different.
  • the skyrmion 40 against the skyrmion 40 having zero coil current, the skyrmion 40 is accelerated when the coil current is + ⁇ , and when the coil current is ⁇ , the skyrmion 40 is decelerated. ing.
  • the width W2 that is the length of the second current path 16-2 in the same direction as the width direction of the closed path-shaped magnetic body 10 and the second direction in the direction parallel to the end of the closed path-shaped magnetic body 10 are used.
  • the skyrmion 40 circulates around the closed path-shaped magnetic body 10 by approaching the outer electrode 12 in a direction substantially perpendicular to the electron flow due to the electron flow flowing through the closed-path shaped magnetic body 10. Therefore, the second current path 16-2 is preferably provided at the end of the closed path-shaped magnetic body 10 on the outer peripheral electrode 12 side.
  • the transfer rate of the skyrmion 40 can be adjusted using the second current path 16-2.
  • the conditions for accelerating and decelerating the skyrmion 40 by controlling the magnetic field strength in the end region using the second current path 16-2 under these conditions are as follows. (Condition 8) In order to accelerate the transfer of the relevant skillion 40 on the skillion memory circuit 30, when the relevant skillion 40 reaches the coil (in this example, the second current path 16-2).
  • the coil current may be applied so that the magnetic field generated by the coil is applied in the same direction as the magnetic field generator 20 in the end region.
  • the acceleration intensity can be controlled by the magnitude of the coil current.
  • the above mechanism is expressed as a quantity normalized by two quantities of the magnetic exchange interaction J characterizing the magnetism of the closed path shape magnetic body 10 and the skyrmion size ⁇ .
  • FIG. 21A to 21C show examples of the shape of the first current path 16-1.
  • FIG. 21A is the same as the example shown in FIG.
  • the first current path 16-1 may surround an end region that is part of an ellipse, circle, or ellipse.
  • the first current path 16-1 may surround an end region having a shape formed by combining circles, squares, and other figures.
  • FIG. 22 shows a case where the first current path 16-1 is a multilayer coil.
  • the multi-layer coil structure is effective for increasing the magnetic field strength when clearing skyrmions.
  • a similar current path shape is conceivable, and the present invention is not limited to this example.
  • FIG. 23 is a schematic diagram showing a skyrmion memory device 100 having a plurality of skyrmion memory circuits 30. 23 to 25, the sensor 72 and the current path 16 in the skyrmion memory circuit 30 are not shown. A large number of skyrmions 40 circulate in the closed path shape magnetic body 10 of the skyrmion memory circuit N at a constant speed in the direction of the arrow. N one skillion memory circuit shown in FIG. 23 may be formed in a one-chip memory device (N is an integer of 1 or more). For example, in the memory device, N skillumion memory devices 100 shown in FIG. 3 may be formed.
  • each skillion memory circuit 30 may be provided on the same substrate or may be provided on an independent substrate. Further, the magnetic field generator 20 may be provided in common for the N skyrmion memory circuits.
  • the N skyrmion memory circuits may be formed in the same layer parallel to the xy plane in the memory device, or may be formed in a plurality of layers stacked in the z-axis direction.
  • FIG. 24 is a schematic diagram showing an example in which one skyrmion memory kit 30 has a zigzag pattern that wraps around in a zigzag manner.
  • the skillmion memory kit 30 of this example is like a plurality of skillion memory kits 30 shown in FIG. 23, and a plurality of straight line parts provided in parallel and an arc-shaped connection part that connects the end parts of the respective straight line parts. Have A zigzag pattern is formed by alternately connecting the upper and lower ends of adjacent linear portions.
  • the closed path-shaped magnetic body 10 in the skillmion memory kit 30 of this example forms a path in which the movement direction of the skillmion 40 is opposite in each of the straight part and the connection part forming the zigzag pattern.
  • the two paths are connected to form one loop. If the pattern as in this example is used, a long skyrmion memory circuit can be easily formed. By forming the long skyrmion memory circuit 30, it becomes possible to form a large number of skyrmions 40 in one skyrmion memory circuit 30, and more information can be stored.
  • FIG. 25 is a schematic diagram showing a coiled skyrmion memory circuit 30.
  • the skyrmion memory circuit 30 of this example has a spiral extending in the z-axis direction.
  • the closed path shape magnetic body 10 in the skillion memory circuit 30 of the present example forms a path in which the movement direction of the skillion 40 is opposite in each part forming the coil. Further, at the both ends of the coil shape, the two paths are connected to form one loop. In this case, since the orbiting skyrmion memory circuit 30 extends three-dimensionally upward, the degree of integration can be dramatically increased.
  • the effect of the embodiment on the chiral magnetic material is qualitatively the magnetic property of a dipole magnetic material, a frustrated magnetic material, or a laminated structure of a magnetic material and a nonmagnetic material. Even the body plays in the same way.
  • the structure and simulation results of the skyrmion memory device 100 give the optimum design guidelines for the generation, loop transfer, erasure, acceleration / deceleration and batch erasure method of the skyrmion 40.
  • the design rule can be described in two quantities: a magnetic exchange interaction J that characterizes the magnetism of the closed-path shape magnetic body 10 and a skyrmion size ⁇ .
  • a common design guideline can be given to various magnetic materials can be expected to have a great impact on the practical application of the skillmion memory circuit 30 using the skillmion 40.
  • FIG. 26 shows a cross-sectional structure of the skyrmion memory device 110.
  • the skyrmion memory device 110 includes the skyrmion memory device 100 described with reference to FIGS.
  • the skyrmion memory device 110 includes a magnetic field generator 20 that is a ferromagnetic layer and a skyrmion memory circuit 30 formed above the magnetic field generator 20.
  • the skyrmion memory circuit 30 in this example corresponds to the skyrmion memory circuit 30 shown in FIG. However, in the drawings after FIG. 26, the current path 16 and the sensor 72 may be omitted. Note that at least a part of the current path 16 and the sensor 72 may be formed in the laminated structure shown in FIG.
  • the skyrmion memory circuit 30 of this example has a stacked structure in which a magnetic layer 160, a magnetic protective layer 165, a first wiring layer 170, and a second wiring layer 175 are stacked in this order.
  • the magnetic layer 160 includes the closed path shape magnetic body 10, the insulator 161, the outer peripheral electrode 12, and the inner peripheral electrode 14. In the closed path shape magnetic body 10, the skyrmion 40 is generated and erased.
  • the insulator 161 surrounds the closed path shape magnetic body 10, the outer peripheral electrode 12, and the inner peripheral electrode 14.
  • the closed path shape magnetic body 10, the outer peripheral electrode 12, and the inner peripheral electrode 14 are a non-magnetic metal (Nonmagnetic Metal), a magnetic body (Nonmagnetic Metal), and a non-magnetic metal (Nonmagnetic Metal), which are basic structures of skyrmion magnetic media. It has the structure which connected. This structure is abbreviated as an NMN structure.
  • the magnetic layer 160 may have a plurality of NMN structures in the same layer.
  • the magnetic material protective layer 165 includes a magnetic material protective film 166 and a first via 167.
  • the magnetic protective film 166 protects the magnetic layer 160.
  • the first via 167 supplies a current for operation to the outer peripheral electrode 12 and the inner peripheral electrode 14.
  • the first wiring layer 170 includes a first wiring 171, a first wiring protective film 172, and a second via 173.
  • the electrodes of the skyrmion memory circuit 30 are electrically connected to the outside of the skyrmion memory circuit 30.
  • a part of the first wiring 171 may function as the current path 16.
  • the first wiring protective film 172 functions as an interlayer insulating film for forming the first wiring 171 and the second via 173. It is difficult to route the two types of wirings for the current path and the wiring connected to the nonmagnetic metal without crossing each other in the same layer. Therefore, the second wiring layer 175 may be formed on the first wiring layer 170.
  • the second wiring layer 175 has a second wiring 176 and a second wiring protective film 177.
  • the second wiring 176 is connected to the second via 173.
  • the second wiring protective film 177 functions as an interlayer insulating film for insulating the second wiring 176.
  • the second via 173 is connected to at least one of two types of wiring, that is, a current path wiring and a wiring connected to a nonmagnetic metal.
  • the skyrmion 40 is illustrated by a square with dots. By passing a current through the current path 16 formed by the first wiring 171 or the like, the skyrmion 40 can be generated in the closed path-shaped magnetic body 10.
  • FIG. 27 shows another example of the cross-sectional structure of the skyrmion memory device 110.
  • the skyrmion memory device 110 includes a skyrmion memory device 100 and an FET (Field Effect Transistor, field effect transistor) 90.
  • the skyrmion memory device 100 is formed on a silicon substrate where the FET 90 is not present.
  • the FET 90 is a general FET formed by a general silicon process.
  • the FET 90 of this example has two Cu wiring layers.
  • the FET 90 includes a CMOS circuit including a PMOS-FET 91 and an NMOS-FET 92 formed on a P-type substrate.
  • the FET 90 is necessary for switching the wiring of the skyrmion memory circuit 30.
  • the CMOS circuit may also be provided as a voltage amplification circuit by converting the current from the magnetic sensor into a voltage.
  • FIG. 28 shows a skyrmion memory device 110 in which n layers of skyrmion memory circuits 30 are stacked.
  • the magnetic field generator 20 has a thickness of 3000 mm.
  • the skyrmion memory circuit 30 has a structure in which the skyrmion memory circuit 30-1 to the skyrmion memory circuit 30-n are stacked.
  • the skyrmion memory circuit 30 of this example has a total film thickness of 15000 mm.
  • FIG. 29 shows a skyrmion memory device 110 having a plurality of magnetic field generators 20.
  • the skyrmion memory device 110 of this example has a total of 8 skylmion memory circuits 30 from the skyrmion memory circuit 30-1 to the skyrmion memory circuit 30-8.
  • the skirmion memory device 110 has a four-layer skirmion memory circuit 30 on the magnetic field generator 20-1.
  • the skyrmion memory device 110 further includes a magnetic field generator 20-2 between the skyrmion memory circuit 30-4 and the skyrmion memory circuit 30-5. Thereby, the skyrmion memory circuit 30 can keep the strength of the magnetic field received from the magnetic field generator 20 constant.
  • the magnetic field generator 20 may be arranged at an appropriate interval according to the material of the skyrmion memory circuit 30 or the like.
  • FIG. 30 is a cross-sectional view of the skyrmion memory device 110 in which the skyrmion memory device 100 is mounted on the upper layer of the CMOS-FET 90.
  • the skyrmion memory device 110 includes the skyrmion memory device 100 and a CMOS-FET 90 that constitutes a CPU function.
  • a skyrmion memory device 100 is formed on the CMOS-FET 90.
  • the CMOS-FET 90 of this example has a PMOS-FET 91 and an NMOS-FET 92 formed on a P-type substrate.
  • FIG. 31 is a diagram showing a memory circuit 120 which is an example of a skyrmion memory device 110.
  • the skyrmion memory device 110 of this example includes a plurality of skyrmion memory circuits 30 shown in FIG. 3 in a matrix.
  • FIG. 31 shows only the (n ⁇ 1) th column, the nth column, the m ⁇ 1th row, and the mth row among the plurality of columns and rows of the matrix.
  • the memory circuit 120 includes a write line 93, a first selection line 94 and a word line 95 provided in each column, and a second selection line 96 provided in each row.
  • the memory circuit 120 includes switches (83, 84, 85, 86) provided for each line.
  • each switch is an FET.
  • the first selection line 94 in each column is connected to each outer peripheral electrode 12 of the skyrmion memory circuit 30 in the column.
  • the outer peripheral electrode 12 in each skyrmion memory circuit 30 may be electrically connected to the first selection line 94 at a plurality of positions.
  • the second selection line 96 of each row is connected to each inner peripheral electrode 14 of the skyrmion memory circuit 30 of the row.
  • the inner peripheral electrode 14 in each skyrmion memory circuit 30 may be electrically connected to the second selection line 96 at a plurality of positions.
  • the arbitrary skyrmion memory circuit 30 can be selected by the switch 84 and the switch 86.
  • a predetermined current flows between the outer peripheral electrode 12 and the inner peripheral electrode 14 of the skyrmion memory circuit 30 selected by the switch 84 and the switch 86.
  • many skyrmions 40 existing in the closed path shape magnetic body 10 circulate around the closed path shape magnetic body 10 at a constant speed while maintaining a constant interval.
  • any skillmion memory circuit 30 can be selected and the skillmion 40 can be transferred.
  • the write line 93 connects the first current path 16-1 of the skyrmion memory circuit 30 of each column in series. That is, the write line 93 wired to one skyrmion memory circuit 30 is a common line with the write line 93 wired to another skyrmion memory circuit 30.
  • the switch 83 When the switch 83 is turned on, a predetermined write current pulse is supplied to the write line 93 of the corresponding column. That is, the write current pulse flows through each of the first current paths 16-1 connected in series.
  • a skillion 40 is generated in each skillion memory circuit 30 in the row.
  • a current is applied to the first current path 16-1 in the column of the plurality of skyrmion memory circuits 30 necessary for writing.
  • One skyrmion 40 is generated in the selected row of the plurality of skyrmion memory circuits 30.
  • This skyrmion 40 is a header pattern indicating the head of data. This header pattern may be a plurality of skyrmions 40.
  • the skyrmion memory circuit 30 to which data is to be written is selected using the switch 84 and the switch 86.
  • the skillion 40 starts to circulate around the closed path shape magnetic body 10.
  • a write current pulse is caused to flow at a timing according to the data pattern.
  • the header pattern may be deleted.
  • the current skyrmion 40 of the header pattern of the column selected for writing data is selected by using the switch 84 and the switch 86 so as to be positioned in the first current path 16-1, and current is applied.
  • the skyrmion 40 which is a header pattern, can be erased in the first current path 16-1 with a small current pulse. It may be a plurality of skyrmions indicating a plurality of header patterns.
  • an arbitrary data pattern can be written in an arbitrary skyrmion memory circuit 30.
  • the memory circuit 120 can write data into a number of bit positions of the skyrmion memory circuit 30 using one write line 93 and one switch 83, as in the NAND flash memory.
  • data can be written to a number of skyrmion memory circuits 30 using one write line 93 and one switch 83.
  • the word line 95 connects the sensors 72 of the skyrmion memory circuit 30 in each column in series. That is, the word line 95 wired to one skyrmion memory circuit 30 is a common line with the word writing line 95 wired to another skyrmion memory circuit 30.
  • the sensor 72 of this example has a TMR element.
  • the outer peripheral electrode 12 in the skyrmion memory circuit 30 in each stage is connected to the TMR element in the next stage, so that each sensor 72 is connected in series.
  • the word line 95 is connected to the read circuit 98. When the switch 85 is turned on, the switch 85 applies a predetermined voltage to the word line 95 of the corresponding column. Read circuit 98 measures the current flowing through word line 95.
  • the resistance value of the TMR element is increased and the current detected by the readout circuit 98 is decreased.
  • the resistance value corresponding to the current detected by the readout circuit 98 is the sum of the resistance values of the plurality of TMR elements.
  • the skyrmion memory circuit 30 from which data is read is selected by the switch 84 and the switch 86. Thereby, all the skillions 40 of the skillion memory circuit 30 from which data is read circulate around the closed path shape magnetic body 10. On the other hand, no current flows between the outer peripheral electrode 12 and the inner peripheral electrode 14 of the skyrmion memory circuit 30 that does not read data. For this reason, the skillion 40 in the skillion memory circuit 30 does not move.
  • the read circuit 98 detects the time change of the current flowing through the word line 95.
  • the time change corresponds to the arrangement pattern of the skillmions 40 in the selected skillmion memory circuit 30. Note that the skillion 40 of the skillion memory circuit 30 that has not been selected does not move. For this reason, when data is read, the arrangement pattern of the skillmions 40 of the skillmion memory circuit 30 that is not selected does not affect the current change. Therefore, the data of the selected skyrmion memory circuit 30 can be read.
  • a data pattern can be read from an arbitrary skyrmion memory circuit 30.
  • One word line 95 and one switch 85 can be used to read data from a number of bit positions in the skyrmion memory circuit 30.
  • data can be read from a number of skyrmion memory circuits 30 using one word line 95 and one switch 85.
  • the skyrmion memory circuit 30 may be used as a memory having a shift register function.
  • a current for batch erasing with a predetermined current density is applied between the first selection line 94 and the second selection line 96.
  • all skillmions 40 in the skillmion memory circuit 30 selected by the switch 84 and the switch 86 are erased collectively.
  • the memory circuit 120 does not need to add wiring for erasing skyrmions. This is also the same as the specification of the flash memory. Note that a plurality of skillion memory circuits 30 may be simultaneously selected and the skillion 40 may be erased collectively.
  • the batch erasing time is about 1 nanosecond and is fast.
  • the first selection line 94 is connected to the outer peripheral electrode 12, and the second selection line 96 is connected to the inner peripheral electrode 14.
  • the first selection line 94 may be connected to the inner peripheral electrode 14, and the second selection line 96 may be connected to the outer peripheral electrode 12.
  • the memory circuit 120 can greatly reduce the number of wirings necessary to realize the memory function.
  • four wiring numbers (write line 93, first selection line 94, word line 95, and second selection line 96) may be provided for one skyrmion memory circuit 30.
  • the number of wiring switches may be four for one skyrmion memory circuit 30.
  • the write lines 93, the first selection lines 94, and the word lines 95 may be provided for each column, and the second selection lines 96 are provided for each row. Just do it.
  • the information stored in one skyrmion memory circuit 30 may be about several K bits. That is, a memory function for storing information of several K bits can be realized by the number of four wires and the number of four FETs.
  • a memory circuit using the skyrmion memory circuit 30 is compared with a NAND FET memory.
  • the NAND-type FET memory is a memory that is in practical use.
  • the NAND FET memory is a memory having a modified gate FET structure having a source and a drain.
  • One bit line may be used for writing and reading in a predetermined specific column of the FET having the modified gate structure.
  • one word line for selecting the modified gate FET is required for each modified gate FET.
  • the number of wirings for cell selection is 62 because it is necessary for each of the column (bit line) and the row (word line).
  • An excellent feature of the NAND circuit is that data can be written and read with a single bit line.
  • a total of four lines of one write line, one read line, and two select lines are sufficient.
  • the number of FETs to be switched may be four.
  • the skyrmion memory circuit 30 can be reduced to 1/250 of the NAND type FET memory.
  • the degree of integration can be greatly improved.
  • a 1 Kbit memory may be composed of a plurality of skyrmion memory circuits 30. Even in this case, it is possible to secure a superior advantage over the NAND memory in the number of wirings.
  • the data write / read line of the skyrmion memory circuit 30 can be shared with the plurality of skyrmion memory circuits 30. From this, the skyrmion memory device can further reduce the number of wirings and the number of FETs further than the NAND type memory, and can greatly contribute to high integration.
  • the write time of the skyrmion memory device 100 is 1 nanosecond or less. In data erasure, it is about 1 nanosecond. In addition, the time required for erasing a plurality of skyrmion circuits is about 1 nanosecond. Currently, it also has the same batch erasing function as a NAND flash memory in practical use. However, the time required for writing and erasing of the NAND flash memory requires about microseconds.
  • the skyrmion memory device 100 can speed up writing and erasing by three digits or more. Further, when the reading speed is a TMR element, it is about several nanoseconds, and high-speed reading is possible.
  • the number of wirings for cell selection is 62 because it is necessary for each column and row.
  • the total number of wirings is 94.
  • the skyrmion memory circuit 30 capable of storing 1 Kbit information can be configured by four wires and four switches. That is, when a 1-bit skyrmion memory cell is used, about 23 times as many wirings and switches are required as compared to the 1-kbit skyrmion memory circuit 30. The difference between the number of wires and the number of FETs further increases when the number of skillmions that can be generated in the skillmion memory circuit 30 is increased.
  • the skyrmion memory circuit 30 when the skyrmion memory circuit 30 is used, the degree of integration of the memory circuit 120 can be greatly improved.
  • the skyrmion memory circuit 30 when reading the bit information by selecting an address at random like RAM, the skyrmion memory circuit 30 must transfer the skyrmion 40 at the corresponding location to the position of the sensor 72, but for example, a shift register or the like As described above, when data is read continuously, the time for circular transfer can be omitted. For this reason, the skyrmion memory circuit 30 is particularly useful as a memory for a shift register.
  • the memory circuit 120 is particularly effective when multi-bit processing is performed in parallel. For example, when processing each bit of 8-bit information at the same time, the eight first selection lines 94 are simultaneously selected. Also, any second selection line 96 is selected. As a result, eight skyrmion memory circuits 30 can be selected. Then, by inputting 8-bit information to the eight write lines 93, each bit of 8-bit information can be written in parallel. Further, when writing 8-bit information, the next second selection line 96 may be selected, or the skillion 40 may be circulated without changing the second selection line 96.
  • the skyrmion memory circuit 30 does not deteriorate no matter how many times the skyrmion 40 is generated and deleted. This is because no movement of electrons or the like is involved in generating and erasing the skillion 40. For this reason, the skyrmion memory circuit 30 has no limitation on the number of times of writing and erasing information. That is, endurance (endurance) is infinite.
  • the skyrmion memory circuit 30 can greatly improve the data retention performance. Unless a strong local magnetic field is applied, once generated skyrmions 40 exist stably without disappearing. In general, when a magnetic material is miniaturized to a nano size, the magnetic moment of the magnetic material is subject to thermal disturbance. In an LSI requiring memory retention for 10 years or more, the thermal disturbance resistance of this magnetic moment is a very important issue to be solved.
  • the skyrmion memory circuit 30 is provided with an externally applied magnetic film (magnetic field generator 20) below the closed-path magnetic body 10. The magnetic moment of the perpendicular magnetization film in the magnetic field generator 20 is laid in a large area of several ⁇ 2 to several mm 2 on a two-dimensional plane. The magnetic moment of the magnetized film of the magnetic field generator 20 is not affected by the thermal disturbance and the magnetic moment is not reversed.
  • FIG. 32 is a schematic diagram showing a configuration example of a solid electronic device 200 with a skyrmion memory device.
  • the skyrmion memory device-mounted solid-state electronic device 200 includes a skyrmion memory device 100 and a solid-state electronic device 210.
  • a skirmion memory device 110 may be provided instead of the skirmion memory device 100.
  • the solid-state electronic device 210 functions as, for example, a central processing device.
  • the solid state electronic device 210 may be formed in the same chip as the skyrmion memory device 100.
  • the skyrmion memory devices 100 and 110 are the skyrmion memory devices 100 and 110 described with reference to FIGS.
  • the solid-state electronic device 210 is, for example, a CMOS-FET device.
  • the solid-state electronic device 210 has at least one function of writing data to the skyrmion memory device 100 or 110 and reading data from the skyrmion memory device 100 or 110.
  • FIG. 33 is a schematic diagram showing a configuration example of the data recording apparatus 300.
  • the data recording device 300 includes a skyrmion memory device 100 or 110 and an input / output device 310.
  • the data recording device 300 is, for example, a hard disk replacement memory device or a memory device such as a USB memory.
  • the input / output device 310 has at least one of a function of writing data from the outside to the skyrmion memory device 100 or 110 and a function of reading data from the skyrmion memory device 100 or 110 and outputting the data to the outside.
  • Bit information by the skyrmion 40 can be directly written and erased by a magnetic field induced by a current while using the magnetic material 10 capable of inducing a magnetic moment as a storage medium.
  • the recording method of the skyrmion memory device 100 or 110 shown in the present specification can not only eliminate the motor drive load of an electronic device such as a hard disk which is a large-capacity magnetic memory, but also can perform writing and erasing at ultra-high speed. It becomes possible. For this reason, there is a high possibility that the skyrmion memory device 100 or 110 will be replaced with a large-scale data recording device such as a current hard disk in the future. Further, in the flash memory capable of writing and erasing electrical information, the skill memion memory circuit 30 to which the skill meon 40 is applied has many advantages, especially in recent years when a large recording capacity is being demanded. Can be achieved.
  • the processor 410 includes, for example, a digital circuit that processes a digital signal.
  • the processor 410 has at least one function of writing data to the skyrmion memory device 100 or 110 and reading data from the skyrmion memory device 100 or 110.
  • FIG. 34 is a schematic diagram illustrating a configuration example of the data processing device 400.
  • the data processing device 400 includes a skyrmion memory device 100 or 110 and a processor 410.
  • the skyrmion memory device 100 or 110 can have the CMOS-FET 90 constituting the CPU function and the skyrmion memory device 100 or 110, which is a stacked large-scale nonvolatile memory, in the same chip.
  • the processing time and speed of the CPU can be shortened and the power consumption of the CPU can be greatly reduced.
  • the processing time for calling from the HD such as the basic OS when the PC is started, writing to and reading from the external SRAM or DRAM, and the like can be greatly shortened, which contributes to a reduction in CPU time (significant speedup).
  • a CPU with significantly low power consumption can be realized.
  • the skyrmion memory device 100 or 110 which is a large-scale non-volatile memory, has zero power consumption for memory retention.
  • the direction of the magnetic moment of the skyrmion 40 has topological stability and does not require any external power supply.
  • DRAM memory requires data refresh, and SRAM is also volatile, so it is necessary to always turn on the power. Since the flash memory has a long data access time, it cannot exchange data directly with the CPU.
  • the skyrmion 40 can electrically write and erase bit information to be allocated to it.
  • the bit information writing time and erasing time related to the skyrmion 40 can be realized in about nanoseconds.
  • the realization of such a high-speed and large-scale non-volatile memory by Skyrmion 40 greatly improves the high-speed processing capability of large-scale information that is currently required in many electronic devices.
  • the skillmion memory circuit 30 to which the skillmion 40 is applied uses a magnetic moment as a recording means, so that the so-called rewriting in which the recording is erased and the writing is performed can be performed any number of times. Further, since the magnetic moment is used as the recording means, the record holding state can be held in a long and stable state.
  • the skillmion memory circuit 30 to which the skillmion 40 is applied can shorten the operation time for writing and erasing as much as possible, and the time can be shortened to sub-nanoseconds. As a result, it is possible to realize a high-speed operation of writing and erasing over the current DRAM.
  • by applying such skyrmion memory device 100 or 110 to an electronic device such as a PC it is possible to significantly improve the usage environment.
  • FIG. 35 is a schematic diagram illustrating a configuration example of the communication device 500.
  • the communication device 500 refers to all devices having a communication function with the outside, such as a mobile phone, a smartphone, and a tablet terminal. Communication device 500 may be portable or non-portable.
  • the communication apparatus 500 includes a skyrmion memory device 100 or 110 and a communication unit 510.
  • the communication unit 510 has a communication function with the outside of the communication device 500.
  • the communication unit 510 may have a wireless communication function, may have a wired communication function, and may have both wireless communication and wired communication functions.
  • the communication unit 510 has a function of writing data received from the outside to the skyrmion memory device 100 or 110, a function of transmitting data read from the skyrmion memory device 100 or 110 to the outside, and the skyrmion memory device 100 or 110. It has at least one function that operates based on the stored control information.
  • the skyrmion memory device 100 or 110 by applying the skyrmion memory device 100 or 110 to an electronic device such as a digital camera, it becomes possible to record a moving image over a large capacity. Further, by applying the skyrmion memory device 100 or 110 to an electronic device such as a 4K television receiver, it is possible to realize a large capacity of image recording. As a result, it is possible to eliminate the necessity of connecting an external hard disk in the television receiver. Further, the skyrmion memory device 100 or 110 may be embodied as a data recording medium in addition to being applied to a data recording apparatus such as a hard disk.
  • this skillion memory device 100 or 110 to an electronic device such as a navigation system for automobiles, it becomes possible to realize further enhancement of functions, and a large amount of map information can be easily stored. .
  • the Skyrmion Memory Device 100 or 110 can be expected to have a great impact on the practical application of the self-propelled device, the flying device, and the space flight device.
  • complicated control processing of flight equipment, weather information processing, enhancement of passenger services by providing high-definition video, and recording of a large amount of recorded information of control of space flight equipment and observed image information And it brings a lot of knowledge to mankind.
  • This skyrmion memory device 100 or 110 is a high-speed large-scale non-volatile memory and a memory that has the potential as a memory that contributes greatly to our living environment.
  • a skillmion memory circuit which is a skillmion memory using a large number of skillmions disclosed in the present invention, is a skillmion generation circuit for transferring a skillion of a nano-scale magnetic structure through a closed-path magnetic body.
  • the number of sensors and the number of sensors can be largely omitted.
  • the skyrmion memory circuit has a feature as a magnetic shift register that sequentially transfers the skyrmion carrying information. Therefore, application as a large-capacity information storage medium is expected, and it is important as a memory device of an electronic device.
  • skirmion memory device 110 ... skillmion memory device, 120 ... memory circuit, 160 ... magnetic material Layer, 161 ... insulator, 165 ... magnetic Protective layer, 166... Magnetic protective film, 167 ... first via, 170 ... first wiring layer, 171 ... first wiring, 172 ... first wiring protective film, 173 ... Second via, 175, second wiring layer, 176, second wiring, 177, second wiring protective film, 200, solid electronic device with skyrmion memory device, 210, solid Electronic device 300 ... Data recording device 310 ... Input / output device 400 ... Data processing device 410 ... Processor 500 ... Communication device 510 ... Communication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

磁気素子スキルミオン(40)を周回転送可能なスキルミオンメモリサーキット(30)であって,閉経路形状の磁性体中(10)に,閉経路形状の外周部に接続した外周電極(12)と,閉経路形状の内周部に接続した内周電極(14)との間に電流を印加し,印加した電流方向とは略垂直の方向にスキルミオンを転送し,閉経路形状の磁性体中にスキルミオンを周回させ,閉経路形状の磁性体の一面において磁性体の端部を含む端部領域を囲んで設けられた1個以上の電流経路(16)を備えるスキルミオンメモリサーキットを提供する。

Description

磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置
 本発明は、スキルミオンをメモリとして使った磁気素子、スキルミオンメモリ、スキルミオンメモリサーキット、スキルミオンメモリデバイス、スキルミオンメモリデバイス搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置に関する。
 磁性体の磁気モーメントをデジタル情報として利用する磁気素子が知られている。磁気素子であるスキルミオンを使ったスキルミオンメモリはナノスケールの情報保持時に電力を要さない不揮発性メモリの要素構造を有する。当該磁気素子は、ナノスケールの磁気構造による超高密度性等の利点から、大容量情報記憶媒体としての応用が期待され、エレクトロニクスデバイスのメモリデバイスとして、その重要度が増している。
 次世代型の磁気メモリデバイスの候補としては、米国IBMを中心にマグネチックシフトレジスタが提案されている。マグネチックシフトレジスタは、磁気ドメイン磁壁を駆動してその磁気モーメント配置を電流で転送し、記憶情報を読み出す(特許文献1参照)。
 図36は、電流による磁気ドメイン磁壁駆動の原理を示す模式図である。互いに磁気モーメントの向きが相反する磁気領域の境界がドメイン磁壁である。図36では、マグネチックシフトレジスタ1におけるドメイン磁壁を実線で示している。マグネチックシフトレジスタ1に、矢印の向きの電流を流すことにより磁気ドメイン磁壁が駆動される。ドメイン磁壁が移動することにより、磁気センサ2の上方に位置する磁気モーメントの向きによる磁気が変化する。当該磁気変化を磁気センサ2で検知して磁気情報を引き出す。
 しかし、こうしたマグネチックシフトレジスタ1は、磁気ドメイン磁壁を動かす際に大きな電流が必要であり、また磁気ドメイン磁壁の転送速度が遅いという欠点を持っている。さらにナノサイズのドメインの場合、熱擾乱によるスピン反転が発生するという深刻な問題が発生する。LSIの信頼性保証は10年のデータ保持を要求している。
 そこで、本願発明者は、磁性体中に発生するスキルミオンを記憶単位として使ったスキルミオン磁気素子を提案した(特許文献2参照)。この提案において本願発明者らは、スキルミオンを電流により駆動できることを示した。また、スキルミオンの運動は電流で駆動できることを詳細に解明し、その結果を示した(非特許文献2参照)。
 本明細書において、駆動電流とスキルミオンの転送方向が略平行である配置を縦転送配置と定義する。このような縦転送配置をメモリとして応用する場合、スキルミオンを有する磁性体の細線構造の両端に電流を印加する電極を設ける。スキルミオンを情報単位として扱うにはスキルミオンを検知するセンサを磁性体細線の特定箇所に設置する。このため、スキルミオンをセンサ特定の部位に転送する時間が必要である。これは、米国IBM提案のマグネチックシフトレジスタも同様である(図36参照)。
 しかし、縦転送配置におけるスキルミオンの転送速度が小さいという大きな課題があることが判明した(非特許文献2)。第2の解決すべき課題として、縦転送配置でのスキルミオン駆動電流密度が大きい問題がある。縦転送配置でスキルミオンの転送速度が秒速15mの場合、2×1011Am-2の大電流密度になってしまう(非特許文献2)。スキルミオンを情報単位として扱う上で、スキルミオンの転送速度が遅いこと、そのため、駆動する電流密度が大きいという課題があることが判明した。
 [先行技術文献]
 [特許文献]
 [特許文献1]米国特許第6834005号明細書
 [特許文献2]特開2014-86470号公報
 [非特許文献1]永長 直人、十倉 好紀、"Topological properties and dynamics of magnetic skyrmions"、Nature Nanotechnology、英国、Nature Publishing Group、2013年12月4日、Vol.8、p899-911.
 [非特許文献2]Iwasaki, J., Mochizuki, M. & Nagaosa, N., Nat. Commun. 4, 1463(2013)
 スキルミオンは、直径が1nmから100nmと極微小な磁気構造を有し、その構造を長時間保持できることからメモリ素子に応用することへの期待が高まっている。スキルミオンをメモリ素子として利用するための第1の課題はスキルミオンの転送速度の桁違いの高速化である。第2の課題は駆動する電流密度を低下させることである。
 本発明の第1の様態においては、スキルミオンが発生可能な薄膜状の磁性体を備え、磁性体は薄膜平面上で幅Wと長さLをもち、且つ、長さLの両端部が接続され、スキルミオンを周回転送する閉経路形状を有するスキルミオンメモリサーキットを提供する。
 磁性体は、磁性体の閉経路状の面における内周を規定する内周側端部と、外周を規定する外周側端部とを有してよい。スキルミオンメモリサーキットは、磁性体の延展方向と平行な面において、磁性体の内周側端部に接続した非磁性金属からなる内周電極と、磁性体の外周側端部に接続した非磁性金属からなる外周電極とを有してよい。スキルミオンメモリサーキットは、内周電極と外周電極との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横転送配置であってよい。
 スキルミオンメモリサーキットは、内周電極と外周電極との間に電流を印加することにより、磁性体中に1または複数のスキルミオンを周回転送してよい。磁性体の幅Wは、スキルミオンの直径をλとすると、
                W>0.5λ
 であってよい。
 周回転送する複数のスキルミオンの間隔dは、スキルミオンの直径をλとしたとき、
                d≧0.5・λ
 であってよい。
 周回転送する複数のスキルミオンの間隔をdとして、スキルミオンの直径をλとしたとき、
                d≧2・λ
 である場合、複数のスキルミオンは、当該間隔dを保持しつつ周回転送する。
 磁性体の磁気交換相互作用の大きさをJとし、複数のスキルミオンを周回転送するときの電流の電流密度をJdとした場合、電極間に流す電流の電流密度Jcを
                Jc≧2・Jd
 とし、周回転送する複数のスキルミオンをすべて消去してよい。
 複数のスキルミオンをすべて消去する場合、電流密度Jcの印加時間tを
               t≧6000(1/J)
 としてよい。
 磁性体の一面において1個以上の電流経路をさらに備え、電流経路に電流を印加することにより、1または複数のスキルミオンを生成または消去し、もしくはスキルミオンの転送速度を加速または減速してよい。
 1個以上の電流経路のうちの第1の電流経路は、磁性体の幅および長さ方向と同一方向における幅W1と、長さL1が、スキルミオンの直径λに対して、
 0.75・λ≧W1>0.2・λ、且つ、0.5・λ≧L1>0.1・λ
 の範囲にある端部領域を囲んでよい。第1の電流経路に第1の方向の電流を流すことにより発生する磁場により、端部領域の磁場Haが、
               0.01J≧Ha
(ただし、Jは前記磁性体の磁気交換相互作用の大きさを示す)
 になった場合に、磁性体にスキルミオンを生成してよい。
 第1の電流経路に第2の方向の電流を流すことにより発生する磁場により、端部領域の磁場Haが、
           0.024J≧Ha>0.01J
 になった場合に、磁性体のスキルミオンを消去してよい。
 1個以上の電流経路のうちの第2の電流経路は、磁性体の幅および長さ方向と同一方向における幅W2と、長さL2が、スキルミオンの直径λに対して、
            0.2・λ≧W2、且つ、L2≧λ、
 の範囲にある端部領域を囲んでよい。第2の電流経路に電流を流すことにより発生する磁場により、磁性体を周回転送している1もしくは複数のスキルミオンの転送速度が加速もしくは減速してよい。
 磁性体は、印加する磁場に応じて、スキルミオンが発生するスキルミオン結晶相と強磁性相とが少なくとも発現する。磁性体は、カイラル磁性体、ダイポール磁性体、フラストレート磁性体、または、磁性材料と非磁性材料との積層構造のいずれかからなってよい。
 本発明の第2の態様においては、二次元面内に配列している、第1の態様における複数のスキルミオンメモリサーキットと、磁性体の内周電極を選択する第1選択線及び第1選択線をスイッチするFETと、磁性体の外周電極を選択する第2選択線及び第2選択線をスイッチするFETと、1個以上の電流経路に電流を印加する1個以上の書き込み線及び書き込み線をスイッチするFETと、スキルミオンを検出するセンサと、センサに接続したワード線及びワード線をスイッチするFETと、ワード線の信号を検出する検出回路と、閉経路形状の磁性体に第1の磁場を印加する磁場発生部と、を備えるスキルミオンメモリデバイスを提供する。
 一つのスキルミオンメモリサーキットに配線したスキルミオンを生成するための書き込み線は他のスキルミオンメモリサーキットのスキルミオンの書き込み線と共通であってよい。
 一つのスキルミオンメモリサーキットに配線したスキルミオンを検知するためのワード線は、他のスキルミオンメモリサーキットのスキルミオンのワード線と共通であってよい。
 複数のスキルミオンメモリサーキットの磁性体の幅方向に予め定められた電流を印加することで、複数のスキルミオンメモリサーキットにおけるスキルミオンを一括消去してよい。
 第2の態様に係るスキルミオンメモリデバイスを、2層以上積層する多層積層構造としてよい。
 本発明の第3の態様においては、第2の態様に係るスキルミオンメモリデバイスと、中央演算処理デバイスを同一チップ内に形成したスキルミオンメモリデバイスを搭載した固体電子デバイスを提供する。
 本発明の第4の態様においては、第2の態様に係るスキルミオンメモリデバイスを搭載したデータ記録装置を提供する。
 本発明の第5の態様においては、第2の態様に係るスキルミオンメモリデバイスを搭載したデータ処理装置を提供する。
 本発明の第6の態様においては、第2の態様に係るスキルミオンメモリデバイスを搭載した通信装置を提供する。
磁性体中の磁気モーメントのナノスケール磁気構造体であるスキルミオンの一例を示す模式図である。 ヘリシテイγが異なるスキルミオンを示す図である。 閉経路形状の磁性体に内周電極と外周電極との間に電流を流し、電流方向とは略垂直にスキルミオンを周回転送するスキルミオンメモリデバイス100の構成例を示す模式図である。 横転送配置でのスキルミオンを周回転送するスキルミオンメモリサーキット30を示すシミュレーション結果を示す図である。 閉経路形状の磁性体に用いたカイラル磁性体の磁気相図を示す図である。 閉経路形状の磁性体に横転送配置で電極を配置して、スキルミオンを周回転送するスキルミオンメモリサーキットにおいて、電流経路に囲まれた磁性体側部端部Sの磁場の時間変化を示す図である。 スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻1300/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻1850/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻6550/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻9200/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻11450/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻31450/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻58100/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻83150/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻86700/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻104000/Jでのミュレーション結果を示す図である。 スキルミオンメモリサーキットを周回転送するスキルミオン運動の時刻116800/Jでのミュレーション結果を示す図である。 閉経路形状磁性体10において駆動電流とは略垂直方向に周回転送しているすべてのスキルミオン40を一括消去するために流す電流印加条件を示す図である。 周回転送しているスキルミオン2個を消去する様子を示したシミュレーション結果を示す図である。 周回転送しているスキルミオンが加減速する様子を示したシミュレーション結果を示す図である。 第1の電流経路16-1の形状例を示す図である。 第1の電流経路16-1の形状例を示す図である。 第1の電流経路16-1の形状例を示す図である。 電流による磁場発生用の多層コイルを示す模式図である。 複数個のスキルミオンメモリサーキット30を有するスキルミオンメモリデバイス100を示す模式図である。 ジグザグチェーン状のスキルミオンメモリサーキット30を有するスキルミオンメモリデバイスを示す模式図である。 コイル状のスキルミオンメモリサーキット30を示す模式図である。 スキルミオンメモリデバイス110の断面構造を示す。 スキルミオンメモリデバイス110の断面構造の他の例を示す。 スキルミオンメモリサーキット30をn層積層したスキルミオンメモリデバイス110を示す。 複数の磁場発生部20を有するスキルミオンメモリデバイス110を示す。 スキルミオンメモリデバイス100をCMOS-FET90の上層に搭載したスキルミオンメモリデバイス110の断面図を示す。 スキルミオンメモリデバイス110を用いたメモリ回路120の一例を示す図である。 スキルミオンメモリデバイス搭載固体電子デバイス200の構成例を示す模式図である。 データ記録装置300の構成例を示す模式図である。 データ処理装置400の構成例を示す模式図である。 通信装置500の構成例を示す模式図である。 電流による磁気ドメイン駆動の原理を示す模式図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明している特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 スキルミオンを形成できる磁性体の一例としてカイラル磁性体がある。カイラル磁性体は、外部磁場の印加がない場合の磁気モーメント配置が、磁気モーメントの進行方向に対して螺旋上に回転する磁気秩序相を伴う磁性体である。外部磁場を印加することにより、カイラル磁性体はスキルミオンが格子状に配列した結晶相をへて強磁性相になる。
 図1は、閉経路形状磁性体10の一部に形成したナノスケール磁気構造体であるスキルミオン40の一例を示す模式図である。閉経路形状磁性体10は薄膜形状を有する。閉経路形状磁性体10は、薄膜平面上で幅Wと長さLをもち、長さLの両端部が接続した閉経路形状を有する。図1においては、閉経路形状の一部を示している。図1に示した閉経路形状磁性体10の両端が延伸して接続する。本例において長さLは、幅Wの中央を通り、閉経路を1周する長さである。
 閉経路形状磁性体10の幅Wは、スキルミオン40の直径をλとすると、
              W>0.5λ
 であることが好ましい。これよりも幅Wが小さいと、閉経路形状磁性体10にスキルミオン40が存在できない。なお図1において、各矢印は、スキルミオン40における磁気モーメントの向きを示す。x軸およびy軸は互いに直交する軸であり、z軸はxy平面に直交する軸である。
 閉経路形状磁性体10は、xy平面に平行な平面を有する。スキルミオン40は、閉経路形状磁性体10の当該平面上の位置に応じて渦状に向きが変化する磁気モーメントを有する。本例では、閉経路形状磁性体10に印加する磁場の向きはプラスz方向である。閉経路形状磁性体10の全体に、所定の強度の磁場を一様に印加する。この場合に、本例のスキルミオン40の最外周の磁気モーメントは、プラスz方向に向く。
 スキルミオン40において磁気モーメントは、最外周から内側へ向けて渦巻状に回転していくように配置する。さらに磁気モーメントの向きは、当該渦巻き状の回転に伴い徐々にプラスz方向からマイナスz方向へ向きを変える。
 スキルミオン40は中心から最外周の間において、磁気モーメントの向きが連続的にねじれる。つまり、スキルミオン40は、磁気モーメントの渦巻き構造を有するナノスケール磁気構造体である。スキルミオンが存在する閉経路形状磁性体10が薄い板状固体材料の場合、スキルミオンを構成する各磁気モーメントは、閉経路形状磁性体10の厚さ方向において同じ向きの磁気モーメントである。すなわち、スキルミオンの磁気モーメント構造は薄膜構造の深さ方向(z方向)には表面から裏面まで同じ向きの磁気モーメントからなる。つまり、スキルミオン40は、閉経路形状磁性体10の厚さと同一の高さの円柱形状を有する。
 渦巻き構造を有するナノスケール磁気構造体であるスキルミオン40は、スキルミオン数で特徴づけられる。スキルミオン数は、以下の[数1]及び[数2]であらわされる。[数2]において、磁気モーメントとz軸との極角Θ(r)はスキルミオン40の中心からの距離rの連続関数である。極角Θ(r)は、rを0から∞まで変化させたとき、πからゼロまでまたはゼロからπまで変化する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 [数1]において、n(r)は、位置rにおけるスキルミオンの磁気モーメントである。[数2]において、mはボルテシテイ、γはヘリシテイである。[数1]および[数2]から、Θ(r)がrをから∞まで変化させ、πからゼロまで変化するときNsk=―mとなる。
 また、後述するように、閉経路形状磁性体10に電流を流すと、スキルミオン40が閉経路形状磁性体10上を転送する。転送方向は、電子流の方向に対して垂直な方向である。例えば電子流がx軸正側から負側に向けて流れる場合、スキルミオン40は、y軸負側から正側に向けて転送する。
 図2は、ヘリシテイγが異なるスキルミオン40を示す模式図である。特に、スキルミオン数Nsk=―1の場合の一例を図2に示す。図2(E)は、磁気モーメントnの座標のとりかた(右手系)を示す。なお、右手系であるので、紙面と平行なn軸およびn軸に対して、n軸は紙面の裏から手前の向きに取る。図2(A)から図2(E)において、濃淡は磁気モーメントの向きを示す。
 図2(E)における円周上の濃淡で示す磁気モーメントは、n-n平面上の向きを有する。これに対して、図2(E)における円中心の最も薄い濃淡(白)で示す磁気モーメントは、紙面の裏から手前の向きを有する。円周から中心までの間の各位置の濃淡で示す磁気モーメントのn軸に対する角度は、中心からの距離に応じてπからゼロととる。図2(A)から図2(D)における各磁気モーメントの向きは、図2(E)において同一の濃淡で示す。なお、図2(A)から図2(D)におけるスキルミオン40の中心のように、最も濃い濃淡(黒)で示す磁気モーメントは、紙面手前から紙面の裏への向きを有する。図2(A)から図2(D)における各矢印は、磁気構造体の中心から所定の距離における磁気モーメントを示す。図2(A)から図2(D)に示す磁気構造体は、スキルミオン40と定義できる状態にある。
 図2(A)(γ=0)において、スキルミオン40の中心から所定の距離における濃淡は、図2(E)の円周上の濃淡と一致している。このため、図2(A)において矢印で示した磁気モーメントの向きは、中心から外側に放射状に向いている。図2(A)(γ=0)の各磁気モーメントに対して、図2(B)(γ=π)の各磁気モーメントの向きは、図2(A)の各磁気モーメントを180°回転した向きである。図2(A)(γ=0)の各磁気モーメントに対して、図2(C)(γ=-π/2)の各磁気モーメントの向きは、図2(A)の各磁気モーメントを-90度(右回りに90度)回転した向きである。
 図2(A)(γ=0)の各磁気モーメントに対して、図2(D)(γ=π/2)の各磁気モーメントの向きは、図2(A)の各磁気モーメントを90度(左回りに90度)回転した向きである。なお、図2(D)に示すヘリシテイγ=π/2のスキルミオンが、図1のスキルミオン40に相当する。
 図2(A)~(D)に図示した4例の磁気構造は異なるように見えるが、トポロジー的には同一の磁気構造体である。図2(A)~(D)の構造を有するスキルミオンは、一度生成すると安定して存在し、外部磁場を印加した閉経路形状磁性体10中で情報伝達を担うキャリアとして働く。
 図3は、スキルミオンメモリデバイス100の構成例を示す図である。スキルミオンメモリデバイス100は、スキルミオン40を用いて情報を保存する。例えば、閉経路形状磁性体10の所定の位置におけるスキルミオン40の有無が、1ビットの情報に対応する。本例のスキルミオンメモリデバイス100は、スキルミオンメモリサーキット30、磁場発生部20、1個以上の電流経路用の電流経路用電源50および測定部70を備える。電流経路用電源50は、スキルミオンメモリデバイス100には搭載されず、スキルミオンメモリデバイス100の外部に配置されてもよい。また、スキルミオンメモリデバイス100は、電源52から駆動電力を受け取る。電源52は、スキルミオンメモリデバイス100の外部に設けられてよい。
 スキルミオンメモリサーキット30は、スキルミオン40の発生、消去、周回転送および転送速度の加減速が可能である。スキルミオンメモリサーキット30は、閉経路形状磁性体10、外周電極12、内周電極14、1個以上の電流経路16およびセンサ72を有する。
 閉経路形状磁性体10は、印加する磁場に応じて、少なくともスキルミオン結晶相および強磁性相が発現する。スキルミオン結晶相及び強磁性相を有する磁性体は、スキルミオン40が閉経路形状磁性体10に発生しうる磁性体であることの必要条件である。例えば閉経路形状磁性体10は、カイラル磁性体である。閉経路形状磁性体10は薄層状である。スキルミオン40の直径とは、スキルミオンの最外周の直径を指す。本例において最外周とは、図1に示した外部磁場と同一の方向を向く磁気モーメントの円周を指す。
 閉経路形状磁性体10は、上述したように閉経路形状を有する。閉経路形状磁性体10は、閉経路形状の面における内周を規定する内周側端部と、外周を規定する外周側端部とを有する。内周電極14および外周電極12は、閉経路形状磁性体10の延展方向と平行な面において、閉経路形状磁性体10と接続する。内周電極14は閉経路形状磁性体10の内周側端部に沿って接続し、外周電極12は閉経路形状磁性体10の外周側端部に沿って接続する。
 磁場発生部20は、閉経路形状磁性体10に第1の磁場を印加する。本例の磁場発生部20は、閉経路形状磁性体10を強磁性相にする第1の磁場を発生する。また、磁場発生部20は、薄膜状の閉経路形状磁性体10の表面に略垂直な第1の磁場を、閉経路形状磁性体10に印加する。本例において閉経路形状磁性体10は、xy平面と平行な表面(一面)を有しており、磁場発生部20は、磁場発生部20中の矢印で示すようにプラスz方向の第1の磁場を発生する。磁場発生部20は、閉経路形状磁性体10の裏面と対向して設けられてよい。磁場発生部20は、閉経路形状磁性体10と離間していてよく、接触していてもよい。磁場発生部20が金属の場合、磁場発生部20は閉経路形状磁性体10と離間していることが好ましい。
 閉経路形状磁性体10中のスキルミオンの運動の機構をさらに説明する。詳細は後述する。外周電極12内から内周電極14に向かう方向に、閉経路形状磁性体10に電流を流す。スキルミオンの運動を考える場合、電流とは逆向きの電子流を駆動力と考えるとよい。すなわち内周電極14から外周電極12に電子流を流す。
 スキルミオン40は電子流により二つの力を受ける。一つは電子流と同じ向きの力である。もう一つは閉じ込め力とマグナス力のバランスが生み出す力である。電子流による第一の力は閉経路形状磁性体10の外周側端部にスキルミオン40を押し付け、第二の力はスキルミオン40を電子流とは略垂直である矢印の転送方向に転送する。
 スキルミオン40の駆動電流の方向と、スキルミオン40の転送方向とが略垂直である配置を横転送配置と定義する。これは先に定義した縦転送配置とは異なる。この横転送配置におけるスキルミオンの運動についての詳細は後述する。横転送配置の場合は、駆動電流とスキルミオンの方向が略平行の場合の縦転送配置のスキルミオンの転送速度に対して10~100倍の高速で転送することを可能にする。
 この結果、スキルミオンを情報単位として使うための課題であった、スキルミオンの転送速度の高速化、駆動電流密度の低減化を解決できる。この横転送配置をとる電流用の電極配置は細線の長さ方向に沿って備えればよい。これは横転送配置のメモリを利用する上で重要な電極配置を決めている。さらに、横転送配置は図3に示したように、スキルミオンを有する磁性体を細線構造の両端を接続した閉経路形状にすることによって、スキルミオンを周回転送することができる。
 これはスキルミオンを転送する場合、電流の流す方向で一意的に転送方向を決めることができる。図3に示したように、内周電極14から外周電極12方向の電子流方向の場合、スキルミオンはz方向の上からみて、常に時計回りに転送する。方向が決まった周回転送は書込み、読み出しの順番を決定し、書込み、読み出し時の情報のアドレスを一意的に決めることができる。特許文献1のレイストラック構造の場合は、書き込み時にドメインを左右の一方向に転送し、読み出し時はドメインを逆方向に転送しなければならない。
 スキルミオンが閉経路を周回する場合は、同じ方向の回転を維持しながら、情報を読み出すことが可能である。電子流を外周電極12から内周電極14に流してもよい。この場合はスキルミオンの転送方向は反時計回りとなり、スキルミオンは閉経路形状磁性体10の内周側端部に沿って周回転送する。
 また、スキルミオンの転送に必要な電流密度以上の所定の電流密度の電流を、閉経路形状磁性体10に印加することにより、閉経路形状磁性体10中に周回転送している複数のスキルミオンをすべて消去できる。つまり、電子デバイスのフラッシュメモリと同じ性能を有することができる。これも実用上大変大きな特徴である。スキルミオンメモリサーキットに印加する電流は、スキルミオンの生成(WRITE)や、消去(ERASE)、読み出し(WORD)時のみ必要である。待機時はスキルミオンを転送する必要はなく、消費電力はゼロである。
 電流経路16は、閉経路形状磁性体10の表面において、閉経路形状磁性体10の端部を含む端部領域を囲んで設けられる。電流経路用電源50は、電流経路16に電流を流すことで、当該端部領域に第2の磁場を印加する。例えば電流経路用電源50は、磁場発生部20が生成する第1の磁場とは逆向きの第2の磁場を発生させるように、電流経路16に電流を流す。
 端部領域においては、磁場発生部20が発生する第1の磁場の一部が、電流経路16に流れる電流による第2の磁場に相殺される。このとき、電流経路16に流れる電流により印加する第2の磁場は、磁場発生部20により印加する第1の磁場よりも弱い。これにより、端部領域には強磁性相に1個のスキルミオン40を生成する。スキルミオンを生成するには、スキルミオンメモリサーキット30に1か所の端部領域を形成すればよい。
 この結果、スキルミオンメモリサーキット30にデータを書き込むための書き込み線の本数を格段に少なくできる。スキルミオン40は周回転送しているので、生成したスキルミオン40が所定の距離転送したタイミングで、次のスキルミオン40を生成する。この結果、スキルミオンメモリサーキット内には多数のスキルミオン列が形成できる。
 実際のデバイスに使う場合、一つのメモリが数Kビットから数Mビットの情報を担うことから、1個のスキルミオンメモリサーキットにはスキルミオン数も数千個から数百万個が転送周回することになる。さらに数千個のスキルミオンメモリサーキットを平面状に配置し、数百Mビットから数Gビットの情報を記憶することで、大規模不揮発性メモリを実現できる。
 センサ72は、閉経路形状磁性体10の表面に対向して設けられる。磁気センサはTMR素子や磁気抵抗素子など各種のセンサからなる。センサ72は、対向する閉経路形状磁性体10の領域のスキルミオンを検出する。例えばセンサ72は、スキルミオンの有無で抵抗値が変化する。磁気センサの抵抗値の変化は磁気センサに流れる電流量を変化させる。測定部70は、センサ72の電流量を測定する。これにより、センサ72および測定部70は、スキルミオン40がセンサ72と対向する領域を通過したか否かを検出することができる。閉経路形状の磁性体上のスキルミオンを検知する磁気センサはすくなくとも1個でよい。この結果、読み込み用信号線は格段に少なくできる。
 次に、図2において説明したスキルミオン数Nsk=―1のナノスケール磁気構造体であるスキルミオンの運動を以下に記述する。
 図4は、閉経路形状磁性体10を用いたスキルミオンメモリサーキット30を示す。図4は、横転送配置でのスキルミオン40の運動を示すシミュレーション結果である。図4では、閉経路形状磁性体10、外周電極12、内周電極14、およびスキルミオン40を示している。ただし、電子流、センサ72、第2の電流経路16-2などを、理解しやすいようにシミュレーション結果に加え示した図である。また、外周電極12の外側には絶縁体161が配置されている。
 スキルミオン40は内周電極14から外周電極12に流れる電子流のマグナス力により電子流とは略垂直方向(大きな矢印)に転送する。閉経路形状磁性体10が閉経路形状を有するので、スキルミオン40は閉経路形状磁性体10を周回転送する。また、スキルミオン40を転送するための電子流の電流密度は小さくてもよく、下限値は存在しない。スキルミオン40の横転送速度は、縦配置のスキルミオンの転送速度より100~1000倍程度速い高速転送が可能である。これに対して、上述した縦配置のスキルミオンの転送には大きな電流密度が必要である。
 図3に示した磁場発生部20から発生する第1の磁場(紙面の裏面から表面への向き)は閉経路形状磁性体10を強磁性相にする。一度生成したスキルミオン40は、強磁性相においても安定して存在するので、スキルミオン40を情報記憶媒体に使うことができる。
 図3および図4に示すように、閉経路形状磁性体10の内周部を-電位の電極、外周部を+電位の電極とし、所定の電流を流せば、以下に詳細に述べるようにマグナス力により、スキルミオン40は電流の方向とは略垂直方向に高速で右回り(時計回り)に周回する。このスキルミオン40の磁気モーメントは閉経路形状磁性体10の表面から裏面まで図1で示したような渦構造を有していて、安定に存在する。磁性体端部の凹凸や、磁性体中の磁性不純物に対してその形状を保持しながら安定して移動する。
 閉経路形状磁性体10の表面に局所磁場を発生するコイル(第1の電流経路16-1)を設置し、コイル内に形成した磁場強度を制御することにより複数のスキルミオン40を生成もしくは消去可能である。
 また外周電極12および内周電極14の間の電流を、スキルミオン40の周回時に比べて増加させれば、閉経路形状磁性体10のスキルミオンメモリサーキット30上の複数のスキルミオン40を一挙に消去でき、メモリ情報の一括消去をすることも可能であり、消去時間の短縮化が可能である。
 さらにスキルミオン40を加減速できるコイル(第2の電流経路16-2)を備えることも可能である。周回しているスキルミオン40の位置をセンサ72で読み取り、必要なら第2の電流経路16-2に電流を流すことで位置を補正できる。
 スキルミオン40を生成できるスキルミオンメモリサーキット30は、閉経路形状磁性体10を用いる。閉経路形状磁性体10は、例えばカイラル磁性体であり、FeGeやMnSi等よりなる。閉経路形状磁性体10は、MBE(Molecular Beam Epitaxy)やスパッター等を用いて形成した磁性体薄膜に露光装置、エッチング装置、CMP(Chemical Mechanical Planarization)法を用いて形成できる。外周電極12及び内周電極14は、Cu、W、Ti、TiN、Al、Pt、Au等の導電性の非磁性金属よりなる。
 上述したように、閉経路形状磁性体10に対してプラスz方向の向きに磁場を印加した状態で、外周電極12から内周電極14の方向に閉経路形状磁性体10に電流を流すと、閉経路形状磁性体10の中のスキルミオン40は、閉経路形状磁性体10の外周電極12に隣接した縁部に沿って矢印の向き(スキルミオン流の向き)に移動する。
 こうしたスキルミオン40の運動は、以下の理論を用いて説明することができる。
 R=(X,Y)は磁気構造体(本例ではスキルミオン40)の中心位置を示す。VdはRの時間微分で磁気構造体の速度を示す。この磁気構造体の振る舞いは下記の[数3]で示す運動方程式に従う。
Figure JPOXMLDOC01-appb-M000003
 上記[数3]中、×は外積を示す。Vs=-ξjであり、伝導電子の速度を示している。また、ξ=2eM/(pa)であり、aは格子定数、Mは磁気モーメントの大きさ、pは伝導電子のスピン偏極である。第3項Fは電極(本例では外周電極12および内周電極14)と磁性体との境界、不純物、磁場等から磁気構造体に働く力である。
 磁気構造体の運動を特徴づけるマグナスベクトルGはz方向に沿った単位eであらわせ、G=geである。gはスキルミオン数を用いて、g=4πNskと表せる。Nskはスキルミオン数である。
 磁気構造体がスキルミオンの場合、スキルミオン数Nsk=±1である。スキルミオンの縦転送配置の場合、[数3]の第2項の散逸過程を無視することができる。αはギルバート減衰定数で、βは非断熱定数である。αおよびβは物質固有の定数である。そしてβ~αである。Dのテンソル成分DijはDxx=Dyy~4πでその他は0である。Nsk=±1のスキルミオンの場合、[数3]の第2項を無視することができ、Fが十分小さいとき、第1項のみ残り、Vd=Vsとなる。この時のVdは縦転送配置でのスキルミオンの転送速度であるのでVd(縦転送配置)=Vsとなる。
 一方、磁気構造体が、例えば特許文献1に開示されたドメイン磁壁の場合、スキルミオン数Nsk=0であり、g=0となり第1項はゼロとなる。そして、Fが十分小さいとき[数3]は第2項のみ残り、Vd=(β/α)Vsとなる。β~αなので、Vd~Vsとなる。ドメイン磁壁の速度は縦転送配置におけるスキルミオンの速度と同程度であることが判る。
 本発明の横転送配置ではスキルミオン40の移動速度が縦転送配置や磁壁の速度より大きくできることを以下に説明する。
 図3および図4において、電子の流れの向きをy軸、スキルミオンの流れの向きをx軸とする。このような横転送配置の場合、以下に示すような巨大なスピントランスファートルク効果が発生する。
 Vd(横転送配置)=(Vd、0、0)、Vs=(0、Vs、0)、F=(0、F、0)、G=(0、0、g)とすると、[数3]から[数4]が得られる。Vdはスキルミオンのx方向の速度、Vsは電子流のy方向の速度である。
Figure JPOXMLDOC01-appb-M000004
 この[数4]から[数5]が得られる。
Figure JPOXMLDOC01-appb-M000005
 g=-4π、D~4πであるから、以下の[数6]を得ることができる。
Figure JPOXMLDOC01-appb-M000006
 すなわち横転送配置でのスキルミオンの速度VdはVs/αである。縦転送配置でのスキルミオンの転送速度は、Vsである。αは0.01から0.001程度であるから、Vd~10Vsである。x方向のスキルミオン転送速度Vdは縦転送配置でのスキルミオンの転送速度Vsの10~10倍となる。これは、横電流配置の場合、スキルミオン40の速度は縦電流配置のスキルミオンの速度の100から1000倍にできることを示している。
 この結果は、必要なスキルミオン転送速度を固定した場合、横転送配置の電流密度は縦転送配置の電流密度の10-2~10-3に低減化できることを示している。縦転送配置での転送速度を秒速15mのスキルミオン転送速度の場合、2×1011Am-2の電流密度となることを先に述べた(非特許文献2)。横転送配置でのスキルミオン転送速度が同程度の場合、2×10~2×10Am-2程度になる。これは、縦転送配置における電流密度に比べて2桁程度小さい電流密度である。これは現時点でのLSI製造での配線の電流密度限界以下で十分低い電流密度で、所望の転送速度を得られることを示している。これはスキルミオンメモリデバイスが低消費電力デバイスとなりうるデバイスであることを示している。
 [数3]を用いることにより不純物などによるピンニング効果についても議論できる。すなわちFpinを[数3]に加えればスキルミオンの運動に対するピンニング効果は磁壁の場合に比べてβ倍程度と著しく軽減できることが判る。
 すなわち、ピンニング効果がスキルミオン速度に与える影響は小さく、散乱効果からの影響も小さい。この特徴も、メモリにスキルミオン転送方法を応用する際の大きなメリットとなる。
 以上から、スキルミオン40の移動速度は、横電流配置の場合、縦電流配置のスキルミオンの移動速度の100倍から1000倍となることが分かる。磁気ドメインの移動速度は縦電流配置の転送速度と同程度であることから、横電流配置でのスキルミオン移動速度は同様に磁気ドメイン壁の移動速度の100倍から1000倍となる。以上の結果、スキルミオン40をメモリ素子に応用する上の解決すべき課題であるスキルミオン転送速度の高速化、転送に必要な電流密度の低減化が実現できる。
 なお、磁性体が螺旋磁性を示すカイラル磁性体ではなく、ダイポール磁性体、フラストレート磁性体や磁性体と非磁性体を積層した構造であっても、上述した結論を適用することができる。ダイポール磁性体とは、磁気双極子相互作用が重要な磁性体である。
 フラストレート磁性体は、磁気不整合状態を好む磁気的相互作用の空間構造を含む磁性体である。磁性材料と非磁性材料との積層構造を有する磁性体は、磁性材料の非磁性材料に接する磁気モーメントを非磁性材料のスピン軌道相互作用により変調した磁性体である。上述した構成からなる本発明では、磁性体中で生成、転送する1又は複数のスキルミオンを消去することができる磁気素子としても具体化される。
 また、外周電極12から内周電極14への方向に、閉経路形状磁性体10に流れる電流を、スキルミオン40の転送時よりも大きくすることで、閉経路形状磁性体10に存在する1又は複数のスキルミオン40をすべて消去することもできる。スキルミオン40は、閉経路形状磁性体10に流れる電流とは逆方向に(電子の流れの方向に)、当該電流に応じた大きさの力を受ける。このため、当該電流を十分大きくすると、転送してきた全てのスキルミオン40が外周電極12と閉経路形状磁性体10との境界におけるポテンシャル障壁を越えて消滅する。したがって、電源52は、スキルミオン40の転送時においては、スキルミオン40が当該ポテンシャル障壁を越えない程度の電流を閉経路形状磁性体10に流し、スキルミオン40の一括消去時においては、スキルミオン40が当該ポテンシャル障壁を越える程度の電流を閉経路形状磁性体10に流す。
 また、図4に示したスキルミオンメモリサーキット30には、第1の電流経路16-1および第2の電流経路16-2が設けられる。第1の電流経路16-1は、スキルミオン40の発生および消去に用いられる。第2の電流経路16-2は、周回するスキルミオン40の加減速に用いられる。
 第1の電流経路16-1は、閉経路形状磁性体10の外周電極12側の端部を囲むように設けられる。上述したように、磁場発生部20は閉経路形状磁性体10を強磁性相にする。このため、閉経路形状磁性体10における磁気モーメントは、第1の磁場と同一の方向を向く。ただし、閉経路形状磁性体10の端部における磁気モーメントは、第1の磁場と同一の方向を向かず、第1の磁場に対して傾きを有している。このため、閉経路形状磁性体10の端部は他の領域に比べてスキルミオン40が生じやすい。閉経路形状磁性体10の端部を含む領域を囲むように、第1の電流経路16-1を設けることで、スキルミオン40を容易に生じさせることができる。
 なお、本例の電流経路16は、xy平面において、閉経路形状磁性体10の端部を、外周電極12側から閉経路形状磁性体10側に少なくとも1回横切り、且つ、閉経路形状磁性体10側から外周電極12側に少なくとも1回横切る連続した導電路を有する。これにより電流経路16は、閉経路形状磁性体10の端部を含む領域を囲む。電流経路16は、xy平面において閉じた領域を形成しなくてよい。電流経路16および端部の組み合わせが、閉経路形状磁性体10の表面において閉じた領域を形成すればよい。このように形成した第1の電流経路16-1に図4に示した矢印の方向に電流を印加する。この結果電流経路内には第1の磁場方向とは逆向きの磁場が発生し、電流経路内のz方向の磁場強度を弱める。この結果、電流経路内にスキルミオンを生成できる。
 一度発生したスキルミオン40は、強磁性相においても安定して存在するので、スキルミオン40を情報記憶媒体に使うことができる。発生したスキルミオン40は、外周電極12および内周電極14の間に流れる電流により、閉経路形状磁性体10のスキルミオンメモリサーキット30を周回転送する。また、周回転送したスキルミオン40が第1の電流経路16-1に到達したときに、第1の電流経路16-1に電流を流すことで、当該スキルミオン40を消去することができる。
 この消去方法はスキルミオンメモリサーキット30の外周電極12と内周電極14の間に流す電流によるスキルミオンメモリサーキット30上の複数の多数個スキルミオンを一括消去する方法とは異なる。第1の電流経路16-1に単発パルス電流を流すことで、特定のタイミングで第1の電流経路16-1が囲む端部領域に近づいた単一のスキルミオン40を消去する。つまり、当該消去方法はビット単位の消去法を提供する。
 スキルミオン40を個別に消去する場合、スキルミオン40が第1の電流経路16-1に近づいたタイミングで、第1の電流経路16-1にスキルミオン生成時より小さい電流を流す。その結果、第1の電流経路16-1に囲まれた端部領域の磁場は弱くなり周回してきたスキルミオン40の電流経路内への引力が発生する。この引力は渦構造をもつスキルミオン40に端部マグナス力を誘因し、その運動方向を曲げる。
 その結果、スキルミオン40は、外周電極12に向かう方向に移動する。マグナス力が十分大きければ、スキルミオン40は、閉経路形状磁性体10と外周電極12との境界におけるポテンシャル障壁を乗り越えて消滅する。以下、スキルミオン40の生成、転送、消去方法について実施例を通じて説明をする。
 [実施例1]
 実施例1においてスキルミオンの生成、転送のシミュレーション実験結果を示す。スキルミオンの磁気モーメントの運動は[数8]の運動方程式で記述できる。以下、断熱、非断熱スピントランスファートルク項をもつ下記の方程式を数値的に解く。
 [数8]
 dM/dt=-M×B eff+α/M・M×dM/dt
       +pa/2eM(j(r)・▽)M
           -(paβ/(2eM)[M×(j(r)・▽)M
 [数9]
 H=―JΣM・(Mr+ex+Mr+ey
  -DmΣ(M×Mr+ex・e+M×Mr+ey・e)-B・ΣM
 ここで、B eff=-(1/(hγ))(∂H/∂M)により、[数8]と[数9]とが関連付けられる。γ=gμB/h(>0)は磁気回転比である。hはプランク定数である。Mr=M・n(r)であり、Mは磁気モーメントを示す。n(r)は[数2]に示した、位置rにおけるスキルミオン40の磁気モーメントの向きを示す単位ベクトルである。上記[数8],[数9]中、Xは外積を示す。また、e、eは、x、y方向の単位ベクトルである。Mr+ex、Mr+eyはMに対して、x、y方向に単位ベクトル分異なる位置にある磁気モーメントを示す。
 ここで、[数9]で示したHなるハミルトニアンはカイラル磁性体の場合である。ダイポール磁性体やフラストレート磁性体、および磁性材料と非磁性材料との積層構造からなる磁性体に関してはこのHの表現をそれぞれの磁性体を記述するものに置換すればよい。
 図5は、閉経路形状磁性体10に用いたカイラル磁性体磁性相の磁場依存性を示した相図である。本実施例では、図5に示すHskおよびHfの条件でシミュレーション実験を行った。カイラル磁性体は磁場強度Hskによりらせん磁性相からスキルミオン結晶相(SkX)になり、さらに強い磁場強度Hfでスキルミオン結晶相(SkX)から強磁性相になる磁性体である。当該スキルミオン結晶相(SkX)においては、複数のスキルミオン40が最密構造に整列してxy平面内に発生する。
 次に、この磁性体の磁気交換相互作用の大きさをJとして、この量で規格した値で各種の物理量を記述する。この場合、低磁場ではらせん状の磁気モーメントの磁気構造をもつカイラル相から磁場強度Hsk=0.0075Jで、スキルミオン結晶相になる。スキルミオン40の直径λは、λ=2π√2・J×a/Dmで示せる。ここで、aは閉経路形状磁性体10の格子定数であり、Dmはジャロシンスキー・守谷相互作用の大きさで物質固有の物理常数である。したがって、スキルミオン直径λは物質固有常数となる。スキルミオン直径λは先行技術文献1に見るようにたとえばFeGeでは70nm、MnSiでは18nmである。
 本実施例で用いられている閉経路形状磁性体10は、カイラル磁性体で、Jは磁気交換相互作用の大きさで1meVである。ジャロシンスキー・守谷相互作用の大きさはDm=0.18J、磁気モーメントM=1、ギルバート減衰係数α=0.04である。例ではDm=0.18Jであるから、λ=50aとなる。閉経路形状磁性体10の格子定数a=0.5nmの場合、λ=25nmのサイズである。さらに、本実施例で用いられているカイラル磁性体では、磁場強度Hf=0.0252Jでスキルミオン結晶相から強磁性相になる。
 スキルミオン40の移動の向きと、外周電極12および内周電極14から流れる電流の向きとの方位関係は重要である。スキルミオン40の転送の向きと電流の向きは略垂直の向きに配置している横転送配置である。
 スキルミオン40の生成、転送のシミュレーション実験では図4に示したように電子流は内周電極14から外周電極12に流す。本例では、その電流密度は0.001ξjである。ξは電流密度を無次元化する定数であり、jは無次元化した電流密度である。初期状態ではスキルミオン40はスキルミオンメモリサーキット上に存在していない。
 閉経路形状磁性体10には、裏面に置かれた磁場発生部20(例えば強磁性体薄膜)からの第1の磁場Hが裏面から表面(プラスz方向)に印加されている。この第1の磁場はスキルミオン結晶相と強磁性相との境界であるH=0.0252Jよりすこし大きいH=0.03Jである。したがって、スキルミオンメモリサーキットを形成する閉経路形状磁性体10は強磁性相で、その磁気モーメントはプラスz方向に向いた状態である。
 図4で示したように、閉経路形状磁性体10上には、電流経路16が設けられる。電流経路16の形状は、コイルのように多層回巻いたコイル状でもよい。第1の電流経路16-1は、閉経路形状磁性体10の外周部側端部を含むように配置する。第1の電流経路16-1に囲まれた領域を端部領域Aとする。端部領域Aでの磁場強度をHaとする。第1の電流経路16-1は、閉経路形状磁性体10と電気的に絶縁していてもよい。図4に示した方向に第1の電流経路16-1にコイル電流を流す。このコイル電流は端部領域にマイナスz方向に第2の磁場を発生させる。このコイル電流が誘起した第2の磁場は、磁場発生部20からの一様の第1の磁場の方向とは逆方向であるので、端部領域のプラスz方向の磁場Haを弱くする。この結果、端部領域Aにスキルミオン40を生成することが可能となる。電流経路16-1が端部領域Aを含まない場合はスキルミオンを生成できない。
 シミュレーション実験での端部領域での磁場強度の時間変化を図6に示した。閉経路形状磁性体10に印加した第1の磁場HがHfより大きく、閉経路形状磁性体10が強磁性相になっている状態から開始する。本例では、磁場発生部20からの第1の磁場はプラスz方向で、磁場強度H=0.03Jである。この場合、閉経路形状磁性体10は全体が強磁性相なのでスキルミオンは発生しない。端部領域の磁場も同様に0.03Jである。
 次に、第1の電流経路16-1に電流を流し始める。端部領域の磁場Haは、コイル電流によって発生した第2の磁場により減少する。t=1000(1/J)で、端部領域の磁場は、Ha=0.01Jになる。その後t=2000(1/J)まで、Ha=0.01Jを保持する。コイル電流を減少させ、t=3000(1/J)で、コイル電流をOFFにする。この場合、端部領域の磁場は、Ha=0.03Jとなる。この状態でt=10000(1/J)まで保持する。t=10000(1/J)で再びコイル電流を流す。このコイル電流パルスの印加を4回繰り返す。なお、t=50000(1/J)以降に存在する2つのコイル電流パルスは、スキルミオン40の消去用の電流パルスである。
 上述したコイル電流パルスの印加を4回繰り返した場合のスキルミオン40の生成に関するシミュレーション実験の実施例を7から図12に示す。また、以下の図において互いに交差するn、nの軸で表現した濃淡は、n、nの軸上で表現した磁気モーメントの向きを示している。また、図7から図12の例において、第1の電流経路16-1で囲まれた端部領域のサイズは、閉経路形状磁性体10の幅方向および長さ方向と同一方向における幅W1、長さL1が、スキルミオン40の直径λに対してW1=0.75・λ、L1=0.5・λである。なお、当該端部領域の長さは、閉経路形状磁性体10の端部と平行な長さである。
 図7は、スキルミオンメモリサーキット30を周回転送するスキルミオン運動の時刻1300/Jでのミュレーション結果を示す図である。強磁性相の閉経路形状磁性体10からなるスキルミオンメモリサーキット上において、スキルミオン40が生成しつつある。図7に示すように、閉経路形状磁性体10は全体的に強磁性相なので、濃淡を白で表示している。ただし、閉経路形状磁性体10の端部は、強磁性相においても磁気モーメントの向きが傾くので、濃淡が生じている。
 図8はt=1850(1/J)の状態を示す。閉経路形状磁性体10に、ほぼ完全にスキルミオン40が形成されている。すなわち、スキルミオン40の生成には、1000(1/J)程度の時間でよいことがわかる。本例において1000(1/J)は、0.3ナノ秒程度であり、スキルミオン40の生成を、超短パルスで実現できることを示している。
 図9はt=6550(1/J)で、コイル電流がゼロの状態を示す。コイル電流が十分小さくなると、外周電極12および内周電極14の間の定常電流密度0.001ξjの電子流により、電子流とは略垂直に時計回りにスキルミオン40を転送する。
 図10はt=9200(1/J)の状態を示す。スキルミオン40をさらに下流に転送している。
 図11はt=11450(1/J)で、第1の電流経路16-1に2回目のコイル電流パルスを印加した状態を示す。図7と同様に、2個目のスキルミオン40が形成しつつある。
 図12はt=31450(1/J)の状態を示す。4回目の電流パルスを印加して、4個目のスキルミオン40の形成が終了した直後である。図4に示したように、閉経路形状磁性体10のスキルミオンメモリサーキット30がカーブしている箇所では、電子流の向きもカーブに沿って外周側端部接線に略垂直の方向となり、スキルミオン40の転送方向は電子流と常に略垂直の方向に進むので、スキルミオン40はカーブする。この結果スキルミオン40は閉経路形状磁性体10の外周端部から飛び出すことなく周回転送する。
 以上のように、端部領域を囲む第1の電流回路16-1に電流パルスを与え、端部領域Aの磁場強度を小さくすることで、スキルミオン40を形成できる。シミュレーション実験から、本条件においてスキルミオン40を生成するための条件は下記である。
(条件1) スキルミオンを生成するための条件として、端部領域Aのサイズは、幅W1はスキルミオンの直径λに対して下記の範囲が最適である。
  0.75λ≧W1>0.2λ
(条件2) スキルミオンを生成するための条件として、端部領域Aのサイズは、閉経路形状の磁性体の端部と平行な長さであるL1が、スキルミオンの直径λに対して端部領域の高さL1は下記の範囲が最適である。
  0.5λ≧L1>0.1λ
(条件3) スキルミオンを生成するための条件は、端部領域Aの磁場強度Haは下記範囲が最適である。
  Ha≦0.01J
 なお、Ha>0.01Jの場合、スキルミオン40は生成しない。
 この条件を満たす電流パルスを、第1の電流経路16-1に順次与えれば、所望の時間にスキルミオン40を形成できる。第1の電流経路16-1に電流パルスを流す方向(第1の方向)は、当該電流によって生じる磁場の方向が、磁場発生部20が発生する磁場とは逆向きになる方向である。図7から図14のシミュレーションでは、スキルミオンを4個生成する実施例を示した。生成したスキルミオンの運動は十分早く定常速度に達する。閉経路形状磁性体10の電子流の密度はほぼ一定なので、スキルミオン40は等速運動し、スキルミオン40の間隔が一定に保持できる。この転送速度は電極間の電流密度で決定される。スキルミオンメモリデバイス100が保存する情報の「1」「0」は、スキルミオン40の有り無しに対応させればよい。閉経路形状磁性体10における所定の間隔の場所にスキルミオン40が無い場合も、当該間隔を保持する。
 周回転送する複数のスキルミオン40の間隔dは、スキルミオンの直径をλとしたとき、
                d≧0.5・λ
 であってよい。これよりも間隔dが小さいと、スキルミオン40を分離して検出することが困難であり、また、スキルミオン40の間の反発力によりスキルミオン40が移動する場合もある。なおスキルミオン40の間隔とは、スキルミオン40の端部間の最短距離を指す。
 周回転送するスキルミオン40の間隔dは、
                d≧2・λ
 であることが好ましい。このような間隔dでスキルミオン40を配置することで、複数のスキルミオン40は間隔dを維持しつつ周回転送できる。
 [実施例2]
 次に、閉経路形状磁性体10のスキルミオンメモリサーキット上に形成したスキルミオン消去のシミュレーション結果を、図13から図17に示す。また、実施例1と同様に、図13から図17の例において、第1の電流経路16-1で囲まれた端部領域のサイズは、幅W1は0.75λ、長さL1は0.5λとする。実施例2は、図6の時刻t=50000(1/J)以降に相当する。
 図13は、t=58100(1/J)の状態を示す。図12において生成した4個のスキルミオンが安定して周回している。
 図14は、t=83150(1/J)の状態を示す。1つのスキルミオン40が第1の電流経路16-1に到達している。第1の電流経路用電源50は、t=83150(1/J)で、消去用のコイル電流を流し始める。本例において、消去用のコイル電流の向きは、スキルミオン40の生成用のコイル電流の向きと同一である。また、消去用のコイル電流のピーク値は、生成用のコイル電流のピーク値より小さい。消去用のコイル電流のピーク値は、当該電流により新たなスキルミオン40が生成しない程度の大きさである。本例において、消去用のコイル電流のピーク値は、生成用のコイル電流のピーク値の半分程度である。
 端部領域の磁場Haは、コイル電流によって発生した第2の磁場により減少する。このときの端部領域の磁場Haは、0.03Jから0.02Jに変動する。上述したように、当該磁場によりスキルミオン40は外周電極12の方向に移動して、消去される。消去時に第1の電流経路16-1に流す電流は、周回転送してくるスキルミオン40が閉経路形状磁性体10の境界のポテンシャル障壁を乗り越えることができる程度の大きさを有する。この消去方法は[数3]により次のように理解できる。周回転送してくるスキルミオン40は端部領域に近接する。この時、端部領域の磁場Haは0.03Jから0.02Jに減少することから、スキルミオン40を端部領域に引き寄せるように引力が働く。するとマグナス力の為に、スキルミオン40は閉経路形状磁性体10の端部方向へ速度を増加させて運動する。この運動により端部ポテンシャルを飛び越えスキルミオン40は消去される。
 図15は、t=86700(1/J)の状態を示す。スキルミオン40が3個転送している。
 図16は、t=104300(1/J)の状態を示す。周回していた1つのスキルミオンが、第1の電流経路16-1に到達している。この状態で、第1の電流経路16-1に消去用のコイル電流パルスを印加することで、当該スキルミオン40を消去する。
 図17は、t=116800(1/J)の状態を示す。周回していた1つのスキルミオン40がコイルに到達するが、第1の電流経路16-1にコイル電流パルスを印加しないので、そのまま、消去することなく通過する。その後は残った2個のスキルミオン40の周回がそのまま継続する。
 以上、転送してくるスキルミオン40が、第1の電流経路16-1に到達したタイミングで消去できることをシミュレーション結果でしめした。このときの端部領域の磁場はHa=0.02Jである。スキルミオン消去用の電流パルス時間は、生成時間とおなじ0.3ナノ秒である。
 また、本例において、消去時における端部領域の磁場Haの適切な範囲は、0.024J≧Ha>0.01Jである。Ha>0.024Jの場合、スキルミオンは消去されずに通過してしまう。0.01J以下になると新たなスキルミオン40が生成してしまう。
 以上のシミュレーション実験から、本条件において転送してくるスキルミオン40を消去するための条件は下記である。
(条件4) 周回転送してくるスキルミオンを消去するための条件は、端部領域の閉経路形状磁性体10の端部と平行な長さであるL1は下記の範囲が最適である。
 0.5λ≧L1>0.1λ
(条件5) 周回転送してくるスキルミオンを消去するための条件は、閉経路形状磁性体10の幅方向と同一方向の、端部領域の幅W1は下記の範囲が最適である。
 0.75λ≧W1>0.2λ
(条件6) 周回転送してくるスキルミオンを消去するための条件は、端部領域の磁場強度Haは下記範囲が最適である。
 0.024J≧Ha>0.01J
 この条件を満たす電流パルスを、第1の電流経路16-1に所定のタイミングで与えれば、スキルミオン40を消去できる。本例において第1の電流経路16-1に電流パルスを流す方向(第2の方向)は、当該電流によって生じる磁場の方向が、磁場発生部20が発生する磁場とは逆向きになる方向である。本例において、スキルミオン40を生成するときに電流パルスを流す方向と、スキルミオン40を消去するときに電流パルスを流す方向とは同一である。
 端部領域の閉経路形状磁性体10の端部と平行な長さであるL1が、実施例2の0.5λより小さい(例えばW1=0.3λ)場合、第1の電流経路16-1に流すコイル電流を、実施例2よりも大きくすれば、スキルミオン40を消去できる。また、閉経路形状磁性体10の幅方向と同一方向における端部領域の長さである幅W1が0.75λより大きい場合、スキルミオン40を消去できない。端部領域の幅W1が、実施例2の0.75λより小さい(例えばh=0.4λ)場合、磁場Haを0.01Jに近い値にすれば消去できる。W1=0.2λの場合は磁場Haを0.01Jとしても消去できない。
 [実施例3]
 閉経路形状磁性体10のスキルミオンメモリサーキット上の複数のスキルミオン40を、横転送配置での外周電極12と内周電極14との間の電流により一括消去が可能であることを、図18および図19のシミュレーション結果で示す。図18は、外周電極12から内周電極14の方向に、閉経路形状磁性体10を流れる電流の電流密度の一例を示す図である。本例では、スキルミオン40が閉経路形状磁性体10のスキルミオンメモリサーキット30を周回する周回転送のための電流密度を0.001ξjとしている。スキルミオン40を一括消去する場合、閉経路形状磁性体10に流す電流の電流密度を、横転送配置において転送に必要な電流密度0.001ξjから0.002ξjにさらに上げる。電流密度を0.002ξjまで上げるのにかかる時間は1000(1/J)である。その後、t=6000(1/J)まで、電流密度を0.002ξjに維持する。t=6000(1/J)からt=7000(1/J)にかけて、電流密度を0.002ξjから定常電流密度の0.001ξjに戻す。
 図19は、2個のスキルミオン40が閉経路形状磁性体10に存在するシミュレーション結果を示す。なお図19では、閉経路形状磁性体10のスキルミオンメモリサーキット30の一部を抜き出している。
 t=0において、2個のスキルミオン40が閉経路形状磁性体10を転送している。図18に示すように、閉経路形状磁性体10に流れる電流の電流密度を上昇させる。これにより、横転送配置で転送してきたスキルミオン40は、外周電極12の方向に力をうける。t=7000(1/J)において電流密度が定常電流密度になった後も、スキルミオン40は定常電流密度により移動する。t=8000(1/J)で、2個のスキルミオン40は、外周電極12に近接する。t=11000(1/J)では、2個のスキルミオン40は、既に外周電極12に吸い込まれて消去されている。電流密度の増加開始から、スキルミオン40の消去完了まで、約3ナノ秒である。短時間で閉経路形状磁性体10上のスキルミオンをすべて消去できる。
 以上のように、横転送配置において、外周電極12から内周電極14の方向に電流を流し、スキルミオンメモリサーキット30上のすべてのスキルミオン40を一括消去できる。シミュレーション実験から、本条件においてスキルミオンメモリサーキット30上のすべてのスキルミオン40を消去するための条件は下記である。
 (条件7)該当するスキルミオンメモリサーキット30上のすべてのキルミオンを消去するための条件は、スキルミオンメモリサーキット30を形成する外周電極12から内周電極14に流す電流密度Jcを、スキルミオン40を周回転送する電流密度をJdとすると、JcはJdの2倍以上の電流密度である。また、印加時間は6000(1/J)(=2ナノ秒)以上であることが好ましい。すなわち、下記の条件である。
         Jc≧2・Jd かつ t≧6000(1/J)
 この一括消去法はスキルミオンメモリデバイス100を用いる場合、大変重要な性能を提供する。個々のスキルミオン40を選択してスキルミオン40を消去する機能のみでは消去時間が長くなる。上述した一括消去法は、長い消去時間を一挙に解決する。特定のスキルミオンメモリサーキット30の複数のスキルミオン40を一括消去できる。また、複数のスキルミオンメモリサーキット30からなるブロックにおいても、各ブロックのスキルミオン40を一括消去できる。
 [実施例4]
 図20に、第2の電流経路16-2を用いたスキルミオン40の転送速度の調整例を示す。第2の電流経路16-2を用いることで、周回しているスキルミオン40の間隔などを調整することができる。なお図20では、スキルミオンメモリサーキット30における閉経路形状磁性体10の一部を抜き出している。図20に示す閉経路形状磁性体10の2つの長辺は、外周電極12および内周電極14に接続する。ただし図20においては、第2の電流経路16-2の周辺の閉経路形状磁性体10の上下を図4とは反転させている。つまり、図20に示す閉経路形状磁性体10の上側に外周電極12が接続し、下側に内周電極14が接続する。
 閉経路形状磁性体10の外周電極12側の端部に、当該端部の延展方向に長い端部領域を囲む、第2の電流経路16-2を設置する。コイル電流により、当該端部領域内の磁場強度を制御することにより、転送してくるスキルミオン40を加減速することができる。
 図3および図4に示すように、スキルミオンメモリサーキット30の閉経路形状磁性体10にセンサ72を設置する。センサ72は、磁気抵抗センサであってもよいしトンネル磁気抵抗素子であってもよい。第2の電流経路用電源50は、センサ72からの信号をモニターして、第2の電流経路16-2に印加するコイル電流を制御する。
 図20は、第2の電流経路16-2に流すコイル電流が0の場合、コイル電流が+αの場合およびコイル電流が-αの場合の3通りのスキルミオン40の動作を示している。なお、コイル電流が+αの場合、当該電流によって端部領域Aに印加する第2の磁場は、磁場発生部20が印加する第1の磁場と同一の向きである。また、コイル電流が-αの場合、当該電流によって端部領域Aに印加する第2の磁場は、磁場発生部20が印加する第1の磁場とは逆向きである。
 本例では、コイル電流が0の場合、第2の電流経路16-2に囲まれた端部領域の磁場は、磁場発生部20が生成したHa=0.03Jである。コイル電流が+αの場合、当該電流による第2の磁場が加算されてHa=0.04Jとなる。コイル電流が-αの場合、当該電流による第2の磁場と磁場発生部20による第1の磁場とが相殺されてHa=0.02Jとなる。
 図20には、上記の3ケースについて、t=0およびt=6000の2つの状態を示している。それぞれのケースにおいて、t=0の状態でスキルミオン40は同一の位置に存在している。これに対して、t=6000の状態(スキルミオン40が第2の電流経路16-2の近傍を通過した状態)においては、それぞれのスキルミオン40の位置が異なっている。上記の3ケースでは、コイル電流がゼロのスキルミオン40に対して、コイル電流が+αの場合にはスキルミオン40が加速しており、コイル電流が-αの場合にはスキルミオン40が減速している。つまり、第2の電流経路16-2に囲まれる端部領域の磁場を強くすると近傍を通過するスキルミオン40を加速でき、弱くすると減速できることを示している。本例では、閉経路形状磁性体10の幅方向と同一方向における第2の電流経路16-2の長さである幅W2と、閉経路形状磁性体10の端部と平行な方向における第2の電流経路16-2の長さであるL2を、スキルミオン40の直径λに対してL2=2λ、W2=0.2λとした。なお、スキルミオン40は、閉経路形状磁性体10に流れる電子流により、電子流とは略垂直の方向に外周電極12側に寄って、閉経路形状磁性体10を周回する。このため、第2の電流経路16-2は、外周電極12側の閉経路形状磁性体10の端部に設けられることが好ましい。
 以上のように、第2の電流経路16-2を用いてスキルミオン40の転送速度を調整できる。シミュレーション実験から、本条件において第2の電流経路16-2を用いて当該端部領域内の磁場強度を制御することにより、スキルミオン40を加減速するための条件は下記である。
 (条件8)スキルミオンメモリサーキット30上の該当するスキルミオン40の転送を加速するためには、該当するスキルミオン40がコイル(本例では第2の電流経路16-2)に達した時点で、端部領域においてコイルによる磁場を磁場発生部20と同じ方向に印加するようにコイル電流を印加すればよい。コイル電流の大きさにより加速強度を制御できる。
 (条件9)スキルミオンメモリサーキット30上の該当するスキルミオン40の転送を減速するためには、該当するスキルミオン40がコイル(本例では第2の電流経路16-2)に達した時点で、端部領域においてコイルによる磁場を磁場発生部20と逆方向に印加するようにコイル電流を印加すればよい。コイル電流の大きさにより減速強度を制御できる。
 (条件10)
 第2の電流経路16-2の幅W2と長さL2は以下であることが好ましい。
           0.2・λ≧W2、且つ、L2≧λ
 これにより、スキルミオン40を適切に加減速できる。
 以上、実施例1~4において、スキルミオンメモリデバイス100での磁場および電流印加によるスキルミオン40の生成、周回転送、消去、一括消去および加減速のシミュレーション実験を示した。また、スキルミオン生成、消去、一括消去のための設計デザインルールを、(条件1)から(条件10)で明らかにした。このルールはスキルミオンメモリデバイス100を設計するためのルールを定めたもので有用である。
 また、以上の機構は閉経路形状磁性体10の磁性を特徴づける磁気交換相互作用Jとスキルミオンサイズλの二つの量で規格化した量として表現している。λはλ=2π√2・J×a/Dmでジャロシンスキー・守谷相互作用Dmと関係づけられる。したがって各種のカイラル磁性体に適用可能な設計ルールとして表現されていて適用範囲は広い。
 図21AからCに、第1の電流経路16-1の形状例を示す。図21Aは、図3等に示した例と同一である。図21Bに示すように、第1の電流経路16-1は、楕円、円または長円の一部である端部領域を囲んでよい。図21Cに示すように、第1の電流経路16-1は、円、四角形、その他の図形を組み合わせた形状の端部領域を囲んでよい。
 図22は、第1の電流経路16-1が多層巻コイルの場合を示す。スキルミオン消去時の磁場強度増大用に多層巻コイル構造は有効である。この例以外にも類似の電流経路形状が考えられ、この例に限定するものではない。
 図23は、複数個のスキルミオンメモリサーキット30を有するスキルミオンメモリデバイス100を示す模式図である。図23から図25においては、スキルミオンメモリサーキット30におけるセンサ72および電流経路16の表示を省略している。スキルミオンメモリサーキットNの閉経路形状磁性体10には多数のスキルミオン40が矢印の方向に等速で周回している。1チップのメモリデバイスには、図23に示したスキルミオンメモリサーキットをN個形成してよい(Nは1以上の整数)。例えば当該メモリデバイスには、図3に示したスキルミオンメモリデバイス100をN個形成してよい。N個のスキルミオンメモリサーキットにおいて、それぞれのスキルミオンメモリサーキット30は同一の基板に設けられてよく、独立した基板に設けられてもよい。また、N個のスキルミオンメモリサーキットに対して、磁場発生部20は共通に設けられてもよい。N個のスキルミオンメモリサーキットを、メモリデバイスにおいてxy平面に平行な同一層に形成してよく、z軸方向に積層した複数の層に形成してもよい。
 図24は、一つのスキルミオンメモリーキット30がジグザグに折り返すジグザグパターンを有する例を示す模式図である。本例のスキルミオンメモリーキット30は、図23に示した複数のスキルミオンメモリーキット30のように平行に設けられた複数の直線部分と、各直線部分の端部を接続する円弧状の接続部分を有する。隣接する直線部分の上端および下端を交互に接続することで、ジグザグパターンを形成する。本例のスキルミオンメモリーキット30における閉経路形状磁性体10は、ジグザグパターンを形成する直線部分および接続部分のそれぞれにおいて、スキルミオン40の移動方向が反対の経路を形成する。また、ジグザグパターンの両端において、当該2つの経路を接続して1つのループを形成する。本例のようなパターンを用いれば容易に長いスキルミオンメモリサーキットを形成できる。長いスキルミオンメモリサーキット30を形成することで、1つのスキルミオンメモリサーキット30に多数のスキルミオン40を形成することが可能になり、より多くの情報を保存することができる。
 図25は、コイル状のスキルミオンメモリサーキット30を示す模式図である。本例のスキルミオンメモリサーキット30は、z軸方向に螺旋が延びる。本例のスキルミオンメモリサーキット30における閉経路形状磁性体10は、図24の例と同様に、コイルを形成するそれぞれの部分において、スキルミオン40の移動方向が反対の経路を形成する。また、コイル形状の両端において、当該2つの経路を接続して1つのループを形成する。この場合、3次元的に上方に周回スキルミオンメモリサーキット30が伸びていくことから、集積度を飛躍的に増加させることができる。
 以上のようにスキルミオンメモリサーキットの形状は各種考えられる。このスキルミオンメモリサーキット形状は、上記の例に限定されないことは明らかである。
 なお、カイラル磁性体での実施例の効果は、定性的にはダイポール系磁性体であっても、またフラストレート磁性体であっても、或いは磁性材料と非磁性材料との積層構造からなる磁性体であっても同様に奏するものである。
 このように、スキルミオンメモリデバイス100の構造およびシミュレーション結果は、スキルミオン40の生成、周回転送、消去、加減速および一括消去方法の最適の設計指針を与える。その設計ルールは閉経路形状磁性体10の磁性を特徴づける磁気交換相互作用Jとスキルミオンサイズλの二つの量で記述できた。各種の磁性材でも共通の設計指針を与えことができたことは、スキルミオン40を用いたスキルミオンメモリサーキット30を実用化する上で大きなインパクトをもたらすと期待できる。
 図26は、スキルミオンメモリデバイス110の断面構造を示す。スキルミオンメモリデバイス110は、図1から図25において説明したスキルミオンメモリデバイス100を含む。スキルミオンメモリデバイス110は、強磁性体層である磁場発生部20及び磁場発生部20の上方に形成したスキルミオンメモリサーキット30を備える。
 本例のスキルミオンメモリサーキット30は、図3等に示したスキルミオンメモリサーキット30に対応する。ただし、図26以降の図においては、電流経路16およびセンサ72を省略する場合がある。なお、電流経路16およびセンサ72の少なくとも一部分は、図26等に示す積層構造内に形成してよい。本例のスキルミオンメモリサーキット30は、磁性体層160、磁性体保護層165、第1配線層170及び第2配線層175の順に積層した積層構造を有する。
 磁性体層160は、閉経路形状磁性体10、絶縁体161、外周電極12及び内周電極14を有する。閉経路形状磁性体10において、スキルミオン40を生成及び消去する。絶縁体161は、閉経路形状磁性体10、外周電極12及び内周電極14を囲む。閉経路形状磁性体10、外周電極12及び内周電極14は、スキルミオン磁気媒体の基本構造である非磁性体金属(Nonmagnetic Metal)、磁性体(Magnetic Material)及び非磁性体金属(Nonmagnetic Metal)を連結した構造を有する。当該構造を、略してNMN構造と称する。磁性体層160は、同一層内に複数のNMN構造を備えてよい。
 磁性体保護層165は、磁性体保護膜166及び第1ビア167を有する。磁性体保護膜166は、磁性体層160を保護する。第1ビア167は、外周電極12及び内周電極14に、動作用の電流を供給する。
 第1配線層170は、第1配線171、第1配線保護膜172及び第2ビア173を有する。スキルミオンメモリサーキット30の電極等を、スキルミオンメモリサーキット30の外部と電気的に接続する。また、第1配線171の一部は、電流経路16として機能してもよい。第1配線保護膜172は、第1配線171及び第2ビア173を形成するための層間絶縁膜として機能する。電流経路用の配線と、非磁性金属に接続する配線の2種類の配線を同一層内で、互いが交差せずに引き回すのは困難である。そのため、第1配線層170上に第2配線層175を形成してもよい。
 第2配線層175は、第2配線176及び第2配線保護膜177を有する。第2配線176を第2ビア173と接続する。第2配線保護膜177は、第2配線176を絶縁するための層間絶縁膜として機能する。例えば、第2ビア173は、電流経路用の配線と、非磁性金属に接続する配線の2種類の配線のうち少なくとも一方に接続する。
 閉経路形状磁性体10中に、ドットつき四角形でスキルミオン40を図示した。第1配線171等により形成する電流経路16に電流を流すことで、閉経路形状磁性体10中にスキルミオン40を生成できる。
 図27は、スキルミオンメモリデバイス110の断面構造の他の例を示す。スキルミオンメモリデバイス110は、スキルミオンメモリデバイス100及びFET(Field Effect Transistor、電界効果トランジスタ)90を備える。FET90が存在しないシリコン基板上にスキルミオンメモリデバイス100を形成する。
 FET90は、一般的なシリコンプロセスにより形成する一般的なFETである。本例のFET90は、2層のCu配線層を有する。また、FET90は、P型基板上に形成したPMOS-FET91及びNMOS-FET92を含むCMOS回路を備える。FET90はスキルミオンメモリサーキット30の配線をスイッチするために必要である。またCMOS回路は磁気センサからの電流を電圧に変換し、電圧増幅回路としても設けてよい。
 図28は、スキルミオンメモリサーキット30をn層積層したスキルミオンメモリデバイス110を示す。本例のスキルミオンメモリデバイス110は、n=12の場合である。磁場発生部20は、3000Åの膜厚を有する。スキルミオンメモリサーキット30は、スキルミオンメモリサーキット30-1からスキルミオンメモリサーキット30-nまで積層した構造を有する。本例のスキルミオンメモリサーキット30は、合計15000Åの膜厚を有する。
 図29は、複数の磁場発生部20を有するスキルミオンメモリデバイス110を示す。本例のスキルミオンメモリデバイス110は、スキルミオンメモリサーキット30-1からスキルミオンメモリサーキット30-8までの合計8層のスキルミオンメモリサーキット30を有する。スキルミオンメモリデバイス110は、磁場発生部20-1上に、4層のスキルミオンメモリサーキット30を有する。スキルミオンメモリデバイス110は、スキルミオンメモリサーキット30-4とスキルミオンメモリサーキット30-5との間に磁場発生部20-2をさらに有する。これにより、スキルミオンメモリサーキット30は、磁場発生部20から受ける磁場の強度を一定に保つことができる。磁場発生部20は、スキルミオンメモリサーキット30の材料等に応じて適当な間隔で配置してよい。
 図30は、スキルミオンメモリデバイス100をCMOS-FET90の上層に搭載したスキルミオンメモリデバイス110の断面図を示す。スキルミオンメモリデバイス110は、スキルミオンメモリデバイス100及びCPU機能を構成するCMOS‐FET90を備える。CMOS‐FET90上にスキルミオンメモリデバイス100を形成する。本例のCMOS‐FET90は、P型基板上に形成したPMOS-FET91及びNMOS-FET92を有する。
 図31は、スキルミオンメモリデバイス110の一例であるメモリ回路120を示す図である。本例のスキルミオンメモリデバイス110は、図3に示したスキルミオンメモリサーキット30を、マトリックス状に複数備える。図31では、マトリックスの複数の列および行のうち、第n-1列、第n列、第m-1行および第m行のみを示している。
 メモリ回路120は、各列に設けた書込み線93、第1選択線94およびワード線95、ならびに、各行に設けた第2選択線96を備える。また、メモリ回路120は、各線毎に設けたスイッチ(83、84、85、86)を備える。本例において各スイッチはFETである。
 各列の第1選択線94は、当該列のスキルミオンメモリサーキット30のそれぞれの外周電極12に接続する。それぞれのスキルミオンメモリサーキット30における外周電極12は、複数の位置で第1選択線94と電気的に接続してよい。スイッチ84は、オン状態になった場合に、対応する列のそれぞれの外周電極12に所定の電圧を印加する。
 各行の第2選択線96は、当該行のスキルミオンメモリサーキット30のそれぞれの内周電極14に接続する。それぞれのスキルミオンメモリサーキット30における内周電極14は、複数の位置で第2選択線96と電気的に接続してよい。スイッチ86は、オン状態になった場合に、対応する行のそれぞれの内周電極14に所定の電圧を印加する。
 スイッチ84およびスイッチ86により、任意のスキルミオンメモリサーキット30を選択することができる。スイッチ84およびスイッチ86により選択したスキルミオンメモリサーキット30の外周電極12および内周電極14の間には所定の電流が流れる。これにより、閉経路形状磁性体10に存在する多数のスキルミオン40は、一定の間隔を維持しつつ、一定の速度で閉経路形状磁性体10を周回する。これにより、任意のスキルミオンメモリサーキット30を選択して、スキルミオン40を転送できる。
 書込み線93は、それぞれの列のスキルミオンメモリサーキット30の第1の電流経路16-1を直列に接続する。つまり、一つのスキルミオンメモリサーキット30に配線した書込み線93は、他のスキルミオンメモリサーキット30に配線した書込み線93と共通の線である。スイッチ83は、オン状態になった場合に、対応する列の書込み線93に所定の書込み電流パルスを流す。つまり、直列に接続されたそれぞれの第1の電流経路16-1に、書込み電流パルスが流れる。
 これにより、当該列のそれぞれのスキルミオンメモリサーキット30には、スキルミオン40が発生する。まず、書き込みに必要な複数のスキルミオンメモリサーキット30の列の第1の電流経路16-1に電流を印可する。選択された複数のスキルミオンメモリサーキット30の列に1個のスキルミオン40が発生する。このスキルミオン40はデータの先頭を示すヘッダパターンである。このヘッダパターンは複数のスキルミオン40であってもよい。
 次に、データを書き込みたいスキルミオンメモリサーキット30を、スイッチ84およびスイッチ86を用いて選択する。スキルミオン40は、閉経路形状磁性体10を周回し始める。ヘッダパターンを示すスキルミオンが第1の電流経路16-1を通過した後、データパターンに応じたタイミングで書込み電流パルスを流す。ヘッダパターンを先頭に付加して、データパターンに応じたスキルミオン40のパターンを、閉経路形状磁性体10に発生させることができる。
 これにより、データを書き込みたいスキルミオンメモリサーキット30における全てのスキルミオン40は、閉経路形状磁性体10を周回する。データパターンに応じたタイミングで書込み電流パルスを流すことで、データパターンに応じたスキルミオン40のパターンを、閉経路形状磁性体10に発生させることができる。
 なお、データを書き込まないスキルミオンメモリサーキット30の外周電極12および内周電極14の間には電流を流さない。このため、当該スキルミオンメモリサーキット30のヘッダパターンのスキルミオン40は、閉経路形状磁性体10上を移動しない。この状態で、データパターンに応じて順次電流パルスが印加されても、当該スキルミオンメモリサーキット30にはスキルミオン40が発生しない。このため、データを書き込まないスキルミオンメモリサーキット30には、データパターンに応じたスキルミオン40は発生しない。
 なお、ヘッダパターンを消去してもよい。データを書き込むために選択した列のヘッダパターンの先頭のスキルミオン40を第1の電流経路16-1に位置するようにスイッチ84およびスイッチ86を用いて選択し電流を印可する。ヘッダパターンであるスキルミオン40を第1の電流経路16-1に小さい電流パルスで消去できる。複数のヘッダパターンを示す複数のスキルミオンであってもよい。
 このような構成により、任意のスキルミオンメモリサーキット30に、任意のデータパターンを書き込むことができる。なお、メモリ回路120は、NANDフラッシュメモリと同様に、1つの書込み線93および1つのスイッチ83を用いて、スキルミオンメモリサーキット30の多数のビット位置にデータを書き込むことができる。更に、1つの書込み線93および1つのスイッチ83を用いて、多数のスキルミオンメモリサーキット30にデータを書き込むことができる。
 ワード線95は、それぞれの列のスキルミオンメモリサーキット30のセンサ72を直列に接続する。つまり、一つのスキルミオンメモリサーキット30に配線したワード線95は、他のスキルミオンメモリサーキット30に配線したワード書線95と共通の線である。本例のセンサ72は、TMR素子を有する。本例では、各段のスキルミオンメモリサーキット30における外周電極12が、次段のTMR素子に接続することで、それぞれのセンサ72が直列に接続する。また、ワード線95は、読出回路98に接続する。スイッチ85は、オン状態になった場合に、対応する列のワード線95に所定の電圧を印加する。読出回路98は、ワード線95に流れる電流を測定する。
 センサ72に対応する位置にスキルミオン40が存在する場合、TMR素子の抵抗値が大きくなり、読出回路98が検出する電流が小さくなる。本例では、複数のTMR素子が直列に接続されるので、読出回路98が検出した電流に対応する抵抗値は、複数のTMR素子の抵抗値の和になる。
 本例では、データを読み出すスキルミオンメモリサーキット30をスイッチ84およびスイッチ86により選択する。これにより、データを読み出すスキルミオンメモリサーキット30の全てのスキルミオン40が、閉経路形状磁性体10を周回する。一方で、データを読み出さないスキルミオンメモリサーキット30の外周電極12および内周電極14の間には電流を流さない。このため、当該スキルミオンメモリサーキット30におけるスキルミオン40は移動しない。
 このような状態で、読出回路98により、ワード線95に流れる電流の時間変化を検出する。当該時間変化が、選択したスキルミオンメモリサーキット30におけるスキルミオン40の配列パターンに対応する。なお、選択していないスキルミオンメモリサーキット30のスキルミオン40は移動しない。このため、データを読み出す場合、選択していないスキルミオンメモリサーキット30のスキルミオン40の配列パターンは、電流変化に影響を与えない。従って、選択したスキルミオンメモリサーキット30のデータを読み出すことができる。
 このような構成により、任意のスキルミオンメモリサーキット30からデータパターンを読み出すことができる。1つのワード線95および1つのスイッチ85を用いて、スキルミオンメモリサーキット30の多数のビット位置からデータを読み出すことができる。更に、1つのワード線95および1つのスイッチ85を用いて、多数のスキルミオンメモリサーキット30からデータを読み出すことができる。スキルミオンメモリサーキット30は、シフトレジスタ機能をもつメモリとして用いてもよい。
 また、各スキルミオンメモリサーキット30におけるスキルミオン40を消去する場合、第1選択線94および第2選択線96の間に所定の電流密度の一括消去用の電流を印加する。これにより、スイッチ84およびスイッチ86により選択したスキルミオンメモリサーキット30の全てのスキルミオン40を一括消去する。メモリ回路120は、スキルミオン消去用に配線を追加する必要がない。これも、フラッシュメモリの仕様と同じである。なお、複数のスキルミオンメモリサーキット30を同時に選択して、スキルミオン40を一括消去してもよい。一括消去の時間は1ナノ秒程度で高速である。
 なお、図31の例では、第1選択線94が外周電極12に接続し、第2選択線96が内周電極14に接続している。これに対して、第1選択線94が内周電極14に接続し、第2選択線96が外周電極12に接続してもよい。
 以上のように、メモリ回路120は、メモリ機能を実現するのに必要な配線数を大幅に低減できる。例えば、1個のスキルミオンメモリサーキット30に対して、4本の配線数(書込み線93、第1選択線94、ワード線95および第2選択線96)を設ければよい。また、配線用スイッチも、1個のスキルミオンメモリサーキット30に対して4個でよい。また、スキルミオンメモリサーキット30をマトリクス状に配置する場合、各列に対して書込み線93、第1選択線94およびワード線95を設ければよく、各行に対して第2選択線96を設ければよい。
 1個のスキルミオンメモリサーキット30が記憶する情報は数Kビット程度であってよい。すなわち、4本の配線数と4個のFET数で、数Kビットの情報を記憶するメモリ機能を実現できる。スキルミオンメモリサーキット30を用いたメモリ回路を、NAND型FETメモリと比較する。現在、NAND型FETメモリは、実用に供しているメモリである。
 NAND型FETメモリはソース、ドレインをもつ変形ゲートFET構造をもつメモリである。変形ゲート構造のFETの所定の特定の1列の書き込み、読み出し用の配線はビット線1本でよい。しかし、NAND型メモリは変形ゲートFETを選択するワード線は各変形ゲートFETに1本必要である。いま、1KビットメモリをNAND型メモリで実現する場合、NAND型メモリを32×32でマトリックス配列する。
 セル選択用の配線数は縦列(ビット線)と横列(ワード線)にそれぞれ必要であるから62本となる。1本のビット線でデータ書込み、読み込みができることがNAND回路の優れた特徴である。これに対して1Kビットメモリを1個のスキルミオンメモリサーキット30で実現する場合、書き込み線1本、読み込み線1本、選択線2本の計4本でよい。スイッチするFET個数も4個でよい。
 したがって、スキルミオンメモリサーキット30はNAND型FETメモリに対して250分の1に削減できる。集積度を格段に向上させることができる。1Kビットメモリを複数個のスキルミオンメモリサーキット30で構成してもよい。この場合でも配線数においてNAND型メモリより大きな優位性を確保できる。さらに、前述したようにスキルミオンメモリサーキット30のデータの書き込み、読み込み線は複数のスキルミオンメモリサーキット30と共用できる。このことからさらに、スキルミオンメモリデバイスはNAND型メモリよりさらに配線数、FET数を大幅に削減でき、高集積化に大きく寄与できる。
 スキルミオンメモリデバイス100は、書込み時間は1ナノ秒以下である。データ消去において、1ナノ秒程度である。また複数のスキルミオンサーキットを一括消去に要する時間は1ナノ秒程度である。現在、実用に供しているNAND型フラッシュメモリと同じ一括消去機能も有する。しかし、NAND型フラッシュメモリの書込み、消去に要する時間はマイクロ秒程度の時間を要する。スキルミオンメモリデバイス100は書込み、消去の時間の3桁以上高速化が可能となる。また、読み込み速度がTMR素子の場合、数ナノ秒程度であり、高速読み込みも可能である。
 一方、1つのスキルミオン40を保持するスキルミオンメモリセルを用いる場合は、各スキルミオンメモリセルに1ビットの情報を記憶する。各スキルミオンメモリセルにおけるスキルミオン40の有無が1ビットの情報となる。
 1KビットRAMを実現する場合、1ビットのスキルミオンメモリセルを32×32でマトリックス配列すると、セル選択用の配線数は縦列と横列にそれぞれ必要であるから62本となる。また、センサ用の配線も、行および列のどちらかに少なくとも1本必要であるから、合計94本の配線数となる。
 これらの配線のオンオフを制御するFETスイッチも94個必要となる。1Kビットの情報を記憶できるスキルミオンメモリサーキット30は、4本の配線および4個のスイッチで回路を構成できる。つまり、1ビットのスキルミオンメモリセルを用いると、1Kビットのスキルミオンメモリサーキット30に比べて配線およびスイッチが23倍程度必要である。この配線数とFET数の差異は、スキルミオンメモリサーキット30に発生可能なスキルミオン数を増大させると、さらに広がる。
 つまり、スキルミオンメモリサーキット30を用いると、メモリ回路120の集積度を大幅に向上することができる。なお、スキルミオンメモリサーキット30は、RAMのようにランダムにアドレスを選んでビット情報を読む場合、該当箇所のスキルミオン40をセンサ72の位置まで周回転送しなければならないが、例えばシフトレジスタ等のように、連続してデータを読み出す場合、周回転送の時間を省略できる。このため、スキルミオンメモリサーキット30は、シフトレジスタ用のメモリとして特に有用である。
 なお、メモリ回路120は、多ビットを並列に処理する場合に特に有効である。たとえば、8ビットの情報の各ビットを同時に処理する場合、8本の第1選択線94を同時に選択する。また、いずれかの第2選択線96を選択する。これにより、8個のスキルミオンメモリサーキット30を選択できる。そして、8本の書込み線93に対して8ビットの情報を入力することで、8ビットの情報の各ビットを並列に書き込むことができる。また、さらに8ビットの情報を書き込む場合、次の第2選択線96を選択してもよいし、第2選択線96を変更せずに、スキルミオン40を周回させてもよい。
 また、スキルミオンメモリサーキット30は、スキルミオン40の生成および消去を何度実施しても劣化しない。スキルミオン40の生成および消去において、電子などの移動をまったく伴わないことからである。このため、スキルミオンメモリサーキット30は、情報の書き込みおよび消去回数の制限がない。すなわち、エンデユランス(耐久性)無限大である。
 また、スキルミオンメモリサーキット30はデータリテンション(保持)性能を大幅に向上することができる。局所的な強力磁場を印加しない限り、一度発生したスキルミオン40は消えることなく安定して存在する。一般に磁性体をナノサイズ程度に微小化すると磁性体の磁気モーメントは熱擾乱を受ける。10年以上のメモリ保持を要求されるLSIにおいてはこの磁気モーメントの熱擾乱耐性は極めて重要な解決すべき課題となる。スキルミオンメモリサーキット30は、閉経路形状磁性体10の下部に外部印加磁化膜(磁場発生部20)を設ける。磁場発生部20における垂直磁化膜の磁気モーメントは、2次元面で数μから数mmの大きな面積で敷設する。磁場発生部20の磁化膜の磁気モーメントが熱擾乱を受けて磁気モーメントが反転することはない。
 したがって磁場発生部20の磁気モーメントから発生する磁界は熱揺らぎの影響を受けることはないので、生成したスキルミオン40はこの磁界ポテンシャルに守られその磁気モーメントを保持できる。この二つの特徴は、たとえば、高電圧印加による電子注入や抜き取りに伴う酸化膜の劣化による、フラッシュメモリの書き込み回数の制限や保持性能の劣化などの問題を一気に解決する。MRAMにおけるナノサイズ磁性体の磁気モーメントの熱擾乱耐性の劣化に対しても有効である。特許文献1におけるレイストラックも実装上においては、上記の深刻な問題が発生する。
 図32は、スキルミオンメモリデバイス搭載固体電子デバイス200の構成例を示す模式図である。スキルミオンメモリデバイス搭載固体電子デバイス200は、スキルミオンメモリデバイス100と、固体電子デバイス210とを備える。スキルミオンメモリデバイス100に代えてスキルミオンメモリデバイス110を備えてもよい。固体電子デバイス210は、例えば中央演算処理デバイスとして機能する。固体電子デバイス210は、スキルミオンメモリデバイス100と同一チップ内に形成されてよい。スキルミオンメモリデバイス100および110は、図1から図31において説明したスキルミオンメモリデバイス100および110である。固体電子デバイス210は、例えばCMOS―FETデバイスである。固体電子デバイス210は、スキルミオンメモリデバイス100または110へのデータの書き込み、および、スキルミオンメモリデバイス100または110からのデータの読み出しの少なくとも一方の機能を有する。
 図33は、データ記録装置300の構成例を示す模式図である。データ記録装置300は、スキルミオンメモリデバイス100または110と、入出力装置310とを備える。データ記録装置300は、例えばハードディスク置き換えのメモリデバイス、または、USBメモリ等のメモリデバイスである。入出力装置310は、スキルミオンメモリデバイス100または110への外部からのデータの書き込み、および、スキルミオンメモリデバイス100または110からデータを読み出して外部に出力する機能の少なくとも一方を有する。
 スキルミオン40によるビット情報は、磁気モーメントを誘起可能な閉経路形状磁性体10を記憶媒体としつつ、電流で誘起された磁場により直接書き込み、消去可能である。本明細書で示したスキルミオンメモリデバイス100または110の記録方法は、大容量磁気メモリであるハードディスク等の電子機器のモーター駆動の負荷をなくすことができるばかりでなく、超高速の書き込みや消去が可能となる。このため、スキルミオンメモリデバイス100または110は、将来的には、現在のハードディスク等の大規模データ記録装置に置き換わる可能性が大きい。また、電気的な情報の書き込みや消去を行うことができるフラッシュメモリにおいて、特に近年における大容量の記録容量が求められつつある中、スキルミオン40を適用したスキルミオンメモリサーキット30は多くの優位性を発揮することが可能となる。
 プロセッサ410は、例えばデジタル信号を処理するデジタル回路を有する。プロセッサ410は、スキルミオンメモリデバイス100または110へのデータの書き込み、および、スキルミオンメモリデバイス100または110からのデータの読み出しの少なくとも一方の機能を有する。
 図34は、データ処理装置400の構成例を示す模式図である。データ処理装置400は、スキルミオンメモリデバイス100または110と、プロセッサ410とを備える。スキルミオンメモリデバイス100または110は、CPU機能を構成するCMOS‐FET90と、積層した大規模不揮発性メモリであるスキルミオンメモリデバイス100または110を同一のチップ内に有することができる。この結果、CPUの処理時間の短縮化、高速化が実現し、CPUの消費電力を大幅に低減できる。
 すなわち、PC起動時の基本OSなどのHDからの呼び出し、外付けSRAMやDRAMなどへの書き込み、読み出しなどの処理時間を大幅に短縮可能となり、CPUタイムの削減(大幅高速化)に貢献する。この結果、大幅に消費電力が低いCPUを実現できる。さらに大規模不揮発性メモリであるスキルミオンメモリデバイス100または110はメモリ保持のための電力消費がゼロである。スキルミオン40の磁気モーメントの向きはトポロジカル安定性を有するために外部からの一切の電力供給を必要としない。DRAMメモリはデータリフレッシュが必要であり、SRAMも揮発性であるので常時電力投入が必要である。フラッシュメモリはデータアクセスタイムが長いのでCPUと直接データのやり取りはできない。
 スキルミオン40は、これに割り当てるべきビット情報を電気的に書き込み、消去可能である。そして、このスキルミオン40に係るビット情報の書き込み時間や消去時間も、ナノ秒程度で実現することができる。このようなスキルミオン40による高速大規模不揮発性メモリが実現は、現在において多くの電子機器で求められている大規模情報の高速処理能力を大幅に向上させる。
 特にスキルミオン40を適用したスキルミオンメモリサーキット30は、磁気モーメントを記録手段として用いるものであるから、記録を消去して書き込みを行う、いわゆる書き換えが何度でも可能となる。また、磁気モーメントを記録手段として用いるものであるから、記録保持状態を長く安定した状態で保持することができる。スキルミオン40を適用したスキルミオンメモリサーキット30は、書き込みや消去の動作時間を極力短縮化することができ、その時間はサブナノ秒まで短縮化することができる。その結果、現在のDRAM以上の書き込みや消去の高速動作を実現させることが可能となる。また、このようなスキルミオンメモリデバイス100または110をPCなどの電子機器に適用することで、その使用環境を格段に向上させることが可能となる。
 具体的には、電子機器への電源投入から運転可能になるまでの立ち上がり時間の短縮化、応答速度の向上を実現することができ、快適な使用環境をユーザに提供することが可能となる。このスキルミオンメモリデバイス100または110を適用した電子機器における電力の省力化も実現できることから、搭載電池の長寿命化が実現できる。これはスキルミオンメモリデバイス100または110を適用するモバイル電子機器において、さらに画期的な仕様をユーザ側に提供することが可能となる。ちなみに電子機器としては、パーソナルコンピュータ、画像記録装置等を始め、いかなるものであってもよい。
 図35は、通信装置500の構成例を示す模式図である。通信装置500は、例えば携帯電話機、スマートフォン、タブレット型端末等の、外部との通信機能を有する装置全般を指す。通信装置500は携帯型であってよく、非携帯型であってもよい。通信装置500は、スキルミオンメモリデバイス100または110と、通信部510とを備える。
 通信部510は、通信装置500の外部との通信機能を有する。通信部510は、無線通信機能を有してよく、有線通信機能を有してよく、無線通信および有線通信の双方の機能を有していてもよい。通信部510は、外部から受信したデータをスキルミオンメモリデバイス100または110に書き込む機能、スキルミオンメモリデバイス100または110から読み出したデータを外部に送信する機能、および、スキルミオンメモリデバイス100または110が記憶した制御情報に基づいて動作する機能の少なくとも一つを有する。
 またスキルミオンメモリデバイス100または110をデジタルカメラ等の電子機器に適用することで、動画を大容量に亘り記録することが可能となる。またスキルミオンメモリデバイス100または110を4Kテレビジョン受像機等の電子機器に適用することで、その画像記録の大容量化を実現することが可能となる。その結果、テレビジョン受像機において外付けハードディスクの接続の必要性を無くすことが可能となる。またスキルミオンメモリデバイス100または110は、ハードディスクをはじめとしたデータ記録装置に適用される場合に加え、データ記録媒体として具体化されるものであってもよい。
 また自動車用のナビゲーションシステム等の電子機器に対してもこのスキルミオンメモリデバイス100または110を適用することでさらに高機能化を実現することが可能となり、大量の地図情報も簡単に記憶可能となる。
 またスキルミオンメモリデバイス100または110は、自走装置、飛行装置、宇宙空間飛行装置を実用化する上で大きなインパクトをもたらすと期待できる。即ち、飛行装置の複雑な制御処理、天候情報処理、高精細の画質からなる映像の提供による乗客用のサービスの充実、さらには宇宙飛行装置の制御や観察した画像情報の膨大な記録情報を記録し、人類に多くの知見をもたらす。
 このスキルミオンメモリデバイス100または110は高速大規模不揮発性メモリとして、我々の生活環境に多大の貢献を担うメモリとして、その可能性をもつメモリである。
 本発明で開示した、多数のスキルミオンを使ったスキルミオンメモリであるスキルミオンメモリサーキットは、ナノスケールの磁気構造のスキルミオンが閉経路形状の磁性体中を周回転送するためスキルミオン生成部の個数やセンサの個数が大幅に省略できる特徴を有する。さらに、スキルミオンメモリサーキットは情報を担うスキルミオンを順次転送するマグネチックシフトレジスタとしての特徴を有する。したがって、大容量情報記憶媒体としての応用が期待され、エレクトロニクスデバイスのメモリデバイスとして重要である。
1・・・マグネチックシフトレジスタ、2・・・磁気センサ、10・・・閉経路形状磁性体、12・・・外周電極、14・・・内周電極、16・・・電流経路、20・・・磁場発生部、30・・・スキルミオンメモリサーキット、40・・・スキルミオン、50・・・電流経路用電源、52・・・電源、70・・・測定部、72・・・センサ、83、84、85、86・・・スイッチ、90・・・FET、91・・・FET、92・・・FET、93・・・書込み線、94・・・第1選択線、95・・・ワード線、96・・・第2選択線、98・・・読出回路、100・・・スキルミオンメモリデバイス、110・・・スキルミオンメモリデバイス、120・・・メモリ回路、160・・・磁性体層、161・・・絶縁体、165・・・磁性体保護層、166・・・磁性体保護膜、167・・・第1ビア、170・・・第1配線層、171・・・第1配線、172・・・第1配線保護膜、173・・・第2ビア、175・・・第2配線層、176・・・第2配線、177・・・第2配線保護膜、200・・・スキルミオンメモリデバイス搭載固体電子デバイス、210・・・固体電子デバイス、300・・・データ記録装置、310・・・入出力装置、400・・・データ処理装置、410・・・プロセッサ、500・・・通信装置、510・・・通信部

Claims (23)

  1.  スキルミオンが発生可能な薄膜状の閉経路形状磁性体を備え、
     前記閉経路形状磁性体は薄膜平面上で幅Wと長さLをもち、且つ、前記長さLの両端部が接続され、前記スキルミオンを周回転送する閉経路形状を有する
     スキルミオンメモリサーキット。
  2.  前記閉経路形状磁性体は、
     前記閉経路形状磁性体の閉経路形状の面における内周を規定する内周側端部と、
     外周を規定する外周側端部と
     を有し、
     前記スキルミオンメモリサーキットは、
     前記閉経路形状磁性体の延展方向と平行な面において、
     前記閉経路形状磁性体の前記内周側端部に接続した非磁性金属からなる内周電極と、
     前記閉経路形状磁性体の前記外周側端部に接続した非磁性金属からなる外周電極と
     を有し、
     前記スキルミオンメモリサーキットは、前記内周電極と前記外周電極との間に流す電流の方向を、前記スキルミオンを転送する方向に対して略垂直に配置した横転送配置である
     請求項1に記載のスキルミオンメモリサーキット。
  3.  前記内周電極と前記外周電極との間に電流を印加することにより、前記閉経路形状磁性体中に1または複数の前記スキルミオンを周回転送する
     請求項2に記載のスキルミオンメモリサーキット。
  4.  前記閉経路形状磁性体の幅Wは、前記スキルミオンの直径をλとすると、
                    W>0.5λ
     である請求項2または3に記載のスキルミオンメモリサーキット。
  5.  前記周回転送する複数の前記スキルミオンの間隔dは、前記スキルミオンの直径をλとしたとき、
                    d≧0.5・λ
     である請求項2から4のいずれか1項に記載のスキルミオンメモリサーキット。
  6.  前記周回転送する複数の前記スキルミオンの間隔をdとして、前記スキルミオンの直径をλとしたとき、
                    d≧2・λ
     である場合、複数の前記スキルミオンは、間隔dを保持しつつ周回転送する
     請求項2から5のいずれか1項に記載のスキルミオンメモリサーキット。
  7.  前記閉経路形状磁性体の磁気交換相互作用の大きさをJとし、複数の前記スキルミオンを周回転送するときの前記電流の電流密度をJdとした場合、
     前記内周電極および前記外周電極の間に流す電流の電流密度Jcを
                    Jc≧2・Jd
     とし、周回転送する複数の前記スキルミオンをすべて消去する請求項2から6のいずれか1項に記載のスキルミオンメモリサーキット。
  8.  複数の前記スキルミオンをすべて消去する場合、前記電流密度Jcの印加時間tを
                   t≧6000(1/J)
     とする請求項7に記載のスキルミオンメモリサーキット。
  9.  前記閉経路形状磁性体の一面において1個以上の電流経路をさらに備え、
     前記電流経路に電流を印加することにより、1または複数の前記スキルミオンを生成または消去し、もしくは前記スキルミオンの転送速度を加速または減速する
     請求項2から8のいずれか1項に記載のスキルミオンメモリサーキット。
  10.  前記1個以上の電流経路のうちの第1の電流経路は、前記閉経路形状磁性体の幅および長さ方向と同一方向における幅W1と、長さL1が、前記スキルミオンの直径λに対して、
     0.75・λ≧W1>0.2・λ、且つ、0.5・λ≧L1>0.1・λ
     の範囲にある端部領域を囲んでおり、
     前記第1の電流経路に第1の方向の電流を流すことにより発生する磁場により、前記端部領域の磁場Haが、
                    0.01J≧Ha
    (ただし、Jは前記閉経路形状磁性体の磁気交換相互作用の大きさを示す)
     になった場合に、前記閉経路形状磁性体に前記スキルミオンを生成する、請求項9に記載のスキルミオンメモリサーキット。
  11.  前記1個以上の電流経路のうちの第1の電流経路は、前記閉経路形状磁性体の幅および長さ方向と同一方向における幅W1と、長さL1が、前記スキルミオンの直径λに対して、
     0.75・λ≧W1>0.2・λ、且つ、0.5・λ≧L1>0.1・λ
     の範囲にある端部領域を囲んでおり、
     前記第1の電流経路に第2の方向の電流を流すことにより発生する磁場により、前記端部領域の磁場Haが、
                0.024J≧Ha>0.01J
     (ただし、Jは前記閉経路形状磁性体の磁気交換相互作用の大きさを示す)
     になった場合に、前記閉経路形状磁性体の前記スキルミオンを消去する、請求項9または10に記載のスキルミオンメモリサーキット。
  12.  前記1個以上の電流経路のうちの第2の電流経路は、前記閉経路形状磁性体の幅および長さ方向と同一方向における幅W2と、長さL2が、前記スキルミオンの直径λに対して、
                0.2・λ≧W2、且つ、L2≧λ、
     の範囲にある端部領域を囲んでおり、
     前記第2の電流経路に電流を流すことにより発生する磁場により、前記閉経路形状磁性体を周回転送している1もしくは複数の前記スキルミオンの転送速度が加速もしくは減速する請求項9から11のいずれか1項に記載のスキルミオンメモリサーキット。
  13.  前記閉経路形状磁性体は、印加する磁場に応じて、前記スキルミオンが発生するスキルミオン結晶相と強磁性相とが少なくとも発現する、
     請求項1から12のいずれか1項に記載のスキルミオンメモリサーキット。
  14.  前記閉経路形状磁性体は、カイラル磁性体、ダイポール磁性体、フラストレート磁性体、または、磁性材料と非磁性材料との積層構造のいずれかからなる請求項1から13の何れか1項に記載のスキルミオンメモリサーキット。
  15.  マトリクス状に配列している、請求項9から12のいずれか1項に記載の複数のスキルミオンメモリサーキットと、
     前記閉経路形状磁性体の前記内周電極を選択する第1選択線及び前記第1選択線に設けたスイッチと、
     前記閉経路形状磁性体の前記外周電極を選択する第2選択線及び前記第2選択線に設けたスイッチと、
     前記1個以上の電流経路に電流を印加する1個以上の書込み線及び前記書込み線に設けたスイッチと、
     前記スキルミオンを検出するセンサと、
     前記センサに接続したワード線及び前記ワード線に設けたスイッチと、
     前記ワード線の信号を検出する検出回路と、
     前記閉経路形状磁性体に第1の磁場を印加する磁場発生部と、
     を備えるスキルミオンメモリデバイス。
  16.  一つの前記スキルミオンメモリサーキットに配線した前記スキルミオンを生成するための前記書込み線は他の前記スキルミオンメモリサーキットの前記書込み線と共通である、請求項15に記載のスキルミオンメモリデバイス。
  17.  一つのスキルミオンメモリサーキットに配線した前記スキルミオンを検知するための前記ワード線は、他の前記スキルミオンメモリサーキットの前記ワード線と共通である、請求項15または16に記載のスキルミオンメモリデバイス。
  18.  前記複数のスキルミオンメモリサーキットの前記閉経路形状磁性体の幅方向に予め定められた電流を印加することで、前記複数のスキルミオンメモリサーキットにおける前記スキルミオンを一括消去する、請求項15から17のいずれか1項に記載のスキルミオンメモリデバイス。
  19.  請求項15から18のいずれか1項に記載のスキルミオンメモリデバイスを、2層以上積層する多層積層構造のスキルミオンメモリデバイス。
  20.  請求項15から19のいずれか1項に記載のスキルミオンメモリデバイスと中央演算処理デバイスを同一チップ内に形成したスキルミオンメモリデバイスを搭載した固体電子デバイス。
  21.  請求項15から19のいずれか1項に記載のスキルミオンメモリデバイスを搭載したデータ記録装置。
  22.  請求項15から19のいずれか1項に記載のスキルミオンメモリデバイスを搭載したデータ処理装置。
  23.  請求項15から19のいずれか1項に記載のスキルミオンメモリデバイスを搭載した通信装置。
PCT/JP2015/068888 2014-07-04 2015-06-30 磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置 WO2016002806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016531404A JP6677944B2 (ja) 2014-07-04 2015-06-30 磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置
EP15815321.3A EP3166138B1 (en) 2014-07-04 2015-06-30 Magnetic element, skyrmion memory, solid-state electronic device, data recording device, data processor and communication device
KR1020177003129A KR101947618B1 (ko) 2014-07-04 2015-06-30 자기 소자, 스커미온 메모리, 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
US15/391,860 US9748000B2 (en) 2014-07-04 2016-12-28 Magnetic element, skyrmion memory, solid-state electronic device data recording apparatus, data processing apparatus, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014139030 2014-07-04
JP2014-139030 2014-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/391,860 Continuation US9748000B2 (en) 2014-07-04 2016-12-28 Magnetic element, skyrmion memory, solid-state electronic device data recording apparatus, data processing apparatus, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2016002806A1 true WO2016002806A1 (ja) 2016-01-07

Family

ID=55019336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068888 WO2016002806A1 (ja) 2014-07-04 2015-06-30 磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置

Country Status (5)

Country Link
US (1) US9748000B2 (ja)
EP (1) EP3166138B1 (ja)
JP (1) JP6677944B2 (ja)
KR (1) KR101947618B1 (ja)
WO (1) WO2016002806A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190627A4 (en) * 2014-09-02 2018-05-02 Riken Magnetic element, skyrmion memory, skyrmion memory device, solid-state electronic device, data recording device, data processing device, and data communication device
WO2018092611A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
CN110911085A (zh) * 2019-08-22 2020-03-24 钢铁研究总院 具有斯格明子结构的低矫顽力的稀土-Fe-B复合薄膜及制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099068B1 (ko) * 2014-10-28 2020-04-08 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
KR101746698B1 (ko) * 2016-03-07 2017-06-14 울산과학기술원 스커미온 다이오드 및 그 제조 방법
JP6712804B2 (ja) * 2016-11-18 2020-06-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
US10541074B2 (en) * 2017-05-04 2020-01-21 Massachusetts Institute Of Technology Methods and apparatus for making magnetic skyrmions
RU2702810C1 (ru) * 2019-04-09 2019-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ создания скирмионов и их массивов в магнитной среде с помощью зонда сканирующего микроскопа
US20220181061A1 (en) * 2020-12-08 2022-06-09 Jannier Maximo Roiz-Wilson Warped Magnetic Tunnel Junctions and Bit-Patterned media
GB202107173D0 (en) 2021-05-19 2021-06-30 Norwegian Univ Sci & Tech Ntnu Spin texture storage device
CN114496012B (zh) * 2022-01-25 2024-03-19 广东工业大学 磁性斯格明子的磁场驱动方法
KR102656264B1 (ko) * 2022-06-28 2024-04-09 울산과학기술원 전류를 이용한 스커미온 백 형성 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子
JP2014175417A (ja) * 2013-03-07 2014-09-22 Institute Of Physical & Chemical Research スキルミオンの生成、消去方法および磁気素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
JP5653379B2 (ja) * 2012-03-23 2015-01-14 株式会社東芝 磁気記憶素子、磁気メモリ及び磁気記憶装置
FR3009420B1 (fr) * 2013-08-01 2016-12-23 Thales Sa Dispositif a memoire, comprenant au moins un element spintronique et procede associe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子
JP2014175417A (ja) * 2013-03-07 2014-09-22 Institute Of Physical & Chemical Research スキルミオンの生成、消去方法および磁気素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNICHI IWASAKI ET AL.: "Current-induced skyrmion dynamics in constricted geometries", NATURE NANOTECHNOLOGY, vol. 8, no. 10, pages 742 - 747, XP055119148 *
N. S. KISELEV ET AL.: "Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 44, no. 39, pages 392001 - 1 -392001-4, XP080498864 *
WATARU KOSHIBAE ET AL.: "Memory functions of magnetic skyrmions", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 54, no. 5, pages 053001 - 1 -053001-8, XP055251134, ISSN: 0021-4922 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190627A4 (en) * 2014-09-02 2018-05-02 Riken Magnetic element, skyrmion memory, skyrmion memory device, solid-state electronic device, data recording device, data processing device, and data communication device
WO2018092611A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
CN110911085A (zh) * 2019-08-22 2020-03-24 钢铁研究总院 具有斯格明子结构的低矫顽力的稀土-Fe-B复合薄膜及制备方法

Also Published As

Publication number Publication date
JPWO2016002806A1 (ja) 2017-06-08
US9748000B2 (en) 2017-08-29
KR20170042570A (ko) 2017-04-19
KR101947618B1 (ko) 2019-02-13
EP3166138A4 (en) 2018-03-14
EP3166138B1 (en) 2020-11-11
JP6677944B2 (ja) 2020-04-08
US20170169898A1 (en) 2017-06-15
EP3166138A1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016002806A1 (ja) 磁気素子、スキルミオンメモリ、固体電子デバイス、データ記録装置、データ処理装置および通信装置
KR102099068B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
US8976577B2 (en) High density magnetic random access memory
US7315470B2 (en) Data storage device and associated method for writing data to, and reading data from an unpatterned magnetic layer
WO2016159017A1 (ja) 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
US10141068B2 (en) Magnetic element, skyrmion memory, skyrmion memory-device, solid-state electronic device, data-storage device, data processing and communication device
US9070456B2 (en) High density magnetic random access memory
WO2016035758A1 (ja) 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置
JP5483025B2 (ja) 磁気メモリ素子、磁気メモリ
JP6161026B2 (ja) 磁気メモリ
CN103310847B (zh) 移位寄存器存储器及其驱动方法
JP6436348B2 (ja) 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、データ処理装置、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及びデータ通信装置
JP2015138863A (ja) 半導体装置
JP6630035B2 (ja) 磁気トンネル接合素子及び磁気ランダムアクセスメモリ
US10375698B2 (en) Memory system
KR102306829B1 (ko) 수직 형태 자기 이방성을 이용한 자기 소자 및 이를 포함하는 메모리 장치
CN117580440A (zh) 基于自旋霍尔效应材料的磁随机存储器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815321

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177003129

Country of ref document: KR

Kind code of ref document: A