WO2016002229A1 - センサ - Google Patents

センサ Download PDF

Info

Publication number
WO2016002229A1
WO2016002229A1 PCT/JP2015/003355 JP2015003355W WO2016002229A1 WO 2016002229 A1 WO2016002229 A1 WO 2016002229A1 JP 2015003355 W JP2015003355 W JP 2015003355W WO 2016002229 A1 WO2016002229 A1 WO 2016002229A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
substrate
weight portion
protrusion
weight
Prior art date
Application number
PCT/JP2015/003355
Other languages
English (en)
French (fr)
Inventor
高木 清彦
理都 中吉
陽平 島田
政紀 山内
今中 崇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016531122A priority Critical patent/JPWO2016002229A1/ja
Priority to US15/320,372 priority patent/US20170160307A1/en
Publication of WO2016002229A1 publication Critical patent/WO2016002229A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0871Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using stopper structures for limiting the travel of the seismic mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0874Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using means for preventing stiction of the seismic mass to the substrate

Definitions

  • the present disclosure relates to an inertial force sensor such as an acceleration sensor or an angular velocity sensor used in a vehicle, a navigation device, a portable terminal, or the like, or a sensor such as a strain sensor or an atmospheric pressure sensor.
  • an inertial force sensor such as an acceleration sensor or an angular velocity sensor used in a vehicle, a navigation device, a portable terminal, or the like, or a sensor such as a strain sensor or an atmospheric pressure sensor.
  • FIG. 16 is a cross-sectional view of a conventional sensor that is an acceleration sensor.
  • the senor 1 includes a substrate 2, a support portion 3 provided on the upper surface of the substrate 2, a weight portion 4 facing the upper surface of the substrate 2, and a beam portion connected to the support portion 3 and the weight portion 4. 5 and a protrusion 6 provided on the lower surface of the weight 4.
  • One end of the beam portion 5 is connected to the support portion 3, and the other end is connected to the weight portion 4.
  • 17 and 18 are schematic cross-sectional views of the sensor 1 shown in FIG. 16 as viewed from the direction 1A.
  • FIG. 17 no acceleration is applied to the sensor 1.
  • an excessive impact is applied to the sensor 1 in the negative direction of the X axis.
  • the weight portion 4 rotates around the Y-axis.
  • the ridgeline 7 (corner of the weight part 4) in the weight part 4 and the substrate 2 come into contact with each other, and the weight part 4 does not rotate any more. With this configuration, plastic deformation of the beam portion 5 can be prevented. Therefore, the output signal of the sensor 1 is stabilized.
  • This disclosure is intended to provide a sensor with improved reliability without causing the weight portion and the substrate to stick to each other even when an excessive acceleration is applied.
  • the present disclosure has the following configuration.
  • the upper surface of the first protrusion has a first surface and a second surface. The second surface is disposed above the first surface with the upper surface of the first substrate as a reference.
  • FIG. Schematic diagram for explaining the operation of the sensor in the first embodiment Sectional drawing of the sensor in the modification of Embodiment 1 The elements on larger scale of sectional drawing of the sensor in the modification of Embodiment 1 Sectional drawing of the sensor in Embodiment 2.
  • Sectional view along line 5B-5B of the sensor in the second embodiment Top view of the sensor in the third embodiment Sectional view along line 6B-6B of the sensor in the third embodiment Sectional drawing for demonstrating operation
  • FIG. 1 The top view of the sensor in the modification of Embodiment 3 Sectional drawing in the line 8B-8B of the sensor in the modification of Embodiment 3
  • Top view of the sensor in the fourth embodiment Schematic diagram for explaining the operation of the sensor in the fourth embodiment Cross section of conventional sensor Cross-sectional schematic diagram of a conventional sensor Cross-sectional schematic diagram of a conventional sensor
  • FIG. 1 is a top view of the sensor 10 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along line 1B-1B of the sensor 10 shown in FIG. 1
  • FIG. 3 is a circuit diagram of the sensor according to the first embodiment
  • FIG. 3 is a cross-sectional view taken along line 3A-3A of the sensor 10 shown in FIG.
  • FIG. 4A shows a state after the sensor 10 receives an impact in the X direction for the sake of convenience in order to facilitate later explanation.
  • the sensor 10 includes a first substrate 11, a support portion 12 connected to the upper surface 81 a of the first substrate 11, and a lower surface facing the upper surface 81 a of the first substrate 11.
  • the weight part 13 having 83 b, the beam part 14 connecting the support part 12 and the weight part 13, and the lower protrusions 15 and 16 provided on the upper surface 81 a of the first substrate 11 are provided.
  • the lower protrusions 15 and 16 have an overall height (height from the upper surface 81a of the first substrate 11 to the second surface 200) of about 3 ⁇ m, and a height of about 270 nm. Step 17 (difference from the second surface 200 to the first surface 100) is provided.
  • the height of the step 17 with respect to the total height of the lower protrusions 15 and 16 is about 9%.
  • the lower protrusions 15 and 16 are provided with ridge lines 19c and 19d due to the step 17.
  • the lower protrusions 15 and 16 are provided with a step 17 so that the height of the lower protrusions 15 and 16 increases toward the rotation axis Y1 of the weight part 13.
  • the beam portion 14 has one end 84a (first end portion) connected to the support portion 12 and the other end 84b (second end portion) opposite to the one end 84a, and the extending direction from the one end 84a.
  • L14 extends to the other end 84b.
  • the weight portion 13 is connected to the other end 84 b of the beam portion 14.
  • the width D1 of the weight portion 13 in the width direction W14 perpendicular to the extending direction L14 and parallel to the upper surface 81a of the first substrate 11 is larger than the width D2 of the beam portion 14 in the width direction W14.
  • a distance D3 between the lower projection 15 and the lower projection 16 in the width direction W14 is larger than the width D2 of the beam portion 14 and smaller than the width D1 of the weight portion 13.
  • the distance D3 is the distance between the opposing surfaces of the lower protrusions 15 and 16.
  • the sensor 10 is an acceleration sensor that detects acceleration in the Z-axis direction.
  • the rotation of the weight portion 13 around the Y-axis is suppressed by the lower protrusions 15 and 16, thereby the beam portion 14. Breakage can be prevented.
  • the first substrate 11, the support portion 12, the weight portion 13, the beam portion 14, and the lower protrusion portions 15 and 16 are made of a material such as silicon, fused quartz, or alumina.
  • the small sensor 10 is manufactured using a microfabrication technique by forming using silicon.
  • the first substrate 11 and the support portion 12 can be connected using any one of adhesive bonding, metal bonding, room temperature bonding, anodic bonding, or the like.
  • an adhesive such as an epoxy resin or a silicone resin is used.
  • a silicone-based resin By using a silicone-based resin as the adhesive, it is possible to reduce the stress applied to the first substrate 11 and the support portion 12 as the adhesive itself is cured.
  • the thickness of the beam portion 14 in the height direction H14 is smaller than the thickness of the weight portion 13.
  • Detecting portions 20A and 20B for detecting acceleration are formed on the beam portion 14.
  • a strain resistance method or a capacitance method can be used as a detection method by the detection units 20A and 20B.
  • the sensitivity of the sensor 10 can be improved.
  • the temperature characteristics of the sensor 10 can be improved by using a thin film resistance method using an oxide film strain resistor as the strain resistance method.
  • FIG. 3 is a circuit diagram of the sensor in the first embodiment.
  • FIG. 3 is a circuit diagram of the sensor 10 when the strain resistance method is used as the detection units 20A and 20B.
  • the detection unit 20A has a resistor R1
  • the detection unit 20B has a resistor R4.
  • the support portion 12 is provided with resistors R2 and R3.
  • the resistors R1, R2, R3, and R4 are connected in a bridge form at connection points Vdd, GND, V1, and V2 to form a bridge circuit.
  • the acceleration applied to the sensor 10 can be detected by applying a voltage between a pair of opposing connection points Vdd and GND and detecting a potential difference Vout between the other pair of connection points V1 and V2. .
  • FIG. 4A is a cross-sectional view taken along line 3A-3A of the sensor 10 shown in FIG. 2, and is a cross-sectional view seen from the direction M10 shown in FIG.
  • FIG. 4B is a schematic diagram for explaining the operation of the sensor.
  • FIG. 4B is an oblique view of the state after the sensor receives an impact in the X direction. In FIG. 4B, only a part of the lower protrusion 16 and the weight portion 13 is shown for easy understanding of the state of the sensor 10.
  • the weight portion 13 has ridge lines 13c and 13d.
  • the ridge lines 13c and 13d abut on the lower projections 15 and 16. That is, the ridge line 13c and the ridge line 13d correspond to the corners of the lower surface of the weight portion.
  • the lower protrusions 15 and 16 have ridge lines 19c and 19d, and when the weight part 13 rotates about the axis Y1, the ridge lines 19c and 19d abut against the lower surface 83b of the weight part 13. That is, the ridge line 19 c and the ridge line 19 d correspond to the end portions of the second surfaces 200 of the lower protrusions 15 and 16 on the first surface 100 side.
  • the lower surface 83b of the weight portion 13 When an impact is applied in the positive direction of the X axis and an excessive acceleration is applied, the lower surface 83b of the weight portion 13 is centered on the axis Y1 parallel to the Y axis and passing through the center of gravity G13 of the weight portion 13, and the lower protrusion 16 The weight portion 13 is rotated in the direction R13 that is close to and away from the lower projection portion 15, and the beam portion 14 is twisted.
  • a step 17 is provided on the lower protrusions 15 and 16 of the first substrate 11. That is, a difference in height between the first surface 100 and the second surface 200 is provided.
  • the step 17 is configured such that the height of the lower protrusions 15 and 16 increases toward the rotation axis Y1 of the weight 13.
  • the second surface 200 is located above the first surface 100 with respect to the upper surface of the first substrate 11. Then, when the weight portion 13 rotates about the axis Y1 in the direction R13, the ridge line 13d of the weight portion 13 comes into contact with the first surface 100 of the lower protrusion 16 and the rotation of the weight portion 13 in the direction R13 is performed. regulate. At the same time, a ridge line 19 d (an end portion of the second surface 200) provided on the upper surface of the lower protrusion 16 abuts on the lower surface 83 b of the weight portion 13.
  • the lower protrusion 16 and the weight portion 13 of the first substrate 11 are in contact with each other at two locations of the ridge line 13d and the ridge line 19d that are different from each other. Stress does not concentrate only on 13d. As a result, it is possible to prevent the weight portion 13 and the lower protrusion portion 16 of the first substrate 11 from being fixed.
  • a step 17 is provided on the lower protrusion 16 in the first substrate 11, and the ridge line 19 d of the lower protrusion 16 contacts the lower surface of the weight 13 when the weight 13 is moved to the maximum, and the weight 13 is configured such that a lower ridge line 13d abuts on a step 17 (first surface 100) of the lower protrusion 16.
  • the ridge line 19 d of the lower protrusion 16 that contacts the lower surface 83 b of the weight 13 can be easily formed.
  • the ridge line 13c of the weight portion 13 comes into contact with the step 17 (first surface 100) of the lower protrusion portion 15, and the rotation of the weight portion 13 is restricted. To do.
  • the ridge line 19 c provided on the upper surface of the lower protrusion 15 contacts the lower surface 83 b of the weight portion 13.
  • the distance D3 between the lower projection 15 and the lower projection 16 in the width direction W14 is larger than the width D2 (shown in FIG. 1) of the beam portion 14 in the width direction W14, and the weight portion 13 in the width direction W14. Smaller than the width D1.
  • the distance D3 is the distance between the opposing surfaces of the lower protrusions 15 and 16.
  • the step 17 is provided on the lower protrusions 15 and 16 of the first substrate 11, and the ridge lines of the lower protrusions 15 and 16 when the weight part 13 is moved to the maximum. 19 d is in contact with the lower surface 83 b of the weight portion 13, and the lower ridgelines 13 c and 13 d of the weight portion 13 are in contact with the step 17 (first surface 100) of the lower protrusions 15 and 16.
  • the sensor 10 of the present embodiment includes the first substrate 11, the first protrusions (lower protrusions 15 and 16) provided on the upper surface 81a of the first substrate 11, and the first substrate. 11 on the upper surface 81a of the beam 11, the beam portion 14 with the first end (one end 84a) supported by the support portion 12, and the second end (the other end 84b) of the beam portion 14. And a weight portion 13 provided.
  • the upper surface of the first protrusion (lower protrusions 15, 16) has a first surface 100 and a second surface 200. Further, the second surface 200 is disposed above the first surface 100 with the upper surface of the first substrate 11 as a reference.
  • the weight part 13 comes into contact with the first surface 100 with a line and comes into contact with the end of the second surface 200 with a line.
  • the first surface 100 is arranged to extend from a region outside the periphery of the weight portion 13 to a region inside the periphery of the weight portion 13 in plan view.
  • the second surface 200 is located in a region inside the periphery of the weight portion 13 in plan view.
  • FIG. 5 is a cross-sectional view of a sensor in a modification of the first embodiment.
  • FIG. 6 is a partially enlarged view of a cross-sectional view of a sensor in a modification of the first embodiment.
  • symbol is attached
  • the lower protrusions 15 and 16 in the first substrate 11 are provided with a step 17 having a tapered surface 17A (the difference in height between the first surface 100 and the second surface 200). .
  • the step 17 increases the height of the lower protrusions 15 and 16 toward the rotation axis Y1 of the weight portion.
  • first surface 100 and the second surface 200 are connected by a tapered surface.
  • the contact area where the weight 13 and the lower protrusions 15 and 16 abut each other is greatly increased by the tapered surface 17A provided on the lower protrusions 15 and 16. . Therefore, the stress generated on the contact surface between the weight 13 and the lower protrusions 15 and 16 is greatly reduced. Thereby, it can prevent more reliably that the weight part 13 and the lower projection parts 15 and 16 in the 1st board
  • a plurality of arithmetic average roughness Ra is provided on the tapered surface 17 ⁇ / b> A of the lower protrusion 16 in the first substrate 11 with unevenness of 1 nm to 150 nm, and the lower surface of the weight portion 13 and the tapered surface 17A was brought into contact with multiple points. That is, the taper surface 17A has a plurality of irregularities.
  • the lower protrusion 15 can obtain the same effect by providing a plurality of irregularities on the tapered surface 17 ⁇ / b> A.
  • FIG. 7 is a cross-sectional view of the sensor 24 according to the second embodiment
  • FIG. 8 is a cross-sectional view of the sensor 24 taken along line 5B-5B shown in FIG. 7 and 8, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the sensor 24 according to the second embodiment includes a second substrate 21 connected to the support unit 12 and a second substrate 21 in the configuration of the sensor 10 according to the first embodiment (see FIG. 2).
  • the second substrate 21 is fixed to the support portion 12 so as not to move with respect to the first substrate 11.
  • the second substrate 21 has a lower surface 91 b that faces the upper surface 83 a of the weight portion 13.
  • the weight portion 13 is provided between the upper surface 81 a of the first substrate 11 and the lower surface 91 b of the second substrate 21.
  • the upper protrusions 22 and 23 are provided on the lower surface 91 b of the second substrate 21.
  • the upper protrusions 22 and 23 are provided at positions symmetrical to the lower protrusions 15 and 16 provided on the upper surface 81 a of the first substrate 11 with respect to the weight part 13. That is, the distance D4 between the upper protrusion 22 and the upper protrusion 23 in the width direction W14 is the same as the distance D3 between the lower protrusion 15 and the lower protrusion 16 in the width direction W14.
  • the distance D4 is the distance between the surfaces of the upper protrusions 22 and 23 facing each other.
  • the distance D4 between the upper protrusions 22 and 23 is larger than the width D2 of the beam portion 14 in the width direction W14 and smaller than the width D1 of the weight portion 13 in the width direction W14 (shown in FIG. 1).
  • the weight portion 13 has ridge lines 13e and 13f located below the upper protrusion portions 22 and 23, respectively.
  • the ridge lines 13c and 13d of the lower surface 83b of the weight part 13 are in contact with the step 17 (first surface 100) of the lower protrusions 15 and 16, respectively, and the ridge lines 13e and 13f of the upper surface 83a of the weight part 13 are provided.
  • the upper surface 83a of the weight portion 13 abuts on the ridgelines 19e and 19f (end portions of the fourth surface 400) of the upper protrusions 22 and 23 on the second substrate, and the lower surface 83b of the weight portion 13 Are in contact with the ridgelines 19c and 19d (ends of the second surface 200) of the lower projections 15 and 16 on the first substrate 11, respectively. Therefore, the rotation of the weight portion 13 can be more reliably suppressed and the twist of the beam portion 14 can be suppressed.
  • the ridge line 19e of the upper protrusion 22 contacts the upper surface 83a of the weight portion 13, and the ridge line 13e on the upper side of the weight portion 13 is the upper side.
  • the configuration is such that it contacts the step 17 (third surface 300) of the protrusion 22.
  • the senor according to the third embodiment is provided above the support portion 12, the second substrate 21 extending from the support portion 12, and the upper protrusion 22 provided on the lower surface 91 b of the second substrate 21 or 23 (second protrusion).
  • the first substrate 11 and the second substrate 21 are arranged in parallel.
  • the lower surface of the upper protrusion 22 or 23 (second protrusion) has a third surface 300 and a fourth surface 400.
  • the fourth surface 400 is below the third surface 300 with the lower surface 91 b of the second substrate 21 as a reference.
  • the weight portion 13 comes into contact with the third surface 300 with a line and comes into contact with the end portion of the fourth surface 400 with a line.
  • the third surface 300 is arranged to extend from a region outside the periphery of the weight portion 13 to a region inside the periphery of the weight portion 13 in plan view.
  • the 4th surface 400 is located in the area
  • the ridge line 19e of the upper protrusion 22 that contacts the upper surface of the weight portion 13 can be formed only by providing the upper protrusion 22 with the step 17 (the difference in height between the third surface 300 and the fourth surface 400). Can be easily formed.
  • the upper protrusion 23 has the same configuration as that of the upper protrusion 22, and the same effect can be obtained.
  • Embodiment 3 Next, the sensor in Embodiment 3 is demonstrated, referring drawings.
  • FIG. 9 is a top view of the sensor 30 in the third embodiment
  • FIG. 10 is a cross-sectional view of the sensor 30 in FIG. 9 taken along line 6B-6B. 9 and 10, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the sensor 10 according to the first embodiment further includes a lower protrusion 31.
  • the lower protrusion 31 is provided on the upper surface 81 a of the first substrate 11.
  • the lower protrusion 31 is located between the lower protrusion 15 and the lower protrusion 16 in the width direction W14.
  • the lower protrusion 31 can suppress excessive displacement of the weight 13 in the Z-axis direction.
  • the weight portion 13 rotates around the center of gravity G ⁇ b> 13 with the contact with the lower protrusions 15 and 16.
  • a distance D5 between each of the lower protrusions 15 and 16 and the support part 12 in the extending direction L14 is larger than a distance D6 between the lower protrusion 31 and the support part 12 in the extending direction L14.
  • the lower projections 15 and 16 are located closer to the center of gravity G13 of the weight portion 13 than the lower projection 31. With this configuration, it is possible to prevent the thin beam portion 14 from being damaged by the rotation of the weight portion 13 around the center of gravity G13.
  • 11 and 12 are cross-sectional views of the sensor 30 when an excessive impact is applied to the sensor 30 in the Z-axis direction and the weight portion 13 is displaced in the Z-axis direction.
  • an excessive impact is applied to the sensor 30 from the positive direction of the Z axis, that is, from below. 11 and 12, the lower protrusion 16 is not shown, but the lower protrusion 16 has the same configuration as the lower protrusion 15.
  • the lower protrusion 31 is provided closer to the support 12 of the weight 13 than the lower protrusion 15 (16), so that the ridge line 13 g of the weight 13 is on the lower side. It abuts on the step 17 of the protrusion 31 and restricts the rotation of the weight 13. At the same time, it is possible to effectively prevent the ridge line 19g provided on the upper surface of the lower projection 31 from contacting the lower surface 83b of the weight portion 13 and excessively displacing the weight portion 13 in the positive direction of the Z axis. . In FIG. 12, an excessive impact is applied to the sensor 30 from the negative direction of the Z axis, that is, from above.
  • FIG. 13 is a top view of sensor 33 in a modification of the first embodiment.
  • the first substrate 11 and the second substrate 21 are not shown.
  • FIG. 14 is a cross-sectional view of the sensor 33 shown in FIG. 13 taken along line 8B-8B.
  • FIG. 13 and FIG. 14 the same components as those in the other embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the second substrate 21 is connected to the support portion 12, and the upper protrusion portions 22 and 23 are provided on the lower surface 91 b facing the weight portion 13 of the second substrate 21.
  • an upper protrusion 32 is provided between the upper protrusions 22 and 23 in the width direction W14.
  • the upper protrusions 22, 23, and 32 provided on the lower surface 91 b of the second substrate 21 are symmetrical with the lower protrusions 15, 16, and 31 provided on the upper surface 81 a of the first substrate 11 with respect to the weight portion 13. It is provided in the position.
  • FIG. 15A is a top view of sensor 40 in the fourth exemplary embodiment.
  • FIG. 15B is a schematic diagram for explaining the operation of the sensor 40 in the fourth embodiment.
  • symbol is attached
  • the difference between the sensor 40 of the fourth embodiment and the configuration of the sensor 10 of the first embodiment is the shape of the weight portion 113 and the shapes of the first surface 100 and the second surface 200 of the lower protrusions 115 and 116. It is.
  • the weight portion 113 is not necessarily rectangular or square.
  • the boundary line between the first surface 100 and the second surface 200 of the lower protrusions 115 and 116 does not necessarily have to be parallel to the L14 or W14 direction.
  • the shape of the weight portion 13 is not limited.
  • the sensors in the first to fourth embodiments are acceleration sensors, but other types such as an angular velocity sensor, a strain sensor, an atmospheric pressure sensor, and a pressure sensor may be used as long as they detect a physical quantity by rotating or displacing a weight portion. It can also be applied to other sensors.
  • directions such as “upper surface”, “lower surface”, “upper”, and “lower” indicate relative directions that depend only on the relative positional relationship of components of the sensor such as the substrate and the weight. It does not indicate an absolute direction such as a vertical direction.
  • the two portions of the ridge line 13d and the ridge line 19d are not necessarily in contact with each other at the same time. That is, the ridge line 13d may contact after the ridge line 13d contacts first, or the ridge line 13d may contact after the ridge line 19d contacts first.
  • the beam portion 14 is elastically deformed, the weight portion 13 and the lower protrusion portion 16 come in contact with two lines (two places) of the ridge line 13d and the ridge line 19d with the passage of time.
  • the lower protrusions 15, 16, 31, 115, 116 and the upper protrusions 22, 23, 32 are brought into contact at two ridge lines as a result of the weight 13 rotating.
  • the sensor of the present disclosure has an effect that the weight portion and the substrate are not easily fixed by sticking even when an excessive acceleration is applied.
  • it is useful as an inertial force sensor such as an acceleration sensor or an angular velocity sensor used in a vehicle, a navigation device, a portable terminal, or the like, or a sensor such as a strain sensor or an atmospheric pressure sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)

Abstract

 第1の基板と、第1の基板の上面に設けられた第1の突起部と、第1の基板の上面に設けられた支持部と、第1の端部が支持部に支持された梁部と、梁部の第2の端部に設けられた錘部と、を備える。そして、第1の突起部の上面は、第1の面および第2の面を有する。そして、第1の基板の上面を基準として、第2の面は、第1の面より上方に配置されている。

Description

センサ
 本開示は、車両やナビゲーション装置、携帯端末等に用いられる加速度センサや角速度センサ等の慣性力センサ、歪センサや気圧センサ等のセンサに関する。
 以下に従来のセンサについて、図面を参照しながら説明する。図16は、加速度センサである従来のセンサの断面図である。
 図16において、センサ1は、基板2と、基板2の上面に設けられた支持部3と、基板2の上面と対向する錘部4と、支持部3と錘部4に接続された梁部5と、錘部4の下面に設けられた突起部6とにより構成されている。梁部5の一端が支持部3に接続され、他端が錘部4に接続されている。
 以上のように構成された従来のセンサについて、その動作を説明する。
 図17と図18は、図16に示すセンサ1を方向1Aから見た断面模式図である。
 図17ではセンサ1には加速度が印加されていない。図18ではセンサ1にはX軸の負の方向に過大な衝撃が加わっている。図18に示すように、X軸方向に過大な衝撃が加わった場合、錘部4がY軸を中心に回動する。錘部4における稜線7(錘部4の角)と基板2とが当接して、それ以上、錘部4が回動しない。この構成により、梁部5の塑性変形を防止することができる。よって、センサ1の出力信号が安定する。
特開2007-132863号公報
 しかしながら、上記従来のセンサ1においては、錘部4における稜線7のみが基板2と当接するため、錘部4の角(稜線7)に応力が集中する。その結果、錘部4と基板2とがステッキングにより固着し易くなる。
 本開示は、過大な加速度が負荷されても錘部と基板とがステッキングにより固着することがなく、信頼性を向上したセンサを提供することを目的とする。
 上記目的を達成するために本開示は以下の構成を有する。
 第1の基板と、第1の基板の上面に設けられた第1の突起部と、第1の基板の上面に設けられた支持部と、第1の端部が支持部に支持された梁部と、梁部の第2の端部に設けられた錘部と、を備える。そして、第1の突起部の上面は、第1の面および第2の面を有する。そして、第1の基板の上面を基準として、第2の面は、第1の面より上方に配置されている。
 この構成によれば、錘部が最大に可動した際に第1の突起部と錘部とが少なくとも2箇所(互いに異なる少なくとも2つの線)で当接する。
 よって、錘部の稜線のみに応力が集中することがなくなるため、錘部と第1の突起部が固着することを防止できる。
実施の形態1におけるセンサの上面図 実施の形態1におけるセンサの線1B-1Bにおける断面図 実施の形態1におけるセンサの回路図 実施の形態1におけるセンサの動作を説明するための断面図 実施の形態1におけるセンサの動作を説明するための模式図 実施の形態1の変形例におけるセンサの断面図 実施の形態1の変形例におけるセンサの断面図の部分拡大図 実施の形態2におけるセンサの断面図 実施の形態2におけるセンサの線5B-5Bにおける断面図 実施の形態3におけるセンサの上面図 実施の形態3におけるセンサの線6B-6Bにおける断面図 実施の形態3におけるセンサの動作を説明するための断面図 実施の形態3におけるセンサの動作を説明するための断面図 実施の形態3の変形例におけるセンサの上面図 実施の形態3の変形例におけるセンサの線8B-8Bにおける断面図 実施の形態4におけるセンサの上面図 実施の形態4におけるセンサの動作を説明するための模式図 従来のセンサの断面図 従来のセンサの断面模式図 従来のセンサの断面模式図
 (実施の形態1)
 以下、実施の形態1におけるセンサについて、図面を参照しながら説明する。
 図1は実施の形態1におけるセンサ10の上面図、図2は図1に示すセンサ10の線1B-1Bにおける断面図、図3は実施の形態1におけるセンサの回路図、図4Aは図2に示すセンサ10の線3A-3Aにおける断面図である。なお、図4Aは後の説明を容易にするため、便宜上、センサ10がX方向の衝撃を受けた後の状態を示している。
 図1、図2、図4Aにおいて、センサ10は、第1の基板11と、第1の基板11の上面81aに接続された支持部12と、第1の基板11の上面81aと対向する下面83bを有する錘部13と、支持部12と錘部13とを接続する梁部14と、第1の基板11の上面81aに設けられた下側突起部15、16とを備えている。そして、この下側突起部15、16には、全体の高さ(第1の基板11の上面81aから第2の面200までの高さ)は約3μmであり、そこに、高さ約270nmの段差17(第2の面200から第1の面100までの差)を設けている。そのため、下側突起部15,16の全高に対する段差17の高さは約9%である。そして、下側突起部15、16には、段差17による稜線19c、19dが設けられている。そして、下側突起部15,16は錘部13の回動軸Y1に向かって、下側突起部15,16の高さが高くなるように、段差17が設けられている。
 梁部14は、支持部12に接続された一端84a(第1の端部)と、一端84aの反対側の他端84b(第2の端部)とを有して、一端84aから延伸方向L14に他端84bまで延びる。錘部13は梁部14の他端84bに接続されている。延伸方向L14と直角でかつ第1の基板11の上面81aと平行の幅方向W14における錘部13の幅D1は、幅方向W14における梁部14の幅D2よりも大きい。幅方向W14における下側突起部15と下側突起部16との間隔D3は、梁部14の幅D2よりも大きく、かつ、錘部13の幅D1よりも小さい。間隔D3は下側突起部15、16の互いに対向する面間の距離である。
 延伸方向L14と平行なY軸と、幅方向W14と平行なX軸と、延伸方向L14(X軸)と幅方向W14(Y軸)とに直角の高さ方向H14であるZ軸とを定義する。実施の形態1ではセンサ10は、Z軸の方向の加速度を検出する加速度センサである。センサ10では、Z軸に直角のX軸の方向に衝撃が生じた場合、錘部13のY軸を中心とした回動を下側突起部15、16により抑止し、これにより梁部14の破断を防止できる。
 [センサ10の構成の詳細]
 以下、センサ10の構成について詳細に説明する。
 第1の基板11、支持部12、錘部13、梁部14、下側突起部15、16は、シリコンまたは溶融石英またはアルミナ等の材料よりなる。好ましくは、シリコンを用いて形成することにより、微細加工技術を用いて小型のセンサ10が製造される。
 第1の基板11と支持部12とは、接着材による接着または金属接合、常温接合、陽極接合等のいずれかを用いて接続することができる。接着材としてはエポキシ系樹脂またはシリコーン系樹脂等の接着剤が用いられる。接着材としてシリコーン系樹脂を用いることにより、接着材自体の硬化に伴って第1の基板11と支持部12に加わる応力を小さくすることができる。
 高さ方向H14における梁部14の厚みは錘部13の厚みよりも小さい。これにより、外部から加速度が印加され、この加速度により錘部13が変位した際に梁部14に歪が発生し、この歪を検出することにより、加速度を検出することができる。
 加速度を検出する検出部20A、20Bは梁部14に形成される。検出部20A、20Bによる検出方式として、歪抵抗方式または静電容量方式などを用いることができる。歪抵抗方式としてピエゾ抵抗を用いることにより、センサ10の感度を向上させることができる。また、歪抵抗方式として酸化膜歪み抵抗体を用いた薄膜抵抗方式を用いることにより、センサ10の温度特性を向上させることができる。
 [センサ10の回路構成]
 次に、センサ10の回路構成について、図3を参照しながら説明する。図3は、実施の形態1におけるセンサの回路図である。
 図3は、検出部20A、20Bとして歪抵抗方式を用いた場合のセンサ10の回路図である。検出部20Aは抵抗R1を有し、検出部20Bは抵抗R4を有する。支持部12には抵抗R2、R3が設けられている。抵抗R1、R2、R3、R4は接続点Vdd、GND、V1、V2でブリッジ型に接続されてブリッジ回路を構成する。対向する一対の接続点Vdd、GNDの間に電圧を印加し、他の一対の接続点V1、V2の間の電位差Voutを検出することにより、センサ10に印加された加速度を検出することができる。
 [センサ10がX方向の衝撃を受けた時のセンサ10の動作]
 次に、センサ10がX方向の衝撃を受けた時の状態について、図4A、図4Bを参照しながら説明する。
 図4Aは、図2に示すセンサ10の線3A-3Aにおける断面図であり、図2に示す方向M10から見た断面図である。図4Bはセンサの動作を説明するための模式図である。図4Bは、センサがX方向の衝撃を受けた後の状態を斜めから見た図である。なお、図4Bでは、センサ10の状態を分かりやすくするため、下側突起部16と錘部13の一部のみ示している。
 錘部13は稜線13c、13dを有し、錘部13が軸Y1を中心に回動すると、稜線13c、13dが下側突起部15、16の上方に当接する。つまり、稜線13cおよび稜線13dは錘部の下面の角に相当する。
 一方、下側突起部15、16は稜線19c、19dを有し、錘部13が軸Y1を中心に回動すると、稜線19c、19dが錘部13の下面83bに当接する。つまり、稜線19cおよび稜線19dは下側突起部15、16の第2の面200の第1の面100側の端部に相当する。
 次に、X軸の正方向に衝撃が加わり過大な加速度が印加された場合のセンサ10の動作について、図4A、図4Bを参照しながら説明する。
 X軸の正方向に衝撃が加わり過大な加速度が印加された場合、Y軸と平行であって錘部13の重心G13を通る軸Y1を中心として錘部13の下面83bが下側突起部16に近づき下側突起部15から離れる方向R13に錘部13が回動し梁部14が捻れる。このとき、第1の基板11における下側突起部15,16に段差17を設ける。つまり、第1の面100と第2の面200の高さの差を設ける。この段差17により下側突起部15,16の高さが錘部13の回動軸Y1に向かって高くなるように構成されている。つまり、第1の基板11の上面を基準として、第2の面200は、第1の面100より上方に位置している。そして、軸Y1を中心として錘部13が方向R13に回動すると、錘部13の稜線13dが下側突起部16の第1の面100に当接し、錘部13の方向R13の回動を規制する。また、同時に、下側突起部16の上面に設けた稜線19d(第2の面200の端部)が錘部13の下面83bに当接する。
 すなわち、実施の形態1におけるセンサ10においては、第1の基板11における下側突起部16と錘部13とが互いに異なる稜線13dおよび稜線19dの2箇所で当接するようにしたため、錘部の稜線13dのみに応力が集中することがなくなる。その結果、錘部13と第1の基板11における下側突起部16とが固着することを防止できる。
 また、第1の基板11における下側突起部16に段差17を設け、錘部13が最大に可動した際に下側突起部16の稜線19dが錘部13の下面と当接するとともに、錘部13の下側の稜線13dが下側突起部16の段差17(第1の面100)に当接するように構成されている。本実施の形態は、下側突起部16に段差17を設けているだけであるので、錘部13の下面83bと当接する下側突起部16の稜線19dを容易に形成できる。
 次に、錘部13が方向R13の逆の方向に回動した場合について図4Aを参照しながら説明する。なお、錘部13が方向R13の逆の方向に回動した場合の状態は図示していない。
 錘部13が方向R13の逆の方向に回動した場合、錘部13の稜線13cが下側突起部15の段差17(第1の面100)に当接し、錘部13の回動を規制する。また、同時に、下側突起部15の上面に設けた稜線19cが錘部13の下面83bに当接する。幅方向W14における下側突起部15と下側突起部16との間隔D3は、幅方向W14における梁部14の幅D2(図1に示す)よりも大きく、かつ、幅方向W14における錘部13の幅D1よりも小さい。間隔D3は下側突起部15、16の互いに対向する面間の距離である。これにより、錘部13の回動に起因する梁部14の応力を効果的に低減することができる。
 なお、実施の形態1におけるセンサ10においては、第1の基板11における下側突起部15、16に段差17を設け、錘部13が最大に可動した際に下側突起部15,16の稜線19dが錘部13の下面83bと当接するとともに、錘部13の下側の稜線13c、13dが下側突起部15,16の段差17(第1の面100)に当接する構成とした。
 つまり、本実施の形態のセンサ10は、第1の基板11と、第1の基板11の上面81aに設けられた第1の突起部(下側突起部15、16)と、第1の基板11の上面81aに設けられた支持部12と、第1の端部(一端84a)が支持部12に支持された梁部14と、梁部14の第2の端部(他端84b)に設けられた錘部13と、を備える。そして、第1の突起部(下側突起部15、16)の上面は、第1の面100および第2の面200を有する。また、第1の基板11の上面を基準として、第2の面200は、第1の面100より上方に配置されている。
 そして、錘部13を回動させると、錘部13は、第1の面100に線で当接し、かつ、第2の面200の端部に線で当接する。
 また、本実施の形態のセンサ10は、より好ましくは、第1の面100は、平面視で、錘部13の周縁の外側の領域から錘部13の周縁の内側の領域にまで跨って配置され、第2の面200は、平面視で、錘部13の周縁より内側の領域に位置する。
 (実施の形態1の変形例)
 次に、実施の形態1の変形例におけるセンサについて、図5、図6を参照しながら説明する。図5は、実施の形態1の変形例におけるセンサの断面図である。図6は、実施の形態1の変形例におけるセンサの断面図の部分拡大図である。なお、実施の形態1と同様の構成については同一の符号を付し、説明を省略する。
 図5に示すように、第1の基板11における下側突起部15、16にテーパ面17Aを有する段差17(第1の面100と第2の面200の高さの差)を設けている。この段差17により下側突起部15、16の高さが錘部の回動軸Y1に向かって高くなる。
 つまり、第1の面100および第2の面200は、テーパ面で接続されている。
 本実施の形態1の変形例によれば、下側突起部15,16に設けたテーパ面17Aにより、錘部13と下側突起部15,16とが互いに当接する接触面積が大幅に増大する。そのため、錘部13と下側突起部15、16との接触面に発生する応力が大幅に減少することとなる。これにより、錘部13と第1の基板11における下側突起部15、16とが固着することを、より確実に防止できる。
 さらに、図6に示すように、第1の基板11における下側突起部16のテーパ面17Aに複数の算術平均粗さRaが1nm以上150nm以下の凹凸を設け、錘部13の下面とテーパ面17Aとが多点で当接するようにした。つまり、テーパ面17Aは、複数の凹凸を有する。
 この構成によれば、テーパ面17Aと錘部13の下面83bとの鏡面接合を防止することができる。なお、下側突起部15についても下側突起部16と同様に、テーパ面17Aに、複数の凹凸を設ければ、同様の効果を得ることができる。
 (実施の形態2)
 以下に実施の形態2におけるセンサについて、図面を参照しながら説明する。
 図7は、実施の形態2におけるセンサ24の断面図、図8は、図7に示すセンサ24の線5B-5Bにおける断面図である。なお、図7、図8において、実施の形態1と同様の構成については同一の符号を付し、説明を省略する。
 図7に示す通り、実施の形態2のセンサ24は、実施の形態1のセンサ10(図2参照)の構成に、支持部12に接続された第2の基板21と、第2の基板21に設けられた上側突起部22、23(第2の突起部)をさらに備える。第2の基板21は第1の基板11に対して動かないように支持部12に固定されている。第2の基板21は錘部13の上面83aに対向する下面91bを有する。錘部13は第1の基板11の上面81aと第2の基板21の下面91bとの間に設けられている。上側突起部22、23は第2の基板21の下面91bに設けられている。上側突起部22、23は錘部13について第1の基板11の上面81aに設けられた下側突起部15、16と対称の位置に設けられている。すなわち、幅方向W14における上側突起部22と上側突起部23との間隔D4は、幅方向W14における下側突起部15と下側突起部16との間隔D3と同じである。ここで間隔D4は、上側突起部22、23の互いに対向する面間の距離である。上側突起部22、23の間隔D4は、幅方向W14における梁部14の幅D2よりも大きく、かつ、幅方向W14における錘部13の幅D1よりも小さい(図1に示す)。錘部13は上側突起部22、23の下方にそれぞれ位置する稜線13e、13fを有する。この構成により、錘部13の下面83bの稜線13c、13dが下側突起部15、16の段差17(第1の面100)にそれぞれ当接するとともに、錘部13の上面83aの稜線13e、13fが上側突起部22、23の段差17(第3の面300)とそれぞれ当接する。また、それと同時に、錘部13の上面83aが第2の基板における上側突起部22、23の稜線19e、19f(第4の面400の端部)にそれぞれ当接するとともに、錘部13の下面83bが第1の基板11における下側突起部15、16の稜線19c、19d(第2の面200の端部)とそれぞれ当接する。そのため、より確実に錘部13の回動を抑制し梁部14の捻れを抑制することができる。
 すなわち、実施の形態2におけるセンサにおいては、錘部13が最大に可動した際に上側突起部22の稜線19eが錘部13の上面83aと当接するとともに、錘部13の上側の稜線13eが上側突起部22の段差17(第3の面300)に当接するような構成である。
 つまり、実施の形態3のセンサは、支持部12の上方に設けられ、支持部12から延出する第2の基板21と、第2の基板21の下面91bに設けられた上側突起部22または23(第2の突起部)とを更に備える。そして、第1の基板11と第2の基板21は並行に配置されている。そして、上側突起部22または23(第2の突起部)の下面は、第3の面300および第4の面400を有する。また、第2の基板21の下面91bを基準として、第4の面400は、第3の面300より下方にある。
 そして、錘部13を回動させると、錘部13は、第3の面300に線で当接し、かつ、第4の面400の端部に線で当接する。
 より好ましくは、第3の面300は、平面視で、錘部13の周縁の外側の領域から錘部13の周縁の内側の領域にまで跨って配置される。そして、第4の面400は、平面視で、錘部13の周縁より内側の領域に位置する。
 この構成により、上側突起部22に段差17(第3の面300と第4の面400の高さの差)を設けるだけで、錘部13の上面と当接する上側突起部22の稜線19eを容易に形成できる。なお、上側突起部23についても上側突起部22と同様の構成であり、同様の効果が得られる。
 (実施の形態3)
 次に、実施の形態3におけるセンサについて、図面を参照しながら説明する。
 図9は、実施の形態3におけるセンサ30の上面図、図10は、図9のセンサ30の線6B-6Bにおける断面図である。なお、図9、図10において、実施の形態1と同様の構成については同一の符号を付し、説明を省略する。
 図9に示す通り、センサ30の構成は、実施の形態1におけるセンサ10が、下側突起部31をさらに備えている。下側突起部31は、第1の基板11の上面81aに設けられている。下側突起部31は、幅方向W14において下側突起部15と下側突起部16の間に位置する。下側突起部31により、錘部13のZ軸方向の過大な変位を抑制することができる。
 センサ30に衝撃が加わった際に、錘部13が下側突起部15、16との当接に伴い重心G13周りに回動する。延伸方向L14における下側突起部15、16のそれぞれと支持部12との距離D5は、延伸方向L14における下側突起部31と支持部12との距離D6よりも大きい。下側突起部15、16は下側突起部31に比べて錘部13の重心G13の近くに位置する。この構成により、錘部13の重心G13周りの回動により薄肉の梁部14が破損することを防止することができる。なお、下側突起部15、16を重心G13よりも延伸方向L14に位置する場合には、錘部13のZ軸の方向の可動域が狭くなるので、下側突起部15、16を重心G13と支持部12との間に設けることが好ましい。
 下側突起部31を下側突起部15、16のそれぞれと支持部との間に設けることにより、錘部13のZ軸方向への過大な変位をより確実に抑制することができる。
 図11と図12は、センサ30に対してZ軸方向に過大な衝撃が加わり、錘部13がZ軸方向に変位した際のセンサ30の断面図である。図11では、Z軸の正方向すなわち下方から過大な衝撃がセンサ30に加わっている。図11、図12には、下側突起部16は図示していないが、下側突起部16については下側突起部15と同様の構成である。
 図11、図12では、下側突起部15(16)に比べて下側突起部31が錘部13の支持部12の近くに設けられていることにより、錘部13の稜線13gが下側突起部31の段差17に当接し、錘部13の回動を規制する。また、同時に、下側突起部31の上面に設けた稜線19gが錘部13の下面83bに当接し、錘部13が過度にZ軸の正方向に変位することを効果的に防ぐことができる。図12では、Z軸の負方向すなわち上方から過大な衝撃がセンサ30に加わっている。この場合、下側突起部15(16)が下側突起部31よりも重心G13の近くに設けられていることにより、錘部13の下面83bが下側突起部15(16)に当接し、錘部13が過度にZ軸の負方向に変位することを効果的に防ぐことができる。
 (実施の形態3の変形例)
 次に、実施の形態3の変形例におけるセンサについて、図13、図14を参照しながら説明する。図13は、実施の形態1の変形例におけるセンサ33の上面図である。なお、図13では第1の基板11、第2の基板21は示していない。図14は、図13に示すセンサ33の線8B-8Bにおける断面図である。
 図13と図14において、他の実施の形態と同様の構成については同一の符号を付し、説明を省略する。
 図13と図14に示すセンサ33では、支持部12に第2の基板21が接続されており、第2の基板21の錘部13と対向する下面91bに上側突起部22、23が設けられるとともに、幅方向W14において上側突起部22、23の間に位置する上側突起部32が設けられている。第2の基板21の下面91bに設けられた上側突起部22、23、32は、錘部13について第1の基板11の上面81aに設けられた下側突起部15、16、31とそれぞれ対称の位置に設けられている。この構成により、錘部13の下側と上側にそれぞれZ軸方向の衝撃による回動を防止する下側突起部31および上側突起部32と、X軸方向の過大な変位を防止する下側突起部15、16および上側突起部22、23が設けられているので、耐衝撃性を大幅に向上することができる。
 (実施の形態4)
 次に、実施の形態4におけるセンサについて、図15A、図15Bを参照しながら説明する。図15Aは、実施の形態4におけるセンサ40の上面図である。図15Bは、実施の形態4におけるセンサ40の動作を説明するための模式図である。なお、実施の形態1と同様の構成については同一の符号を付し、説明を省略する。
 実施の形態4のセンサ40と、実施の形態1のセンサ10の構成と異なる点は錘部113の形状および、下側突起部115、116の第1の面100および第2の面200の形状である。
 その他の構成については実施の形態1と同様であるので説明を省略する。
 図15Aに示す通り、錘部113は必ずしも長方形や、正方形である必要はない。また、下側突起部115、116の第1の面100および第2の面200の境界線は、必ずしもL14やW14方向と平行である必要はない。
 なお、実施の形態2~3についても実施の形態4と同様に、錘部13の形状は限定されるものではない。
 また、実施の形態1~4におけるセンサは加速度センサであるが、錘部の回動や変位により物理量を検出するセンサであれば、角速度センサ、歪センサ、気圧センサ、圧力センサなど、他の種類のセンサにも適用することができる。
 上記実施の形態において、「上面」「下面」「上方」「下方」等の方向を示す用語は基板や錘部等のセンサの構成部材の相対的な位置関係にのみ依存する相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 なお、上述した実施の形態において、実際のメカニズムでは、例えば錘部13および下側突起部16が接触する際、必ずしも、稜線13dおよび稜線19dの2箇所で同時に接触するとは限らない。つまり、稜線13dが先に接触してから稜線19dが接触するか、稜線19dが先に接触してから稜線13dが接触する場合がある。しかしながら、梁部14は弾性変形するので、時間の経過とともに、稜線13dおよび稜線19dの2つの線(2箇所)で、錘部13および下側突起部16が接触する。下側突起部15、16、31、115、116、上側突起部22、23、32についても同様に、錘部13が回動することにより、結果的に2つの稜線で接触することになる。
 なお、上述した稜線全てについて、必ずしも真っ直ぐな直線であるとは限らない。稜線は、わずかにうねっている線であっても問題はない。
 本開示のセンサは、過大な加速度が負荷されても錘部と基板とがステッキングにより固着しにくい効果を有する。特に、車両やナビゲーション装置、携帯端末等に用いられる加速度センサや角速度センサ等の慣性力センサ、歪センサや気圧センサ等のセンサとして有用である。
10,24,30,33,40 センサ
11 第1の基板
12 支持部
13,113 錘部
14 梁部
13c,13d,13e,13f,13g 稜線
15,16,31,115,116 下側突起部(第1の突起部)
17 段差
17A テーパ面
19c,19d,19e,19f,19g 稜線
21 第2の基板
22,23,32 上側突起部(第2の突起部)
81a 上面
83a 上面
83b 下面
84a 一端(第1の端部)
84b 他端(第2の端部)
91b 下面
100 第1の面
200 第2の面
300 第3の面
400 第4の面

Claims (8)

  1.  第1の基板と、
     前記第1の基板の上面に設けられた第1の突起部と、
     前記第1の基板の上面に設けられた支持部と、
     第1の端部が前記支持部に支持された梁部と、
     前記梁部の第2の端部に設けられた錘部と、
    を備え、
     前記第1の突起部の上面は、第1の面および第2の面を有し、
     前記第1の基板の上面を基準として、前記第2の面は、前記第1の面より上方に配置されている
    ことを特徴とするセンサ。
  2.  前記錘部を回動させると、前記錘部は、前記第1の面に線で当接し、かつ、前記第2の面の端部に線で当接する
    ことを特徴とする請求項1記載のセンサ。
  3.  前記第1の面は、平面視で、前記錘部の周縁の外側の領域から前記錘部の周縁の内側の領域にまで跨って配置され、
     前記第2の面は、平面視で、前記錘部の周縁より内側の領域に位置する
    ことを特徴とする請求項1記載のセンサ。
  4.  前記第1の面および前記第2の面は、テーパ面で接続されている
    ことを特徴する請求項1記載のセンサ。
  5.  前記テーパ面は、複数の凹凸を有する
    ことを特徴とする請求項4記載のセンサ。
  6.  前記支持部の上方に設けられ、前記支持部から延出する第2の基板と、
     前記第2の基板の下面に設けられた第2の突起部と、
    を更に備え、
     前記第1の基板と前記第2の基板は並行に配置され、
     前記第2の突起部の下面は、第3の面および第4の面を有し、
     前記第2の基板の下面を基準として、前記第4の面は、前記第3の面より下方にある
    ことを特徴とする請求項1記載のセンサ。
  7.  前記錘部を回動させると、前記錘部は、前記第3の面に線で当接し、かつ、前記第4の面の端部に線で当接する
    ことを特徴とする請求項6記載のセンサ。
  8.  前記第3の面は、平面視で、前記錘部の周縁の外側の領域から前記錘部の周縁の内側の領域にまで跨って配置され、
     前記第4の面は、平面視で、前記錘部の周縁より内側の領域に位置する
    ことを特徴とする請求項6記載のセンサ。
PCT/JP2015/003355 2014-07-04 2015-07-03 センサ WO2016002229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531122A JPWO2016002229A1 (ja) 2014-07-04 2015-07-03 センサ
US15/320,372 US20170160307A1 (en) 2014-07-04 2015-07-03 Sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138802 2014-07-04
JP2014-138802 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002229A1 true WO2016002229A1 (ja) 2016-01-07

Family

ID=55018801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003355 WO2016002229A1 (ja) 2014-07-04 2015-07-03 センサ

Country Status (3)

Country Link
US (1) US20170160307A1 (ja)
JP (1) JPWO2016002229A1 (ja)
WO (1) WO2016002229A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969635A (ja) * 1995-08-30 1997-03-11 Nec Corp 静電容量型加速度センサおよびその製造方法
JP2002098710A (ja) * 2000-09-26 2002-04-05 Matsushita Electric Works Ltd 半導体加速度センサ
JP2007132863A (ja) * 2005-11-11 2007-05-31 Matsushita Electric Works Ltd 半導体加速度センサ
JP2011245584A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd Mems構造体
US20130036818A1 (en) * 2011-08-08 2013-02-14 Samsung Electro-Mechanics Co., Ltd. Inertial sensor and method of manufacturing the same
JP2013217869A (ja) * 2012-04-12 2013-10-24 Panasonic Corp 静電容量式センサ
US20140167189A1 (en) * 2012-12-18 2014-06-19 Robert F. Steimle Reducing mems stiction by deposition of nanoclusters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969635A (ja) * 1995-08-30 1997-03-11 Nec Corp 静電容量型加速度センサおよびその製造方法
JP2002098710A (ja) * 2000-09-26 2002-04-05 Matsushita Electric Works Ltd 半導体加速度センサ
JP2007132863A (ja) * 2005-11-11 2007-05-31 Matsushita Electric Works Ltd 半導体加速度センサ
JP2011245584A (ja) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd Mems構造体
US20130036818A1 (en) * 2011-08-08 2013-02-14 Samsung Electro-Mechanics Co., Ltd. Inertial sensor and method of manufacturing the same
JP2013217869A (ja) * 2012-04-12 2013-10-24 Panasonic Corp 静電容量式センサ
US20140167189A1 (en) * 2012-12-18 2014-06-19 Robert F. Steimle Reducing mems stiction by deposition of nanoclusters

Also Published As

Publication number Publication date
US20170160307A1 (en) 2017-06-08
JPWO2016002229A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
US10145686B2 (en) Micro electro mechanical system
TWI414478B (zh) 可同時量測加速度及壓力之微機電感測器
JP5108617B2 (ja) 加速度センサ
WO2003044539A1 (fr) Accelerometre
JP2005283402A (ja) 慣性センサ
JP2010043929A (ja) モーションセンサ
JP5459890B1 (ja) 力覚センサ
JP2007163405A (ja) 多軸力ロードセル
JP2015096849A (ja) ガラス基板上のオール・シリコン電極容量性トランスジューサ
JP6258977B2 (ja) センサおよびその製造方法
JP5292600B2 (ja) 加速度センサ
WO2016002229A1 (ja) センサ
JP5370610B1 (ja) センサ
WO2014174812A1 (ja) センサ
TW202240170A (zh) 慣性感測器
US20170089941A1 (en) Sensor
JP6205582B2 (ja) センサ
KR101482378B1 (ko) Mems 디바이스
US20230168273A1 (en) Physical Quantity Sensor, Inertial Measurement Unit, and Manufacturing Method
JP2007298408A (ja) 静電容量式センサ
JP2008157706A (ja) センサ
JP5046240B2 (ja) 加速度センサの製造方法
JP4793050B2 (ja) 静電容量式センサ
JP2011059547A (ja) ミラーデバイスおよびその製造方法
CN116068223A (zh) 物理量传感器及惯性测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15320372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815452

Country of ref document: EP

Kind code of ref document: A1