WO2016002740A1 - 断層像撮影装置 - Google Patents

断層像撮影装置 Download PDF

Info

Publication number
WO2016002740A1
WO2016002740A1 PCT/JP2015/068755 JP2015068755W WO2016002740A1 WO 2016002740 A1 WO2016002740 A1 WO 2016002740A1 JP 2015068755 W JP2015068755 W JP 2015068755W WO 2016002740 A1 WO2016002740 A1 WO 2016002740A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
imaging
scanning
tomographic image
tomographic
Prior art date
Application number
PCT/JP2015/068755
Other languages
English (en)
French (fr)
Inventor
小林 直樹
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55019272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016002740(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to EP15814335.4A priority Critical patent/EP3165151A4/en
Priority to US15/322,151 priority patent/US10219692B2/en
Priority to JP2016531370A priority patent/JP6557229B2/ja
Publication of WO2016002740A1 publication Critical patent/WO2016002740A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02048Rough and fine measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence

Definitions

  • the present invention relates to a tomographic imaging apparatus that captures a tomographic image of a target object based on interference light generated by superimposing measurement light from a target object such as an eye to be examined with reference light.
  • OCT Optical Coherence Tomography
  • a tomographic imaging apparatus using optical interference can irradiate the fundus with broadband low-coherent light, and can capture a tomographic image of the fundus with high sensitivity by causing reflected light from the fundus to interfere with reference light.
  • a tomographic image (B-scan image) in the xz direction can be acquired with the left-right direction of the fundus in the x direction, the vertical direction in the y direction, and the depth in the z direction.
  • general OCT imaging for example, a tomographic image is captured at a speed of 40 images / second, and a group of 100 or more retinal tomographic images can be acquired by one examination (imaging of a part of the retina). .
  • imaging conditions such as position adjustment of the imaging region, position adjustment of the reference mirror, focus adjustment, and determination of dispersion compensation glass are performed before imaging so that an optimal tomographic image of the fundus is obtained.
  • Make adjustments As shown in FIG. 7, when raster scanning is performed to image a three-dimensional tomographic structure, only the high-speed axis direction (x direction) at the center of the scanning angle of view set in two dimensions when adjusting imaging conditions before imaging.
  • the imaging conditions are adjusted while observing the tomographic images obtained by continuously scanning the image, and then the entire original scanning field angle area is raster scanned when actually capturing the tomographic image.
  • the tomographic image obtained at the time of adjusting the imaging conditions is almost constant, and the morphological change of the imaging region is less likely to occur in the tomographic image.
  • the shooting conditions can be easily adjusted.
  • the tomographic image to be imaged is greatly curved and scanned. Since the appearance position of the imaging region in the tomographic image differs greatly depending on the position to be scanned, even if the imaging condition is optimized by adjusting the imaging condition based on the tomographic image obtained by scanning only the center position of the raster scan, the raster As long as the form of the measurement object other than the center position of the scan cannot be grasped, an appropriate focus position and reference mirror position cannot be determined.
  • the present invention has been made in view of such a point, and an object thereof is to provide a tomographic imaging apparatus capable of determining the optimal imaging condition by completing the adjustment of the imaging condition in a short time. .
  • the present invention splits light from a light source into measurement light and reference light and makes them incident on a target object and a reference object, and reflected by the measurement light and the reference object reflected by the target object.
  • a tomographic imaging apparatus that captures a tomographic image of a target object based on interference light generated by superimposing a reference light, and scans the measurement light into a target object by two-dimensional scanning to capture a tomographic image of the target object A time required for two-dimensional scanning in the second imaging mode, and a second imaging mode in which measurement light is two-dimensionally scanned and incident on a target object and a tomographic image of the target object is captured.
  • Tomographic image capturing is to provide a tomography apparatus according to claim conducted in Capture Mode (invention 1).
  • the adjustment of the imaging conditions necessary for imaging the tomographic image in the first imaging mode depends on the alignment between the tomographic imaging apparatus and the eye to be inspected and the diopter of the eye to be inspected. Adjust the focus by moving the focus lens position, move the reference mirror position to generate interference light by superimposing the measurement light and the reference light, and adjust the optical path length of the measurement optical system and the reference optical system. Adjusting the reference mirror position to match, determining dispersion compensation glass to select appropriate dispersion compensation glass to compensate for refractive index dispersion that causes tomogram blurring, etc. Various adjustment operations performed before shooting are included.
  • the second imaging mode is provided in which the tomographic image is captured by two-dimensional scanning in which the time required for scanning is shorter than that in the first imaging mode
  • the first imaging is performed in the second imaging mode.
  • the photographing conditions necessary for photographing the tomographic image in the mode the adjustment of the photographing conditions can be completed in a short time.
  • the tomographic image in the second imaging mode is not a one-dimensional scan of the center position of raster scanning as in the prior art, but is performed by two-dimensional scanning, thereby covering almost the entire imaging region. Since the tomographic image can be observed while adjusting the imaging conditions, the optimal imaging conditions can be determined.
  • the scanning area in the second imaging mode is an area including an attention area in the scanning area in the first imaging mode (Invention 2).
  • the attention area is an area that represents a change in the form of the object to be imaged in the scanning area in the first imaging mode.
  • the region of interest within the region to be scanned when tomographic imaging is performed in the first imaging mode is included in the target to be scanned in the second imaging mode. Therefore, it is possible to obtain sufficient information from the tomographic image photographed in the second photographing mode to adjust the photographing conditions necessary for photographing the tomographic image in the first photographing mode.
  • the scanning region in the second photographing mode may be wider or narrower than the scanning region in the first photographing mode as long as the region of interest in the scanning region in the first photographing mode is included.
  • the two-dimensional scanning in the first photographing mode is raster scanning (Invention 3).
  • photography mode is a scanning which thinned out the raster scanning in the said 1st imaging
  • the scanning may be performed by scanning four sides of a rectangular area including a region of interest in the scanning area in the first imaging mode (Invention 5). It may be a scan that scans one or two diagonal lines of a rectangular area including a region of interest in the scanning area (Invention 6).
  • the image pickup apparatus further includes a third imaging mode in which the measurement light is one-dimensionally scanned and incident on the target object, and a tomographic image of the target object is captured, and the image is captured in the third imaging mode.
  • the second adjustment operation may be performed based on the tomographic image photographed in the second photographing mode (invention 7).
  • Display means for displaying a tomographic image of the target object generated based on the tomographic image generated based on the tomographic image captured in the second imaging mode in the second imaging mode;
  • a first display mode for displaying only one tomographic image including a predetermined target position of the target object, and a tomographic image generated based on the tomographic image captured in the second imaging mode in order.
  • Switch between 2 display modes After the first adjustment operation is performed based on the tomographic image displayed in the first display mode, the second adjustment operation is performed based on the tomographic image displayed in the second display mode. (Invention 8).
  • the first adjustment operation is a dispersion compensation glass decision for selecting an appropriate dispersion compensation glass to compensate for refractive index dispersion that causes a tomographic image blur, and a diopter of the eye to be examined.
  • the focus is adjusted by moving the position of the focus lens.
  • the second adjustment operation refers to focus adjustment by moving the position of the focus lens according to the diopter of the eye to be examined, and generating interference light by superimposing the measurement light and the reference light.
  • the reference mirror position is adjusted by moving the position of the reference mirror to match the optical path lengths of the measurement optical system and the reference optical system.
  • the first adjustment operation that can be appropriately adjusted based on only one specific tomographic image and the one that is adjusted based on a plurality of tomographic images obtained by two-dimensional scanning Since the second adjustment operation that can be adjusted more appropriately can be performed separately, it is possible to determine the optimum photographing condition in a short time.
  • invention 9 it is preferable to further comprise storage means for storing a tomographic image taken in the second photography mode.
  • a tomographic image acquired for adjustment of imaging conditions has not been used for any purpose other than adjustment.
  • tomographic image data acquired in the second imaging mode is stored. Therefore, the data can be used for correcting the alignment of a tomographic image generated from the tomographic image captured in the first imaging mode, or can be used as a thumbnail image.
  • the optimal imaging conditions can be determined by completing the adjustment of the imaging conditions in a short time.
  • FIG. 1 is an optical diagram showing an overall configuration of a tomographic imaging apparatus according to a first embodiment of the present invention. It is explanatory drawing which shows the scanning pattern of this imaging
  • FIG. 1 is an optical diagram showing the overall configuration of a tomographic imaging apparatus according to the first embodiment of the present invention.
  • the tomographic imaging apparatus according to the present embodiment captures a tomographic image of a desired region of the fundus by raster scanning using the fundus of the eye E to be imaged as an object to be imaged.
  • a portion denoted by reference numeral 10 is a demultiplexing / combining optical system. This optical system emits light having a wavelength of 700 nm to 1100 nm and a temporal coherence length of about several ⁇ m to several tens of ⁇ m, for example, a superluminescent diode.
  • a broadband low-coherence light source 11 made of (SLD) is provided.
  • the amount of light of the low coherence light generated by the low coherence light source 11 is adjusted through the light amount adjustment mechanism 12 and is incident on the optical coupler 13 through the optical fiber 13a.
  • the beam splitter 20 To the beam splitter 20. In addition, you may make it branch and multiplex using an optical circulator instead of the optical coupler 13.
  • the light incident on the beam splitter 20 is divided into reference light and measurement light.
  • the measurement light enters the focus lens 31 and the measurement light is focused on the fundus of the eye E.
  • the measurement light focused on the fundus is reflected by the mirror 32, passes through the lens 33, and is scanned in an arbitrary direction by the x-axis scanning mirror (galvano mirror) 34 and the y-axis scanning mirror (galvano mirror) 35.
  • the measurement light scanned by the x-axis and y-axis scanning mirrors 34 and 35 passes through the scan lens 36, is reflected by the dichroic mirror 37, passes through the objective lens 38 and enters the fundus oculi, and the fundus is measured by the measurement light.
  • the measurement light reflected from the fundus returns to the beam splitter 20 by reversing the above path.
  • the focus lens 31, mirror 32, lens 33, x-axis scanning mirror 34, y-axis scanning mirror 35, scan lens 36, dichroic mirror 37, and objective lens 38 after the beam splitter 20 are tomographic images.
  • a measurement optical system 30 of the photographing apparatus is configured.
  • the reference light divided by the beam splitter 20 is reflected by the mirror 41 and then passes through the objective lens dispersion compensation glass 42 and the lenses 43 and 44. After that, the light is reflected by the mirror 45 and passes through the eye dispersion compensation glass 50 that compensates the refractive index dispersion of the eye E to be examined. Then, the light is reflected by the dichroic mirror 46 to adjust the condenser lens 47 and the amount of light. It passes through the variable aperture 48 and reaches the reference mirror 49. In order to adjust the optical path length, the condensing lens 47, the variable aperture 48, and the reference mirror 49 move together in the optical axis direction as shown by a double arrow in FIG. The reference light reflected by the reference mirror 49 returns to the beam splitter 20 along the above optical path.
  • the focus lens 31, the lens 33, the scan lens 36, and the objective lens 38 of the measurement optical system 30 are the lenses 43 and 44 of the reference optical system 40, the condenser lens 47, and the dispersion compensation glass 42 for the objective lens.
  • each dispersion characteristic is the same or equivalent.
  • the mirror 32, the x-axis scanning mirror 34, the y-axis scanning mirror 35, and the dichroic mirror 37 of the measurement optical system 30 correspond to the mirror 41, the mirror 45, the reference mirror 49, and the dichroic mirror 46 of the reference optical system 40, respectively.
  • the dispersion characteristics are the same or equivalent.
  • the dispersion characteristics of the eye E and the dispersion characteristics of the eye dispersion compensation glass 50 are the same or equivalent.
  • the mirror 41, the objective lens dispersion compensation glass 42, the lenses 43 and 44, the mirror 45, the eye dispersion compensation glass 50, the dichroic mirror 46, the condenser lens 47, and the reference mirror 49 as a reference object
  • a reference optical system 40 of the tomographic imaging apparatus is configured.
  • the measurement light and the reference light that have returned to the beam splitter 20 are superimposed and become interference light, which passes through the collimator lens 14 and the optical coupler 13 and enters the spectroscope 16 via the optical fiber 13c.
  • the spectroscope 16 includes a diffraction grating 16a, an imaging lens 16b, a line sensor 16c, and the like.
  • the interference light is split into a spectrum corresponding to the wavelength of the low coherence light by the diffraction grating 16a and is lined by the imaging lens 16b. An image is formed on the sensor 16c.
  • the signal from the line sensor 16c is subjected to signal processing including Fourier transformation by a tomographic image forming means realized by a CPU of the computer 17, and a depth signal indicating information in the depth direction (z direction) of the fundus is generated.
  • the formed tomographic image (B-scan image) can be displayed on the display 18. Further, the formed tomographic image can be stored in a storage unit (not shown) in the computer 17.
  • the tomographic imaging apparatus adjusts several imaging conditions in order to optimize the imaging conditions when actually capturing the tomographic image.
  • the adjustment of the imaging conditions for example, the alignment of the tomographic imaging apparatus and the subject eye E that is the target object, the focus adjustment that adjusts the focus by moving the position of the focus lens 31 according to the diopter of the eye E to be examined,
  • the position of the reference mirror 49 is moved so as to generate interference light by superimposing the measurement light and the reference light, thereby adjusting the reference mirror position to match the optical path lengths of the measurement optical system and the reference optical system, which causes blurring of the tomographic image.
  • a dispersion compensation glass determination that selects an appropriate eye dispersion compensation glass 50 to compensate for refractive index dispersion may be mentioned.
  • the tomographic imaging apparatus actually performs the preliminary imaging mode (second imaging mode) for capturing a tomographic image for adjusting the imaging conditions and after determining the optimal imaging conditions by adjusting the imaging conditions.
  • the main photographing mode (first photographing mode) for photographing a tomographic image for obtaining a tomographic image of a desired region (scanning region) of the fundus can be switched.
  • the tomographic imaging apparatus can capture tomographic images using different scanning patterns in the preliminary imaging mode and the main imaging mode, and can switch between the preliminary imaging mode and the main imaging mode by an imaging mode switching operation.
  • the entire scanning area is raster scanned as shown in FIG.
  • a total of 256 scans are performed in the high-speed axis direction (x-direction).
  • the present embodiment is not limited to this, and is appropriately set according to the shooting target, shooting purpose, and size of the scanning area. It may be changed.
  • the preliminary photographing mode as shown in FIG. 3, by increasing the scanning interval in the slow axis direction (y direction), scanning with a scanning density coarser than the scanning density in the main photographing mode, that is, raster in the main photographing mode.
  • the scanning is performed by thinning out the scanning in the high speed axis direction (x direction).
  • a total of 11 scans are performed in the high-speed axis direction (x direction) in the preliminary shooting mode.
  • the present invention is not limited to this, and is appropriately set according to the shooting target, shooting purpose, and size of the scanning area. It may be changed. If at least the number of scans is sufficient to grasp the shape change of the target object in the scan region, the imaging conditions can be optimized appropriately.
  • the pre-shooting mode shortens the time required to shoot the tomographic image for adjusting the shooting conditions by making the scanning density coarser than the main shooting mode, and the adjustment of the shooting conditions is completed in a short time. Therefore, it is desirable to set the number of scans in the preliminary shooting mode within a range of 1/2 to 1/20 of the number of scans in the main shooting mode.
  • the scanning area in the preliminary photographing mode is the same area as the scanning area in the main photographing mode. Therefore, the region of interest in the scanning area in the main photographing mode is naturally included in the scanning area in the preliminary photographing mode.
  • the attention area is an area representing a change in the form of the object to be imaged (the fundus of the eye E) in the scanning area in the main imaging mode.
  • the selection display mode is a display method in which only one tomographic image including a predetermined target position of the target object is displayed on the display 18 among the tomographic images generated based on the tomographic image captured in the preliminary imaging mode.
  • only one tomographic image generated based on a tomographic image taken by scanning of the center position in the y direction of the scanning region (scan of number 6 in FIG. 3) is repeatedly displayed.
  • the continuous display mode is a display method in which tomographic images generated based on the tomographic images captured in the preliminary imaging mode are sequentially displayed on the display 18 in the present embodiment. In this embodiment, all the scans (numbers in FIG. 3) are displayed. 11 tomographic images generated based on the tomographic images taken by scanning 1 to 11 are repeatedly displayed in order.
  • the adjustment of the photographing condition is divided into two stages of a first adjustment operation and a second adjustment operation, the first adjustment operation is performed using the above-described selection display mode, and the second adjustment operation is performed using the continuous display mode.
  • a dispersion compensation glass decision for selecting an appropriate eye dispersion compensation glass 50 to compensate for refractive index dispersion that causes tomographic image blurring, and a focus lens according to the diopter of the eye E to be examined The focus adjustment is performed by moving the position 31 to focus.
  • focus adjustment is performed by moving the position of the focus lens 31 according to the diopter of the eye E to be examined, and reference is performed to generate interference light by superimposing the measurement light and the reference light.
  • Reference mirror position adjustment is performed by moving the position of the mirror 49 to match the optical path lengths of the measurement optical system and the reference optical system.
  • the first adjustment operation that can be appropriately adjusted based on only one specific tomographic image and the second adjustment that can be adjusted more appropriately based on a plurality of tomographic images obtained by two-dimensional scanning. By performing the adjustment operation separately, it is possible to determine the optimum photographing condition in a short time.
  • the first adjustment operation is performed in the preliminary imaging mode.
  • the first adjustment operation can be appropriately adjusted based on only one specific tomographic image. Therefore, this time display 18 is set to the selected display mode, repeatedly displaying only a tomographic image T 6, which is generated based on the tomographic images taken by the scanning of the number 6.
  • the display mode is switched to the continuous display mode by pressing the display mode switching button while the shooting method remains in the preliminary shooting mode.
  • a second adjustment operation that can be adjusted more appropriately is performed based on a plurality of tomographic images obtained by two-dimensional scanning.
  • the continuous display mode the tomographic images T 1 to T 11 are repeatedly displayed in order.
  • the shooting mode switching button is pressed to switch from the preliminary shooting mode to the main shooting mode, and scanning is performed under the optimized shooting conditions.
  • the entire region is scanned in a total of 256 rasters in the high-speed axis direction (x direction), and a tomographic image of the fundus of the eye E is taken.
  • the selection display mode and the continuous display mode are only differences in the display method of the tomographic image, and in any case of selecting any display mode, the tomographic image of the eye E itself is captured in the preliminary imaging mode. In total, the number 1 to 11 is performed by 11 scans. That is, even when the selection display mode is set, only the scan of No. 6 is performed and only the tomographic image for generating the tomographic image T 6 is not captured, but the scans of No. 1 to 11 are performed. The tomographic images necessary for generating the tomographic images T 1 to T 11 are taken.
  • the tomographic image data photographed in the preliminary photographing mode and the tomographic image generated based on the tomographic image data are stored in a storage unit (not shown) in the computer 17.
  • the tomographic image acquired in the preliminary imaging mode is obtained by raster scanning several to several tens of times faster than the tomographic image acquired in the main imaging mode. It is possible to perform shooting while suppressing positional deviation due to visual movement.
  • Using the tomographic images acquired in the preliminary imaging mode as a reference if the tomographic images acquired in the first imaging mode are subjected to positional deviation correction and rearranged, it is possible to obtain a high-density image excluding the influence of fixation micromotion. It becomes.
  • the preliminary imaging mode for capturing a tomographic image by two-dimensional scanning having a scanning density coarser than that of the main imaging mode is provided, and the two-dimensional imaging in the preliminary imaging mode is provided. Since the time required for scanning is shorter than the time required for two-dimensional scanning in the main photographing mode, by adjusting the photographing conditions necessary for photographing the tomographic image in the main photographing mode in the preliminary photographing mode, Adjustment of shooting conditions can be completed in a short time.
  • the tomographic image in the preliminary imaging mode is not a one-dimensional scan of the center position of raster scanning as in the prior art, but is performed by two-dimensional scanning with a coarse scanning density, so that almost the imaging region can be obtained. Since the tomographic image covering the whole can be observed during the adjustment of the imaging conditions, the optimal imaging conditions can be determined.
  • the tomographic imaging apparatus divides the adjustment of imaging conditions into a first adjustment operation and a second adjustment operation, an adjustment imaging mode for imaging a tomographic image for performing the first adjustment operation, and a second adjustment.
  • the tomographic imaging apparatus can capture a tomographic image using a different scanning pattern in each mode, and can switch between the adjustment imaging mode, the preliminary imaging mode, and the main imaging mode by an imaging mode switching operation.
  • the scanning pattern in the preliminary photographing mode and the main photographing mode is the same as that in the first embodiment.
  • the adjustment shooting mode is a shooting mode in which the measurement light is one-dimensionally scanned and incident on the target object, and a tomographic image of the target position of the target object is captured.
  • the center position in the y direction of the scan region is set as the target position x One-dimensional scanning in the direction.
  • the position of interest may be changed as appropriate according to the subject to be photographed, the purpose of photographing, and the size of the scanning region.
  • the first adjustment operation can be appropriately adjusted based on only one specific tomographic image, there is no need to obtain a plurality of tomographic images by two-dimensionally scanning the scanning region.
  • the time required for taking a tomographic image can be shortened by performing one-dimensional scanning of the target position in the scanning region rather than performing two-dimensional scanning of the scanning region. Therefore, in addition to the preliminary imaging mode, an adjustment imaging mode for one-dimensional scanning within the scanning region is provided, and the first adjustment operation that can be appropriately adjusted based on only one specific tomographic image is the adjustment imaging mode.
  • the second adjustment operation that can be adjusted more appropriately based on a plurality of tomographic images obtained by scanning is performed separately in the preliminary imaging mode, so that the optimal imaging conditions can be determined in a short time. .
  • the display method in the preliminary shooting mode is assumed to be the continuous display mode.
  • the first adjustment operation is first performed in the adjustment shooting mode.
  • a tomographic image Tc generated based on a tomographic image captured by scanning the center position C in the y direction of the scanning region in the x direction is repeatedly displayed on the display 18.
  • the shooting mode switching button is pressed to switch from the adjustment shooting mode to the preliminary shooting mode, and the display 18 is repeatedly displayed in order.
  • the second adjustment operation is performed while confirming the tomographic images T 1 to T 11 .
  • the shooting mode switching button is pressed again to switch from the preliminary shooting mode to the main shooting mode.
  • a total of 256 raster scans are performed on the entire scanning region in the high-speed axis direction (x direction), and a tomographic image of the fundus of the eye E is taken.
  • the first adjustment operation that can be appropriately adjusted based on only one specific tomographic image is performed in the adjustment imaging mode, and obtained by two-dimensional scanning.
  • the second adjustment operation in the preliminary adjustment mode which can be adjusted more appropriately by adjusting based on a plurality of tomographic images, it is possible to determine the optimum imaging condition in a short time.
  • the tomographic imaging apparatus captures a tomographic image of the fundus by raster scanning, but the present invention is not limited to this, and spiral scanning or other scanning methods may be employed. .
  • scanning is performed by thinning out the scanning in the high-speed axis direction (x direction) of the raster scanning in the main photographing mode in the preliminary photographing mode, but the present invention is not limited to this. It suffices if the time required for two-dimensional scanning is shorter than the time required for two-dimensional scanning in the main photographing mode. For example, the scanning density is made the same as that in the main photographing mode, and the scanning area is made narrower than in the main photographing mode. Thus, the time required for two-dimensional scanning in the preliminary photographing mode may be shortened.
  • the scanning area of the preliminary photographing mode is wider than that of the main photographing mode, if the time required for two-dimensional scanning in the preliminary photographing mode is shortened by increasing the scanning density, this is also permitted.
  • the scanning area in the pre-shooting mode is set to be different from the main shooting mode, the region of interest in the scanning area in the main shooting mode is included in the scanning area in the pre-shooting mode.
  • another scanning pattern may be adopted in the preliminary photographing mode.
  • a scanning pattern in which four sides of a rectangular region including a region of interest in a scanning region to be subjected to raster scanning in the main photographing mode may be used.
  • it may be a scanning pattern that scans one or two diagonal lines of a rectangular region including a region of interest in a scanning region to be subjected to raster scanning in the main photographing mode, or a combination thereof. It may be a scanning pattern.
  • the scanning direction in the main photographing mode and the scanning direction in the preliminary photographing mode may be orthogonal. Even with such a scanning pattern, it is possible to capture a tomographic image representative of the shape change of the target object in the scanning region, and therefore, it can be adopted as a scanning pattern in the preliminary imaging mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

 本発明の断層像撮影装置は、光源11からの光を測定光と参照光に分割して対象物体Eと参照物体49に入射させ、対象物体Eで反射された測定光と参照物体49で反射された参照光を重畳させて生成される干渉光に基づき対象物体Eの断層像を撮影する断層像撮影装置であって、測定光を二次元走査して対象物体Eに入射させ、対象物体Eの断層像を撮影する第1撮影モードと、測定光二次元走査して対象物体Eに入射させ、対象物体Eの断層像を撮影する第2撮影モードとを備える。第2撮影モードにおける二次元走査に要する時間は第1撮影モードにおける二次元走査に要する時間よりも短く、第2撮影モードで撮影された断層像に基づいて、第1撮影モードで断層像の撮影をするために必要な撮影条件の調整を行った後、第1撮影モードで断層像の撮影が行われる。

Description

断層像撮影装置
 本発明は、被検眼などの対象物体からの測定光を参照光と重畳させて生成される干渉光に基づいて対象物体の断層像を撮影する断層像撮影装置に関する。
 眼科診断機の一つで、眼底の断層像を撮影するOCT(Optical Coherence Tomography)という光干渉を利用した断層像撮影装置がある。このような断層像撮影装置は広帯域な低コヒーレント光を、眼底に照射し、眼底からの反射光を参照光と干渉させて眼底の断層像を高感度に撮影することができる。このような断層像撮影装置により、眼底の左右方向をx方向、縦方向をy方向、奥行きをz方向として、xz方向の断層画像(Bスキャン画像)を取得することができる。一般的なOCTの撮影を行えば、例えば40枚/秒の速度で断層像が撮影され、一度の検査(網膜中のある一部分での撮影)で100枚以上の網膜の断層画像群が取得できる。
 一般に、断層像の撮影を行う際には、最適な眼底の断層画像が得られるように、撮影前に撮影部位の位置調整や参照ミラーの位置調整、フォーカス調整、分散補償ガラスの決定といった撮影条件の調整を行う。図7に示すように、三次元断層構造を撮影するためにラスタ走査を行う場合、撮影前の撮影条件の調整時には二次元で設定された走査画角の中心の高速軸方向(x方向)のみを連続的に走査して得られた断層画像を見ながら撮影条件の調整を行い、その後実際に断層像を撮影する際には本来の走査画角エリア全体をラスタ走査する方法がある。このような方法においては、撮影条件の調整時に得られる断層画像がほぼ一定であり、当該断層画像において撮影部位の形態変化も発生しにくいため、断層画像における撮影部位の出現位置やフォーカス調整等の撮影条件の調整が行い易いという利点がある。
 一方、ラスタ走査エリアが広い場合や、撮影対象が強度近視眼である場合、網膜周辺部位を撮影する場合、視神経乳頭部を撮影する場合等においては、撮影される断層画像の湾曲が大きくなり、走査する位置によって断層画像における撮影部位の出現位置が大きく異なるため、ラスタ走査の中心位置だけを走査して得られた断層画像を基に撮影条件の調整を行って撮影条件を最適化しても、ラスタ走査の中心位置以外における測定対象の形態を把握できていない以上、適切なフォーカス位置や参照ミラーの位置を決定することができない。その結果、ラスタ走査の中心位置以外の走査によって得られた断層画像においては、フォーカスずれや撮影部位の断層構造の折り返しが発生してしまうおそれがある。また、折り返しをおそれるあまり不必要に撮影部位の出現位置を下に設定してしまうことにより、画像コントラストの低下を招くことになるおそれもある。
 撮影条件の調整時においても断層像の撮影時と同様にラスタ走査エリア全体の走査を行えば、全ての撮影部位の断層画像を撮影条件の調整中に観察することができ、最適な撮影条件を決定することができるため、理想的ともいえる。しかしながら、走査エリア全体のラスタ走査には時間がかかり、撮影条件の調整にかかる時間も長くなる。実際の断層像の撮影は撮影条件の調整を行って撮影条件の最適化を行った後になるので、一連の撮影動作に時間がかかってしまい、撮影完了までに被検者に長時間の我慢を強いることによって固視微動等の外乱影響も受け易くなってしまう。大きな固視微動が発生した場合には再び撮影条件の調整が必要となってしまうため、撮影時間がより長くかかってしまう悪循環へとつながる。
 本発明は、このような点に鑑みてなされたものであり、短時間で撮影条件の調整を完了させて最適な撮影条件を決定することができる断層像撮影装置を提供することを目的とする。
 上記目的を達成するために、本発明は、光源からの光を測定光と参照光に分割して対象物体と参照物体に入射させ、対象物体で反射された測定光と参照物体で反射された参照光を重畳させて生成される干渉光に基づき対象物体の断層像を撮影する断層像撮影装置であって、測定光を二次元走査して対象物体に入射させ、対象物体の断層像を撮影する第1撮影モードと、測定光を二次元走査して対象物体に入射させ、対象物体の断層像を撮影する第2撮影モードと、を備え、前記第2撮影モードにおける二次元走査に要する時間が、前記第1撮影モードにおける二次元走査に要する時間よりも短く、前記第2撮影モードで撮影された断層像に基づいて、前記第1撮影モードで断層像の撮影をするために必要な撮影条件の調整を行った後、前記第1撮影モードで断層像の撮影が行われることを特徴とする断層像撮影装置を提供する(発明1)。
 なお、本願において、第1撮影モードで断層像の撮影をするために必要な撮影条件の調整には、断層像撮影装置と対象物体である被検眼との位置合わせ、被検眼の視度に応じてフォーカスレンズの位置を移動させてピントを合わせるフォーカス調整、測定光と参照光とを重畳させて干渉光を生成すべく参照ミラーの位置を移動させて測定光学系と参照光学系の光路長を合わせる参照ミラー位置調整、断層像のぼけの原因となる屈折率分散を補償するための適切な分散補償ガラスを選択する分散補償ガラス決定等、最適な眼底の断層画像が得られるように断層像の撮影前に行われる様々な調整操作が含まれる。
 上記発明(発明1)によれば、第1撮影モードより走査に要する時間が短い二次元走査によって断層像を撮影する第2撮影モードが設けられているため、当該第2撮影モードにおいて第1撮影モードで断層像の撮影をするために必要な撮影条件の調整を行うことにより、短時間で撮影条件の調整を完了させることができる。また、第2撮影モードにおける断層像の撮影を、従来のように一次元的にラスタ走査の中心位置等を走査するものではなく、二次元走査によって行うことにより、撮影部位のほぼ全体をカバーする断層画像を撮影条件の調整中に観察することができるため、最適な撮影条件を決定することができる。
 上記発明(発明1)においては、前記第2撮影モードにおける走査領域が、前記第1撮影モードにおける走査領域中の注目領域を含む領域であることが好ましい(発明2)。ここで、注目領域とは、第1撮影モードの走査領域における撮影対象物体の形態の変化を代表する領域のことである。
 上記発明(発明2)によれば、第1撮影モードで断層像の撮影をするときに走査の対象とする領域内の注目領域が、第2撮影モードにおいて走査をする対象に含まれることになるため、第1撮影モードで断層像の撮影をするときに必要な撮影条件の調整をするのに十分な情報を、第2撮影モードで撮影された断層像から得ることができる。ここで、第2撮影モードにおける走査領域は、第1撮影モードにおける走査領域中の注目領域を含んでいれば、第1撮影モードにおける走査領域よりも広くても狭くてもよい。
 上記発明(発明1,2)においては、前記第1撮影モードにおける二次元走査がラスタ走査であることが好ましい(発明3)。また、上記発明(発明2)においては、前記第2撮影モードにおける二次元走査が、前記第1撮影モードにおけるラスタ走査を間引きした走査であることが好ましい(発明4)。
 上記発明(発明1~3)においては、前記第1撮影モードにおける走査領域中の注目領域を含む矩形領域の4辺を走査する走査であってもよく(発明5)、前記第1撮影モードにおける走査領域中の注目領域を含む矩形領域の1本あるいは2本の対角線を走査する走査であってもよい(発明6)。
 また、上記発明(発明4)においては、測定光を一次元走査して対象物体に入射させ、対象物体の断層像を撮影する第3撮影モードを更に備え、前記第3撮影モードで撮影された断層像に基づいて第1調整操作を行った後、前記第2撮影モードで撮影された断層像に基づいて第2調整操作が行われてもよいし(発明7)、撮影された断層像に基づいて生成された対象物体の断層画像を表示する表示手段を更に備え、前記表示手段が、前記第2撮影モードにおいて、前記第2撮影モードで撮影された断層像に基づいて生成された断層画像のうち、対象物体の所定の注目位置を含む一の断層画像のみを表示する第1表示モードと、前記第2撮影モードで撮影された断層像に基づいて生成された断層画像を順に表示する第2表示モードとを切り替え可能に構成されており、前記第1表示モードで表示された断層画像に基づいて第1調整操作を行った後、前記第2表示モードで表示された断層画像に基づいて第2調整操作が行われてもよい(発明8)。
 なお、本願において、第1調整操作とは、断層像のぼけの原因となる屈折率分散を補償するために適切な分散補償ガラスを選択する分散補償ガラス決定、及び被検眼の視度に応じてフォーカスレンズの位置を移動させてピントを合わせるフォーカス調整を行うことを意味する。また、本願において、第2調整操作とは、被検眼の視度に応じてフォーカスレンズの位置を移動させてピントを合わせるフォーカス調整、及び測定光と参照光とを重畳させて干渉光を生成すべく参照ミラーの位置を移動させて測定光学系と参照光学系の光路長を合わせる参照ミラー位置調整を行うことを意味する。
 上記発明(発明7,8)によれば、特定の一の断層画像のみに基づいて適切に調整可能な第1調整操作と、二次元走査によって得られた複数の断層画像に基づいて調整した方がより適切に調整できる第2調整操作とを、それぞれ別々に行うことができるため、短時間により最適な撮影条件を決定することができる。
 上記発明(発明1~8)においては、前記第2撮影モードで撮影された断層像を記憶する記憶手段を更に備えることが好ましい(発明9)。従来、撮影条件の調整用に取得された断層像は調整用途以外に用いられることがなかったが、上記発明(発明9)によれば、第2撮影モードで撮影した断層像データを保存しておくことができるため、当該データを第1撮影モードで撮影した断層像から生成される断層画像の位置合わせ補正に使用したり、サムネイル画像として使用したりすることができる。
 本発明の断層像撮影装置によれば、短時間で撮影条件の調整を完了させて最適な撮影条件を決定することができる。
本発明の第1実施形態に係る断層像撮影装置の全体構成を示す光学図である。 同実施形態の本撮影モードの走査パターンを示す説明図である。 同実施形態の予備撮影モードの走査パターンを示す説明図である。 同実施形態における予備撮影モードから本撮影モードへの切替の流れを示す説明図である。 本発明の第2実施形態における調整撮影モードから予備撮影モードへの切替、予備撮影モードから本撮影モードへの切替の流れを示す説明図である。 予備撮影モードにおける走査パターンの変形例を示す説明図である。 従来の断層像撮影装置における撮影条件の調整時及び撮影時の走査パターンを示す説明図である。
<第1実施形態>
 以下、本発明の第1実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の第1実施形態に係る断層像撮影装置の全体構成を示す光学図である。本実施形態に係る断層像撮影装置は被検眼Eの眼底を撮影対象物体とし、当該眼底の所望の領域の断層像をラスタ走査によって撮影するものである。符号10で示す部分は分波/合波光学系で、この光学系には、波長が700nm~1100nmで数μm~数十μm程度の時間的コヒーレンス長の光を発光する例えばスーパールミネッセントダイオード(SLD)からなる広帯域な低コヒーレンス光源11が設けられる。
 低コヒーレンス光源11で発生した低コヒーレンス光は、光量調整機構12を介して光量が調整され、光ファイバ13aにより光カプラ13に入射し、続いて光ファイバ13b、コリメートレンズ14を介して分割光学素子としてのビームスプリッタ20に導かれる。なお、光カプラ13の代わりに光サーキュレータを用いて分波、合波するようにしてもよい。
 ビームスプリッタ20に入射した光は参照光と測定光に分割される。測定光はフォーカスレンズ31に入射し、測定光が被検眼Eの眼底に合焦される。眼底にピントの合った測定光はミラー32で反射されてレンズ33を通過し、x軸走査ミラー(ガルバノミラー)34、y軸走査ミラー(ガルバノミラー)35で任意の方向に走査される。x軸、y軸走査ミラー34、35で走査された測定光は、スキャンレンズ36を通過し、ダイクロイックミラー37で反射された後、対物レンズ38を通過して眼底に入射し、眼底が測定光でx、y方向に走査される。眼底で反射された測定光は上記の経路を逆にたどってビームスプリッタ20に戻ってくる。
 このような光学系で、ビームスプリッタ20から後のフォーカスレンズ31、ミラー32、レンズ33、x軸走査ミラー34、y軸走査ミラー35、スキャンレンズ36、ダイクロイックミラー37及び対物レンズ38は、断層像撮影装置の測定光学系30を構成している。
 一方、ビームスプリッタ20で分割された参照光は、ミラー41で反射された後、対物レンズ用分散補償ガラス42、レンズ43、44を通過する。その後、ミラー45で反射されて、対象物体である被検眼Eの屈折率分散を補償する被検眼分散補償ガラス50を通過した後、ダイクロイックミラー46で反射され、集光レンズ47、光量を調整する可変アパーチャ48を通過し、参照ミラー49に到達する。光路長を合わせるために集光レンズ47、可変アパーチャ48と参照ミラー49は、図1において2重矢印で図示したように、一体で光軸方向に移動する。参照ミラー49で反射された参照光は上記の光路を逆にたどってビームスプリッタ20に戻ってくる。
 本実施形態では、測定光学系30のフォーカスレンズ31、レンズ33、スキャンレンズ36、及び対物レンズ38は、参照光学系40のレンズ43、44、集光レンズ47、及び対物レンズ用分散補償ガラス42にそれぞれ対応していてそれぞれの分散特性が同じないし等価となっている。また、測定光学系30のミラー32、x軸走査ミラー34、y軸走査ミラー35、ダイクロイックミラー37は、参照光学系40のミラー41、ミラー45、参照ミラー49、ダイクロイックミラー46にそれぞれ対応していてその分散特性が同じないし等価となっている。また、被検眼Eの分散特性と被検眼分散補償ガラス50の分散特性が同じないし等価になっている。
 このような光学系で、ミラー41、対物レンズ用分散補償ガラス42、レンズ43、44、ミラー45、被検眼分散補償ガラス50、ダイクロイックミラー46、集光レンズ47、参照物体としての参照ミラー49は断層像撮影装置の参照光学系40を構成している。
 ビームスプリッタ20に戻ってきた測定光と参照光は重畳されて干渉光となり、コリメートレンズ14、光カプラ13を通り、光ファイバ13cを介して分光器16に入射する。分光器16は回折格子16a、結像レンズ16b、ラインセンサ16cなどを有しており、干渉光は、回折格子16aで低コヒーレンス光の波長に応じたスペクトルに分光されて結像レンズ16bによりラインセンサ16cに結像される。
 ラインセンサ16cからの信号は、コンピュータ17のCPUなどで実現される断層画像形成手段でフーリエ変換を含む信号処理が行われ、眼底の深度方向(z方向)の情報を示す深さ信号が生成される。眼底の走査の各サンプリング時点での干渉光によりそのサンプリング時点での深さ信号(Aスキャン画像)が得られるので、1走査が終了すると、その走査方向に沿ったz方向画像(Aスキャン画像)からなる二次元の断層画像(Bスキャン画像)を形成することができる。形成された断層画像(Bスキャン画像)はディスプレイ18に表示することができる。また、形成された断層画像はコンピュータ17内の記憶部(不図示)に記憶させておくことができる。
 本実施形態に係る断層像撮影装置は、実際に断層像を撮影する際の撮影条件を最適化するために、いくつかの撮影条件の調整を行う。撮影条件の調整としては、例えば、断層像撮影装置と対象物体である被検眼Eとの位置合わせ、被検眼Eの視度に応じてフォーカスレンズ31の位置を移動させてピントを合わせるフォーカス調整、測定光と参照光とを重畳させて干渉光を生成すべく参照ミラー49の位置を移動させて測定光学系と参照光学系の光路長を合わせる参照ミラー位置調整、断層像のぼけの原因となる屈折率分散を補償するために適切な被検眼分散補償ガラス50を選択する分散補償ガラス決定が挙げられる。
 本実施形態に係る断層像撮影装置は、撮影条件の調整を行うための断層像を撮影する予備撮影モード(第2撮影モード)と、撮影条件の調整によって最適な撮影条件を決定した後に実際に眼底の所望の領域(走査領域)の断層画像を得るための断層像を撮影する本撮影モード(第1撮影モード)とを切り替え可能に構成されている。具体的には、断層像撮影装置は予備撮影モード及び本撮影モードでそれぞれ異なる走査パターンを用いて断層像を撮影し、撮影モード切替操作によって予備撮影モードと本撮影モードとを切り替えることができる。
 本撮影モードにおいては、図2に示すように、走査領域全体をラスタ走査する。本実施形態においては、本撮影モードでは高速軸方向(x方向)に全部で256本の走査を行うが、これに限られるものではなく、撮影対象や撮影目的、走査領域のサイズに応じて適宜変更されてよい。
 一方、予備撮影モードにおいては、図3に示すように、低速軸方向(y方向)の走査間隔を広げることにより、本撮影モードの走査密度より粗い走査密度の走査、つまり、本撮影モードにおけるラスタ走査の高速軸方向(x方向)の走査を間引きした走査を行う。本実施形態においては、予備撮影モードでは高速軸方向(x方向)に全部で11本の走査を行うが、これに限られるものではなく、撮影対象や撮影目的、走査領域のサイズに応じて適宜変更されてよい。少なくとも走査領域内における対象物体の形状変化を把握するのに十分な走査数とすれば、撮影条件の最適化は適切に実施可能である。ただし、予備撮影モードが、本撮影モードよりも走査密度を粗くすることによって撮影条件の調整用の断層像の撮影に要する時間を短くし、短時間で撮影条件の調整を完了させる効果を狙っているものであることから、予備撮影モードの走査数は本撮影モードの走査数の1/2~1/20の範囲に設定することが望ましい。
 本実施形態において、予備撮影モードにおける走査領域は本撮影モードにおける走査領域と同じ領域になっており、そのため、当然に本撮影モードにおける走査領域中の注目領域は予備撮影モードにおける走査領域に含まれている。ここで、注目領域とは、本撮影モードの走査領域における撮影対象物体(被検眼Eの眼底)の形態の変化を代表する領域のことである。
 本実施形態においては、予備撮影モードにおいて撮影された断層像から生成された被検眼Eの眼底の断層画像をディスプレイ18に表示するに際して、選択表示モード及び連続表示モードの二つの表示モードが用意されており、表示モード切替ボタン(不図示)によって選択表示モードと連続表示モードとを切り替えることができる。選択表示モードは、予備撮影モードで撮影された断層像に基づいて生成された断層画像のうち、対象物体の所定の注目位置を含む一の断層画像のみをディスプレイ18に表示する表示方式であり、本実施形態においては走査領域のy方向の中心位置の走査(図3における番号6の走査)により撮影された断層像に基づいて生成された1枚の断層画像のみを繰り返し表示する。連続表示モードは、予備撮影モードで撮影された断層像に基づいて生成された断層画像を順に連続してディスプレイ18に表示する表示方式であり、本実施形態においては全ての走査(図3における番号1~11の走査)により撮影された断層像に基づいて生成された11枚の断層画像を順に繰り返し表示する。
 本実施形態においては、撮影条件の調整を第1調整操作及び第2調整操作の二段階に分け、前述の選択表示モードを使って第1調整操作を、連続表示モードを使って第2調整操作を行う。第1調整操作では、断層像のぼけの原因となる屈折率分散を補償するために適切な被検眼分散補償ガラス50を選択する分散補償ガラス決定、及び被検眼Eの視度に応じてフォーカスレンズ31の位置を移動させてピントを合わせるフォーカス調整を行う。また、第2調整操作では、被検眼Eの視度に応じてフォーカスレンズ31の位置を移動させてピントを合わせるフォーカス調整、及び測定光と参照光とを重畳させて干渉光を生成すべく参照ミラー49の位置を移動させて測定光学系と参照光学系の光路長を合わせる参照ミラー位置調整を行う。このように、特定の一の断層画像のみに基づいて適切に調整可能な第1調整操作と、二次元走査によって得られた複数の断層画像に基づいて調整した方がより適切に調整できる第2調整操作とをそれぞれ別々に行うことにより、短時間により最適な撮影条件を決定することができる。
 本実施形態における予備撮影モードと本撮影モードの切替、選択表示モードと連続表示モードの切替を用いた撮影条件の調整の流れを説明する。図4(a)に示すように、まず第1調整操作を予備撮影モードにて行うが、第1調整操作は特定の一の断層画像のみに基づいて適切に調整可能なものである。そのため、このときディスプレイ18は選択表示モードに設定し、番号6の走査により撮影された断層像に基づいて生成された断層画像Tのみを繰り返し表示する。
 選択表示モードにて第1調整操作を完了したら、続いて、図4(b)に示すように、撮影方式は予備撮影モードのまま、表示モード切替ボタンを押してディスプレイ18を連続表示モードに切り替え、二次元走査によって得られた複数の断層画像に基づいて調整した方がより適切に調整できる第2調整操作を行う。連続表示モードでは、断層画像T~T11が順番に繰り返し表示される。
 連続表示モードにて第2調整操作を完了したら、図4(c)に示すように、撮影モード切替ボタンを押して予備撮影モードから本撮影モードに切り替え、最適化された撮影条件のもと、走査領域全体を高速軸方向(x方向)に全部で256本のラスタ走査を行い、被検眼Eの眼底の断層像の撮影を行う。
 なお、選択表示モード及び連続表示モードは断層画像の表示方式の違いであるにすぎず、いずれの表示モードを選択した場合においても、被検眼Eの断層像の撮影自体は予備撮影モードのもとで番号1~11の全部で11本の走査により行われている。つまり、選択表示モードに設定した場合であっても、番号6の走査のみを行って断層画像Tを生成するための断層像のみを撮影しているわけではなく、番号1~11の走査を行って断層画像T~T11を生成するために必要な断層像の撮影は行われている。
 また、予備撮影モードで撮影した断層像データ及びそれを基にして生成された断層画像はコンピュータ17内の記憶部(不図示)に保存される。予備撮影モードで撮影して取得した断層画像は、本撮影モードで撮影して得られる断層画像よりも数倍~数十倍高速にラスター走査して得られるものであるため、低速軸方向の固視微動による位置ずれを抑えた撮影が可能となる。この予備撮影モードで取得した各断層画像を基準として、第1撮影モードで取得した断層画像を位置ずれ補正を行い再配置すれば、固視微動の影響を排除した高密度画像を得ることが可能となる。
 以上述べたように、本実施形態の断層像撮影装置によれば、本撮影モードより走査密度の粗い二次元走査によって断層像を撮影する予備撮影モードが設けられており、予備撮影モードにおける二次元走査に要する時間が、本撮影モードにおける二次元走査に要する時間よりも短くなるため、当該予備撮影モードにおいて本撮影モードで断層像の撮影をするために必要な撮影条件の調整を行うことにより、短時間で撮影条件の調整を完了させることができる。また、予備撮影モードにおける断層像の撮影を、従来のように一次元的にラスタ走査の中心位置等を走査するものではなく、走査密度は粗いものの二次元走査によって行うことにより、撮影部位のほぼ全体をカバーする断層画像を撮影条件の調整中に観察することができるため、最適な撮影条件を決定することができる。
<第2実施形態>
 次に、本発明の第2実施形態を図面に基づいて詳細に説明する。第2実施形態に係る断層像撮影装置の全体構成は第1実施形態に係る断層像撮影装置と同一であるため、光学系その他の説明は省略する。また、第1実施形態と同じ素子、部品、装置については同じ符号を使用し、同じ用語は同じ意味を持つものとして使用する。以下、第1実施形態に係る断層像撮影装置と異なる点について説明する。
 本実施形態に係る断層像撮影装置は、撮影条件の調整を第1調整操作と第2調整操作とに分け、第1調整操作を行うための断層像を撮影する調整撮影モードと、第2調整操作を行うための断層像を撮影する予備撮影モードと、第1及び第2調整操作によって最適な撮影条件を決定した後に実際に走査領域の断層画像を得るための断層像を撮影する本撮影モードとを切り替え可能に構成されている。具体的には、断層像撮影装置はそれぞれのモードでそれぞれ異なる走査パターンを用いて断層像を撮影し、撮影モード切替操作によって調整撮影モード、予備撮影モード及び本撮影モードを切り替えることができる。
 予備撮影モード及び本撮影モードにおける走査パターンは第1実施形態と同じである。調整撮影モードは、測定光を一次元走査して対象物体に入射させ、対象物体の注目位置の断層像を撮影する撮影モードであり、例えば、走査領域のy方向の中心位置を注目位置としてx方向に一次元走査する。なお、注目位置は撮影対象や撮影目的、走査領域のサイズに応じて適宜変更されてよい。
 第1調整操作は特定の一の断層画像のみに基づいて適切に調整可能であるから、走査領域を二次元走査して複数の断層画像を得る必要はない。また、走査領域を二次元走査するよりも、走査領域内の注目位置を一次元走査する方が断層像の撮影に要する時間を短くすることができる。そのため、予備撮影モードとは別に、走査領域内を一次元走査する調整撮影モードを設け、特定の一の断層画像のみに基づいて適切に調整可能な第1調整操作は調整撮影モードで、二次元走査によって得られた複数の断層画像に基づいて調整した方がより適切に調整できる第2調整操作は予備撮影モードでそれぞれ別々に行うことにより、短時間により最適な撮影条件を決定することができる。
 なお、第1実施形態では、第1調整操作と第2調整操作とを分けて行うために、予備撮影モードにおいて、断層画像のディスプレイ18への表示方式として選択表示モード及び連続表示モードの二つが用意されていたが、本実施形態では調整撮影モードが設けられているため、選択表示モードに切替可能な表示方式は不要である。したがって、以下においては、予備撮影モードにおける表示方式は連続表示モードであるものとして説明を進める。
 本実施形態における調整撮影モード、予備撮影モード及び本撮影モードの切替を用いた撮影条件の調整の流れを説明する。図5(a)に示すように、まず第1調整操作を調整撮影モードにて行う。調整撮影モードでは、走査領域のy方向の中心位置Cをx方向に走査して撮影された断層像に基づいて生成された断層画像Tがディスプレイ18に繰り返し表示される。
 調整撮影モードにて第1調整操作を完了したら、続いて、図5(b)に示すように、撮影モード切替ボタンを押して調整撮影モードから予備撮影モードに切り替え、ディスプレイ18に順番に繰り返し表示される断層画像T~T11を確認しながら第2調整操作を行う。
 予備撮影モードにて第2調整操作を完了したら、図5(c)に示すように、再び撮影モード切替ボタンを押して予備撮影モードから本撮影モードに切り替え、最適化された撮影条件のもと、走査領域全体を高速軸方向(x方向)に全部で256本のラスタ走査を行い、被検眼Eの眼底の断層像の撮影を行う。
 以上述べたように、本実施形態の断層像撮影装置によれば、特定の一の断層画像のみに基づいて適切に調整可能な第1調整操作を調整撮影モードで行い、二次元走査によって得られた複数の断層画像に基づいて調整した方がより適切に調整できる第2調整操作を予備調整モードで行うことにより、短時間により最適な撮影条件を決定することができる。
 以上、本発明に係る断層像撮影装置について図面に基づいて説明してきたが、本発明は上記実施形態に限定されることはなく、種々の変更実施が可能である。例えば、上記実施形態においては、断層像撮影装置がラスタ走査によって眼底の断層像を撮影しているが、これに限られるものではなく、スパイラル走査その他の走査方式を採用するものであってもよい。
 また、上記実施形態においては、予備撮影モードで本撮影モードにおけるラスタ走査の高速軸方向(x方向)の走査を間引きした走査を行っているが、これに限られるものではなく、予備撮影モードにおける二次元走査に要する時間が本撮影モードにおける二次元走査に要する時間よりも短くなるのであればよく、例えば、走査密度は本撮影モードと同じとしたまま、走査領域を本撮影モードよりも狭くすることによって予備撮影モードの二次元走査に要する時間を短くしてもよい。また、予備撮影モードの走査領域を本撮影モードよりも広いものとしても、走査密度を粗くすることによって予備撮影モードの二次元走査に要する時間が短くなるのであれば、それも許容される。このように予備撮影モードにおける走査領域を本撮影モードとは異なる領域とするとき、本撮影モードにおける走査領域中の注目領域が予備撮影モードにおける走査領域に含まれるようにすることで、本撮影モードで断層像の撮影をするときに必要な撮影条件の調整をするのに十分な情報を、予備撮影モードで撮影された断層像から得ることができるようになる。
 さらに、予備撮影モードにおける二次元走査に要する時間が本撮影モードにおける二次元走査に要する時間よりも短くなるのであれば、他の走査パターンを予備撮影モードに採用してもよい。例えば、図6(a)に示すように、本撮影モードにおけるラスタ走査の対象となる走査領域中の注目領域を含む矩形領域の4辺を走査する走査パターンであってもよいし、図6(b)に示すように、本撮影モードにおけるラスタ走査の対象となる走査領域中の注目領域を含む矩形領域の1本あるいは2本の対角線を走査する走査パターンであってもよいし、これらを組み合わせた走査パターンであってもよい。あるいは本撮影モードにおける走査方向と予備撮影モードにおける走査方向が直交していることも許容される。このような走査パターンであっても走査領域内の対象物体の形状変化を代表する断層像の撮影は可能であるため、予備撮影モードの走査パターンとして採用可能である。
E  被検眼(対象物体)
10 分波/合波光学系
11 低コヒーレンス光源
12 光量調整機構
13 光カプラ
14 コリメートレンズ
20 ビームスプリッタ
30 測定光学系
31 フォーカスレンズ
34 x軸走査ミラー
35 y軸走査ミラー
36 スキャンレンズ
37 ダイクロイックミラー
38 対物レンズ
40 参照光学系
42 対物レンズ用分散補償ガラス
46 ダイクロイックミラー
47 集光レンズ
48 可変アパーチャ
49 参照ミラー
50 被検眼分散補償ガラス

Claims (9)

  1.  光源からの光を測定光と参照光に分割して対象物体と参照物体に入射させ、対象物体で反射された測定光と参照物体で反射された参照光を重畳させて生成される干渉光に基づき対象物体の断層像を撮影する断層像撮影装置であって、
     測定光を二次元走査して対象物体に入射させ、対象物体の断層像を撮影する第1撮影モードと、
     測定光を二次元走査して対象物体に入射させ、対象物体の断層像を撮影する第2撮影モードと、を備え、
     前記第2撮影モードにおける二次元走査に要する時間が、前記第1撮影モードにおける二次元走査に要する時間よりも短く、
     前記第2撮影モードで撮影された断層像に基づいて、前記第1撮影モードで断層像の撮影をするために必要な撮影条件の調整を行った後、前記第1撮影モードで断層像の撮影が行われることを特徴とする断層像撮影装置。
  2.  前記第2撮影モードにおける走査領域が、前記第1撮影モードにおける走査領域中の注目領域を含む領域であることを特徴とする、請求項1に記載の断層像撮影装置。
  3.  前記第1撮影モードにおける二次元走査がラスタ走査であることを特徴とする、請求項1又は2に記載の断層像撮影装置。
  4.  前記第2撮影モードにおける二次元走査が、前記第1撮影モードにおけるラスタ走査を間引きした走査であることを特徴とする、請求項3に記載の断層像撮影装置。
  5.  前記第2撮影モードにおける二次元走査が、前記第1撮影モードにおける走査領域中の注目領域を含む矩形領域の4辺を走査する走査であることを特徴とする、請求項1~3のいずれか1項に記載の断層像撮影装置。
  6.  前記第2撮影モードにおける二次元走査が、前記第1撮影モードにおける走査領域中の注目領域を含む矩形領域の1本あるいは2本の対角線を走査する走査であることを特徴とする、請求項1~3のいずれか1項に記載の断層像撮影装置。
  7.  測定光を一次元走査して対象物体に入射させ、対象物体の断層像を撮影する第3撮影モードを更に備え、
     前記第3撮影モードで撮影された断層像に基づいて第1調整操作を行った後、前記第2撮影モードで撮影された断層像に基づいて第2調整操作が行われることを特徴とする、請求項4に記載の断層像撮影装置。
  8.  撮影された断層像に基づいて生成された対象物体の断層画像を表示する表示手段を更に備え、
     前記表示手段が、前記第2撮影モードにおいて、前記第2撮影モードで撮影された断層像に基づいて生成された断層画像のうち、対象物体の所定の注目位置を含む一の断層画像のみを表示する第1表示モードと、前記第2撮影モードで撮影された断層像に基づいて生成された断層画像を順に表示する第2表示モードとを切り替え可能に構成されており、
     前記第1表示モードで表示された断層画像に基づいて第1調整操作を行った後、前記第2表示モードで表示された断層画像に基づいて第2調整操作が行われることを特徴とする、請求項4に記載の断層像撮影装置。
  9.  前記第2撮影モードで撮影された断層像を記憶する記憶手段を更に備えることを特徴とする、請求項1~8のいずれか1項に記載の断層像撮影装置。
PCT/JP2015/068755 2014-07-01 2015-06-30 断層像撮影装置 WO2016002740A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15814335.4A EP3165151A4 (en) 2014-07-01 2015-06-30 Tomography device
US15/322,151 US10219692B2 (en) 2014-07-01 2015-06-30 Tomographic image capturing device
JP2016531370A JP6557229B2 (ja) 2014-07-01 2015-06-30 断層像撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136348 2014-07-01
JP2014-136348 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002740A1 true WO2016002740A1 (ja) 2016-01-07

Family

ID=55019272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068755 WO2016002740A1 (ja) 2014-07-01 2015-06-30 断層像撮影装置

Country Status (4)

Country Link
US (1) US10219692B2 (ja)
EP (1) EP3165151A4 (ja)
JP (2) JP6557229B2 (ja)
WO (1) WO2016002740A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140006A (ja) * 2017-02-28 2018-09-13 キヤノン株式会社 撮像装置、撮像装置の制御方法およびプログラム
JP2019171165A (ja) * 2014-07-01 2019-10-10 興和株式会社 撮影装置
WO2021256132A1 (ja) 2020-06-15 2021-12-23 株式会社トプコン 眼科装置、眼科装置の制御方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017664A1 (ja) 2014-07-30 2016-02-04 興和株式会社 断層像撮影装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192260A (ja) * 2012-07-13 2012-10-11 Canon Inc 断層像撮像装置および断層撮像方法、プログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996917B2 (ja) * 2006-12-26 2012-08-08 株式会社トプコン 光画像計測装置及び光画像計測装置を制御するプログラム
JP4971863B2 (ja) * 2007-04-18 2012-07-11 株式会社トプコン 光画像計測装置
JP4971864B2 (ja) 2007-04-18 2012-07-11 株式会社トプコン 光画像計測装置及びそれを制御するプログラム
WO2010117386A1 (en) * 2009-04-10 2010-10-14 Doheny Eye Institute Ophthalmic testing methods, devices and systems
JP5627260B2 (ja) 2009-05-22 2014-11-19 キヤノン株式会社 撮像装置および撮像方法
JP5017328B2 (ja) * 2009-08-11 2012-09-05 キヤノン株式会社 断層像撮像装置およびその制御方法、プログラム、記憶媒体
FR2962531B1 (fr) 2010-07-08 2014-01-17 Lltech Inc Methode et dispositif d'imagerie tridimensionnelle par microscopie interferentielle plein champ
US9101294B2 (en) * 2012-01-19 2015-08-11 Carl Zeiss Meditec, Inc. Systems and methods for enhanced accuracy in OCT imaging of the cornea
US9192294B2 (en) 2012-05-10 2015-11-24 Carl Zeiss Meditec, Inc. Systems and methods for faster optical coherence tomography acquisition and processing
JP6460618B2 (ja) * 2013-01-31 2019-01-30 キヤノン株式会社 光干渉断層撮像装置およびその制御方法
EP3165151A4 (en) * 2014-07-01 2018-03-28 KOWA Co., Ltd. Tomography device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192260A (ja) * 2012-07-13 2012-10-11 Canon Inc 断層像撮像装置および断層撮像方法、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165151A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171165A (ja) * 2014-07-01 2019-10-10 興和株式会社 撮影装置
JP2018140006A (ja) * 2017-02-28 2018-09-13 キヤノン株式会社 撮像装置、撮像装置の制御方法およびプログラム
WO2021256132A1 (ja) 2020-06-15 2021-12-23 株式会社トプコン 眼科装置、眼科装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2016002740A1 (ja) 2017-04-27
JP6557229B2 (ja) 2019-08-07
US10219692B2 (en) 2019-03-05
EP3165151A1 (en) 2017-05-10
EP3165151A4 (en) 2018-03-28
JP2019171165A (ja) 2019-10-10
US20170135575A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5054072B2 (ja) 光断層画像撮像装置
US9033500B2 (en) Optical coherence tomography and method thereof
JP6062688B2 (ja) 眼科装置、眼科装置の制御方法、およびプログラム
JP5610706B2 (ja) 撮像装置および撮像方法
JP2019171165A (ja) 撮影装置
JP2011172822A (ja) 光断層像撮影装置
KR20130086969A (ko) 광 간섭 단층 촬상 장치, 광 간섭 단층 촬상 장치 제어 방법 및 저장 매체
JP2019107569A (ja) 眼底撮影装置
JP2011212203A (ja) 撮像装置及び撮像方法
WO2019117036A1 (ja) 撮像装置及びその制御方法
JP7368581B2 (ja) 眼科装置、及び眼科情報処理装置
JP6807442B2 (ja) 眼底撮影装置
JP6918581B2 (ja) 制御装置、断層像撮影システム、制御方法、及びプログラム
JP5828811B2 (ja) 撮像装置及びその制御方法
JP6898716B2 (ja) 光断層撮像装置
JP5990932B2 (ja) 眼光断層画像撮像装置
JP5987355B2 (ja) 眼光断層画像撮像装置
JP5649679B2 (ja) 光干渉断層撮像装置、光干渉断層撮像装置の制御方法、およびプログラム
JP2018171326A (ja) 断層画像撮影装置、および断層画像撮影プログラム
JP6932581B2 (ja) 眼科装置、情報処理装置、情報処理方法及びプログラム
JP2016077454A (ja) 眼科装置
JP2016067588A (ja) 光干渉断層撮影装置およびその制御方法
JP2020048688A (ja) 眼科装置および眼科装置の制御方法
JP2019042377A (ja) 光干渉断層撮影装置、光干渉断層撮影装置の制御方法及びプログラム
JP2019054981A (ja) 検査装置、該検査装置の制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015814335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814335

Country of ref document: EP